Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

PD784225, 784225Y Subseries

16-/8-Bit Single-Chip Microcontrollers

Hardware

PD784224 PD784224Y PD784225 PD78425 PD

PD78F4225 PD78F4225Y

Document No. U12697EJ4V1UD00 (4th edition) Date Published August 2005 N CP(K)

[MEMO]

NOTES FOR CMOS DEVICES -

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

 $\label{eq:energy} \textbf{EEPROM}, \, \textbf{FIP}, \, \textbf{and} \, \, \textbf{IEBus} \, \, \textbf{are} \, \, \textbf{trademarks} \, \, \textbf{of} \, \, \textbf{NEC} \, \, \textbf{Electronics} \, \, \textbf{Corporation}.$

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

Ethernet is a trademark of Xerox Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc.

TRON is the abbreviation for the Realtime Operating system Nucleus.

ITRON is the abbreviation for Industrial TRON.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- · Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España Madrid, Spain

Tel: 091-504 27 87

Succursale Française Vélizy-Villacoublay, France

Tel: 01-30-675800

• Filiale Italiana

Milano, Italy Tel: 02-66 75 41

Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-2654010

Tyskland Filial

Taeby, Sweden Tel: 08-63 87 200

United Kingdom Branch

Milton Kevnes, UK Tel: 01908-691-133

Hona Kona Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul. Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311

Major Revisions in This Edition

Page	Description
U12967JJ3V0UD00 → L	J12967JJ4V0UD00
	CHAPTER 1 OVERVIEW
p.32	Change of 78K/IV SERIES LINEUP
p.39	Modification of minimum instruction execution time in 1.5 Function List
	CHAPTER 13 A/D CONVERTER
p.231	Modification of Cautions in Figure 13-2 Format of A/D Converter Mode Register (ADM)
	CHAPTER 16 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O
p.257	Addition of Table 16-2 Serial Interface Operation Mode Settings
	CHAPTER 17 3-WIRE SERIAL I/O MODE
p.288	Addition of Table 17-2 Serial Interface Operation Mode Settings
	CHAPTER 22 INTERRUPT FUNCTIONS
p.401	Addition of reserved words in Figure 22-21 Format of Macro Service Control Word
	CHAPTER 23 LOCAL BUS INTERFACE FUNCTIONS
p.439	Modification of Table 23-3 Settings of Program Wait Control Register 2 (PWC2)
	CHAPTER 24 STANDBY FUNCTION
p.464	Modification of Figure 24-1 Standby Function State Transition
p.552	Addition of CHAPTER 29 ELECTRICAL SPECIFICATIONS
p.594	Addition of CHAPTER 30 PACKAGE DRAWINGS
p.596	Addition of CHAPTER 31 RECOMMENDED SOLDERING CONDITIONS
	APPENDIX B DEVELOPMENT TOOLS
p.603	Addition of description on SP78K4 and change of Remark in B.1 Language Processing Software
p.607	Modification of Remark in B.3.2 Software
p.608	Addition of B.4 Cautions on Designing Target System
	APPENDIX C EMBEDDED SOFTWARE
p.613	Deletion of MX78K4 description
U12967JJ4V0UD00 → L	J12967JJ4V1UD00
p.34	Modification of 1.2 Ordering Information
p.596	Addition of lead-free products to CHAPTER 31 RECOMMENDED SOLDERING CONDITIONS

The mark \star shows major revised points.

INTRODUCTION

Target Readers

This manual is intended for user engineers who wish to understand the functions of the μ PD784225 and 784225Y Subseries and design its application systems.

Purpose

This manual describes the hardware functions of the µPD784225 and 784225Y Subseries.

Organization

The μ PD784225 and 784225Y Subseries User's Manual is divided into two parts: Hardware (this manual) and Instruction.

Hardware

Instruction

CPU functions Pin functions Internal block functions Addressing Interrupts Instruction set

Other on-chip peripheral functions

Electrical specifications

There are cautions associated with using this product.

Be sure to read the cautions in the text of each chapter and summarized at the end of each chapter.

How to Read This Manual It is assumed that the readers of this manual have general knowledge about electrical engineering, logic circuits, and microcontrollers.

· If there are no particular differences in the function

The μ PD784225 in the μ PD784225 Subseries is described as the representative mask ROM version, and the μ PD78F4225 is described as the representative flash memory version.

· If there are differences in the function

Each product name is presented and described separately.

Since μ PD784225 Subseries products are described as representative even this case, for information on the operation of μ PD784225Y Subseries products, read the sections on the μPD784224Y, 784225Y, and 78F4225Y instead of the μPD784224, 784225, and 78F4225.

· To understand the overall functions

→ Read in the order of the contents.

· To debug when the operation is unusual

→ Since the cautions are summarized at the end of each chapter, see the cautions associated with the function.

· For detailed explanations of registers whose names are known

→ See APPENDIX D REGISTER INDEX.

- · For detailed explanations of the instruction functions
 - → Refer to the other manual 78K/IV Series User's Manual Instruction (U10905E).
- · For explanations of the application examples of the functions
 - \rightarrow Refer to the **Application Note**.
- · To know the electrical specifications
 - → Refer to CHAPTER 29 ELECTRICAL SPECIFICATIONS.

Differences Between the μ PD784225 Subseries and the μ PD784225Y Subseries

The only functional difference between the μ PD784225 Subseries and μ PD784225Y Subseries is the clocked serial interface. The two subseries share all other functions.

Caution -

The clock serial interface is described in the following two chapters.

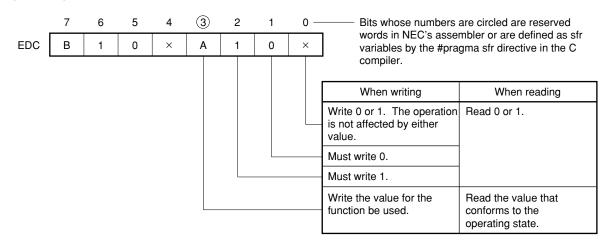
- CHAPTER 17 3-WIRE SERIAL I/O MODE
- CHAPTER 18 I²C BUS MODE (µPD784225Y SUBSERIES only)

For an overview of the serial interface, also read CHAPTER 15.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: $\overline{\times\!\times\!\times}$ (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text


Caution: Information requiring particular attention

Remark: Supplementary information Numerical representation: Binary ··· ××××B or ××××

Decimal ··· ××××

Hexadecimal ··· ××××H

Register Representation

Never write a combination of codes that have "Setting prohibited" written in the register description in this manual.

Characters that are confused: 0 (zero), O (capital o)

1 (one), I (letter I), I (capital i)

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to devices

Document Name	Document No.
μPD784225, 784225Y Subseries Hardware User's Manual	This manual
78K/IV Series Instruction User's Manual	U10905E
78K/IV Series Software Basics Application Note	U10095E

Documents related to development tools (software) (user's manuals)

Document Name		Document No.
RA78K4 Assembler Package	Operation	U11334E
	Language	U11162E
	Structured Assembler Preprocessor	U11743E
CC78K4 C Compiler	Operation	U11572E
	Language	U11571E
SM78K4 System Simulator Ver. 1.40 or Later	Reference (Windows TM Based)	U10093E
SM78K Series System Simulator Ver. 1.40 or Later	External Part User Open Interface Specifications	U10092E
ID78K Series Integrated Debugger Ver. 2.30 or Later	Operation (Windows Based)	U15185E
ID78K4 Integrated Debugger Windows Based	Reference	U10440E
RX78K4 Real-Time OS	Fundamental	U10603E
	Installation	U10604E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents related to development tools (hardware) (user's manuals)

Document Name	Document No.
IE-78K4-NS In-Circuit Emulator	U13356E
IE-784225-NS-EM1 Emulation Board	U13742E
IE-784000-R In-Circuit Emulator	U12903E

Documents related to flash memory writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

Other documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769E
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAPTE	R 1 (OVERVIEW	31				
1.1	Featu	res	33				
1.2	Order	Ordering Information					
1.3	Pin C	Pin Configuration (Top View) 3					
1.4	Block	Diagram	36				
1.5	Function List						
1.6	Differ	ences Between μ PD784225 Subseries Products and μ PD784225Y Subseries					
	Produ	ucts	42				
OLLA DEE		DIN FUNCTIONS	40				
		PIN FUNCTIONS					
2.1		unction List					
2.2		unction Description					
2.3	PIN I/C	O Circuits and Recommended Connection of Unused Pins	53				
CHAPTE	R 3 (CPU ARCHITECTURE	57				
3.1		pry Space					
3.2	Intern	nal ROM Area	61				
3.3	Base	Area	62				
	3.3.1	Vector table area	63				
	3.3.2	CALLT instruction table area	64				
	3.3.3	CALLF instruction entry area	64				
3.4	Intern	nal Data Area	65				
	3.4.1	Internal RAM area	66				
	3.4.2	Special function register (SFR) area	68				
	3.4.3	External SFR area	68				
3.5	Exter	nal Memory Space	68				
3.6	μ PD7	8F4225 Memory Mapping	69				
3.7	Contr	ol Registers	70				
	3.7.1	Program counter (PC)	70				
	3.7.2	Program status word (PSW)	70				
	3.7.3	Using the RSS bit	73				
	3.7.4	Stack pointer (SP)	75				
3.8	Gene	General-Purpose Registers					
	3.8.1	Structure					
	3.8.2	Functions					
3.9	-	al Function Registers (SFRs)	84				
3.10	Cauti	ons	89				
СНДРТЕ	R 4 C	CLOCK GENERATOR	90				
4.1		tions	90				
4.2		guration	90				
4.3		ol Registers	92				
4.4		m Clock Oscillator	97				

	4.4.1 Main system clock oscillator	97
	4.4.2 Subsystem clock oscillator	98
	4.4.3 Examples of incorrect resonator connection	99
	4.4.4 Frequency divider	100
	4.4.5 When subsystem clock is not used	100
4.5	Clock Generator Operations	101
	4.5.1 Main system clock operations	102
	4.5.2 Subsystem clock operations	103
4.6	Changing System Clock and CPU Clock Settings	103
CHAPTI	ER 5 PORT FUNCTIONS	105
5.1	Digital I/O Ports	105
5.2	Port Configuration	107
	5.2.1 Port 0	107
	5.2.2 Port 1	109
	5.2.3 Port 2	110
	5.2.4 Port 3	114
	5.2.5 Port 4	116
	5.2.6 Port 5	118
	5.2.7 Port 6	120
	5.2.8 Port 7	124
	5.2.9 Port 12	127
	5.2.10 Port 13	128
5.3	Control Registers	129
5.4	Operations	134
	5.4.1 Writing to I/O port	134
	5.4.2 Reading from I/O port	134
	5.4.3 Operations on I/O port	134
	ER 6 REAL-TIM OUTPUT FUNCTION	
6.1	Function	
6.2	Configuration	
6.3	Control Registers	
6.4	Operation	
6.5	Usage of Real-Time Output Function	
6.6	Cautions	141
CHAPTI	ER 7 TIMER OVERVIEW	142
CHAPTI	ER 8 16-BIT TIMER/EVENT COUNTER	145
8.1	Function	
8.2	Configuration	146
8.3	Control Registers	
8.4	Operation	
	8.4.1 Operation as interval timer (16 bits)	
	8.4.2 PPG output operation	
	8.4.3 Pulse width measurement	

	8.4.4 Operation as external event counter	
	8.4.5 Operation to output square wave	168
	8.4.6 Operation to output one-shot pulse	170
8.5	Cautions	176
CHAPTE	R 9 8-BIT TIMER/EVENT COUNTERS 1, 2	180
9.1	Functions	180
9.2	Configuration	181
9.3	Control Registers	184
9.4	Operation	189
	9.4.1 Operation as interval timer (8-bit operation)	189
	9.4.2 Operation as external event counter	193
	9.4.3 Operation to output square wave (8-bit resolution)	194
	9.4.4 Operation to output 8-bit PWM	195
	9.4.5 Operation as interval timer (16-bit operation)	
9.5	Cautions	
CHAPTE	R 10 8-BIT TIMERS 5, 6	200
10.1	Functions	200
10.2	Configuration	201
10.3	Control Registers	204
10.4	Operation	208
	10.4.1 Operation as interval timer (8-bit operation)	208
	10.4.2 Operation as interval timer (16-bit operation)	213
10.5	Cautions	214
CHAPTE	R 11 WATCH TIMER	215
11.1	Function	215
11.2	Configuration	216
11.3	Watch Timer Control Register	217
11.4	Operation	219
	11.4.1 Operation as watch timer	219
	11.4.2 Operation as interval timer	219
	'	
CHAPTE	R 12 WATCHDOG TIMER	221
	Configuration	
	Control Register	
	Operations	
	12.3.1 Count operation	
	12.3.2 Interrupt priority order	
12.4	Cautions	
	12.4.1 General cautions when using the watchdog timer	
	12.4.2 Cautions about the μ PD784225 Subseries watchdog timer	
CHAPTE	R 13 A/D CONVERTER	226
	Functions	
	Configuration	
	Control Registers	220

13.4	Operations	232
	13.4.1 Basic operations of A/D converter	232
	13.4.2 Input voltage and conversion result	234
	13.4.3 Operation modes of A/D converter	235
13.5	Reading A/D Converter Characteristics Table	238
13.6	Cautions	241
CHAPTE	R 14 D/A CONVERTER	248
14.1	Function	248
14.2	Configuration	248
14.3	Control Registers	250
14.4	Operation	251
14.5	Cautions	251
CHAPTE	R 15 SERIAL INTERFACE OVERVIEW	253
	R 16 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O	
	Switching Asynchronous Serial Interface Mode and 3-Wire Serial I/O Mode	
16.2	Asynchronous Serial Interface Mode	
	16.2.1 Configuration	
	16.2.2 Control registers	
16.3	Operation	
	16.3.1 Operation stopped mode	
	16.3.2 Asynchronous serial interface (UART) mode	
	16.3.3 Standby mode operation	
16.4	3-Wire Serial I/O Mode	
	16.4.1 Configuration	279
	16.4.2 Control registers	
	16.4.3 Operation	282
	R 17 3-WIRE SERIAL I/O MODE	
	Function	
	Configuration	
	Control Registers	
17.4	Operation	289
	D. 40. 190 DUO MODE / DDTG4005V GUDGEDIEG GNUV	000
	R 18 I ² C BUS MODE (μPD784225Y SUBSERIES ONLY)	
	Function Overview	
	Configuration	
	Control Registers	
18.4	I ² C Bus Mode Function	
	18.4.1 Pin configuration	
18.5	I ² C Bus Definitions and Control Method	
	18.5.1 Start condition	
	18.5.2 Address	
	18.5.3 Transfer direction specification	
	18.5.4 Acknowledge signal (ACK)	
	18.5.5. Stop condition	311

	18.5.6 Wait signal (WAIT)	312
	18.5.7 I ² C interrupt request (INTIIC0)	
	18.5.8 Interrupt request (INTIIC0) generation timing and wait control	
	18.5.9 Address match detection	
	18.5.10 Error detection	
	18.5.11 Extended codes	
	18.5.12 Arbitration	
	18.5.13 Wake-up function	
	18.5.14 Communication reservation	
	18.5.15 Additional cautions	
	18.5.16 Communication operation	
18.6	Timing Charts	
CHAPTE	R 19 CLOCK OUTPUT FUNCTION	350
19.1	Functions	350
19.2	Configuration	351
19.3	Control Registers	351
	R 20 BUZZER OUTPUT FUNCTIONS	
	Function	
	Configuration	
20.3	Control Registers	355
	R 21 EDGE DETECTION FUNCTION	
	Control Registers	
21.2	Edge Detection of P00 to P05 Pins	358
CHARTE	D 00 INTERRUPT FUNCTIONS	250
	R 22 INTERRUPT FUNCTIONS Interrupt Request Sources	
22.1		
	22.1.1 Software interrupts	
	22.1.2 Operand error interrupts	
	22.1.3 Non-maskable interrupts	
20.0	22.1.4 Maskable interrupts	
22.2	Interrupt Servicing Modes	
	22.2.1 Vectored interrupt servicing	
	22.2.2 Macro servicing	
20.2	22.2.3 Context switching	
22.3	Interrupt Servicing Control Registers	
	22.3.1 Interrupt control registers (MKC MK4)	
	22.3.2 Interrupt mask registers (MK0, MK1)	
	22.3.3 In-service priority register (ISPR)	
	22.3.4 Interrupt mode control register (IMC)	
	22.3.5 Watchdog timer mode register (WDM)	
	22.3.6 Interrupt selection control register (SNMI)	
_	22.3.7 Program status word (PSW)	
22.4	Coffiners Intervient Asknowledgement Operations	277
	Software Interrupt Acknowledgment Operations	
	22.4.1 BRK instruction software interrupt acknowledgment operation	

2	22.5	Operand Error Interrupt Acknowledgement Operation			
2	22.6	.6 Non-Maskable Interrupt Acknowledgment Operation			
2	22.7	Maska	ble Interrupt Acknowledgment Operation	383	
		22.7.1	Vectored interrupt	385	
		22.7.2	Context switching	385	
		22.7.3	Maskable interrupt priority levels	387	
2	22.8	Macro	Service Function	393	
		22.8.1	Outline of macro service function	393	
		22.8.2	Types of macro servicing	393	
		22.8.3	Basic macro service operation	396	
		22.8.4	Operation at end of macro service	397	
		22.8.5	Macro service control registers	400	
		22.8.6	Macro service type A	404	
		22.8.7	Macro service type B	409	
		22.8.8	Macro service type C	414	
		22.8.9	Counter mode	428	
2	22.9	When	Interrupt Requests and Macro Service Are Temporarily Held Pending	430	
2	22.10	Instr	uctions Whose Execution Is Temporarily Suspended by Interrupt or Macro		
		Servi	ce	431	
2	22.11	Inter	rupt and Macro Service Operation Timing	431	
		22.11.1	Interrupt acknowledge processing time	432	
		22.11.2	Processing time of macro service	433	
2	22.12	Resto	ring Interrupt Function to Initial State	434	
2	22.13	Cauti	ons	435	
CHA	PTE	R 23	LOCAL BUS INTERFACE FUNCTIONS	437	
2	23.1	Extern	nal Memory Expansion Function	437	
2	23.2	Contro	ol Registers	438	
2	23.3	Memo	ry Map for External Memory Expansion	440	
2	23.4	Timing	g of External Memory Expansion Functions	445	
2	23.5	Wait F	unctions	450	
		23.5.1	Address wait	450	
		23.5.2	Access wait	451	
2	23.6	Extern	nal Access Status Output Function	459	
		23.6.1	Summary	459	
		23.6.2	Configuration of external access status output function	459	
		23.6.3	External access status enable register	460	
		23.6.4	External access status signal timing	460	
		23.6.5	EXA pin status in each mode	461	
2	23.7	Extern	nal Memory Connection Example	462	
			·		
СНА	PTE	R 24	STANDBY FUNCTION	463	
2	24.1	Config	guration and Function	463	
		-	ol Registers		
2	24.3	HALT	Mode	470	
		24.3.1	Settings and operating states of HALT mode	470	
		24.3.2	Releasing HALT mode	472	
2	24.4	STOP	Mode	480	

	24.4.1	Settings and operating states of STOP mode	. 480
	24.4.2	Releasing STOP mode	. 482
24.5	IDLE N	lode	488
	24.5.1	Settings and operating states of IDLE mode	. 488
	24.5.2	Releasing IDLE mode	. 490
24.6	Check	Items When Using STOP or IDLE Mode	495
24.7	Low P	ower Consumption Mode	497
	24.7.1	Setting low power consumption mode	. 497
	24.7.2	Returning to main system clock operation	. 498
	24.7.3	Standby function in low power consumption mode	. 499
CHAPTE	R 25 I	RESET FUNCTION	504
CHAPTE	R 26 I	ROM CORRECTION	506
26.1	ROM C	Correction Functions	506
26.2	ROM C	Correction Configuration	508
26.3	Contro	I Register for ROM Correction	510
26.4	Usage	of ROM Correction	511
26.5	Condit	ions for Executing ROM Correction	512
		μ PD78F4225 AND μ PD78F4225Y PROGRAMMING	
		al Memory Size Switching Register (IMS)	
		Memory Overwriting	
27.3		ard Overwrite Mode	
	27.3.1	Selecting communication mode	
	27.3.2	On-board overwrite mode functions	
	27.3.3	Connecting Flashpro III	. 518
CHAPTE	R 28 I	NSTRUCTION OPERATION	520
		ntions	
_		Operations	
		f Addressing Instructions	
CHAPTE	R 29	ELECTRICAL SPECIFICATIONS	552
		cal Specifications of μ PD784224, 784225, 784224Y, and 784225Y	
		cal Specifications of μPD78F4225 and 78F4225Y	
		Charts	
CHAPTE	R 30 I	PACKAGE DRAWINGS	594
CHAPTE	R 31 I	RECOMMENDED SOLDERING CONDITIONS	596
APPEND	IX A N	MAJOR DIFFERENCES BETWEEN THE μ PD784225, 784225Y SUBSERIES,	
		PD784216A SUBSERIES AND μ PD780058A SUBSERIES	599
APPEND	IX B [DEVELOPMENT TOOLS	. 600
B.1		age Processing Software	
B.2	_	Memory Writing Tools	
		aina Tools	605

		B.3.1	Hardware	. 605
		B.3.2	Software	. 607
*	B.4	Caut	ons on Designing Target System	608
	B.5	Conv	rersion Socket (EV-9200GC-80) and Conversion Adapter (TGK-080SDW)	610
			EMBEDDED SOFTWARE	
	APPEND		REGISTER INDEX	_
	D.1		ster Index	
	D.2	Regi	ster Index (Alphabetical Order)	617
	APPEND	IX E	REVISION HISTORY	. 621

LIST OF FIGURES (1/8)

Figure No.	Title	Page
2-1	Pin I/O Circuits	55
3-1	μPD784224 Memory Map	59
3-2	μPD784225 Memory Map	
3-3	Internal RAM Memory Map	
3-4	Format of Internal Memory Size Switching Register (IMS)	
3-5	Format of Program Counter (PC)	
3-6	Format of Program Status Word (PSW)	
3-7	Format of Stack Pointer (SP)	
3-8	Data Saved to Stack	
3-9	Data Restored from Stack	77
3-10	Format of General-Purpose Register	79
3-11	General-Purpose Register Addresses	80
4-1	Block Diagram of Clock Generator	91
4-2	Format of Standby Control Register (STBC)	93
4-3	Format of Oscillation Mode Selection Register (CC)	94
4-4	Format of Clock Status Register (PCS)	95
4-5	Format of Oscillation Stabilization Time Specification Register (OSTS)	96
4-6	External Circuit of Main System Clock Oscillator	97
4-7	External Circuit of Subsystem Clock Oscillator	98
4-8	Examples of Incorrect Resonator Connection	99
4-9	Main System Clock Stop Function	102
4-10	System Clock and CPU Clock Switching	104
5-1	Port Configuration	105
5-2	Block Diagram of P00 to P05	
5-3	Block Diagram of P10 to P17	109
5-4	Block Diagram of P20 and P22	110
5-5	Block Diagram of P21, P23 to P24, and P26	
5-6	Block Diagram of P25	
5-7	Block Diagram of P27	
5-8	Block Diagram of P30 to P32, and P37	114
5-9	Block Diagram of P33 to P36	
5-10	Block Diagram of P40 to P47	
5-11	Block Diagram of P50 to P57	
5-12	Block Diagram of P60 to P63	
5-13	Block Diagram of P64, P65, and P67	
5-14	Block Diagram of P66	
5-15	Block Diagram of P70	
5-16	Block Diagram of P71	
5-17	Block Diagram of P72	
5-18	Block Diagram of P120 to P127	127

LIST OF FIGURES (2/8)

Figure No.	Title	Page
5-19	Block Diagram of P130 and P131	. 128
5-19 5-20	Format of Port Mode Register	
5-20 5-21	Format of Pull-Up Resistor Option Register	
5-21		
5-22	Format of Port Function Control Register 2 (PF2)	. 133
6-1	Block Diagram of Real-Time Output Port	. 136
6-2	Configuration of Real-Time Output Buffer Register	. 137
6-3	Format of Real-Time Output Port Mode Register (RTPM)	. 138
6-4	Format of Real-Time Output Port Control Register (RTPC)	. 139
6-5	Example of Operation Timing of Real-Time Output Port (EXTR = 0, BYTE = 0)	. 140
7-1	Block Diagram of Timer	. 143
8-1	Block Diagram of 16-Bit Timer/Event Counter	. 146
8-2	Format of 16-Bit Timer Mode Control Register 0 (TMC0)	
8-3	Format of Capture/Compare Control Register 0 (CRC0)	
8-4	Format of 16-Bit Timer Output Control Register 0 (TOC0)	
8-5	Format of Prescaler Mode Register 0 (PRM0)	
8-6	Control Register Settings When Timer 0 Operates as Interval Timer	
8-7	Configuration of Interval Timer	
8-8	Timing of Interval Timer Operation	
8-9	Control Register Settings in PPG Output Operation	
8-10	Control Register Settings for Pulse Width Measurement with Free-Running Counter and One	
0.10	Capture Register	. 159
8-11	Configuration for Pulse Width Measurement with Free-Running Counter	
8-12	Timing of Pulse Width Measurement with Free-Running Counter and One Capture Register	100
0 12	(with Both Edges Specified)	. 160
8-13	Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter	. 161
8-14	CR01 Capture Operation with Rising Edge Specified	. 162
8-15	Timing of Pulse Width Measurement with Free-Running Counter (with Both Edges Specified)	. 162
8-16	Control Register Settings for Pulse Width Measurement with Free-Running Counter and Two	
	Capture Registers	. 163
8-17	Timing of Pulse Width Measurement with Free-Running Counter and Two Capture Registers	
	(with Rising Edge Specified)	. 164
8-18	Control Register Settings for Pulse Width Measurement by Restarting	. 165
8-19	Timing of Pulse Width Measurement by Restarting (with Rising Edge Specified)	. 166
8-20	Control Register Settings in External Event Counter Mode	. 167
8-21	Configuration of External Event Counter	. 167
8-22	Timing of External Event Counter Operation (with Rising Edge Specified)	. 168
8-23	Control Register Settings in Square Wave Output Mode	. 169
8-24	Timing of Square Wave Output Operation	. 169
8-25	Control Register Settings for One-Shot Pulse Output by Software Trigger	. 171
8-26	Timing of One-Shot Pulse Output Operation by Software Trigger	. 172
8-27	Control Register Settings for One-Shot Pulse Output by External Trigger	174

LIST OF FIGURES (3/8)

Figure No.	Title	Page
8-28	Timing of One Chat Dules Output Operation by External Trigger (with Dising Edge Chapified)	175
8-29	Timing of One-Shot Pulse Output Operation by External Trigger (with Rising Edge Specified) Start Timing of 16-Bit Timer Counter 0	
8-30	Timing After Changing Compare Register During Timer Count Operation	
8-31	Data Hold Timing of Capture Register	
8-32	Operation Timing of OVF0 Flag	
0-32	Operation mining of Ovi or lag	170
9-1	Block Diagram of 8-Bit Timer/Event Counters 1 and 2	181
9-2	Format of 8-Bit Timer Mode Control Register 1 (TMC1)	185
9-3	Format of 8-Bit Timer Mode Control Register 2 (TMC2)	186
9-4	Format of Prescaler Mode Register 1 (PRM1)	187
9-5	Format of Prescaler Mode Register 2 (PRM2)	188
9-6	Timing of Interval Timer Operation	190
9-7	Timing of External Event Counter Operation (with Rising Edge Is Specified)	193
9-8	Timing of PWM Output	196
9-9	Timing of Operation Based on CRn0 Transitions	197
9-10	Cascade Connection Mode with 16-Bit Resolution	198
9-11	Start Timing of 8-Bit Timer Counter	199
9-12	Timing After Compare Register Changes During Timer Counting	199
10-1	Block Diagram of 8-Bit Timers 5 and 6	201
10-2	Format of 8-Bit Timer Mode Control Register 5 (TMC5)	
10-3	Format of 8-Bit Timer Mode Control Register 6 (TMC6)	
10-4	Format of Prescaler Mode Register 5 (PRM5)	
10-5	Format of Prescaler Mode Register 6 (PRM6)	
10-6	Timing of Interval Timer Operation	
10-7	Timing of Operation Based on CRn0 Transitions	
10-8	Cascade Connection Mode with 16-Bit Resolution	
10-9	Start Timing of 8-Bit Timer Counter	
10-10	Timing After Compare Register Changes During Timer Counting	
11-1	Block Diagram of Watch Timer	216
11-2	Format of Watch Timer Mode Control Register (WTM)	
11-3	Operation Timing of Watch Timer/Interval Timer	
12-1	Block Diagram of Watchdog Timer	
12-2	Format of Watchdog Timer Mode Register (WDM)	223
13-1	Block Diagram of A/D Converter	227
13-2	Format of A/D Converter Mode Register (ADM)	230
13-3	Format of A/D Converter Input Selection Register (ADIS)	231
13-4	Basic Operations of A/D Converter	233
13-5	Relationship Between Analog Input Voltage and A/D Conversion Result	234
13-6	A/D Conversion Operation by Hardware Start (When Falling Edge Is Specified)	236

LIST OF FIGURES (4/8)

Figure No.	Title	Page
13-7	A/D Conversion Operation by Software Start	237
13-7	A/D Conversion Operation by Software Start Overall Error	237
13-6	Quantization Error	238
13-10	Zero-Scale Error	239
13-10	Full-Scale Error	239
13-11	Integral Linearity Error	240
13-12	Differential Linearity Error	240
13-14	Method to Reduce Current Consumption in Standby Mode	241
13-15	Handling of Analog Input Pin	242
13-16	A/D Conversion End Interrupt Request Generation Timing	243
13-17	Conversion Results Immediately After A/D Conversion Is Started	244
13-18	Conversion Result Read Timing (When Conversion Result Is Undefined)	245
13-19	Conversion Result Read Timing (When Conversion Result Is Normal)	245
13-20	Example of Capacitor Connection Between VDD0 and AVDD	246
13-21	Internal Equivalence Circuit of ANI0 to ANI7 Pins	247
13-22	Example of Circuit When Signal Source Impedance Is High	247
14-1	Block Diagram of D/A Converter	249
14-2	Format of D/A Converter Mode Registers 0 and 1 (DAM0, DAM1)	250
14-3	Buffer Amplifier Insertion Example	252
15-1	Serial Interface Example	254
16-1	Switching Asynchronous Serial Interface Mode and 3-Wire Serial I/O Mode	256
16-2	Block Diagram in Asynchronous Serial Interface Mode	259
16-3	Format of Asynchronous Serial Interface Mode Registers 1 and 2 (ASIM1, ASIM2)	262
16-4	Format of Asynchronous Serial Interface Status Registers 1 and 2 (ASIS1, ASIS2)	263
16-5	Format of Baud Rate Generator Control Registers 1 and 2 (BRGC1, BRGC2)	264
16-6	Baud Rate Allowable Error Considering Sampling Errors (When k = 0)	272
16-7	Format of Asynchronous Serial Interface Transmit/Receive Data	273
16-8	Asynchronous Serial Interface Transmit Completion Interrupt Request Timing	275
16-9	Asynchronous Serial Interface Receive Completion Interrupt Request Timing	276
16-10	Receive Error Timing	277
16-11	Block Diagram in 3-Wire Serial I/O Mode	280
16-12	Format of Serial Operation Mode Registers 1 and 2 (CSIM1, CSIM2)	281
16-13	Format of Serial Operation Mode Registers 1 and 2 (CSIM1, CSIM2)	282
16-14	Format of Serial Operation Mode Registers 1 and 2 (CSIM1, CSIM2)	283
16-15	3-Wire Serial I/O Mode Timing	284
17-1	Block Diagram of Clocked Serial Interface (in 3-Wire Serial I/O Mode)	286
17-2	Format of Serial Operation Mode Register 0 (CSIM0)	287
17-3	Format of Serial Operation Mode Register 0 (CSIM0)	289
17-4	Format of Serial Operation Mode Register 0 (CSIM0)	290

LIST OF FIGURES (5/8)

Figure No.	Title	Page
17-5	3-Wire Serial I/O Mode Timing	291
18-1	Serial Bus Configuration Example in I ² C Bus Mode	293
18-2	Block Diagram of Clocked Serial Interface (I ² C Bus Mode)	
18-3	Format of I ² C Bus Control Register 0 (IICC0)	
18-4	Format of I ² C Bus Status Register 0 (IICS0)	
18-5	Format of Prescaler Mode Register 0 for Serial Clock (SPRM0)	
18-6	Pin Configuration	
18-7	Serial Data Transfer Timing of I ² C Bus	
18-8	Start Condition	
18-9	Address	
18-10	Transfer Direction Specification	
18-11	Acknowledge Signal	
18-12	Stop Condition	
18-13	Wait Signal	312
18-14	Example of Arbitration Timing	335
18-15	Timing of Communication Reservation	338
18-16	Communication Reservation Acceptance Timing	338
18-17	Communication Reservation Procedure	339
18-18	Master Operation Procedure	341
18-19	Slave Operating Procedure	342
18-20	${\sf Master} \to {\sf Slave} \ {\sf Communication} \ {\sf Example} \ ({\sf When} \ {\sf Master} \ {\sf and} \ {\sf Slave} \ {\sf Select} \ 9\text{-}{\sf Clock} \ {\sf Wait}) \$	344
18-21	Slave \rightarrow Master Communication Example (When Master and Slave Select 9-Clock Wait)	347
19-1	Remote Control Output Application Example	350
19-2	Block Diagram of Clock Output Function	351
19-3	Format of Clock Output Control Register (CKS)	352
19-4	Format of Port 2 Mode Register (PM2)	353
20-1	Block Diagram of Buzzer Output Function	354
20-2	Format of Clock Output Control Register (CKS)	355
20-3	Format of Port 2 Mode Register (PM2)	356
21-1	Format of External Interrupt Rising Edge Enable Register 0 (EGP0) and External Interrupt	
	Falling Edge Enable Register 0 (EGN0)	357
21-2	Block Diagram of P00 to P05 Pins	
22-1	Interrupt Control Register (xxICn)	367
22-2	Format of Interrupt Mask Registers (MK0, MK1)	
22-3	Format of In-Service Priority Register (ISPR)	
22-4	Format of Interrupt Mode Control Register (IMC)	
22-5	Format of Watchdog Timer Mode Register (WDM)	
22-6	Format of Interrupt Selection Control Register (SNMI)	

LIST OF FIGURES (6/8)

Figure No.	Title	Page
00.7	Former of December Obstace Wood (DOW)	070
22-7	Format of Program Status Word (PSWL)	
22-8	Context Switching Operation by Execution of BRKCS Instruction	
22-9	Return from BRKCS Instruction Software Interrupt (RETCSB Instruction Operation)	
22-10 22-11	Non-Maskable Interrupt Request Acknowledgment Operations	
	Interrupt Acknowledgment Processing Algorithm	
22-12	Context Switching Operation by Generation of an Interrupt Request	
22-13	Return from Interrupt That Uses Context Switching by Means of RETCS Instruction	386
22-14	Examples of Servicing When Another Interrupt Request Is Generated During Interrupt Servicing	388
22-15	Examples of Servicing of Simultaneously Generated Interrupt Requests	391
22-16	Differences in Level 3 Interrupt Acknowledgment According to IMC Register Setting	
22-17	Differences Between Vectored Interrupt and Macro Service Processing	
22-18	Macro Service Processing Sequence	
22-19	Operation at End of Macro Service When VCIE = 0	
22-20	Operation at End of Macro Service When VCIE = 1	
22-21	Format of Macro Service Control Word	
22-22	Format of Macro Service Mode Register	
22-23	Macro Service Data Transfer Processing Flow (Type A)	
22-24	Type A Macro Service Channel	407
22-25	Asynchronous Serial Reception	408
22-26	Macro Service Data Transfer Processing Flow (Type B)	410
22-27	Type B Macro Service Channel	411
22-28	Parallel Data Input Synchronized with External Interrupts	412
22-29	Parallel Data Input Timing	413
22-30	Macro Service Data Transfer Processing Flow (Type C)	415
22-31	Type C Macro Service Channel	418
22-32	Stepper Motor Open Loop Control by Real-Time Output Port	420
22-33	Data Transfer Control Timing	421
22-34	Single-Phase Excitation of 4-Phase Stepper Motor	423
22-35	1-2-Phase Excitation of 4-Phase Stepper Motor	423
22-36	Automatic Addition Control + Ring Control Block Diagram 1 (When Output Timing Varies	
	with 1-2-Phase Excitation)	424
22-37	Automatic Addition Control + Ring Control Timing Diagram 1 (When Output Timing Varies	
	with 1-2-Phase Excitation)	425
22-38	Automatic Addition Control + Ring Control Block Diagram 2 (1-2-Phase Excitation Constant-Velocity Operation)	426
22-39	Automatic Addition Control + Ring Control Timing Diagram 2 (1-2-Phase Excitation	420
22-39		497
22-40	Constant-Velocity Operation)	
22-40 22-41	Macro Service Data Transfer Processing Flow (Counter Mode) Counter Mode	
22-41	Counting Number of Edges	
22-42	Interrupt Request Generation and Acknowledament (Unit: Clock = 1/fclk)	

LIST OF FIGURES (7/8)

Figure No.	Title	Page
23-1	Format of Memory Expansion Mode Register (MM)	438
23-2	Format of Programmable Wait Control Register 1 (PWC1)	
23-3	μPD784224 Memory Map	
23-4	μPD784225 Memory Map	
23-5	Instruction Fetch from External Memory in External Memory Expansion Mode	
23-6	Read Timing for External Memory in External Memory Expansion Mode	
23-7	External Write Timing for External Memory in External Memory Expansion Mode	
23-8	Read Modify Write Timing for External Memory in External Memory Expansion Mode	
23-9	Read/Write Timing by Address Wait Function	
23-10	Read Timing by Access Wait Function	
23-11	Write Timing by Access Wait Function	
23-12	Timing by External Wait Signal	
23-13	Configuration of External Access Status Output Function	
23-14	Format of External Access Status Enable Register (EXAE)	
23-15	Example of Local Bus Interface (Multiplexed Bus)	
24-1	Standby Function State Transition	464
24-2	Format of Standby Control Register (STBC)	466
24-3	Format of Clock Status Register (PCS)	467
24-4	Format of Oscillation Stabilization Time Specification Register (OSTS)	469
24-5	Operations After Releasing HALT Mode	474
24-6	Operations After Releasing STOP Mode	483
24-7	Releasing STOP Mode by NMI Input	486
24-8	Example of Releasing STOP Mode by INTP0 to INTP5 Input	487
24-9	Operations After Releasing IDLE Mode	491
24-10	Example of Handling Address/Data Bus	496
24-11	Flow for Setting Subsystem Clock Operation	497
24-12	Setting Timing for Subsystem Clock Operation	498
24-13	Flow to Restore Main System Clock Operation	499
24-14	Timing for Restoring Main System Clock Operation	499
25-1	Oscillation of Main System Clock in Reset Period	504
25-2	Receiving Reset Signal	505
26-1	ROM Correction Block Diagram	508
26-2	Memory Mapping Example (μPD784225)	509
26-3	Format of ROM Correction Address Register (CORAH, CORAL)	509
26-4	Format of ROM Correction Control Register (CORC)	510
27-1	Format of Internal Memory Size Switching Register (IMS)	514
27-2	Format of Communication Mode Selection	
27-3	Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using 3-Wire Serial I/O 0)	
27-4	Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using Handshake)	
27-5	Connection of Flashpro III in UART Mode (When Using UART1)	

LIST OF FIGURES (8/8)

Figure No.	Title	Page
29-1	Power Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fcpu)	553
29-2	Power Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fcpu)	570
B-1	Development Tool Configuration	601
B-2	Distance Between In-Circuit Emulator and Conversion Socket	608
B-3	Target System Connection Conditions (1)	608
B-4	Target System Connection Conditions (2)	609
B-5	Package Drawing of EV-9200GC-80 (Reference) (Unit: mm)	610
B-6	Recommended Board Installation Pattern of EV-9200GC-80 (Reference) (Unit: mm)	611
B-7	TGK-080SDW Package Drawing (Reference) (Unit: mm)	612

LIST OF TABLES (1/3)

Table No.	Title	Page
2-1	Types of Pin I/O Circuits and Recommended Connection of Unused Pins	53
3-1	Vector Table Address	63
3-2	Internal RAM Area List	66
3-3	Settings of Internal Memory Size Switching Register (IMS)	69
3-4	Register Bank Selection	. 72
3-5	Correspondence Between Function Names and Absolute Names	83
3-6	Special Function Register (SFR) List	85
4-1	Clock Generator Configuration	90
5-1	Port Functions	106
5-2	Port Configuration	107
5-3	Port Mode Registers and Output Latch Settings When Using Alternate Functions	130
6-1	Configuration of Real-Time Output Port	135
6-2	Operation for Manipulating Real-Time Output Buffer Registers	137
6-3	Operation Modes and Output Triggers of Real-Time Output Port	139
7-1	Timer Operation	142
8-1	Configuration of 16-Bit Timer/Event Counter	146
8-2	Valid Edge of TI00 Pin and Capture Trigger of CR00	
8-3	Valid Edge of TI01 Pin and Capture Trigger of CR00	
8-4	Valid Edge of TI00 Pin and Capture Trigger of CR01	149
9-1	Configuration of 8-Bit Timer/Event Counters 1 and 2	181
10-1	Configuration of 8-Bit Timers 5 and 6	201
11-1	Interval Time of Interval Timer	215
11-2	Configuration of Watch Timer	216
11-3	Interval Time of Interval Timer	219
13-1	Configuration of A/D Converter	226
13-2	Resistance and Capacitance Values for Equivalence Circuits (Reference Values)	247
14-1	Configuration of D/A Converter	248
16-1	Differences in Names Between UART1/IOE1 and UART2/IOE2	255
16-2	Serial Interface Operation Mode Settings	
16-3	Configuration of Asynchronous Serial Interface	
16-4	Relationship Between Main System Clock and Baud Rate	272

LIST OF TABLES (2/3)

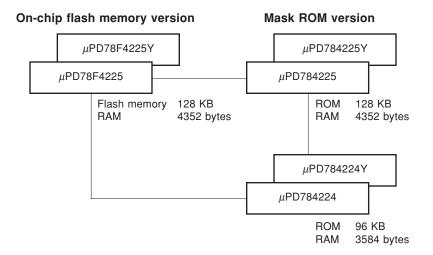
Table No.	Title	Page
16-5	Receive Error Causes	277
16-6	3-Wire Serial I/O Configuration	279
17-1	3-Wire Serial I/O Configuration	285
17-2	Serial Interface Operation Mode Settings	288
18-1	I ² C Bus Mode Configuration	293
18-2	INTIIC0 Generation Timing and Wait Control	332
18-3	Definitions of Extended Code Bits	334
18-4	Arbitration Generation States and Interrupt Request Generation Timing	335
18-5	Wait Times	337
19-1	Configuration of Clock Output Function	351
20-1	Configuration of Buzzer Output Function	354
22-1	Interrupt Request Service Modes	359
22-2	Interrupt Request Sources	360
22-3	Control Registers	364
22-4	Flag List of Interrupt Control Registers for Interrupt Requests	365
22-5	Multiple Interrupt Servicing	387
22-6	Interrupts for Which Macro Servicing Can Be Used	394
22-7	Interrupt Acknowledge Processing Time	432
22-8	Macro Service Processing Time	433
23-1	Pin Functions in External Memory Expansion Mode	437
23-2	Pin States in Ports 4 to 6 in External Memory Expansion Mode	437
23-3	Settings of Program Wait Control Register 2 (PWC2)	439
23-4	P37/EXA Pin Status in Each Mode	461
24-1	Standby Function Modes	463
24-2	Operating States in HALT Mode	471
24-3	Releasing HALT Mode and Operation After Release	473
24-4	Releasing HALT Mode by Maskable Interrupt Request	479
24-5	Operating States in STOP Mode	481
24-6	Releasing STOP Mode and Operation After Release	482
24-7	Operating States in IDLE Mode	489
24-8	Releasing IDLE Mode and Operation After Release	490
24-9	Operating States in HALT Mode	500
24-10	Operating States in IDLE Mode	502
25-1	State of Hardware During and After Reset	505
26-1	Differences Between 78K/IV ROM Correction and 78K/0 ROM Correction	507

LIST OF TABLES (3/3)

Table No.	Title	Page
26-2	ROM Correction Configuration	508
27-1	Differences Between μPD78F4225/78F4225Y and Mask ROM Versions	513
27-2	Internal Memory Size Switching Register (IMS) Settings	514
27-3	Communication Modes	516
27-4	Major Functions of On-Board Overwrite Mode	517
28-1	8-Bit Addressing Instructions	548
28-2	16-Bit Addressing Instructions	549
28-3	24-Bit Addressing Instructions	550
28-4	Bit Manipulation Instruction Addressing Instructions	550
28-5	Call Return Instructions and Branch Instruction Addressing Instructions	551
31-1	Soldering Conditions for Surface Mount Type	596

CHAPTER 1 OVERVIEW

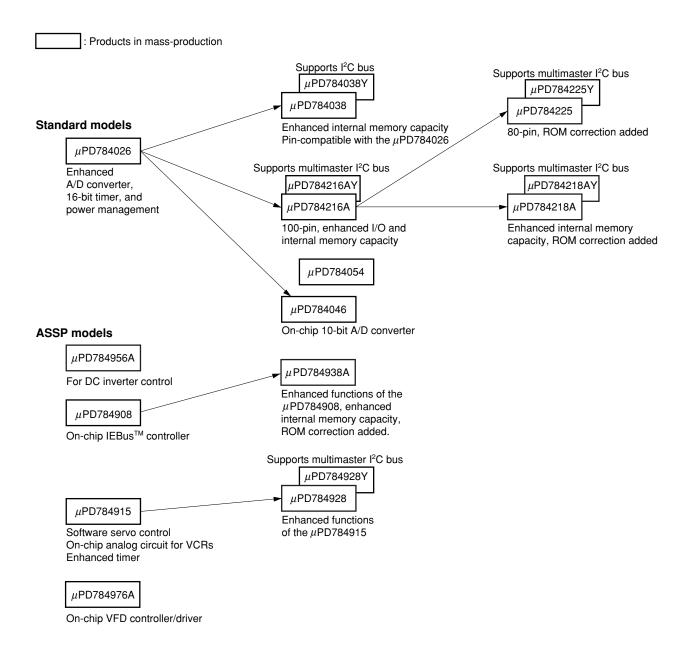
The μ PD784225 Subseries is a member of the 78K/IV Series, and is an 80-pin general-purpose microcontroller in which the functions of the μ PD784216 Subseries have been limited and to which a ROM correction function has been added. The 78K/IV Series includes 8-/16-bit single-chip microcontrollers and provides a high-performance CPU with functions such as 1 MB memory space access.


The μ PD784225 has a 128 KB ROM and 4,352-byte RAM on chip. In addition, it has a high-performance timer/counter, an 8-bit A/D converter, an 8-bit D/A converter, and an independent 2-channel serial interface.

The μ PD784224 is the μ PD784225 with a 96 KB mask ROM and a 3,584-byte RAM.

The μ PD78F4225 is the μ PD784225 with the mask ROM replaced by a flash memory.

The μ PD784225Y Subseries is the μ PD784225 Subseries with an added I²C bus control function.


The relationships among the products are shown below.

These products have applications in the following fields.

· Car audio, portable audio, telephones, etc.

★ 78K/IV SERIES LINEUP

Remark VFD (Vacuum Florescent Display) is referred to as FIPTM (Florescent Indicator Panel) in some documents, but the functions of the two are the same.

1.1 Features

- Inherits the peripheral functions of the μ PD780058 Subseries
- · Minimum instruction execution time
 - 160 ns (main system clock: @ fxx = 12.5 MHz operation)
 - 61 μ s (subsystem clock: @ fxT = 32.768 kHz operation)
- · Instruction set suited to control applications
- Interrupt controller (4-level priority)
 - · Vectored interrupt servicing, macro service, context switching
- Standby function
 - · HALT, STOP, IDLE modes
 - · In the low power consumption mode: HALT, IDLE modes (subsystem clock operation)
- On-chip memory: Mask ROM 128 KB (μPD784225)

96 KB (μPD784224)

Flash memory 128 KB (µPD78F4225)

RAM 4,352 bytes (μPD784225, 78F4225)

3,584 bytes (µPD784224)

- I/O pins: 67
 - · Software-programmable pull-up resistors: 57 inputs
 - · LED direct drive possible: 16 outputs
- Timers: 16-bit timer/event counter × 1 unit

8-bit timer/event counter × 2 units

8-bit timer × 2 units

- · Watch timer: 1 channel
- · Watchdog timer: 1 channel
- Serial interfaces
 - UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)
 - CSI/IICONote (3-wire serial I/O, multimaster supporting I2C busNote): 1 channel
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution \times 2 channels
- · Real-time output port (by combining with the timer/counters, two stepper motors can be independently controlled.)
- Clock frequency division function
- Clock output function: Select from fxx, fxx/2, fxx/2², fxx/2³, fxx/2⁴, fxx/2⁵, fxx/2⁶, fxx/2⁷, fxT
- Buzzer output function: Select from fxx/2¹⁰, fxx/2¹¹, fxx/2¹², fxx/2¹³
- Power supply voltage: $V_{DD} = 1.8 \text{ to } 5.5 \text{ V} (\mu PD784224, 784225, 784224Y, 784225Y)}$

 $V_{DD} = 1.9 \text{ to } 5.5 \text{ V} (\mu PD78F4225, 78F4225Y)$

Note Only in the μ PD784225Y Subseries

★ 1.2 Ordering Information

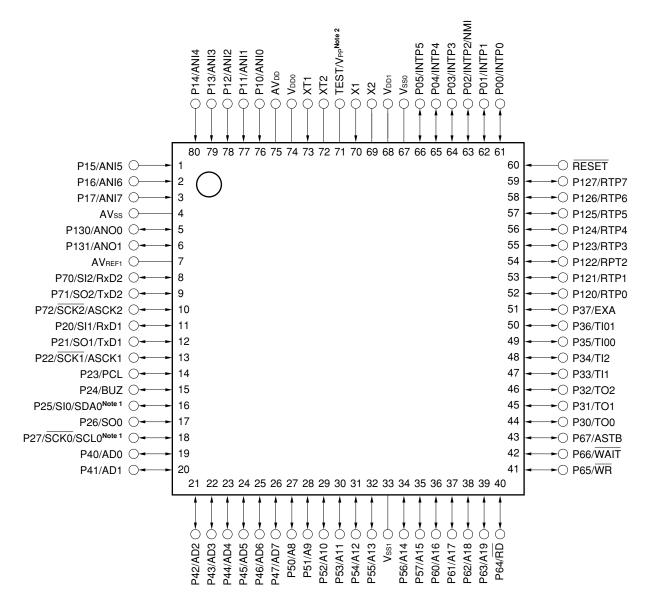
(1) PD784225 Subseries

Part Number	Package	Internal ROM
PD784224GC8BT	80-pin plastic QFP (14 14)	Mask ROM
PD784224GK9EU	80-pin plastic TQFP (fine pitch) (12 1	2) Mask ROM
PD784225GC8BT	80-pin plastic QFP (14 14)	Mask ROM
PD784225GK9EU	80-pin plastic TQFP (fine pitch) (12 1	2) Mask ROM
PD78F4225GC-8BT	80-pin plastic QFP (14 14)	Flash memory
PD78F4225GK-9EU	80-pin plastic TQFP (fine pitch) (12 1	2) Flash memory
PD784224GC8BT-A	80-pin plastic QFP (14 14)	Mask ROM
PD784224GK9EU-A	80-pin plastic TQFP (fine pitch) (12 1	2) Mask ROM
PD784225GC8BT-A	80-pin plastic QFP (14 14)	Mask ROM
PD784225GK9EU-A	80-pin plastic TQFP (fine pitch) (12 1	2) Mask ROM
PD78F4225GC-8BT-A	80-pin plastic QFP (14 14)	Flash memory
PD78F4225GK-9EU-A	80-pin plastic TQFP (fine pitch) (12 1	2) Flash memory

Remarks 1. indicates ROM code suffix.

2. Products that have the part numbers suffixed by "-A" are lead-free products.

(2) PD784225Y Subseries


Part Number	Package		Internal ROM
PD784224YGC8BT	80-pin plastic QFP (14 14)		Mask ROM
PD784224YGK9EU	80-pin plastic TQFP (fine pitch) (12	12)	Mask ROM
PD784225YGC8BT	80-pin plastic QFP (14 14)		Mask ROM
PD784225YGK9EU	80-pin plastic TQFP (fine pitch) (12	12)	Mask ROM
PD78F4225YGC-8BT	80-pin plastic QFP (14 14)		Flash memory
PD78F4225YGK-9EU	80-pin plastic TQFP (fine pitch) (12	12)	Flash memory
PD784224YGC8BT-A	80-pin plastic QFP (14 14)		Mask ROM
PD784224YGK9EU-A	80-pin plastic TQFP (fine pitch) (12	12)	Mask ROM
PD784225YGC8BT-A	80-pin plastic QFP (14 14)		Mask ROM
PD784225YGK9EU-A	80-pin plastic TQFP (fine pitch) (12	12)	Mask ROM
PD78F4225YGC-8BT-A	80-pin plastic QFP (14 14)		Flash memory
PD78F4225YGK-9EU-A	80-pin plastic TQFP (fine pitch) (12	12)	Flash memory

Remarks 1. indicates ROM code suffix.

2. Products that have the part numbers suffixed by "-A" are lead-free products.

1.3 Pin Configuration (Top View)

- 80-pin plastic QFP (14 × 14)
- 80-pin plastic TQFP (fine pitch) (12 × 12)

Notes 1. The SDA0 and SCL0 pins are provided only for the μ PD784225Y Subseries.

2. The V_{PP} pin is provided only in the μ PD78F4225 and 78F4225Y.

- Cautions 1. Connect the TEST pin directly to a V_{SS0} or pull down. For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 $k\Omega$ is recommended.
 - 2. Connect the VPP pin directly to Vsso or pull down during normal operation. When using a system in which on-chip flash memory is overwritten on board, connect the VPP pin via a pull-down resistor.

For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 k Ω is recommended.

- 3. Connect the AVDD pin to VDDO.
- 4. Connect the AVss pin to Vsso.

Remark When the μ PD784225 and 784225Y Subseries are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to VDD0 and VDD1 individually and connecting Vss0 and Vss1 to different ground lines, is recommended. Always use VDD0 and VDD1, and Vss0 and Vss1 at the same potential.

CHAPTER 1 OVERVIEW

A8 to A19:	Address bus	P130, P131:	Port 13
------------	-------------	-------------	---------

AD0 to AD7: Address/data bus PCL: Programmable clock

ANI0 to ANI7: Analog input RD: Read strobe
ANO0, ANO1: Analog output RESET: Reset

ASCK1, ASCK2: Asynchronous serial clock RTP0 to RTP7: Real-time output port

ASTB: Address strobe RxD1, RxD2: Receive data SCK0 to SCK2: AV_{DD}: Analog power supply Serial clock SCL0Note 1: AVREF1: Analog reference voltage Serial clock AVss: Analog ground SDA0Note 1: Serial data BUZ: Serial input Buzzer clock SI0 to SI2: EXA: External access status output SO0 to SO2: Serial output

INTP0 to INTP5: Interrupt from peripherals TEST: Test

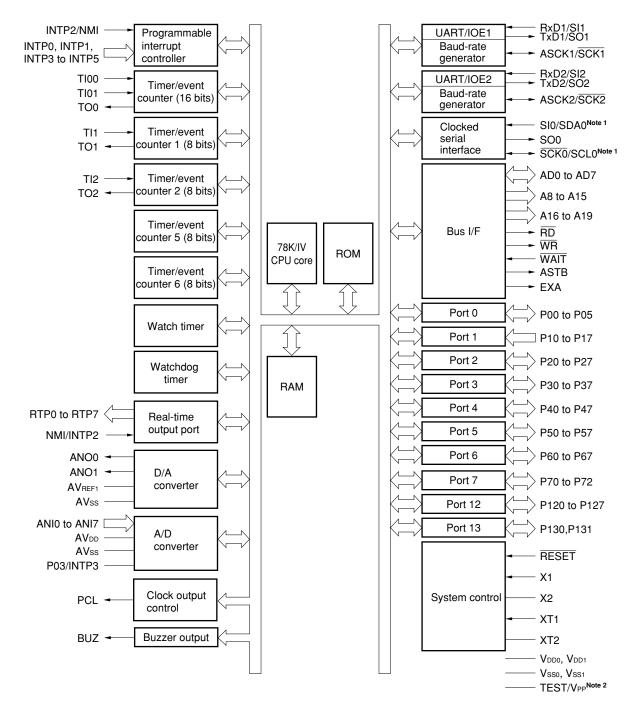
NMI:Non-maskable interruptTI00, TI01, TI1, TI2:Timer inputP00 to P05:Port 0TO0 to TO2:Timer outputP10 to P17:Port 1TxD1, TxD2:Transmit dataP20 to P27:Port 2VDD0, VDD1:Power supply

P30 to P37: Port 3 V_{PP}Note 2: Programming power supply

P40 to P47: Port 4 V_{SS0} V_{SS1}: Ground

 P40 to P47:
 Port 4
 Vsso, Vss1:
 Ground

 P50 to P57:
 Port 5
 WAIT:
 Wait


P60 to P67: Port 6 \overline{WR} : Write strobe

P70 to P72: Port 7 X1, X2: Crystal (Main system clock)
P120 to P127: Port 12 XT1, T2: Crystal (Subsystem clock)

Notes 1. The SDA0 and SCL0 pins are provided only for the μ PD784225Y Subseries.

2. The V_{PP} pin is provided only in the μ PD78F4225 and 78F4225Y.

1.4 Block Diagram

Notes 1. The SDA0 and SCL0 pins are provided only in the μ PD784225Y Subseries.

2. The VPP pin is provided only for the μ PD78F4225 and 78F4225Y.

Remark The internal ROM and RAM capacity varies depending on the product.

1.5 Function List

(1/2)

Product Name Item		μPD784224 μPD784224Y	μPD784225 μPD784225Y	μPD78F4225 μPD78F4225Y		
Number of basic instru	uctions (mnemonics)	113				
General-purpose regis	General-purpose registers		8 bits \times 16 registers \times 8 banks or 16 bits \times 8 registers \times 8 banks (memory mapping)			
Minimum instruction e.	xecution time	, -	operation with main syst	,		
Internal memory	ROM	96 KB (mask ROM)	128 KB (mask ROM)	128 KB (flash memory)		
	RAM	3,584 bytes	4,352 bytes			
Memory space		1 MB of combined prog	ram and data space			
I/O ports	Total	67				
	CMOS input	8				
	CMOS I/O	59				
Pins with added Pins with pull-up resistors		57				
	LED direct-drive outputs	16				
Real-time output ports		4 bits × 2 or 8 bits × 1				
Timers		Timer/event counter: (16 bits)	Timer counter × 1 Capture/compare register × 2	Pulse output possible PPG output Square wave output One-shot pulse output		
		Timer/event counter 1: (8 bits)	Timer counter × 1 Compare register × 1	Pulse output possible PWM output Square wave output		
		Timer/event counter 2: (8 bits)	Timer counter × 1 Compare register × 1	Pulse output possible PWM output Square wave output		
		Timer 5: (8 bits)	Timer counter \times 1 Compare register \times 1			
		Timer 6: (8 bits)	Timer counter \times 1 Compare register \times 1			

Note The pins with added functions are included in the I/O pins.

(2/2)

Item	Product Name	μPD784224 μPD784224Y	μPD784225 μPD784225Y	μPD78F4225 μPD78F4225Y	
Serial interfaces		 UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI I²C^{Note} (3-wire serial I/O, multimaster-supporting I²C bus^{Note}): 1 channel 			
A/D converter		8-bit resolution × 8 chan	nels		
D/A converter		8-bit resolution × 2 chan	nels		
Clock output		Select from fxx, fxx/2, fxx	$/2^2$, fxx/ 2^3 , fxx/ 2^4 , fxx/ 2^5 , fx	x/2 ⁶ , fxx/2 ⁷ , fxT	
Buzzer output		Select from fxx/2 ¹⁰ , fxx/2	¹¹ , fxx/2 ¹² , fxx/2 ¹³		
Watch timer		1 channel			
Watchdog timer		1 channel			
Standby		 HALT, STOP, IDLE modes In the low power consumption mode (CPU operation by subsystem clock): HALT/IDLE mode 			
Interrupts	Hardware sources	25 (internal: 18, external: 7)			
	Software sources	BRK instruction, BRKCS instruction, operand error			
	Non-maskable	Internal: 1, external: 1			
	Maskable	Internal: 17, external: 6			
		4-level programmable priority Three processing formats: Vectored interrupt, macro service, context switching			
Power supply voltage		V _{DD} = 1.8 to 5.5 V V _{DD} = 1.9 to 5.5 V			
Package		80-pin plastic TQFP (fine pitch) (12 × 12) 80-pin plastic QFP (14 × 14)			

Note Only in the μ PD784225Y Subseries

An overview of the timers is shown below. (For details, refer to CHAPTER 8 16-BIT TIMER/EVENT COUNTER, CHAPTER 9 8-BIT TIMER/EVENT COUNTERS 1, 2, and CHAPTER 10 8-BIT TIMERS 5, 6.)

	_	Name	16-Bit Timer/	8-Bit Timer/	8-Bit Timer/	8-Bit Timer 5	8-Bit Timer 6
Item			Event Counter	Event Counter 1	Event Counter 2		
Count width	8	oits	_	√	$\sqrt{}$	V	√
	16	bits	√	√N	ote	√N	lote
Operation mode	Int	erval timer	1ch	1ch	1ch	1ch	1ch
	External event counter		√	√	√	_	-
Functions	Timer output		1ch	1ch	1ch	-	-
		PPG output	√	_	-	-	_
		PWM output	-	√	√	_	-
	Square-wave output		√	√	$\sqrt{}$	_	_
	One-shot pulse output		√	_	-	-	-
	Pulse width measurement		2 inputs	_	-	-	-
	Nι	umber of interrupt requests	2	1	1	1	1

Note Can also be used as a 16-bit timer/event counter or 16-bit timer when connected in cascade. When using as a 16-bit timer/event counter, the following functions are available.

- · Interval timer
- External event counter
- · Square-wave output

An overview of the serial interfaces is shown below. (For details, refer to CHAPTER 16 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O, CHAPTER 17 3-WIRE SERIAL I/O MODE, and CHAPTER 18 I 2 C BUS MODE (μ PD784225Y SUBSERIES ONLY).)

Function	UART1/IOE1	UART2I/IOE2	CSI	IIC0
Operation stop mode	$\sqrt{}$	√	\checkmark	_
Asynchronous serial interface mode	√	√	-	_
3-wire serial I/O mode	_	_	√ (Fixed to MSB)	_
I ² C bus mode ^{Note}	_	_	_	√ Note

Note Only in the μ PD784225Y Subseries

1.6 Differences Between μ PD784225 Subseries Products and μ PD784225Y Subseries Products

Product Name Item	μPD784224 μPD784224Y	μPD784225 μPD784225Y	μPD78F4225 μPD78F4225Y	
Internal ROM	96 KB (mask ROM)	128 KB (mask ROM)	128 KB (flash memory)	
Internal RAM	3,584 bytes	4,352 bytes		
Power supply voltage	V _{DD} = 1.8 to 5.5 V		V _{DD} = 1.9 to 5.5 V	
Internal memory size switching register (IMS) ^{Note}	None		Provided	
TEST pin	Provided		None	
V _{PP} pin	None		Provided	

Note The internal flash memory capacity and internal RAM capacity can be changed with the internal memory size switching register (IMS).

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Function List

(1) Port pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (P0):
P01		INTP1	6-bit I/O port I provide that the considered in 1 bit units
P02		INTP2/NMI	Input/output can be specified in 1-bit units. Provides a feet when the idea to be a set of the second in the
P03		INTP3	Regardless of whether the input or output mode is specified, use of an on-chip pull-up resistor can be specified by a software setting in
P04		INTP4	1-bit units.
P05		INTP5	
P10 to P17	Input	ANI0 to ANI7	Port 1 (P1): • 8-bit input-only port
P20	I/O	RxD1/SI1	Port 2 (P2):
P21		TxD1/SO1	8-bit I/O port
P22		ASCK1/SCK1	Input/output can be specified in 1-bit units.
P23		PCL	Regardless of whether the input or output mode is specified, use of an on-chip pull-up resistor can be specified by a software setting in
P24		BUZ	1-bit units.
P25		SI0/SDA0 ^{Note}	
P26		SO0	
P27		SCK0/SCL0 ^{Note}	
P30	I/O	TO0	Port 3 (P3):
P31		TO1	8-bit I/O port
P32		TO2	Input/output can be specified in 1-bit units. Pararellass of which are the input or put and a case if a case i
P33		TI1	Regardless of whether the input or output mode is specified, use of an on-chip pull-up resistor can be specified by a software setting in
P34		TI2	1-bit units.
P35		TIOO	
P36		TI01	
P37		EXA	
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): • 8-bit I/O port • Input/output can be specified in 1-bit units. • For input mode pins, use of on-chip pull-up resistors can be specified for all pins by a software setting. • LEDs can be driven directly.

Note The SDA0 and SCL0 pins are provided only in the μ PD784225Y Subseries.

(1) Port pins (2/2)

Pin Name	I/O	Alternate Function	Function
P50 to P57	I/O	A8 to A15	Port 5 (P5): • 8-bit I/O port • Input/output can be specified in 1-bit units. • For input mode pins, use of on-chip pull-up resistors can be specified for all pins by a software setting. • LEDs can be driven directly.
P60	I/O	A16	Port 6 (P6):
P61		A17	8-bit I/O port
P62		A18	Input/output can be specified in 1-bit units.For input mode pins, use of on-chip pull-up resistors can be specified
P63		A19	for all pins by a software setting.
P64		RD	,
P65		WR	
P66		WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): • 3-bit I/O port
P71		TxD2/SO2	 Input/output can be specified in 1-bit units. Regardless of whether the input or output mode is specified, use of
P72		ASCK2/SCK2	an on-chip pull-up resistor can be specified by a software setting in 1-bit units.
P120 to P127	I/O	RTP0 to RTP7	Port 12 (P12): • 8-bit I/O port • Input/output can be specified in 1-bit units. • Regardless of whether the input or output mode is specified, use of an on-chip pull-up resistor can be specified by a software setting in 1-bit units.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): • 2-bit I/O port • Input/output can be specified in 1-bit units.

(2) Non-port pins (1/2)

Pin Name	I/O	Alternate Function	Function
TI00	Input	P35	External count clock input to 16-bit timer counter
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer counter 1
TI2		P34	External count clock input to 8-bit timer counter 2
TO0	Output	P30	16-bit timer output (TM0) (also used as 14-bit PWM output)
TO1		P31	8-bit timer output (TM1) (also used as 8-bit PWM output)
TO2		P32	8-bit timer output (TM2) (also used as 8-bit PWM output)
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Input	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SI0	Input	P25/SDA0 ^{Note}	Serial data input (3-wire serial I/O0)
SI1		P20/RxD1	Serial data input (3-wire serial I/O1)
SI2		P70/RxD2	Serial data input (3-wire serial I/O2)
SO0	Output	P26	Serial data output (3-wire serial I/O0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O2)
SDA0 ^{Note}	I/O	P25/SI0	Serial data input/output (I ² C bus)
SCK0		P27/SCL0Note	Serial clock input/output (3-wire serial I/O0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)
SCL0 ^{Note}		P27/SCK0	Serial clock input/output (I ² C bus)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	
INTP2		P02/NMI	
INTP3	1	P03	
INTP4		P04	
INTP5		P05	

Note The SDA0 and SCL0 pins are provided only in the μ PD784225Y Subseries.

(2) Non-port pins (2/2)

Pin Name	I/O	Alternate Function	Function
PCL	Output	P23	Clock output (for main system clock, subsystem clock trimming)
BUZ		P24	Buzzer output
RTP0 to RTP7		P120 to P127	Real-time output port that outputs data synchronized with the trigger
AD0 to AD7	I/O	P40 to P47	Lower address/data bus when the memory is externally expanded
A8 to A15	Output	P50 to P57	Middle address bus when the memory is externally expanded
A16 to A19		P60 to P63	Higher address bus when the memory is externally expanded
RD		P64	Strobe signal output for external memory read
WR		P65	Strobe signal output for external memory write
WAIT	Input	P66	Wait insertion during external memory access
ASTB	Output	P67	Strobe output that externally latches the address information that is output to ports 4 to 6 in order to access external memory
EXA		P37	External access status output
RESET	Input	_	System reset input
X1		_	Crystal connection for main system clock oscillation
X2	_		
XT1	Input	_	Crystal connection for subsystem clock oscillation
XT2	_		
ANI0 to ANI7	Input	P10 to P17	Analog voltage input for A/D converter
ANO0, ANO1	Output	P130, P131	Analog voltage output for D/A converter
AV _{REF1}	_	_	Reference voltage applied for D/A converter
AV _{DD}			Positive power supply for A/D converter. Connect to VDDO.
AVss			Ground for A/D converter and D/A converter. Connect to Vsso.
V _{DD0}			Positive power supply for ports
Vsso			Ground potential for ports
V _{DD1}			Positive power supply (excluding ports)
V _{SS1}			Ground potential (excluding ports)
TEST		V _{PP} Note	Connect directly to Vsso or pull down (IC test pin). For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 k Ω is recommended.
V _{PP} Note		TEST	Flash memory programming mode setting High voltage application pin during program write/verify Connect via a pull-down resistor in flash memory programming mode. For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 k Ω is recommended.

Note The V_{PP} pin is provided only in the μ PD78F4225 and 78F4225Y.

2.2 Pin Function Description

(1) P00 to P05 (Port 0)

These pins constitute a 6-bit I/O port. In addition to I/O port pins, they also function as external interrupt request inputs. The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as a 6-bit I/O port. Input or output can be specified in 1-bit units by means of the port 0 mode register. Regardless of whether the input mode or output mode is specified, pull-up resistors can be connected in 1-bit units using pull-up resistor option register 0.

(b) Control mode

These pins function as external interrupt request inputs.

(i) INTP0 to INTP5

INTP0 to INTP5 are external interrupt request input pins for which the valid edge can be selected (rising edge, falling edge, or both rising and falling edges). The valid edge can be specified by the external interrupt rising edge enable register and the external interrupt falling edge enable register. INTP2 also becomes the external trigger signal input pin of the real-time output port via valid edge input.

(ii) NMI

This is the external non-maskable interrupt request input pin. The valid edge can be specified by the external interrupt rising edge enable register and the external interrupt falling edge enable register.

(2) P10 to P17 (Port 1)

These pins constitute an 8-bit input-only port. In addition to general-purpose input port pins, they also function as the analog inputs for the A/D converter.

On-chip pull-up resistors are not available.

(a) Port mode

These pins function as an 8-bit input-only port.

(b) Control mode

These pins function as the analog input pins (ANI0 to ANI7) of the A/D converter. The values are undefined when the pins specified for analog input are read.

(3) P20 to P27 (Port 2)

These pins constitute an 8-bit I/O port. In addition to I/O port pins, they also function as the data I/O, clock I/O, clock output, and buzzer output of the serial interface.

The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as an 8-bit I/O port. Input or output can be specified in 1-bit units by means of the port 2 mode register. Regardless of whether the input mode or output mode is specified, pull-up resistors can be connected in 1-bit units using pull-up resistor option register 2.

(b) Control mode

These pins function as the data I/O pins, clock I/O pins, clock output pins, and buzzer output pins of the serial interface.

Pins P25 to P27 can be specified as N-channel open drain by the port function control register (PF2) (only in the μ PD784225Y Subseries).

(i) SI0, SI1, SO0, SO1, SDA0Note

These pins are the I/O pins for serial data in the serial interface.

(ii) SCK0, SCK1, SCL0^{Note}

These pins are the I/O pins for the serial clock of the serial interface.

(iii) RxD1, TxD1

These pins are the I/O pins for serial data in the asynchronous serial interface.

Note Only in the μ PD784225Y Subseries

(iv) ASCK1

This is the input pin for the baud rate clock of the asynchronous serial interface.

(v) PCL

This is the clock output pin.

(vi) BUZ

This is the buzzer output pin.

(4) P30 to P37 (Port 3)

These pins constitute an 8-bit I/O port. In addition to I/O port pins, they also function as timer I/O. The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as an 8-bit I/O port. Input or output can be specified in 1-bit units by means of the port 3 mode register. Regardless of whether the input mode or output mode is specified, pull-up resistors can be connected in 1-bit units using pull-up resistor option register 3.

(b) Control mode

These pins function as timer I/O.

(i) TI00

This is the external clock input pin to the 16-bit timer/event counter.

This is also used as the pin for capture trigger signal input to capture/compare registers 00 and 01.

(ii) TI01

This is the pin for capture trigger signal input to capture/compare register 00.

(iii) TI1, TI2

These are pins for external clock input to the 8-bit timer counter.

(iv) TO0 to TO2

These are timer output pins.

(5) P40 to P47 (Port 4)

These pins constitute an 8-bit I/O port. In addition to I/O port pins, they also function as an address/data bus. LEDs can be directly driven.

The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as an 8-bit I/O port. Input or output can be specified in 1-bit units by means of the port 4 mode register. When used as an input port, pull-up resistors can be connected in 8-bit units with bit 4 (PUO4) of the pull-up resistor option register.

(b) Control mode

These pins function as the lower address/data bus pins (AD0 to AD7) when in the external memory expansion mode. If PUO4 = 1, pull-up resistors can be connected.

(6) P50 to P57 (Port 5)

These pins constitute an 8-bit I/O port. In addition to I/O port pins, they also function as an address bus. LEDs can be directly driven.

The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as an 8-bit I/O port. Input or output can be specified in 1-bit units by means of the port 5 mode register. When used as an input port, pull-up resistors can be connected in 8-bit units with bit 5 (PUO5) of the pull-up resistor option register.

(b) Control mode

These pins function as the middle address bus pins (A8 to A15) in the external memory expansion mode. If PUO5 = 1, pull-up resistors can be connected.

(7) P60 to P67 (Port 6)

These pins constitute an 8-bit I/O port. In addition to I/O port pins, they also function as an address bus and control signal outputs in the external memory expansion mode.

The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as an 8-bit I/O port. Input or output can be specified in 1-bit units by means of the port 6 mode register. When used as an input port, pull-up resistors can be connected in 8-bit units with bit 6 (PUO6) of the pull-up resistor option register.

(b) Control mode

These pins function as the higher address bus pins (A16 to A19) in the external memory expansion mode. P64 to P67 function as the control signal output pins (RD, WR, WAIT, ASTB) in the external memory expansion mode. If PUO6 = 1 in the external memory expansion mode, pull-up resistors can be connected.

Caution When external waits are not used in the external memory expansion mode, P66 can be used as an I/O port pin.

(8) P70 to P72 (Port 7)

These pins constitute a 3-bit I/O port. In addition to I/O port pins, they also function as the data I/O and clock I/O of the serial interface.

The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as a 3-bit I/O port. Input or output can be specified in 1-bit units by means of the port 7 mode register. Regardless of whether the input mode or output mode is specified, pull-up resistors can be connected in 1-bit units using pull-up resistor option register 7.

(b) Control mode

These pins function as data I/O and clock I/O for the serial interface.

(i) SI2, SO2

These are the I/O pins for serial data in the serial interface.

(ii) SCK2

This is the I/O pin of the serial clock in the serial interface.

(iii) RxD2, TxD2

These are the serial data I/O pins in the asynchronous serial interface.

(iv) ASCK2

This is the baud rate clock input pin in the asynchronous serial interface.

(9) P120 to P127 (Port 12)

These pins constitute an 8-bit I/O port. In addition to I/O port pins, they also function as a real-time output port. The following operation modes can be specified in 1-bit units.

(a) Port mode

These pins function as an 8-bit I/O port. Input or output can be specified in 1-bit units by means of the port 12 mode register. Regardless of whether the input mode or output mode is specified, pull-up resistors can be connected in 1-bit units using pull-up resistor option register 12.

(b) Control mode

These pins function as a real-time output port (RTP0 to RTP7) that outputs data synchronized with a trigger. When the pins specified as the real-time output port are read, 0 is read.

(10) P130, P131 (Port 13)

These pins constitute a 2-bit I/O port. In addition to I/O port pins, they also function as the analog outputs of the D/A converter.

The following operation modes can be specified in 2-bit units.

(a) Port mode

These pins function as a 2-bit I/O port. Input or output can be specified in 1-bit units by means of the port 13 mode register. On-chip pull-up resistors are not available.

(b) Control mode

These pins function as the analog outputs (ANO0, ANO1) of the D/A converter. The values are undefined when the pins specified as analog outputs are read.

Caution If the D/A converter uses only one channel when AV_{REF1} < V_{DD}, use either of the following processes at pins that are not used for analog output.

- Set the port mode register (PM13X) to 1 (input mode) and connect to Vsso.
- Set the port mode register (PM13X) to 0 (output mode). Set the output latch to 0 and output a low level.

(11) AVREF1

This is the reference power input pin of the D/A converter.

If the D/A converter is not used, connect to the VDD0 pin.

(12) AVDD

This is the analog power supply pin of the A/D converter. Even if the A/D converter is not used, always use this pin at the same potential as the VDD0 pin. AVDD functions alternately as the reference voltage input pin of the A/D converter.

(13) AVss

This is the ground potential pin of the A/D converter. Even if the A/D converter is not used, always use this pin at the same potential as the Vsso pin.

(14) **RESET**

This is the active low system reset input pin.

(15) X1, X2

These are the crystal resonator connection pins for main system clock oscillation.

When an external clock is supplied, input this clock signal at X1, and its inverted signal at X2.

(16) XT1, XT2

These are the crystal resonator connection pins for subsystem clock oscillation.

When an external clock is supplied, input this clock signal at XT1, and its inverted signal at XT2.

(17) VDD0, VDD1

V_{DD0} is the positive power supply pin for the ports.

V_{DD1} is the positive power supply pin for other than the ports and analog pins.

Always use this pin at the same potential as pin VDD0 and VDD1.

(18) Vsso, Vss1

Vsso is the ground potential pin for the ports.

Vss1 is the ground potential pin for other than the ports and analog pins.

Always use this pin at the same potential as pin Vsso and Vsso.

(19) V_{PP} (μPD78F4225, 78F4225Y only)

This is the high-voltage application pin when setting the flash memory programming mode and writing or verifying the program.

In the normal operation mode, connect directly to Vsso or pull down.

For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 k Ω is recommended.

(20) TEST

This is the pin used in the IC test. Connect directly to Vsso or pull down.

For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 k Ω is recommended.

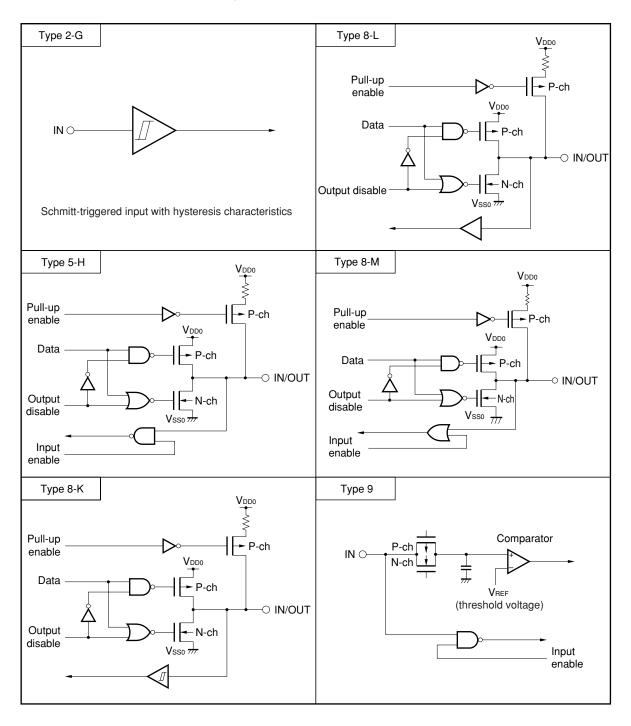
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the I/O circuit configuration of each type, refer to Figure 2-1.

Table 2-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-K	I/O	Input: Independently connect to Vsso via a resistor.
P01/INTP1			Output: Leave open.
P02/INTP2/NMI			
P03/INTP3 to P05/INTP5			
P10/ANI0 to P17/ANI7	9	Input	Connect to Vsso or Vddo.
P20/RxD1/SI1	10-I	I/O	Input: Independently connect to Vsso via a resistor.
P21/TxD1/SO1	10-J		Output: Leave open.
P22/ASCK1/SCK1	10-I		
P23/PCL	10-J		
P24/BUZ			
P25/SDA0 ^{Note} /SI0	10-I		
P26/SO0	10-J		
P27/SCL0Note/SCK0	10-I		
P30/TO0 to P32/TO2	8-M		
P33/TI1, P34/TI2	8-K		
P35/TI00, P36/TI01	8-L		
P37/EXA	8-M		
P40/AD0 to P47/AD7	5-H		
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-K		
P71/TxD2/SO2	8-L		
P72/ASCK2/SCK2	8-K		

Note The SDA0 and SCL0 pins are provided only in the μ PD784225Y Subseries.


Table 2-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P120/RTP0 to P127/RTP7	8-K	I/O	Input: Independently connect to Vsso via a resistor.
P130/ANO0, P131/ANO1	12-D		Output: Leave open.
RESET	2-G	Input	_
XT1	16		Connect to Vsso.
XT2		_	Leave open.
AV _{REF1}	_		Connect to VDD0.
AV _{DD}			
AVss			Connect to Vsso.
TEST/V _{PP} Note			Connect directly to Vsso or pull down. For the pull-down connection, use of a resistor with a resistance between 470 Ω and 10 $k\Omega$ is recommended.

Note The V_{PP} pin is provided only in the μ PD78F4225, 78F4225Y.

Remark Since the type numbers are unified in the 78K Series, they are not always sequential in each product (not all the circuits are incorporated).

Figure 2-1. Pin I/O Circuits (1/2)

 V_{DD0} Type 12-D Type 10-I P-ch ___V_{DD0} Pull-up Data P-ch enable → IN/OUT V_{DD0} Output Data P-ch disable Vsso /// ○ IN/OUT Input Open drain Output disable enable ┫ N-ch Analog output voltage Vsso /// N-ch V_{DD0} Type 10-J Type 16 Pull-up Feedback ⊢ P-ch enable cut-off P-ch V_{DD0} Data P-ch · IN/OUT Open drain Output disable ┤<mark>←</mark>N-ch Vsso /// XT2 XT1

Figure 2-1. Pin I/O Circuits (2/2)

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

The μ PD784225 can access a 1 MB space. The mapping of the internal data area differs depending on the LOCATION instruction (special function registers and internal RAM). The LOCATION instruction must always be executed after releasing reset and cannot be used more than once.

The program after releasing reset must be as follows.

RSTVCT CSEG AT 0

DW RSTSTRT

to

INITSEG CSEG BASE

RSTSTRT: LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN

(1) When the LOCATION 0H instruction is executed

· Internal memory

The internal data area and internal ROM area are as follows.

Part Number	Internal Data Area	Internal ROM Area
μPD784224	0F100H to 0FFFFH	00000H to 0F0FFH 10000H to 17FFFH
μPD784225	0EE00H to 0FFFFH	00000H to 0EDFFH 10000H to 1FFFFH

Caution The following area, which is overlapped with the internal data area in the on-chip ROM, cannot be used when the LOCATION 0H instruction is executed.

Part Number	Use-Prohibited Area
μPD784224	0F100H to 0FFFFH (3,840 bytes)
μPD784225	0EE00H to 0FFFFH (4,608 bytes)

· External memory

External memory is accessed in the external memory expansion mode.

(2) When the LOCATION 0FH instruction is executed

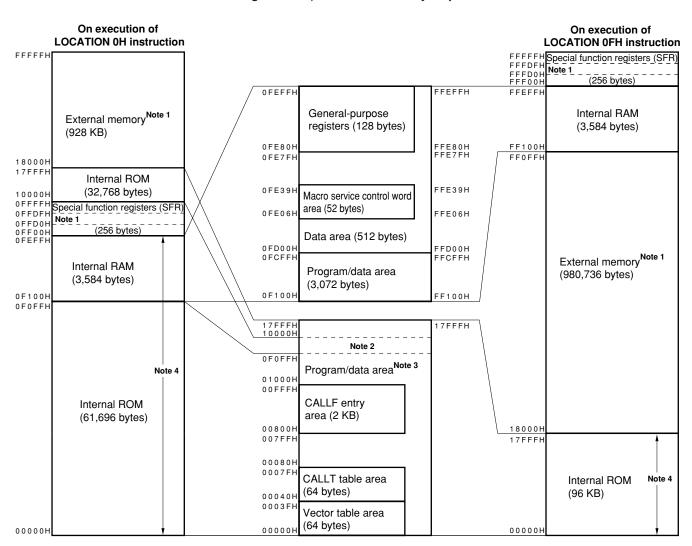
· Internal memory

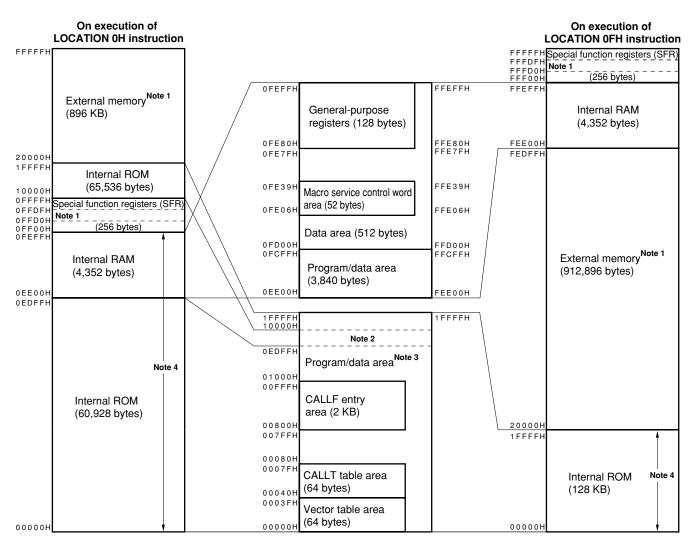
The internal data area and internal ROM area are as follows.

Part Number	Internal Data Area	Internal ROM Area
μPD784224	FF100H to FFFFFH	00000H to 17FFFH
μPD784225	FEE00H to FFFFFH	00000H to 1FFFFH

External memory

External memory is accessed in the external memory expansion mode.




Figure 3-1. μ PD784224 Memory Map

- Notes 1. Access in the external memory expansion mode.
 - 2. The 3,840 bytes in this area can be used as the internal ROM only when the LOCATION 0FH instruction is executed.
 - 3. LOCATION 0H instruction execution: 94,464 bytes; LOCATION 0FH instruction execution: 98,304 bytes.
 - 4. This is the base area and the entry area based on resets or interrupts. However, the internal RAM is excluded in a reset.

User's Manual U12697EJ4V1UD

Manual U12697EJ4V1UD

Figure 3-2. μ PD784225 Memory Map

- Notes 1. Access in the external memory expansion mode.
 - 2. The 4,608 bytes in this area can be used as the internal ROM only when the LOCATION 0FH instruction is executed.
 - 3. LOCATION 0H instruction execution: 126,464 bytes; LOCATION 0FH instruction execution: 131,072 bytes.
 - 4. This is the base area and the entry area based on resets or interrupts. However, the internal RAM is excluded in a reset.

3.2 Internal ROM Area

The following products in the μ PD784225 Subseries have on-chip ROM that can store the programs and table data. If the internal ROM area and internal data area overlap when the LOCATION 0H instruction is executed, the internal data area becomes the access target. The overlapped internal ROM area cannot be accessed.

Part Number	Internal ROM	Access Space				
Part Number	internal how	LOCATION 0H Instruction	LOCATION 0FH Instruction			
μPD784224	96 KB × 8 bits	00000H to 0F0FFH 10000H to 17FFFH	00000H to 17FFFH			
μPD784225 μPD78F4225	128 KB × 8 bits	00000H to 0EDFFH 10000H to 1FFFFH	00000H to 1FFFFH			

The internal ROM can be accessed at high speed. Usually, a fetch is at the same speed as an external ROM fetch. By setting the IFCH bit of the memory expansion mode register (MM) (to 1), the high-speed fetch function is used. An internal ROM fetch is a high-speed fetch (fetch in two system clocks in 2-byte units).

If an instruction execution cycle similar to the external ROM fetch is selected, waits are inserted by the wait function. However, when a high-speed fetch is used, waits cannot be inserted for the internal ROM. Note that external waits must not be set for the internal ROM area. If an external wait is set for the internal ROM area, the CPU enters a deadlock state. The deadlock state is only released by a reset input.

RESET input causes an instruction execution cycle similar to the external ROM fetch cycle.

3.3 Base Area

The area from 0 to FFFFH becomes the base area. The base area is used for the following.

- · Reset entry address
- · Interrupt entry address
- · Entry address for CALLT instruction
- 16-bit immediate addressing mode (instruction address addressing)
- 16-bit direct addressing mode
- 16-bit register addressing mode (instruction address addressing)
- · 16-bit register indirect addressing mode
- · Short direct 16-bit memory indirect addressing mode

This base area is allocated in the vector table area, CALLT instruction table area, and CALLF instruction entry area.

When the LOCATION 0H instruction is executed, the internal data area is placed in the base area. Be aware that the program is not fetched from the internal high-speed RAM area and special function register (SFR) area in the internal data area. Also, use the data in the internal RAM area after initialization.

3.3.1 Vector table area

The 64-byte area from 00000H to 0003FH is reserved as the vector table area. The program start addresses for branching by interrupt requests and \overline{RESET} input are stored in the vector table area. If context switching is used by each interrupt, the register bank number of the switch destination is also stored in this area.

The portion that is not used as the vector table can be used as program memory or data memory.

The values written in the vector table are 16-bit values. Therefore, branching can only be to the base area.

Table 3-1. Vector Table Address

Interrupt Source	Vector Table Address	Interrupt Source	Vector Table Address
BRK instruction	003EH	INTST1	001CH
Operand error	003CH	INTSER2	001EH
NMI	0002H	INSR2	0020H
INTWDT (non-maskable)	0004H	INTCSI2	
INTWDT (maskable)	0006H	INTST2	0022H
INTP0	0008H	INTTM3	0024H
INTP1	000AH	INTTM00	0026H
INTP2	000CH	INTTM01	0028H
INTP3	000EH	INTTM1	002AH
INTP4	0010H	INTTM2	002CH
INTP5	0012H	INTAD	002EH
INTIIC0 ^{Note}	0016H	INTTM5	0030H
INTCSI0		INTTM6	0032H
INTSER1	0018H	INTWT	0038H
INTSR1	001AH		
INTCSI1			

Note Only in the μ PD784225Y Subseries

3.3.2 CALLT instruction table area

The 64 KB area from 00040H to 0007FH can store the subroutine entry addresses for the 1-byte call instruction (CALLT).

For a CALLT instruction, this table is referenced and the base area address written in the table is branched to as the subroutine. Since a CALLT instruction is one byte, many subroutine call descriptions in the program can be CALLT instructions, so the object size of the program can be reduced. Since a maximum of 32 subroutine entry addresses can be described in the table, they should be registered in order from the most frequently described.

When not used as the CALLT instruction table, the area can be used as normal program memory or data memory.

3.3.3 CALLF instruction entry area

The area from 00800H to 00FFFH can be for direct subroutine calls in the 2-byte call instruction (CALLF).

Since a CALLF instruction is a 2-byte call instruction, compared to when using the CALL instruction (3 bytes or 4 bytes) of a direct subroutine call, the object size can be reduced.

When you want to achieve high speed, describing direct subroutines in this area is effective.

If you want to decrease the object size, an unconditional branch (BR) is described in this area, and the actual subroutine is placed outside of this area. When a subroutine is called from five or more locations, reducing the object size is attempted. In this case, since only a 4-byte location for the BR instruction is used in the CALLF entry area, the object size of many subroutines can be reduced.

3.4 Internal Data Area

The internal data area consists of the internal RAM area and the special function register area (see **Figures 3-1** and **3-2**).

The final address in the internal data area can be set to 0FFFFH (when executing the LOCATION 0H instruction) or FFFFH (when executing the LOCATION 0FH instruction) by the LOCATION instruction. The address selection of the internal data area by this LOCATION instruction must be executed once immediately after a reset is cleared. After one selection, updating is not possible. The program following a reset clear must be as shown in the example. If the internal data area and another area are allocated to the same address, the internal data area becomes the access target, and the other area cannot be accessed.

Example RSTVCT CSEG AT 0

DW RSTSTRT

to

INITSEG CSEG BASE

RSTSTRT: LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN

Caution When the LOCATION 0H instruction is executed, the program after clearing the reset must not overlap the internal data area. In addition, make sure the entry address of the servicing routine for a non-maskable interrupt such as NMI does not overlap the internal data area. The entry area for a maskable interrupt must be initialized before referencing the internal data area.

3.4.1 Internal RAM area

The $\mu \text{PD784225}$ has an on-chip general-purpose static RAM.

This area has the following configuration.

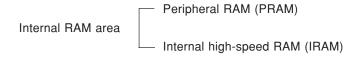


Table 3-2. Internal RAM Area List

Internal RAM	Internal RAM Area		
Product Name		Peripheral RAM: PRAM	Internal High-Speed RAM: IRAM
μPD784224	3,584 bytes	3,072 bytes	512 bytes
	(0F100H to 0FEFFH)	(0F100H to 0FCFFH)	(0FD00H to 0FEFFH)
μPD784225	4,352 bytes	3,840 bytes	
μPD78F4225	(0EE00H to 0FEFFH)	(0EE00H to 0FCFFH)	

Remark The addresses in the table are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H is added to the above values.

Figure 3-3 is the internal RAM memory map.

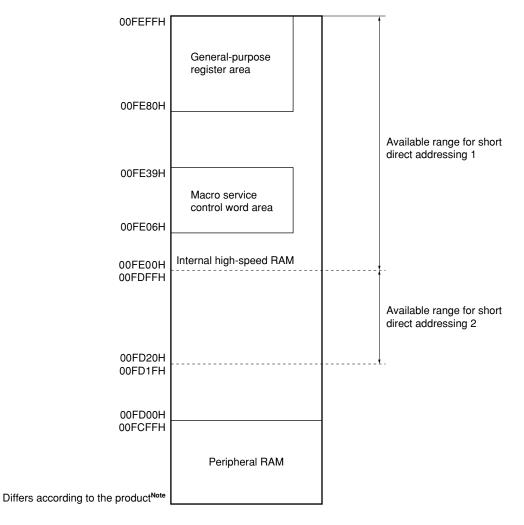


Figure 3-3. Internal RAM Memory Map

Note μ PD784224: 00F100H μ PD784225, 78F4225: 00EE00H

Remark The addresses in the figure are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H is added to the above values.

(1) Internal high-speed RAM (IRAM)

The internal high-speed RAM can be accessed at high speed. FD20H to FEFFH can use the short direct addressing mode for high-speed access. The two short direct addressing modes are short direct addressing 1 and short direct addressing 2, based on the address of the target. Both addressing modes have the same function. In a portion of the instructions, short direct addressing 2 has a shorter word length than short direct addressing

1. For details, see 78K/IV Series Instruction User's Manual (U10905E).

A program cannot be fetched from IRAM. If a program is fetched from an address that is mapped by IRAM, the CPU inadvertently loops.

The following areas are reserved in IRAM.

General-purpose register area: FE80H to FEFFH
 Macro service control word area: FE06H to FE39H

Macro service channel area: FE00H to FEFFH (the address is set by a macro service control word)

When reserved functions are not used in these areas, they can be used as normal data memory.

Remark The addresses here are the addresses when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H is added to the values here.

(2) Peripheral RAM (PRAM)

The peripheral RAM (PRAM) is used as normal program memory or data memory. When used as the program memory, the program must be written beforehand in the peripheral RAM by a program.

A program fetch from the peripheral RAM is high speed and can occur in two clocks in 2-byte units.

3.4.2 Special function register (SFR) area

The special function registers (SFRs) of the on-chip peripheral hardware are mapped to the area from 0FF00H to 0FFFFH (refer to **Figures 3-1** and **3-2**).

The area from 0FFD0H to 0FFDFH is mapped as the external SFR area. Peripheral I/O externally connected in the external memory expansion mode (set by the memory expansion mode register (MM)) can be accessed.

Caution In this area, do not access an address that is not mapped in the SFR area. If mistakenly accessed, the CPU enters the deadlock state. The deadlock state is released only by reset input.

Remark The addresses here are the addresses only when the LOCATION 0H instruction is executed. If the LOCATION 0FH instruction is executed, 0F0000H is added to the values here.

3.4.3 External SFR area

In the products of the μ PD784225 Subseries, the 16-byte area of the 0FFD0H to 0FFDFH area (during LOCATION 0H instruction execution, or 0FFFD0H to 0FFFDFH area during LOCATION 0FH instruction execution) in the SFR area is mapped as the external SFR area. In the external memory expansion mode, the address bus and address/data bus are used and the externally attached peripheral I/O can be accessed.

Since the external SFR area can be accessed by SFR addressing, the features are that peripheral I/O operations can be simplified; the object size can be reduced; and macro service can be used.

The bus operation when accessing an external SFR area is the same as a normal memory access.

3.5 External Memory Space

The external memory space is the memory space that can be accessed based on the setting of the memory expansion mode register (MM). The program and table data can be stored and peripheral I/O devices can be assigned.

3.6 μ PD78F4225 Memory Mapping

The μ PD78F4225 has a 128 KB flash memory and 4,352-byte internal RAM.

The μ PD78F4225 has a function (memory size switching function) so that a part of the internal memory is not used by the software.

The memory size is switched by the internal memory size switching register (IMS).

Based on the IMS setting, the memory mapping can be the same memory mapping as the mask ROM versions with different internal memories (ROM, RAM).

IMS can only be written by an 8-bit memory manipulation instruction.

RESET input sets IMS to FFH.

Figure 3-4. Format of Internal Memory Size Switching Register (IMS)

Address: 0	FFFCH Afte	r reset: FFH	W					
Symbol	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
0	0	48 KB
0	1	64 KB
1	0	96 KB
1	1	128 KB

RAM1	RAM0	Internal RAM capacity selection
0	0	1,536 bytes
0	1	2,304 bytes
1	0	3,072 bytes
1	1	3,840 bytes

Caution Mask ROM versions (μ PD784224, 784225) do not have an IMS register. Even if a write instruction is executed to IMS in mask ROM versions, the instruction will be invalid.

Table 3-3 shows the IMS settings that produce the same memory map as the mask ROM versions.

Table 3-3. Settings of Internal Memory Size Switching Register (IMS)

Target Mask ROM Versions	IMS Settings
μPD784224	EEH
μPD784225	FFH

3.7 Control Registers

The control registers are the program counter (PC), program status word (PSW), and stack pointer (SP).

3.7.1 Program counter (PC)

This is a 20-bit binary counter that saves address information about the program to be executed next (see **Figure 3-5**).

Usually, this counter is automatically incremented based on the number of bytes in the instruction to be fetched. When the instruction that is branched is executed, the immediate data or register contents are set.

RESET input sets the lower 16 bits of the PC to the 16-bit data at addresses 0 and 1, and the higher four bits of the PC to 0000.

Figure 3-5. Format of Program Counter (PC)

3.7.2 Program status word (PSW)

The program status word (PSW) is a 16-bit register that consists of various flags that are set and reset based on the result of the instruction execution.

A read or write access is performed in higher 8 bit (PSWH) and lower 8-bit (PSWL) units. In addition, bit manipulation instructions can be used to manipulate each flag.

The contents of the PSW are automatically saved on the stack when a vectored interrupt request is acknowledged and when a BRK instruction is executed, and are automatically restored when a RETI or RETB instruction is executed. When context switching is used, the contents are automatically saved to PR3, and automatically restored when a RETCS or RETCSB instruction is executed.

RESET input resets all of the bits to 0.

Always write 0 in the bits indicated by "0" in Figure 3-6. The contents of bits indicated by "-" are undefined when read.

Figure 3-6. Format of Program Status Word (PSW)

Symbol	7	6	5	4	3	2	1	0
PSWH	UF	RBS2	RBS1	RBS0	_		_	_
	7	6	5	4	3	2	1	0
PSWL	S	Z	RSS	AC	IE	P/V	0	CY

Each flag is described below.

(1) Carry flag (CY)

This is the flag that stores the carry or borrow of an operation result.

When a shift rotate instruction is executed, the shifted out value is stored. When a bit manipulation instruction is executed, this flag functions as the bit accumulator.

The CY flag state can be tested by a conditional branch instruction.

(2) Parity/overflow flag (P/V)

The P/V flag has the following two actions in accordance with the execution of the operation instruction. The state of the P/V flag can be tested by a conditional branch instruction.

· Parity flag action

The results of executing the logical instructions, shift rotate instructions, and CHKL and CHKLA instructions are set to 1 when an even number of bits is set to 1. If the number of bits is odd, the result is reset to 0. However, for 16-bit shift instructions, the parity flag from only the lower 8 bits of the operation result is valid.

· Overflow flag action

The result of executing an arithmetic operation instruction is set to 1 only when the numerical range expressed in two's complement is exceeded. Otherwise, the result is reset to 0. Specifically, the result is the exclusive OR of the carry from the MSB and the carry to the MSB and becomes the flag contents. For example, in 8-bit arithmetic operations, the two's complement range is 80H (–128) to 7FH (+127). If the operation result is outside this range, the flag is set to 1. If inside the range, it is reset to 0.

Example The action of the overflow flag when an 8-bit addition instruction is executed is described next.

When 78H (+120) and 69H (+105) are added, the operation result becomes E1H (+225). Since the upper limit of two's complement is exceeded, the P/V flag is set to 1. In a two's complement expression, E1H becomes -31.

$$78H (+120) = 0111 1000$$

+) $69H (+105) = +) 0110 1001$
0 1110 0001 = −31 P/V = 1
↑
CY

Next, since the operation result of the addition of the following two negative numbers falls within the two's complement range, the P/V flag is reset to 0.

(3) Interrupt request enable flag (IE)

This flag controls the CPU interrupt request acknowledgement.

If IE is 0, interrupts are disabled, and only non-maskable interrupts and unmasked macro services can be acknowledged. Otherwise, everything is disabled.

If IE is 1, the interrupt enable state is entered. Enabling the acknowledgment of interrupt requests is controlled by the interrupt mask flags that correspond to each interrupt request and the priority of each interrupt.

This flag is set to 1 by executing the El instruction and is reset to 0 by executing the Dl instruction or by interrupt acknowledgement.

(4) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow to bit 3, this flag is set to 1. Otherwise, the flag is reset to 0.

This flag is used when the ADJBA and ADJBS instructions are executed.

(5) Register set selection flag (RSS)

This flag sets the general-purpose registers that function as X, A, C, and B and the general-purpose register pairs (16 bits) that function as AX and BC.

This flag is used to maintain compatibility with the 78K/III Series. Always set this flag to 0 except when using a 78K/III Series program.

(6) Zero flag (Z)

This flag indicates that the operation result is 0.

If the operation result is 0, this flag is set to 1. Otherwise, it is reset to 0. The state of the Z flag can be tested by a conditional branch instruction.

(7) Sign flag (S)

This flag indicates that the MSB in the operation result is 1.

The flag is set to 1 when the MSB of the operation result is 1. If 0, the flag is reset to 0. The S flag state can be tested by a conditional branch instruction.

(8) Register bank selection flags (RBS0 to RBS2)

This is a 3-bit flag that selects one of the eight register banks (register banks 0 to 7) (refer to **Table 3-4**). Three-bit information that indicates the register bank selected by executing the SEL RBn instruction is stored.

Table 3-4. Register Bank Selection

RBS2	RBS1	RBS0	Set Register Bank
0	0	0	Register bank 0
0	0	1	Register bank 1
0	1	0	Register bank 2
0	1	1	Register bank 3
1	0	0	Register bank 4
1	0	1	Register bank 5
1	1	0	Register bank 6
1	1	1	Register bank 7

(9) User flag (UF)

This flag is set and reset by a user program and can be used for program control.

3.7.3 Using the RSS bit

Basically, always use the RSS bit fixed to 0.

The following descriptions discuss using a 78K/III Series program and a program that sets the RSS bit to 1. Reading is not necessary if the RSS bit is fixed to 0.

The RSS bit enables the functions in A (R1), X (R0), B (R3), C (R2), AX (RP0), and BC (RP1) to also be used in registers R4 to R7 (RP2, RP3). When this bit is effectively used, efficient programs in terms of program size and program execution can be written.

Sometimes, however, unexpected problems arise if the RSS bit is used carelessly. Consequently, always set the RSS bit to 0. Use the RSS bit set to 1 only when 78K/III Series programs will be used.

By setting the RSS bit to 0 in all programs, writing and debugging programs become more efficient.

Even if a program where the RSS bit is set to 1 is used, when possible, it is recommended to use the program after modifying the program so that the RSS bit is not set to 1.

(1) Using the RSS bit

- Registers used by instructions where the A, X, B, C, and AX registers are directly described in the operand column of the operation list (see 28.2)
- Registers that are implicitly specified by instructions that use the A, AX, B, and C registers with implied addressing
- Registers that are used in addressing by instructions that use the A, B, and C registers with indexed addressing and based indexed addressing

The registers used in these cases are switched in the following ways by the RSS bit.

When RSS = 0
 A→R1, X→R0, B→R3, C→R2, AX→RP0, BC→RP1

When RSS = 1
 A→R5, X→R4, B→R7, C→R6, AX→RP2, BC→RP3

The registers used in other cases always become the same registers regardless of the contents of the RSS bit. For registers A, X, B, C, AX, and BC in the NEC assembler RA78K4, instruction code is generated for any register described by name or for registers set by an RSS quasi directive in the assembler.

When the RSS bit is set or reset, always specify an RSS quasi directive immediately before (or immediately after) that instruction (see the following examples).

<Program examples>

• When RSS = 0

RSS 0 ; RSS quasi directive

CLR1 PSWL. 5

MOV B, A ; This description corresponds to "MOV R3, R1".

When RSS = 1

RSS 1 ; RSS quasi directive

SET1 PSWL. 5

MOV B, A ; This description corresponds to "MOV R7, R5".

(2) Generation of instruction code in the RA78K4

• In the RA78K4, when an instruction with the same function as an instruction that directly specifies A or AX in the operand column in the operation list of the instruction is used, the instruction code that directly describes A or AX in the operand column is given priority and generated.

Example The MOV A,r instruction where r is B has the same function as the MOV r, r' instruction where r is A and r' is B. In addition, they have the same (MOV A,B) description in the assembler source program. In this case, the RA78K4 generates code that corresponds to the MOV A, r instruction.

• If A, X, B, C, AX, or BC is described in an instruction that specifies r, r', rp, or rp' in the operand column, the A, X, B, C, AX, or BC instruction code generates the instruction code that specifies the following registers based on the operand of the RSS guasi directive in the RA78K4.

Register	RSS = 0	RSS = 1
A	R1	R5
Х	R0	R4
В	R3	R7
С	R2	R6
AX	RP0	RP2
BC	RP1	RP3

- If R0 to R7 and RP0 to RP4 are specified for r, r', rp, and rp' in the operand column, an instruction code that conforms to the specification is output. (Instruction code that directly describes A or AX in the operand column is not output.)
- The A, B, and C registers that are used in indexed addressing and based indexed addressing cannot be described as R1, R3, R2, or R5, R7, R6.

(3) Cautions on use

Switching the RSS bit obtains the same effect as holding two register sets. However, be careful and write the program so that implicit descriptions in the program and dynamically changing the RSS bit during program execution always agree.

Also, since a program with RSS = 1 cannot be used in a program that uses context switching, the portability of the program becomes poor. Furthermore, since different registers having the same name are used, the readability of the program worsens, and debugging becomes difficult. Therefore, when RSS = 1 must be used, write the program while taking these problems into consideration.

A register that does not have the RSS bit set can be accessed by specifying the absolute name.

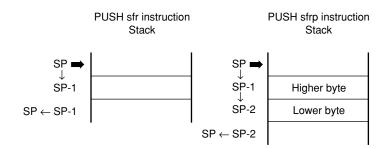
3.7.4 Stack pointer (SP)

This is a 24-bit register that saves the starting address of the stack (LIFO: 00000H to FFFFFFH) (refer to **Figure 3-7**). The stack is used for addressing during subroutine processing or interrupt servicing. Always set the higher four bits to 0.

The contents of the SP are decremented before writing to the stack area and incremented after reading from the stack (refer to **Figures 3-8** and **3-9**).

The SP is accessed by special instructions.

Since the SP contents become undefined when RESET is input, always initialize the SP from the initialization program immediately after clearing the reset (before acknowledging a subroutine call or interrupt).


Example Initializing SP

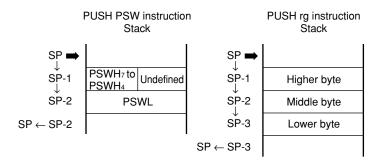

MOVG SP,#0FEE0H ; SP \leftarrow 0FEE0H (when used from FEDFH)

Figure 3-7. Format of Stack Pointer (SP)

Figure 3-8. Data Saved to Stack

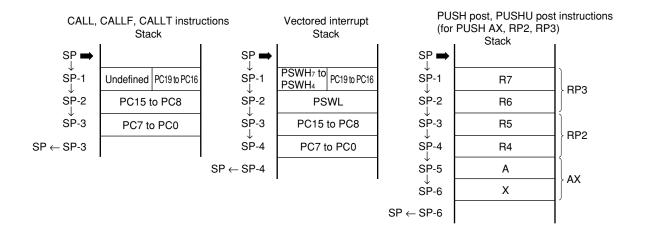
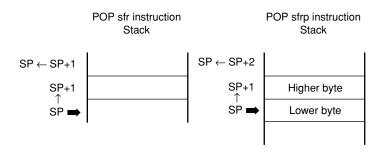
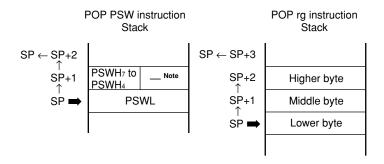
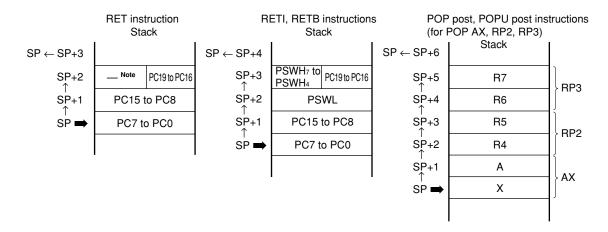





Figure 3-9. Data Restored from Stack

Note This 4-bit data is ignored.

- Cautions 1. In stack addressing, the entire 1 MB space can be accessed, but the stack cannot be guaranteed in the SFR area and internal ROM area.
 - 2. The stack pointer (SP) becomes undefined when RESET is input. In addition, even when the SP is in an undefined state, non-maskable interrupts can be acknowledged. Therefore, when the SP is in an undefined state immediately after the reset is cleared and a request for a non-maskable interrupt is generated, unexpected operations sometimes occur. To avoid this danger, always specify the following in the program after clearing a reset.

RSTVCT CSEG AT 0

DW RSTSTRT

to

INITSEG CSEG BASE

RSTSTRT: LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN

3.8 General-Purpose Registers

3.8.1 Structure

There are sixteen 8-bit general-purpose registers. In addition, two 8-bit general-purpose registers can be combined and used as a 16-bit general-purpose register. Furthermore, four of the 16-bit general-purpose registers can be combined with an 8-bit register for address expansion and used as a 24-bit address specification register.

The general-purpose registers except for the V, U, T, and W registers for address expansion are mapped to the internal RAM.

These register sets can use eight banks and can be switched by software or context switching.

RESET input selects register bank 0. In addition, the register banks that are used in an executing program can be verified by reading the register bank selection flags (RBS0, RBS1, RBS2) in the PSW.

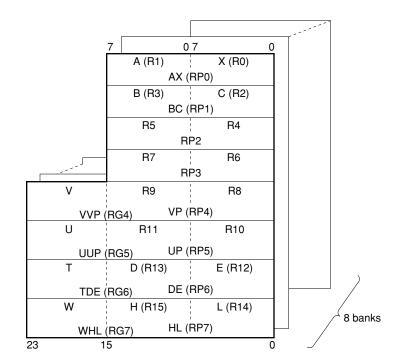
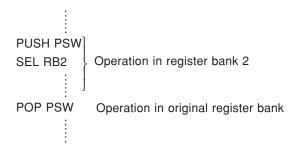


Figure 3-10. Format of General-Purpose Register

Remark The names in parentheses are the absolute names.

8-bit processing 8-bit processing FEFFH(Note) RBNK0 H (R15) (FH) L (R14) (EH) HL (RP7) (EH) RBNK1 D (R13) (DH) E (R12) (CH) DE (RP6) (CH) RBNK2 R11 (BH) R10 (AH) UP (R5) (AH) R8 (8H) RBNK3 R9 (9H) VP (R4) (8H) RBNK4 R7 (7H) R6 (6H) RP3 (6H) RBNK5 R4 (4H) RP2 (4H) R5 (5H) RBNK6 B (R3) (BH) C (R2) (2H) BC (RP1) (2H) FE80H(Note) RBNK7 A (R1) (1H) X (R0) (0H) AX (RP0) (0H)


Figure 3-11. General-Purpose Register Addresses

Note These are the addresses when the LOCATION 0H instruction is executed. The addresses when the LOCATION 0FH instruction is executed are the sum of the above values and 0F0000H.

Caution R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, AX, and BC registers when the RSS bit in the PSW is set to 1. However, use this function only when using a 78K/III Series program.

Remark When changing the register bank and when returning to the original register bank is necessary, execute the SEL RBn instruction after using the PUSH PSW instruction to save the PSW to the stack. If the stack position is not changed when returning to the original state, the POP PSW instruction is used to return. When the register banks in the vectored interrupt servicing program are updated, the PSW is automatically saved on the stack when an interrupt is acknowledged and returned by the RETI and RETB instructions. Therefore, when one register bank is used in an interrupt servicing routine, only the SEL RBn instruction is executed, and the PUSH PSW or POP PSW instruction does not have to be executed.

Example When register bank 2 is specified

3.8.2 Functions

In addition to being manipulatable in 8-bit units, general-purpose registers can be a pair of two 8-bit registers and be manipulated in 16-bit units. Also four of the 16-bit registers can be combined with the 8-bit register for address expansion and manipulated in 24-bit units.

Each register can generally be used as the temporary storage for the operation result or the operand of the operation instruction between registers.

The area from 0FE80H to 0FEFFH (during LOCATION 0H instruction execution, or the 0FFE80H to 0FFEFFH during LOCATION 0FH instruction execution) can be accessed by specifying an address as normal data memory whether or not it is used as the general-purpose register area.

Since there are eight register banks in the 78K/IV Series, efficient programs can be written by suitably using the register banks in normal processing or interrupt servicing.

Each register has the unique functions shown below.

A (R1):

- This register is primarily for 8-bit data transfers and operation processing. It can be combined with all of the addressing modes for 8-bit data.
- · This register can be used to store bit data.
- This register can be used as a register that stores the offset value during indexed addressing or based indexed addressing.

X (R0):

· This register can store bit data.

AX (RP0):

• This register is primarily for 16-bit data transfers and operation results. It can be combined with all of the addressing modes for 16-bit data.

AXDE:

· When a DIVUX, MACW, or MACSW instruction is executed, this register can be used to store 32-bit data.

B (R3):

- · This register functions as a loop counter and can be used by the DBNZ instruction.
- · This register can store the offset in indexed addressing and based indexed addressing.
- This register is used as the data pointer in a MACW or MACSW instruction.

C (R2):

- · This register functions as a loop counter and can be used by the DBNZ instruction.
- · This register can store the offset in based indexed addressing.
- This register is used as the counter in string and SACW instructions.
- · This register is used as the data pointer in a MACW or MACSW instruction.

RP2:

· When context switching is used, this register saves the lower 16 bits of the program counter (PC).

RP3:

• When context switching is used, this register saves the higher 4 bits of the program counter (PC) and the program status word (PSW) (except bits 0 to 3 in PSWH).

VVP (RG4):

• This register functions as a pointer and specifies the base address in register indirect addressing, based addressing, and based indirect addressing.

UUP (RG5):

- This register functions as a user stack pointer and implements another stack separate from the system stack by the PUSHU and POPU instructions.
- This register functions as a pointer and acts as the register that specifies the base address during register indirect addressing and based addressing.

DE (RP6), HL (RP7):

· This register stores the offset during indexed addressing and based indexed addressing.

TDE (RG6):

- This register functions as a pointer and sets the base address in register indirect addressing and based addressing.
- · This register functions as a pointer in string and SACW instructions.

WHL (RG7):

- This register primarily performs 24-bit data transfers and operation processing.
- This register functions as a pointer and specifies the base address during register indirect addressing or based addressing.
- This functions as a pointer in string and SACW instructions.

In addition to a function name (X, A, C, B, E, D, L, H, AX, BC, VP, UP, DE, HL, VVP, UUP, TDE, WHL) that emphasizes its unique function, each register can be described by an absolute name (R0 to R15, RP0 to RP7, RG4 to RG7). For the correspondence, refer to **Table 3-5**.

Table 3-5. Correspondence Between Function Names and Absolute Names

(a) 8-bit registers

Ala a desta Nia sa a	Functio	n Name
Absolute Name	RSS = 0	RSS = 1 ^{Note}
R0	Х	
R1	А	
R2	С	
R3	В	
R4		Х
R5		А
R6		С
R7		В
R8		
R9		
R10		
R11		
R12	E	E
R13	D	D
R14	L	L
R15	Н	Н

(b) 16-bit registers

Absolute Name	Function Name				
Absolute Name	RSS = 0	RSS = 1 ^{Note}			
RP0	AX				
RP1	ВС				
RP2		AX			
RP3		ВС			
RP4	VP	VP			
RP5	UP	UP			
RP6	DE	DE			
RP7	HL	HL			

(c) 24-bit registers

Absolute Name	Function Name
RG4	VVP
RG5	UUP
RG6	TDE
RG7	WHL

Note Use RSS = 1 only when a 78K/III Series program is used.

Remark R8 to R11 do not have function names.

3.9 Special Function Registers (SFRs)

These are registers that are assigned special functions, such as the mode and control registers of the on-chip peripheral hardware, and are mapped to the 256-byte area from 0FF00H to 0FFFFHNote.

Note These are the addresses when the LOCATION 0H instruction is executed. They are FFF00H to FFFFFH when the LOCATION 0FH instruction is executed.

Caution In this area, do not access an address that is not allocated by an SFR. If erroneously accessed, the μ PD784225 enters the deadlock state. The deadlock state is released only by reset input.

Table 3-6 shows the list of special function registers (SFRs). The meanings of the items are described below.

•	 SymbolThis sy 	mbol indicates	the on-chip	SFR. In the	he NEC as	sembler R	RA78K4, this is	а
	reserve	ed word. In the	C compiler	CC78K4, i	t can be us	sed as an	sfr variable by	а
	#pragn	na sfr directive.						
	D ///	1 11 11	10	055		***		

R/WIndicates whether the corresponding SFR can be read or written.

R/W: Can read/writeR: Read onlyW: Write only

• Bit Manipulation Unit When the corresponding SFR is manipulated, the appropriate bit manipulation unit is indicated. An SFR that can be manipulated in 16 bits can be described in the sfrp operand. If specified by an address, an even address is described.

An SFR that can be manipulated in one bit can be described in bit manipulation instructions.

• After ResetIndicates the state of each register when RESET is input.

Table 3-6. Special Function Register (SFR) List (1/4)

AddressNote 1	0 115 11 0 11 (050) 11		Daw	Bit Ma	nipulatio	on Unit	A6: D :
Address	Special Function Register (SFR) Name	Symbol	R/W	1 Bit	8 Bits	16 Bits	After Reset
0FF00H	Port 0	P0	R/W	V	√	_	00HNote 2
0FF01H	Port 1	P1	R	V	√	_	
0FF02H	Port 2	P2	R/W	√	√	_	
0FF03H	Port 3	P3		V	√	_	
0FF04H	Port 4	P4		√	√	_	
0FF05H	Port 5	P5		V	√	_	
0FF06H	Port 6	P6		V	√	_	
0FF07H	Port 7	P7		1	V	_	
0FF0CH	Port 12	P12		V	√	_	
0FF0DH	Port 13	P13		1	V	_	
0FF10H	16-bit timer counter 0	TM0	R	_	_	√	0000H
0FF11H							
0FF12H	Capture/compare register 00	CR00	R/W	_	_	√	
0FF13H	(16-bit timer/event counter)						
0FF14H	Capture/compare register 01	CR01		_	_	√	
0FF15H	(16-bit timer/event counter)						
0FF16H	Capture/compare control register 0	CRC0		√	$\sqrt{}$	_	00H
0FF18H	16-bit timer mode control register 0	TMC0		√	$\sqrt{}$	_	
0FF1AH	16-bit timer output control register 0	TOC0		√	$\sqrt{}$	_	
0FF1CH	Prescaler mode register 0	PRM0		√	$\sqrt{}$	_	
0FF20H	Port 0 mode register	PM0		√	√	_	FFH
0FF22H	Port 2 mode register	PM2		V	√	_	
0FF23H	Port 3 mode register	PM3		√	√	_	
0FF24H	Port 4 mode register	PM4		√	√	_	
0FF25H	Port 5 mode register	PM5		√	$\sqrt{}$	_	
0FF26H	Port 6 mode register	PM6		√	√	_	
0FF27H	Port 7 mode register	PM7		√	V		
0FF2CH	Port 12 mode register	PM12		√	√	_	
0FF2DH	Port 13 mode register	PM13		√	√	_	
0FF30H	Pull-up resistor option register 0	PU0		√	√	_	00H
0FF32H	Pull-up resistor option register 2	PU2		V	√		
0FF33H	Pull-up resistor option register 3	PU3		1	√		
0FF37H	Pull-up resistor option register 7	PU7		$\sqrt{}$	$\sqrt{}$	_	

- **Notes 1.** These values are when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to these values.
 - 2. Since each port is initialized in the input mode by a reset, 00H is not actually read out. The output latch is initialized to 0.

Table 3-6. Special Function Register (SFR) List (2/4)

AddressNote 1	Chariel Function Designary (CFD) Name	,		DAM	Bit Ma	nipulatio	n Unit	After Reset
Address	Special Function Register (SFR) Name			R/W	1 Bit	8 Bits	16 Bits	Allei Nesel
0FF3CH	Pull-up resistor option register 12	PU12	PU12		V	√	_	00H
0FF40H	Clock output control register	CKS			V	√	_	
0FF42H	Port function control register 2 ^{Note 2}	PF2			V	√	_	
0FF4EH	Pull-up resistor option register 0	PUO			V	√	_	
0FF50H	8-bit timer counter 1	TM1	TW1W	R	_	√	√	0000H
0FF51H	8-bit timer counter 2	TM2			_	√		
0FF52H	Compare register 10 (8-bit timer/event counter 1)	CR10	CR1W	R/W	_	√	√	
0FF53H	Compare register 20 (8-bit timer/event counter 2)	CR20			_	√		
0FF54H	8-bit timer mode control register 1	TMC1	TMC1W		√	√	√	
0FF55H	8-bit timer mode control register 2	TMC2			√	√		
0FF56H	Prescaler mode register 1	PRM1	PRM1W		V	√	√	
0FF57H	Prescaler mode register 2	PRM2			√	√		
0FF60H	8-bit timer counter 5	TM5	TM5W	R	_	√	√	
0FF61H	8-bit timer counter 6	TM6			_	√		
0FF64H	Compare register 50 (8-bit timer 5)	CR50	CR5W	R/W	_	√	√	
0FF65H	Compare register 60 (8-bit timer 6)	CR60			_	√		
0FF68H	8-bit timer mode control register 5	TMC5	TMC5W		V	√	√	
0FF69H	8-bit timer mode control register 6	TMC6			√	√		
0FF6CH	Prescaler mode register 5	PRM5	PRM5W		V	√	√	
0FF6DH	Prescaler mode register 6	PRM6			V	√		
0FF70H	Asynchronous serial interface mode register 1	ASIM1			$\sqrt{}$	√	_	00H
0FF71H	Asynchronous serial interface mode register 2	ASIM2			√	√	_	
0FF72H	Asynchronous serial interface status register 1	ASIS1		R	$\sqrt{}$	√	_	
0FF73H	Asynchronous serial interface status register 2	ASIS2			$\sqrt{}$	√	_	
0FF74H	Transmission shift register 1	TXS1		W		√	_	FFH
	Reception buffer register 1	RXB1		R		√	_	
0FF75H	Transmission shift register 2	TXS2		W		√	_	
	Reception buffer register 2	RXB2		R	_	√	_	
0FF76H	Baud rate generator control register 1	BRGC1		R/W	√	√	_	00H
0FF77H	Baud rate generator control register 2	BRGC2			V	√	_	
0FF7AH	Oscillation mode selection register	СС			√	√		
0FF80H	A/D converter mode register	ADM			V	√		
0FF81H	A/D converter input selection register	ADIS			√	√	_	
0FF83H	A/D conversion result register	ADCR		R	_	√		Undefined

Notes 1. These are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to this value.

2. Only in the μ PD784225Y Subseries

Table 3-6. Special Function Register (SFR) List (3/4)

AddressNote 1	Creatist Function Register (CFR) Name	C.		DAM	Bit Ma	nipulatio	on Unit	After Deset
Addressione	Special Function Register (SFR) Name	,		R/W	1 Bit	8 Bits	16 Bits	After Reset
0FF84H	D/A conversion value setting register 0	DACS0		R/W	√	√	_	00H
0FF85H	D/A conversion value setting register 1	DACS1			$\sqrt{}$	1		
0FF86H	D/A converter mode register 0	DAM0			√	√	_	
0FF87H	D/A converter mode register 1	DAM1			$\sqrt{}$	V	_	
0FF88H	ROM correction control register	CORC			√	√	_	
0FF89H	ROM correction address register H	CORAH			_	V	_	
0FF8AH	ROM correction address register L	CORAL			_	_	√	0000H
0FF8BH								
0FF8DH	External access status enable register	EXAE			√	√	_	00H
0FF90H	Serial operation mode register 0	CSIM0			V	√	_	
0FF91H	Serial operation mode register 1	CSIM1			√	√	_	
0FF92H	Serial operation mode register 2	CSIM2			$\sqrt{}$	√	_	
0FF94H	Serial I/O shift register 0	SIO0			_	V	_	
0FF95H	Serial I/O shift register 1	SIO1			_	√	_	
0FF96H	Serial I/O shift register 2	SIO2			_	√	_	
0FF98H	Real-time output buffer register L	RTBL	RTBL		_	√	_	
0FF99H	Real-time output buffer register H	RTBH			_	√	_	
0FF9AH	Real-time output port mode register	RTPM			V	1	_	
0FF9BH	Real-time output port control register	RTPC	RTPC		\checkmark	√	_	
0FF9CH	Watch timer mode control register	WTM			$\sqrt{}$	√	_	
0FFA0H	External interrupt rising edge enable register 0	EGP0			$\sqrt{}$	√	_	
0FFA2H	External interrupt falling edge enable register 0	EGN0			\checkmark	√	_	
0FFA8H	In-service priority register	ISPR		R	√	√	_	00H
0FFA9H	Interrupt selection control register	SNMI		R/W	√	√	_	
0FFAAH	Interrupt mode control register	IMC			√	√	_	80H
0FFACH	Interrupt mask flag register 0L	MK0L	MK0		√	√	√	FFFFH
0FFADH	Interrupt mask flag register 0H	MK0H			√	√		
0FFAEH	Interrupt mask flag register 1L	MK1L MK1		7	$\sqrt{}$	1	√	
0FFAFH	Interrupt mask flag register 1H	MK1H			$\sqrt{}$	√		
0FFB0H	I ² C bus control register 0 ^{Note 2}	IICC0		7	$\sqrt{}$	V	_	00H
0FFB2H	Serial clock prescaler mode register 0Note 2	SPRM0			√	√		
0FFB4H	Slave address register 0 ^{Note 2}	SVA0			_	√		
0FFB6H	I ² C bus status register 0 ^{Note 2}	IICS0		R	$\sqrt{}$	√		
0FFB8H	Serial shift register 0 ^{Note 2}	IIC0		R/W	√	√		

Notes 1. These are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to this value.

2. Only in the μ PD784225Y Subseries

Table 3-6. Special Function Register (SFR) List (4/4)

A LL Note 1	0 115 11 D 11 (05D) N	0 1 1	Day	Bit Ma	nipulatio	on Unit	A.(; D ;
Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	1 Bit	8 Bits	16 Bits	After Reset
0FFC0H	Standby control register	STBC	R/W	_	√	_	30H
0FFC2H	Watchdog timer mode register	WDM		_	√	_	00H
0FFC4H	Memory expansion mode register	ММ		√	√	_	20H
0FFC7H	Programmable wait control register 1	PWC1		√	√	_	AAH
0FFC8H	Programmable wait control register 2	PWC2	W	_	_	√	AAAAH
0FFC9H							
0FFCEH	Clock status register	PCS	R	√	√	_	32H
0FFCFH	Oscillation stabilization time specification register	OSTS	R/W	√	√	_	00H
0FFD0H to 0FFDFH	External SFR area	_		1	√	_	_
0FFE0H	Interrupt control register (INTWDTM)	WDTIC		√	√	_	43H
0FFE1H	Interrupt control register (INTP0)	PIC0	7	√	√	_	
0FFE2H	Interrupt control register (INTP1)	PIC1		√	√	_	
0FFE3H	Interrupt control register (INTP2)	PIC2		√	√	_	
0FFE4H	Interrupt control register (INTP3)	PIC3		√	√	_	
0FFE5H	Interrupt control register (INTP4)	PIC4		√	√	_	
0FFE6H	Interrupt control register (INTP5)	PIC5		√	√	_	
0FFE8H	Interrupt control register (INTIIC0Note 2/INTCSI0)	CSIIC0		√	√	_	
0FFE9H	Interrupt control register (INTSER1)	SERIC1		√	√	_	
0FFEAH	Interrupt control register (INTSR1/INTCSI1)	SRIC1		√	√	_	
0FFEBH	Interrupt control register (INTST1)	STIC1		√	√	_	
0FFECH	Interrupt control register (INTSER2)	SERIC2		√	√	_	
0FFEDH	Interrupt control register (INTSR2/INTCSI2)	SRIC2		√	√	_	
0FFEEH	Interrupt control register (INTST2)	STIC2		√	√	_	
0FFEFH	Interrupt control register (INTTM3)	TMIC3		√	√	_	
0FFF0H	Interrupt control register (INTTM00)	TMIC00		√	√	_	
0FFF1H	Interrupt control register (INTTM01)	TMIC01		√	√	_	
0FFF2H	Interrupt control register (INTTM1)	TMIC1		√	√	_	
0FFF3H	Interrupt control register (INTTM2)	TMIC2		√	√	_	
0FFF4H	Interrupt control register (INTAD)	ADIC		√	√	_	
0FFF5H	Interrupt control register (INTTM5)	TMIC5		√	√	_	
0FFF6H	Interrupt control register (INTTM6)	TMIC6		√	√	_	
0FFF9H	Interrupt control register (INTWT)	WTIC		V	√	_	
0FFFCH	Internal memory size switching register Note 3	IMS	W	_	√	_	FFH

Notes 1. These values are when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to these values.

- 2. Only in the μ PD784225Y Subseries
- 3. Only in the μ PD78F4225 and 78F4225Y

3.10 Cautions

(1) Program fetches are not possible from the internal high-speed RAM space (when executing the LOCATION 0H instruction: 0FD00H to 0FEFFH, when executing the LOCATION 0FH instruction: FFD00H to FFEFFH)

(2) Special function registers (SFRs)

Do not access an address that is allocated to an SFR in the area from 0FF00H to 0FFFH^{Note}. If mistakenly accessed, the μ PD784225 enters the deadlock state. The deadlock state is released only by reset input.

Note These addresses are when the LOCATION 0H instruction is executed. They are FFF00H to FFFFH when the LOCATION 0FH instruction is executed.

(3) Stack pointer (SP) operation

Although the entire 1 MB space can be accessed by stack addressing, the stack cannot be guaranteed in the SFR area and the internal ROM area.

(4) Stack pointer (SP) initialization

The SP becomes undefined when RESET is input. Even after a reset is cleared, non-maskable interrupts can be acknowledged. Therefore, the SP enters an undefined state immediately after clearing the reset. When a non-maskable interrupt request is generated, unexpected operations sometimes occur. To minimize these dangers, always describe the following in the program immediately after clearing a reset.

RSTVCT CSEG AT 0

DW RSTSTRT

to

INITSEG CSEG BASE

RSTSTRT: LOCATION 0H; or LOCATION 0FH

MOVG SP, #STKBGN

CHAPTER 4 CLOCK GENERATOR

4.1 Functions

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following two types of system clock oscillators are available.

(1) Main system clock oscillator

This circuit oscillates at frequencies of 2 to 12.5 MHz. Oscillation can be stopped by setting the standby control register (STBC) to STOP mode (bit 1 (STP) = 1, bit 0 (HLT) = 0) or by stopping the main system clock (bit 2 of STBC (MCK) = 1) after switching to the subsystem clock.

(2) Subsystem clock oscillator

This circuit oscillates at the frequency of 32.768 kHz. Oscillation cannot be stopped. If the subsystem clock oscillator is not used, not using the internal feedback resistor can be set by STBC. This enables the power consumption to be decreased in the STOP mode.

4.2 Configuration

The clock generator includes the following hardware.

Table 4-1. Clock Generator Configuration

Item	Configuration
Control registers	Standby control register (STBC) Oscillation mode selection register (CC) Clock status register (PCS) Oscillation stabilization time specification register (OSTS)
Oscillators	Main system clock oscillator Subsystem clock oscillator

XT1 O Subsystem fxT Watch timer, clock clock output function XT2 O oscillator Prescaler Selector X1 O Main system IDLE Clock to Prescaler clock controller fxx peripheral hardware X2 O oscillator Divider $\frac{fxx}{2}$ $\frac{fxx}{2^2}$ $\frac{fxx}{2^3}$ STOP or bit 2 of STBC STOP, Selector (MCK) = 1 when CPU IDLE HALT selecting subsystem clock control-ler^{Note} controller clock as CPU clock (fcpu) Internal system clock (fclk)

Figure 4-1. Block Diagram of Clock Generator

Note This controller secures the oscillation stabilization time after releasing STOP mode.

4.3 Control Registers

(1) Standby control register (STBC)

This register is used to set the standby mode and select the internal system clock. For details of the standby mode, refer to **CHAPTER 24 STANDBY FUNCTION**.

A write operation can be performed only using dedicated instructions to avoid entering the standby mode due to an inadvertent program loop. These dedicated instructions, MOV STBC and #byte, have a special code structure (4 bytes). The write operation is performed only when the opcode of the 3rd byte and 4th byte are complements of each other. When the 3rd byte and 4th byte are not complements of each other, the write operation is not performed and an operand error interrupt is generated. In this case, the return address saved in the stack area indicates the address of the instruction that caused the error. Therefore, the address that caused the error can be determined from the return address that is saved in the stack area.

If a return from an operand error is performed simply with the RETB instruction, an infinite loop will be caused. Because the operand error interrupt occurs only in the case of an inadvertent program loop (if MOV STBC or #byte is described, only the correct dedicated instruction is generated in NEC's RA78K4 assembler), initialize the system for the program that processes an operand error interrupt.

Other write instructions such as MOV STBC, A, AND STBC, #byte, and SET1 STBC.7 are ignored and no operation is performed. In other words, a write operation to STBC performed and an interrupt such as an operand error interrupt is not generated. STBC can be read out any time by a data transfer instruction.

RESET input sets STBC to 30H.

Figure 4-2 shows the format of STBC.

Figure 4-2. Format of Standby Control Register (STBC)

Address: 0FFC0H After reset: 30H R/W Symbol 7 6 5 4 3 2 0 1 STBC SBK CK2 CK1 CK0 0 MCK STP HLT

SBK	Subsystem clock oscillation control
0	Use oscillator (internal feedback resistor is used)
1	Stop oscillator (internal feedback resistor is not used)

CK2	CK1	CK0	CPU clock selection	
0	0	0	fxx	
0	0	1	fxx/2	
0	1	0	fxx/4	
0	1	1	fxx/8	
1	1	1	fxt (recommended)	
1	_	_	fxт	

MCK	Main system clock oscillation control			
0	Use oscillator (internal feedback resistor is used)			
1	Stop oscillator (internal feedback resistor is not used)			

STP	HLT	Operation specification flag	
0	0	Normal operation mode	
0	1	HALT mode (automatically cleared upon release of HALT mode)	
1	0	STOP mode (automatically cleared upon release of STOP mode)	
1	1	IDLE mode (automatically cleared upon release of IDLE mode)	

Cautions 1. When using the STOP mode during external clock input, make sure to set the EXTC bit of the oscillation stabilization time specification register (OSTS) to 1 before setting the STOP mode. If the STOP mode is used during external clock input when the EXTC bit of OSTS has been cleared (0), the μ PD784225 may be damaged or its reliability may be impaired.

When setting the EXTC bit of OSTS to 1, a clock with the opposite phase of the clock input to the X1 pin must be input to the X2 pin.

2. Execute a NOP instruction three times after a standby instruction (after standby release). Otherwise if conflict occurs between standby instruction execution and an interrupt request, the standby instruction is not performed and the interrupt request is acknowledged after the execution of several instructions. The instructions executed before the interrupt request is acknowledged are instructions whose execution is started within 6 clocks following execution of the standby instruction.

Example MOV STBC #byte NOP NOP

•

3. When CK2 = 0, the oscillation of the main system clock does not stop even if MCK is set to 1 (refer to 4.5.1 Main system clock operations).

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency fxT: Subsystem clock oscillation frequency

2. ×: Don't care

(2) Oscillation mode selection register (CC)

This register specifies whether clock output from the main system clock oscillator with the same frequency as the external clock, or clock output that is half of the original frequency is used to operate the internal circuits. CC is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CC to 00H.

Figure 4-3. Format of Oscillation Mode Selection Register (CC)

Address: 0	FF7AH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
CC	ENMP	0	0	0	0	0	0	0

ENMP	Main system clock selection			
0	Half of original oscillation frequency			
1	Through-rate clock mode			

- Cautions 1. If the subsystem clock is selected via the standby control mode register (STBC), the ENMP bit specification becomes invalid.
 - 2. The ENMP bit cannot be reset by software. This bit is reset by a system reset.

(3) Clock status register (PCS)

This register is a read-only 8-bit register that indicates the CPU clock operation status. By reading bit 2 and bits 4 to 7 of PCS, the relevant bit of the standby control register (STBC) can be read.

PCS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PCS to 32H.

Figure 4-4. Format of Clock Status Register (PCS)

Address: 0FFCEH After reset: 32H Symbol 7 6 5 4 3 2 1 0 **PCS** SBK CK2 CK1 CK0 0 MCK HLT

SBK	Feedback resistor status of subsystem clock			
0	Internal feedback resistor is used.			
1	Internal feedback resistor is not used.			

CK2	CK1	CK0	CPU clock operating frequency	
0	0	0	fxx	
0	0	1	fxx/2	
0	1	0	fxx/4	
0	1	1	fxx/8	
1	1	1	fxT (recommended)	
1	×	×	fxт	

MCK	Oscillation status of main system clock			
0	Use oscillator			
1	Stop oscillator			

CST	CPU clock status		
0	Main system clock operation		
1	Subsystem clock operation		

Caution [Timing at which bit 0 (CST) changes]

The CPU clock does not switch from the main system clock to the subsystem clock immediately after the standby control register (STBC) is set, but switches after synchronization of both clocks (main and subsystem) has been detected. Consequently, CST changes after synchronization detection. This is the same as when switching from subsystem clock to main system clock.

(4) Oscillation stabilization time specification register (OSTS)

This register specifies the operation of the oscillator. Either a crystal/ceramic resonator or external clock is set by the EXTC bit in OSTS as the clock used. The STOP mode can be set even during external clock input only when the EXTC bit is set to 1.

OSTS is set by a 1-bit or 8-bit transfer instruction.

RESET input sets OSTS to 00H.

Figure 4-5. Format of Oscillation Stabilization Time Specification Register (OSTS)

Address: 0FFCFH After reset: 00H			R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	EXTC	0	0	0	0	OSTS2	OSTS1	OSTS0

EXTC	External clock selection			
0	Crystal/ceramic resonator is used			
1	External clock is used			

EXTC	OSTS2	OSTS1	OSTS0	Oscillation stabilization time
0	0	0	0	2 ¹⁹ /fxx (41.9 ms)
0	0	0	1	2 ¹⁸ /fxx (21.0 ms)
0	0	1	0	2 ¹⁷ /fxx (10.5 ms)
0	0	1	1	2 ¹⁶ /fxx (5.2 ms)
0	1	0	0	2 ¹⁵ /fxx (2.6 ms)
0	1	0	1	2 ¹⁴ /fxx (1.3 ms)
0	1	1	0	2 ¹³ /fxx (655 μs)
0	1	1	1	2 ¹² /fxx (328 μs)
1	×	×	×	512/fxx (41.0 μs)

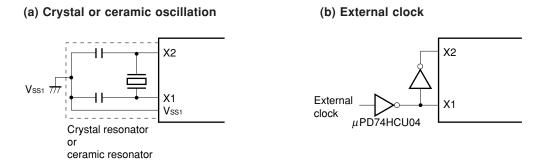
Cautions 1. When a crystal/ceramic resonator is used, make sure to clear the EXTC bit to 0. If the EXTC bit is set to 1, oscillation stops.

- 2. When using the STOP mode during external clock input, make sure to set the EXTC bit to 1 before setting the STOP mode. If the STOP mode is used during external clock input when the EXTC bit of OSTS has been cleared, the μ PD784225 may be damaged or its reliability may be impaired.
- 3. If the EXTC bit is set to 1 during external clock input, the opposite phase of the clock input to the X1 pin must be input to the X2 pin. If the EXTC bit is set to 1, the μ PD784225 operates only with the clock input to the X2 pin.

Remark 1. Figures in parentheses apply to operation at fxx = 12.5 MHz.

2. ×: Don't care

4.4 System Clock Oscillator


4.4.1 Main system clock oscillator

The main system clock oscillator oscillates with a crystal resonator or a ceramic resonator (standard: 12.5 MHz) connected to the X1 and X2 pins.

External clocks can be input to the main system clock oscillator. In this case, input a clock signal to the X1 pin and the reverse-phase clock signal to the X2 pin.

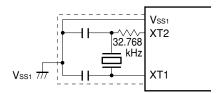
Figure 4-6 shows the external circuit of the main system clock oscillator.

Figure 4-6. External Circuit of Main System Clock Oscillator

Caution When using a main system clock oscillator, wire as follows in the area enclosed by the broken lines in the figure above to avoid an adverse effect from wiring capacitance (also refer to 4.4.3 Examples of incorrect resonator connection).

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1. Do not ground the capacitor to a ground pattern through which a high current flows.
- · Do not fetch signals from the oscillator.

4.4.2 Subsystem clock oscillator


The subsystem clock oscillator oscillates with a crystal resonator (standard: 32.768 kHz) connected to the XT1 and XT2 pins.

External clocks can be input to the main system clock oscillator. In this case, input a clock signal to the XT1 pin and the reverse-phase clock signal to the XT2 pin.

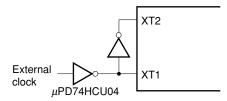

Figure 4-7 shows the external circuit of the subsystem clock oscillator.

Figure 4-7. External Circuit of Subsystem Clock Oscillator

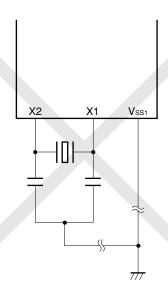
(a) Crystal oscillation

(b) External clock

Caution When using a subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the figure above to avoid an adverse effect from wiring capacitance (also refer to 4.4.3 Examples of incorrect resonator connection).

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as VSS1. Do not ground the capacitor to a ground pattern through which a high current flows.
- · Do not fetch signals from the oscillator.

Take special note of the fact that the subsystem clock oscillator is a circuit with low-level amplification so that current consumption is maintained at low levels.


4.4.3 Examples of incorrect resonator connection

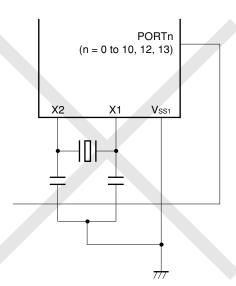
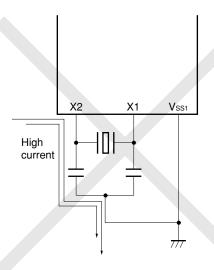
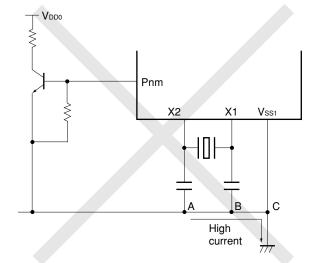
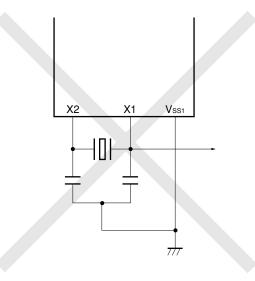

Figure 4-8 shows examples of resonators that are connected incorrectly.

Figure 4-8. Examples of Incorrect Resonator Connection (1/2)


(a) Wiring of connection circuits is too long


(b) Signal lines intersect each other

- (c) Fluctuating high current is too near a signal line
- (d) Current flows through the ground line of the oscillator (potential at points A, B, and C fluctuates)



- **Remark** When using a subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.
- Caution When XT2 and X1 are wired in parallel, the crosstalk noise of X1 may synergize with XT2, resulting in malfunction. To prevent this from occurring, it is recommended not to wire XT2 and X1 in parallel.

Figure 4-8. Examples of Incorrect Resonator Connection (2/2)

(e) Signals are fetched

Remark When using a subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Caution When XT2 and X1 are wired in parallel, the crosstalk noise of X1 may synergize with XT2, resulting in malfunction. To prevent this from occurring, it is recommended not to wire XT2 and X1 in parallel.

4.4.4 Frequency divider

The frequency divider divides the main system clock oscillator output (fxx) and generates various clocks.

4.4.5 When subsystem clock is not used

If it is not necessary to use the subsystem clock for low power consumption operations and clock operations, connect the XT1 and XT2 pins as follows.

XT1: Connect to Vss1 XT2: Leave open

In this state, however, some current may leak via the internal feedback resistor of the subsystem clock oscillator when the main system clock stops. To minimize leakage current, set bit 7 (SBK) of the standby control register (STBC) to 1. In this case also, connect the XT1 and XT2 pins as described above.

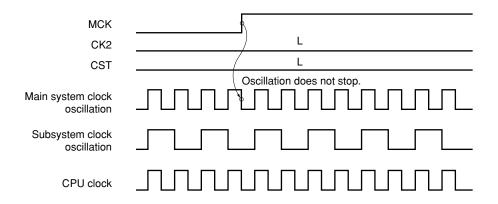
4.5 Clock Generator Operations

The clock generator generates the following types of clocks and controls the CPU operation mode including the standby mode.

- · Main system clock (fxx)
- Subsystem clock (fxT)
- · CPU clock (fcpu)
- · Clock to peripheral hardware

The following clock generator functions and operations are determined using the standby control register (STBC) and the oscillation mode selection register (CC).

- (a) Upon generation of the RESET signal, the lowest speed mode of the main system clock (1,280 ns: @ 12.5 MHz operation) is selected (STBC = 30H, CC = 00H). Main system clock oscillation stops while a low level is being applied to the RESET pin.
- (b) With the main system clock selected, one of six CPU clock types (80 ns, 160 ns, 320 ns, 640 ns, 1,280 ns: @ 12.5 MHz operation) can be selected by setting STBC and CC.
- (c) With the main system clock selected, two standby modes, the STOP mode and the HALT mode, are available. To decrease current consumption in the STOP mode, the subsystem clock feedback resistor can be disconnected to stop the subsystem clock by using bit 7 (SBK) of STBC, when the system does not use the subsystem clock.
- (d) STBC can be used to select the subsystem clock to operate the system with low current consumption (30.5 μ s: @ 32.768 kHz operation).
- (e) With the subsystem clock selected, main system clock oscillation can be stopped using STBC. The HALT mode can be used. However, the STOP mode cannot be used. (Subsystem clock oscillation cannot be stopped.)
- (f) The main system clock is divided and supplied to the peripheral hardware. The subsystem clock is supplied to the 16-bit timer/event counter, the watch timer, and clock output functions only. Thus, the 16-bit timer/event counter (when watch timer output is selected for the count clock during operation with the subsystem clock), the watch function, and the clock output function can also be continued in the standby state. However, since all other peripheral hardware operates with the main system clock, the peripheral hardware (except external input clock operation) also stops if the main system clock is stopped.


4.5.1 Main system clock operations

During operation with the main system clock (with bit 6 (CK2) of the standby control register (STBC) set to 0), the following operations are carried out.

- (a) Because the operation guaranteed instruction execution speed depends on the power supply voltage, the instruction execution time can be changed by setting bits 4 to 6 (CK0 to CK2) of STBC.
- (b) If bit 2 (MCK) of STBC is set to 1 during operation with the main system clock, the main system clock oscillation does not stop. When bit 6 (CK2) of STBC is set to 1 and the operation is switched to subsystem clock operation (CST = 1) after that, the main system clock oscillation stops (refer to **Figure 4-9**).

Figure 4-9. Main System Clock Stop Function (1/2)

(a) Operation when MCK is set after setting CK2 during main system clock operation

(b) Operation when MCK is set during main system clock operation

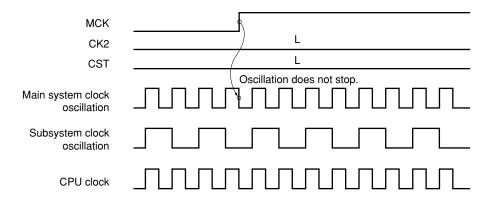
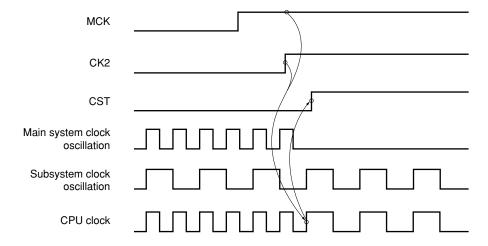



Figure 4-9. Main System Clock Stop Function (2/2)

(c) Operation when CK2 is set after setting MCK during main system clock operation

4.5.2 Subsystem clock operations

During operation with the subsystem clock (with bit 6 (CK2) of the standby control register (STBC) set to 1), the following operations are carried out.

- (a) The instruction execution time remains constant (minimum instruction execution time (61 μ s when operated at 32.768 kHz)) irrespective of the setting of bits 4 and 5 (CK0 and CK1) of STBC.
- (b) The watchdog timer continues operating.

Caution Do not set the STOP mode while the subsystem clock is operating.

4.6 Changing System Clock and CPU Clock Settings

The system clock and CPU clock can be switched by means of bits 4 to 6 (CK0 to CK2) of the standby control register (STBC).

Whether the system is operating on the main system clock or the subsystem clock can be determined by the value of bit 0 (CST) of the clock status register (PCS).

This section describes the procedure for switching between the system clock and the CPU clock.

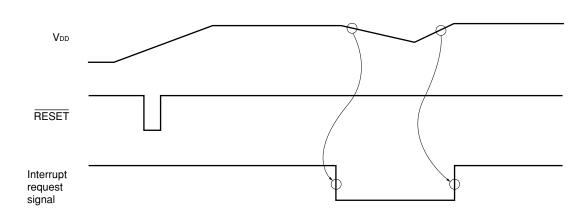
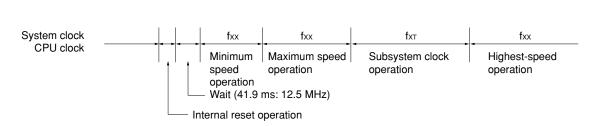



Figure 4-10. System Clock and CPU Clock Switching

- (1) The CPU is reset by setting the RESET signal to low level after power application. After that, when reset is released by setting the RESET signal to high level, the main system clock starts oscillating. At this time, the oscillation stabilization time (2¹⁹/fx) is secured automatically.

 After that, the CPU starts operation at the minimum speed of the main system clock (1,280 ns: @ 12.5 MHz operation).
- (2) After the lapse of a sufficient time for the VDD voltage to increase to enable operation at maximum speed, STBC and CC are rewritten and maximum-speed operation is carried out.
- (3) Upon detection of a decrease in the VDD voltage due to an interrupt, the main system clock is switched to the subsystem clock (which must be in a stable oscillation state).
- (4) Upon detection of V_{DD} voltage reset due to an interrupt, bit 2 (MCK) of STBC is set to 0 and oscillation of the main system clock is started. After lapse of the time required for stabilization of oscillation, STBC is rewritten and maximum-speed operation is resumed.

Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation time has been secured by the program before switching back to the main system clock.

CHAPTER 5 PORT FUNCTIONS

5.1 Digital I/O Ports

The ports shown in Figure 5-1, which enable a variety of controls, are provided. The function of each port is described in Table 5-1. Connection of on-chip pull-up resistors can be specified for ports 0, 2 to 7, and 12 by a software setting.

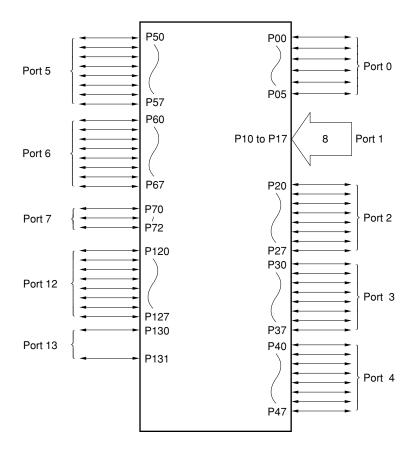


Figure 5-1. Port Configuration

Table 5-1. Port Functions

Port	Pin Name	Function	Specification of Software Pull-up Resistor
Port 0	P00 to P05	• Input or output can be specified in 1-bit units	Specifiable in 1-bit units
Port 1	P10 to P17	• Input port	_
Port 2	P20 to P27	• Input or output can be specified in 1-bit units	Specifiable in 1-bit units
Port 3	P30 to P37	• Input or output can be specified in 1-bit units	Specifiable in 1-bit units
Port 4	P40 to P47	Input or output can be specified in 1-bit units Can drive LEDs directly	Specifiable individually for each port
Port 5	P50 to P57	Input or output can be specified in 1-bit units Can drive LEDs directly	Specifiable individually for each port
Port 6	P60 to P67	• Input or output can be specified in 1-bit units	Specifiable individually for each port
Port 7	P70 to P72	• Input or output can be specified in 1-bit units	Specifiable in 1-bit units
Port 12	P120 to P127	•Input or output can be specified in 1-bit units	Specifiable in 1-bit units
Port 13	P130, P131	• Input or output can be specified in 1-bit units	_

5.2 Port Configuration

The ports include the following hardware.

Table 5-2. Port Configuration

Item	Configuration
Control registers	Port mode register (PMm: m = 0, 2 to 7, 12, 13) Pull-up resistor option register (PUO, PUm: m = 0, 2, 3, 7, 12)
Ports	Total: 67 (input: 8, I/O: 59)
Pull-up resistors	Total: 57 (software control)

5.2.1 Port 0

Port 0 is a 6-bit I/O port with an output latch. The input mode/output mode can be specified for the P00 to P05 pins in 1-bit units using the port 0 mode register. A pull-up resistor can also be connected in 1-bit units via pull-up resistor option register 0, regardless of whether the input mode or output mode is specified.

Port 0 also supports external interrupt request input as an alternate function.

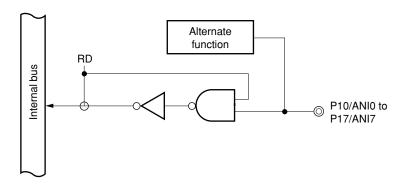
RESET input sets port 0 to the input mode.

Figure 5-2 shows the block diagram of port 0.

Caution Even though port 0 is also used as an external interrupt input, when port 0 is not used as an interrupt input pin, be sure to set interrupt disabled by using external interrupt rising edge enable register 0 (EGP0) and external interrupt falling edge enable register 0 (EGN0) or setting the interrupt enable flag (PMKn: n = 0 to 5) to 1. Otherwise, the interrupt request flag is set and unintentional interrupt servicing may be executed when setting ports to output mode and thus changing the output level.

Figure 5-2. Block Diagram of P00 to P05

PM: Port mode register RD: Port 0 read signal WR: Port 0 write signal


5.2.2 Port 1

This is an 8-bit input-only port with no on-chip pull-up resistor.

Port 1 supports A/D converter analog input as an alternate function.

Figure 5-3 shows a block diagram of port 1.

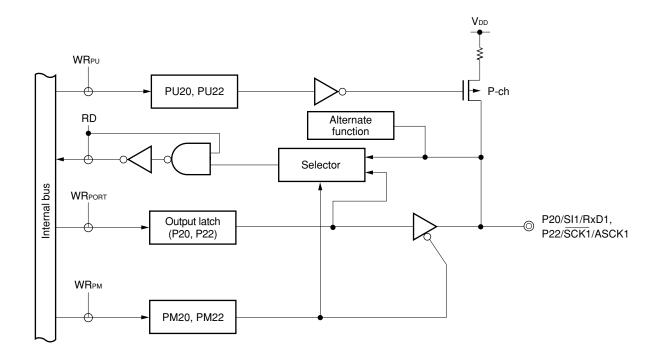
Figure 5-3. Block Diagram of P10 to P17

RD: Port 1 read signal

Caution Do not execute a read instruction (including bit manipulation instructions) for port 1 when it is used as an analog input port since port 1 can also be used as A/D converter analog input.

If middle voltage is input to an analog input pin while the port is being read, the middle voltage will be read, possibly impairing the reliability of the device.

5.2.3 Port 2


Port 2 is an 8-bit I/O port with an output latch. The input mode/output mode can be specified for the P20 to P27 pins in 1-bit units using the port 2 mode register. A pull-up resistor can also be connected in 1-bit units via pull-up resistor option register 2, regardless of whether the input mode or output mode is specified.

The P25 and P27 pins can be specified as N-ch open-drain using a port function control register (only the μ PD784225Y Subseries).

Port 2 supports serial interface data I/O, clock I/O, clock output, and buzzer output as alternate functions. RESET input sets port 2 to the input mode.

Figures 5-4 to 5-7 show a block diagram of port 2.

Figure 5-4. Block Diagram of P20 and P22

PU: Pull-up resistor option register

PM: Port mode register RD: Port 2 read signal WR: Port 2 write signal

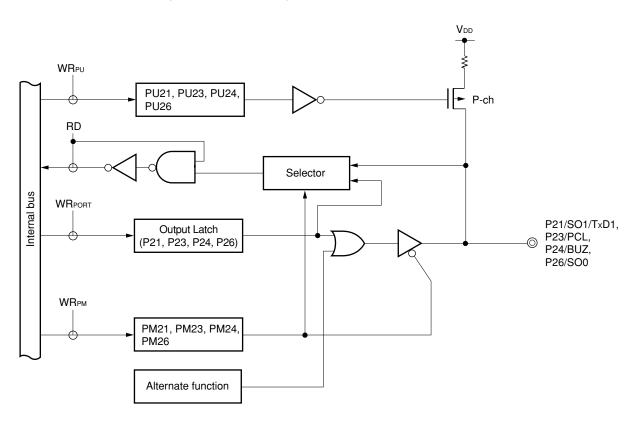


Figure 5-5. Block Diagram of P21, P23 to P24, and P26

PM: Port mode register RD: Port 2 read signal WR: Port 2 write signal

 $V_{\text{DD}} \\$ WRpu ► P-ch PU25 RD Alternate function Selector Internal bus WR_{PF} V_{DD} PF25 WRPORT Output latch P-ch (P25) - P25/SI0/SDA0Note WR_{PM} N-ch PM25

Figure 5-6. Block Diagram of P25

Note The SDA0 pin applies only to the μ PD784225Y Subseries.

PU: Pull-up resistor option register PF: Port function control register

PM: Port mode register RD: Port 2 read signal WR: Port 2 write signal

WRpu PU27 RD Alternate function Selector Internal bus WRPF V_{DD} PF27 WRPORT Output latch P-ch (P27) P27/SCK0/SCL0Note WR_{PM} N-ch PM27 Alternate function

Figure 5-7. Block Diagram of P27

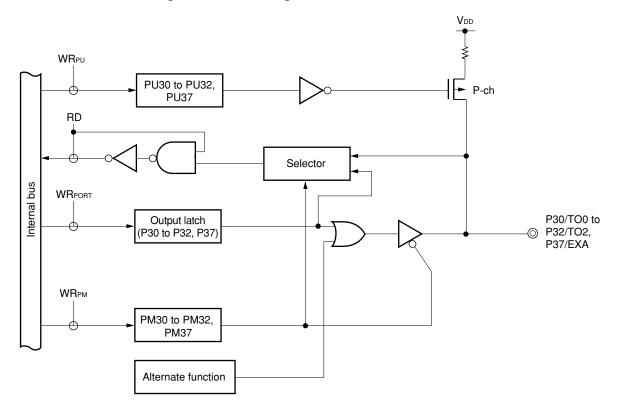
Note The SCL0 pin applies only to the μ PD784225Y Subseries.

PU: Pull-up resistor option register

PF: Port function control register

PM: Port mode register RD: Port 2 read signal WR: Port 2 write signal

5.2.4 Port 3


Port 3 is an 8-bit I/O port with an output latch. The input mode/output mode can be specified for the P30 to P37 pins in 1-bit units using the port 3 mode register. A pull-up resistor can also be connected in 1-bits units via pull-up resistor option register 3, regardless of whether the input mode or output mode is specified.

Port 3 supports timer I/O as an alternate function.

RESET input sets port 3 to the input mode.

Figures 5-8 and 5-9 show a block diagram of port 3.

Figure 5-8. Block Diagram of P30 to P32, and P37

PU: Pull-up resistor option register

PM: Port mode register RD: Port 3 read signal WR: Port 3 write signal

 $V_{\text{DD}} \\$ WRpu PU33 to PU36 RD Alternate function Selector Internal bus WRPORT P33/TI1, P34/TI2, P35/TI00, Output latch (P33 to P36) P36/TI01 WRPM PM33 to PM36

Figure 5-9. Block Diagram of P33 to P36

PM: Port mode register RD: Port 3 read signal WR: Port 3 write signal

5.2.5 Port 4

Port 4 is an 8-bit I/O port with an output latch. The input mode/output mode can be specified for the P40 to P47 pins in 1-bit units using the port 4 mode register. When the P40 to P47 pins are used as input ports, a pull-up resistor can be connected in 8-bit units via bit 4 (PUO4) of the pull-up resistor option register.

Port 4 can drive LEDs directly.

Port 4 supports the address/data bus function in the external memory expansion mode as an alternate function.

RESET input sets port 4 to the input mode.

Figure 5-10 shows a block diagram of port 4.

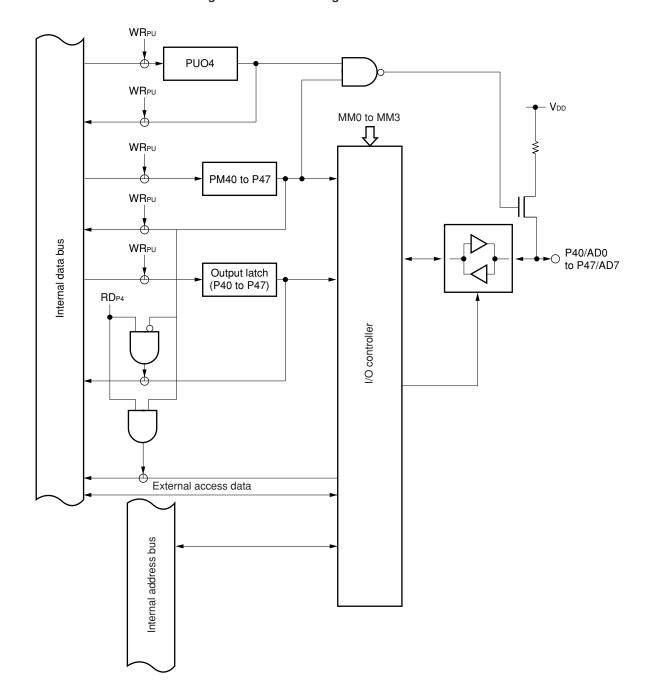


Figure 5-10. Block Diagram of P40 to P47

PM: Port mode register
RD: Port 4 read signal
WR: Port 4 write signal

5.2.6 Port 5

Port 5 is an 8-bit I/O port with an output latch. The input mode/output mode can be specified for the P50 to P57 pins in 1-bit units using the port 5 mode register. When the P50 to P57 pins are used as input ports, a pull-up resistor can be connected in 8-bit units via bit 5 (PUO5) of the pull-up resistor option register.

Port 5 can drive LEDs directly.

Port 5 supports the address bus function in the external memory expansion mode as an alternate function.

RESET input sets port 5 to the input mode.

Figure 5-11 shows a block diagram of port 5.

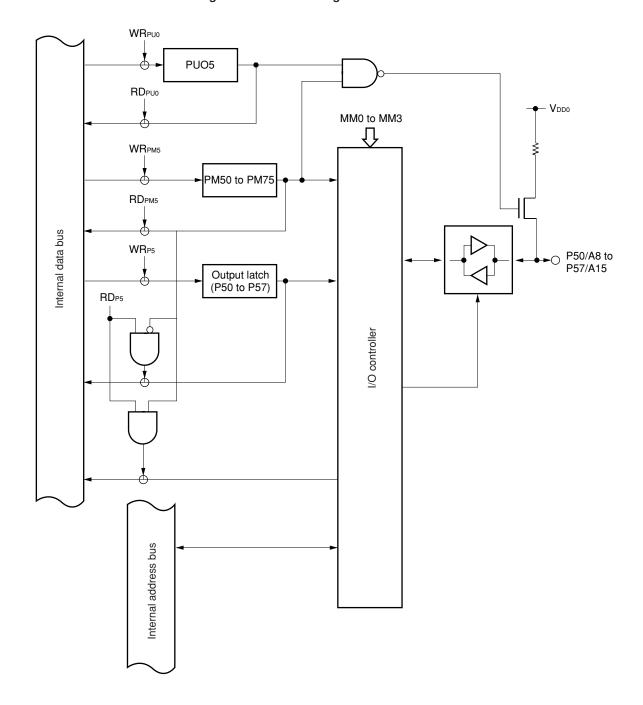


Figure 5-11. Block Diagram of P50 to P57

PM: Port mode register
RD: Port 5 read signal
WR: Port 5 write signal

MM0 to MM3: Bits 0 to 3 of the memory expansion mode register (MM)

5.2.7 Port 6

Port 6 is an 8-bit I/O port with an output latch. The input mode/output mode can be specified for the P60 to P67 pins in 1-bit units using the port 6 mode register. When pins P60 to P67 are used as input ports, a pull-up resistor can be connected in 8-bit units via bit 6 (PUO6) of the pull-up resistor option register.

Port 6 supports the address bus function and the control signal output function in external memory expansion mode as alternate functions.

RESET input sets port 6 to the input mode.

Figures 5-12 to 5-14 show block diagrams of port 6.

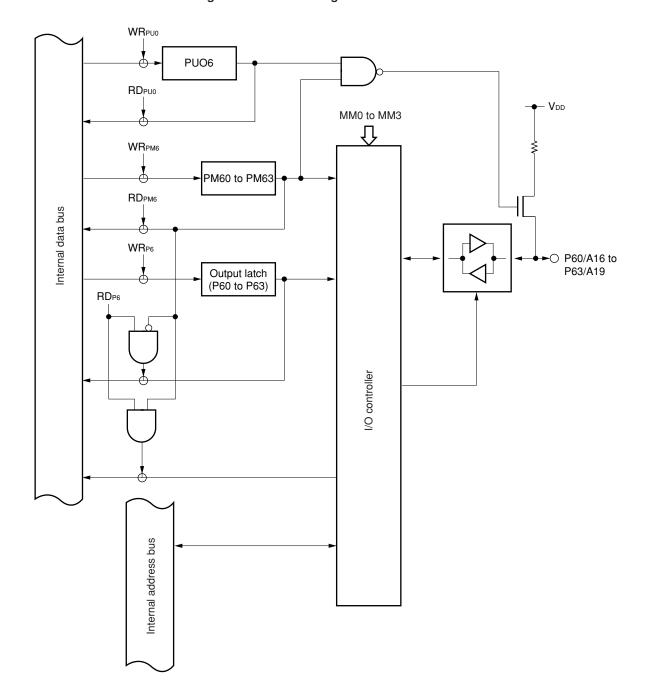


Figure 5-12. Block Diagram of P60 to P63

PM: Port mode register
RD: Port 6 read signal
WR: Port 6 write signal

MM0 to MM3: Bits 0 to 3 of the memory expansion mode register (MM)

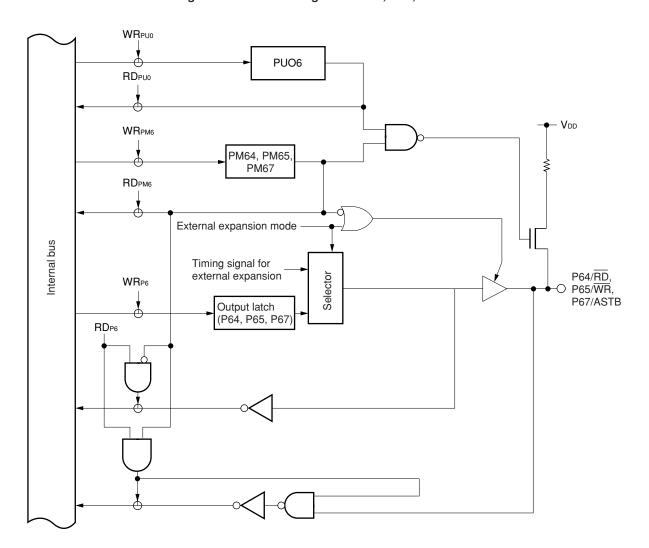


Figure 5-13. Block Diagram of P64, P65, and P67

PM: Port mode register
RD: Port 6 read signal
WR: Port 6 write signal

WRPUO Pull-up resistor option register PUO6 RD_{PU0} WR_{PM6} Port 6 mode register RD_{PM6} PM66 $V_{\text{DD}} \\$ External wait mode Internal bus WR_{P6} Output latch O P66/WAIT (P66) RD_{P6} Wait input

Figure 5-14. Block Diagram of P66

PM: Port mode register
RD: Port 6 read signal
WR: Port 6 write signal

5.2.8 Port 7

This is a 3-bit I/O port with an output latch. Input mode/output mode can be specified for the P70 to P72 pins in 1-bit units using the port 7 mode register. A pull-up resistor can be connected via pull-up resistor option register 7, regardless of whether the input mode or output mode is specified.

Port 7 supports serial interface data I/O and clock I/O as alternate functions.

RESET input sets port 7 to the input mode.

Figures 5-15 to 5-17 show block diagrams of port 7.

WRPU
PU70
Alternate function
Selector
WRPORT
Output latch
(P70)
PM70
PP-ch

PP-

Figure 5-15. Block Diagram of P70

PU: Pull-up resistor option register

PM: Port mode register RD: Port 7 read signal WR: Port 7 write signal

WRPORT

Output latch
(P71)

P-ch

P-ch

P-ch

RD

WRPORT

Output latch
(P71)

Alternate function

Figure 5-16. Block Diagram of P71

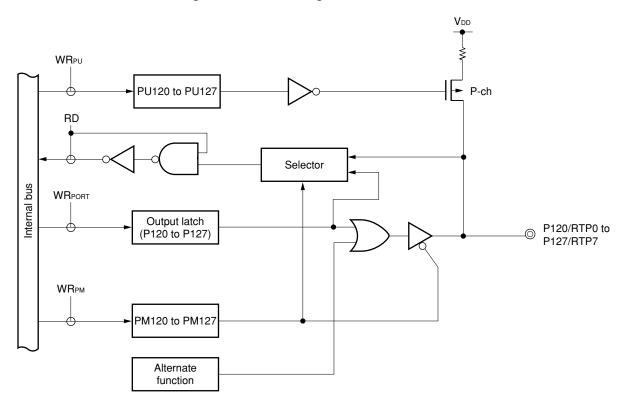
PM: Port mode register RD: Port 7 read signal WR: Port 7 write signal

WRPU
PU72
Alternate function
Selector
WRPORT
Output latch
(P72)
P72/SCK2/
ASCK2

Figure 5-17. Block Diagram of P72

PM: Port mode register RD: Port 7 read signal WR: Port 7 write signal

5.2.9 Port 12


This is an 8-bit I/O port with an output latch. Input mode/output mode can be specified for the P120 to P127 pins in 1-bit units using the port 12 mode register. A pull-up resistor can be connected via pull-up resistor option register 12, regardless of whether the input mode or output mode is specified.

Port 12 supports the real-time output function as an alternate function.

RESET input sets port 12 to the input mode.

Figure 5-18 shows a block diagram of port 12.

Figure 5-18. Block Diagram of P120 to P127

PU: Pull-up resistor option register

PM: Port mode register RD: Port 12 read signal WR: Port 12 write signal

5.2.10 Port 13

This is a 2-bit I/O port with an output latch. The input mode/output mode can be specified for the P130 and P131 pins in 1-bit units using the port 13 mode register. Port 13 does not include pull-up resistors.

Port 13 supports D/A converter analog output as an alternate function.

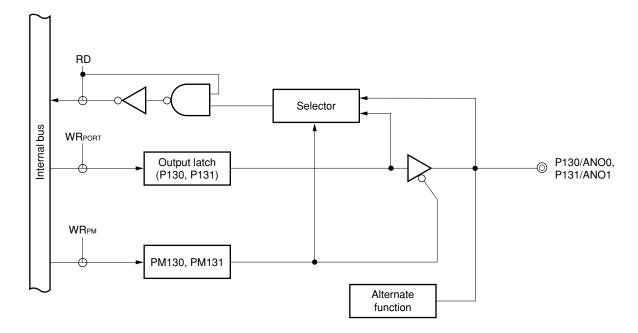

RESET input sets port 13 to the input mode.

Figure 5-19 shows a block diagram of port 13.

Caution When only one of the D/A converter channels is used with AVREF1 < VDD, the other pins that are not used as analog outputs must be set as follows.

- · Set the port mode register (PM13x) to 1 (input mode) and connect the pin to Vsso.
- Set the port mode register (PM13x) to 0 (output mode) and the output latch to 0 to output a low level from the pin.

Figure 5-19. Block Diagram of P130 and P131

PM: Port mode register
RD: Port 13 read signal
WR: Port 13 write signal

5.3 Control Registers

The following three types of registers control the ports.

- Port mode registers (PM0, PM2 to PM7, PM12, PM13)
- Pull-up resistor option registers (PU0, PU2, PU3, PU7, PU12, PU0)
- Port function control register 2 (PF2)^{Note}

Note Applies only to the μ PD784225Y Subseries.

(1) Port mode registers (PM0, PM2 to PM7, PM12, PM13)

These registers are used to set port input/output in 1-bit units.

PM0, PM2 to PM7, PM12, and PM13 are set with a 1-bit or 8-bit memory manipulation instruction.

RESET input sets the port mode registers to FFH.

When port pins are used as alternate function pins, set the port mode registers and output latches according to Table 5-3.

Caution Even though port 0 is also used as an external interrupt input, when port 0 is not used as an interrupt input pin, be sure to set interrupt disabled by using external interrupt rising edge enable register 0 (EGP0) and external interrupt falling edge enable register 0 (EGN0) or setting the interrupt enable flag (PMKn: n = 0 to 5) to 1. Otherwise, the interrupt request flag is set and unintentional interrupt servicing may be executed when setting ports to output mode and thus changing the output level.

Table 5-3. Port Mode Registers and Output Latch Settings When Using Alternate Functions

Pin Name	Alternate Function		PM××	P××	Pin Name	Alternate Function		PM××	Pxx
riii Naiile	Name	I/O	FIVIXX	ixx Pxx Pin Name		Name	I/O	FIVIAA	F * * *
P00, P01	INTP0, INTP1	Input	1	×	P35, P36	TI00, TI01	Input	1	×
P02	INTP2/NMI	Input	1	×	P37	EXA	Output	0	0
P03 to P05	INTP3 to INTP5	Input	1	×	P40 to P47	AD0 to AD7	I/O	×No	ote 2
P10 to P17Note 1	ANI0 to ANI7	Input	_	_	P50 to P57	A8 to A15	Output	×No	ote 2
P20	RxD1/SI1	Input	1	×	P60 to P63	A16 to A19	Output	×No	ote 2
P21	TxD1/SO1	Output	0	0	P64	RD	Output	×No	ote 2
P22	ASK1	Input	1	×	P65	WR	Output	×No	ote 2
	SCK1	Input	1	×	P66	WAIT	Input	×No	ote 2
		Output	0	0	P67	ASTB	Output	×No	ote 2
P23	PCL	Output	0	0	P70	RxD2/SI2	Input	1	×
P24	BUZ	Output	0	0	P71	TxD2/SO2	Output	0	0
P25	SI0	Input	1	×	P72	ASCK2	Input	1	×
	SDA0Note 3	I/O	0	0		SCK2	Input	1	×
P26	SO0	Output	0	0			Output	0	0
P27	SCK0	Input	1	×	P120 to P127	RTP0 to RTP7	Output	0	0
		Output	0	0	P130, P131 ^{Note 1}	ANO0, ANO1	Output	1	×
	SCL0Note 3	I/O	0	0					
P30 to P32	TO0 to TO2	Output	0	0					
P33, P34	TI1, TI2	Input	1	×					

Notes 1. If the read command is executed for these ports when they are being used as alternate function pins, the data read will be undefined.

- 2. The function is set by the memory expansion mode register (MM) when the P40 to P47, P50 to P57 and P60 to P67 pins are used as alternate function pins.
- 3. The SDA0 and SCL0 pins are only available in the μ PD784225Y Subseries.

Cautions 1. When not using external wait in the external memory expansion mode, the P66 pin can be used as an I/O port.

2. Specify the SCL0/P27 and SDA0/P25 pins as N-ch open-drain by setting the port function control register (PF2) when the I²C bus mode is to be used.

Remark x: Don't care (setting is not required)

—: Port mode register and output latch do not exist

PMxx: Port mode register Pxx: Port output latch

Figure 5-20. Format of Port Mode Register

Address: 0	FF20H, 0FF2	22H to 0FF27	'H, 0FF2CH,	0FF2DH Afte	er reset: FFH	l R/W		
Symbol	7	6	5	4	3	2	1	0
PM0	1	1	PM05	PM04	PM03	PM02	PM01	PM00
,								
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20
		Г		T	T	T	T	
PM3	PM37	PM36	PM35	PM34	PM33	PM32	PM31	PM30
				ı	1	Т	ı	
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40
				I	1	1	1	
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50
				I				
PM6	PM67	PM66	PM65	PM64	PM63	PM62	PM61	PM60
DMZ						DM70	DMZ4	D1470
PM7	1	1	1	1	1	PM72	PM71	PM70
PM12	PM127	PM126	PM125	PM124	PM123	PM122	PM121	PM120
1 10112	1 101127	1 101120	1 101120	1 101124	1 101120	TWITEE	1 101121	1 101120
PM13	1	1	1	1	1	1	PM131	PM130
						•		
		PMxn	Pxn pin I/O	mode specif	ication			
			$\int x = 0: n =$					
			11	, 12: n = 0 to	7			
			x = 7: n =					
			x = 13: n	= 0, 1	J			

Output mode (output buffer on)

Input mode (output buffer off)

0

1

(2) Pull-up resistor option registers (PU0, PU2, PU3, PU7, PU12, PU0)

These registers are used to set whether to use an on-chip pull-up resistor at each port or not in 1-bit or 8-bit units. PUn (n = 0, 2, 3, 7, 12) can specify pull-up resistor connection at each port pin. PUO can specify pull-up resistor connection at ports 4, 5, and 6. Pull-up resistors are connected irrespective of whether an alternate function is used

These registers are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets these registers to 00H.

0

1

Cautions 1. Ports 1 and 13 do not incorporate pull-up resistors.

2. For ports 4, 5, and 6, a pull-up resistor can be connected in external memory expansion mode.

Figure 5-21. Format of Pull-Up Resistor Option Register

Address: 0	Address: 0FF30H, 0FF32H, 0FF37H, 0FF3CH After reset: 00H R/W							
Symbol	7	6	5	4	3	2	1	0
PU0	0	0	PU05	PU04	PU03	PU02	PU01	PU00
PU2	PU27	PU26	PU25	PU24	PU23	PU22	PU21	PU20
PU3	PU37	PU36	PU35	PU34	PU33	PU32	PU31	PU30
PU7	0	0	0	0	0	PU72	PU71	PU70
PU12	PU127	PU126	PU125	PU124	PU123	PU122	PU121	PU120
		PUxn	Pxn pin pul	I-up resistor	specification			
			(x = 0: n =	0 to 5)			
		x = 2, 3, 12: n = 0 to 7						
			x = 7: n =	0 to 2	J			

 Address:
 0FF4EH
 After reset:
 00H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 PUO
 0
 PUO6
 PUO5
 PUO4
 0
 0
 0
 0

No pull-up resistor connection

Pull-up resistor connection

PUOn	Port n pull-up resistor specification (n = 4 to 6)				
0	No pull-up resistor connection				
1	Pull-up resistor connection				

Caution Connecting pull-up resistors unnecessarily may increase the current consumption or latch up other devices, so specify a mode whereby pull-up resistors are only connected to the required parts. If required and not-required parts exist together, externally connect pull-up resistors to the required parts and set the mode that specifies not to connect on-chip pull-up resistors.

(3) Port function control register 2 (PF2)

This register specifies N-ch open drain for pins P25 and P27. PF2 is set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets PF2 to 00H.

Caution Only the μ PD784225Y Subseries incorporates PF2. When using the I²C bus mode (serial interface), make sure to specify N-ch open drain for the P25 and P27 pins.

Figure 5-22. Format of Port Function Control Register 2 (PF2)

Address: 0	FF42H After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PF2	PF27	0	PF25	0	0	0	0	0

PF2n	P2n pin N-ch open drain specification (n = 5, 7)				
0	Don't set N-ch open drain				
1	Set N-ch open drain				

5.4 Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

5.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.

Once data is written to the output latch, it is retained until data is written to the output latch again.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.

Once data is written to the output latch, it is retained until data is written to the output latch again.

Caution In the case of 1-bit memory manipulation instructions, although a single bit is manipulated, the port is accessed in 8-bit units. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined except for the manipulated bit.

5.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

5.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again.

(2) Input mode

The output latch contents are undefined, but since the output buffer is off, the pin status does not change.

Caution In the case of 1-bit memory manipulation instructions, although a single bit is manipulated, the port is accessed in 8-bit units. Therefore, on a port with a mixture of input and output pins, the output latch contents for pins specified as input are undefined, except for the manipulated bit.

CHAPTER 6 REAL-TIME OUTPUT FUNCTION

6.1 Function

The real-time output function transfers preset data in the real-time output buffer register to the output latch by hardware synchronized with the generation of a timer interrupt or an external interrupt and outputs it off the chip. The pins for output off the chip are called the real-time output port.

Since jitter-free signals can be output by using the real-time output port, this operation is ideal for the control of stepper motors, etc.

The port mode or real-time output mode can be specified in 1-bit units.

6.2 Configuration

The real-time output port includes the following hardware.

Table 6-1. Configuration of Real-Time Output Port

Item Configuration			
Registers	Real-time output buffer registers (RTBL, RTBH)		
Control registers	Real-time output port mode register (RTPM) Real-time output port control register (RTPC)		

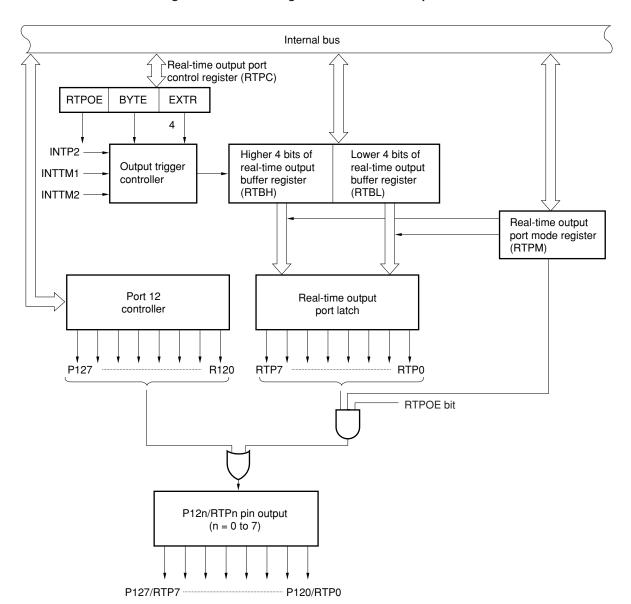


Figure 6-1. Block Diagram of Real-Time Output Port

· Real-time output buffer registers (RTBL, RTBH)

These 4-bit registers save the output data beforehand. RTBL and RTBH are mapped to independent addresses in the special function register (SFR) area as shown in Figure 6-2.

When the 4 bit \times 2-channel operation mode is specified, RTBL and RTBH can be independently set with data. In addition, if the addresses of both RTBL and RTBH are specified, the data in both registers can be read together. When the 8-bit \times 1-channel operation mode is specified, writing 8-bit data to either RTBL or RTBH can set data in either register. In addition, if the addresses of either RTBL and RTBH are specified, the data in both can be read together.

Table 6-2 lists the operations for manipulating RTBL and RTBH.

Figure 6-2. Configuration of Real-Time Output Buffer Register

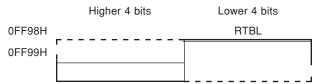


Table 6-2. Operation for Manipulating Real-Time Output Buffer Registers

Operation Mode	Manipulated Register	Readin	gNote 1	Writing	gNote 2
		Higher 4 Bits	Lower 4 Bits	Higher 4 Bits	Lower 4 Bits
4 bits × 2 channels	RTBL	RTBH	RTBL	Invalid	RTBL
	RTBH	RTBH	RTBL	RTBH	Invalid
8 bits × 1 channel	RTBL	RTBH	RTBL	RTBH	RTBL
	RTBH	RTBH	RTBL	RTBH	RTBL

- **Notes 1.** Only the bits specified in the real-time output port mode can be read. When the bits set in the port mode are read, zeros are read.
 - 2. After setting the real-time output port, set the output data in RTBL and RTBH until the real-time output trigger is generated.

6.3 Control Registers

The real-time output port is controlled by the following two registers.

- Real-time output port mode register (RTPM)
- Real-time output port control register (RTPC)

(1) Real-time output port mode register (RTPM)

This register sets the real-time output port mode and port mode selection in 1-bit units.

RTPM is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets RTPM to 00H.

Figure 6-3. Format of Real-Time Output Port Mode Register (RTPM)

Address: 0	FF9AH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
RTPM	RTPM7	RTPM6	RTPM5	RTPM4	RTPM3	RTPM2	RTPM1	RTPM0

RTPMm	Real-time output port selection (m = 0 to 7)
0	Port mode
1	Real-time output mode

Caution When used as a real-time output port, set the port pins for real-time output to the output mode.

(2) Real-time output port control register (RTPC)

This register sets the operation mode and output trigger of the real-time output port.

Table 6-3 shows the relationship between the operation mode and output trigger of the real-time output port. RTPC is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets RTPC to 00H.

Figure 6-4. Format of Real-Time Output Port Control Register (RTPC)

 Address:
 0FF9BH
 After reset:
 00H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 RTPC
 RTPOE
 0
 BYTE
 EXTR
 0
 0
 0
 0

RTPO	Real-time output port operation control				
0	Operation disabled				
1	Operation enabled ^{Note}				

BYTE	Real-time output port operation mode			
0	4 bits × 2 channels			
1	8 bits × 1 channel			

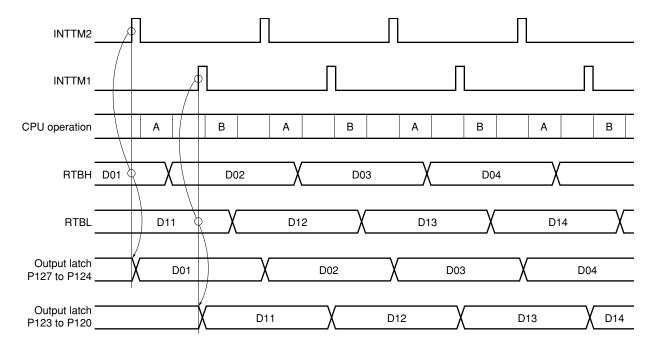
EXTR	Real-time output control by INTP2			
0	INTP2 not set as real-time output trigger			
1	INTP2 set as real-time output trigger			

Note When real-time output operation is enabled (RTPOE = 1), the values of the real-time output buffer registers (RTBH and RTBL) are transferred to the real-time output port output latch.

Caution When INTP2 is specified as an output trigger, specify the valid edge using external interrupt rising edge enable register 0 (EGP0) and external interrupt falling edge enable register 0 (EGN0).

Table 6-3. Operation Modes and Output Triggers of Real-Time Output Port

BYTE	EXTR	Operation Mode	$RTBH \to Port\ Output$	$RTBL \to Port\ Output$	
0	0	4 bits × 2 channels	INTTM2	INTTM1	
0	1		INTTM1	INTP2	
1	0	8 bits × 1 channel	INTTM1		
1	1		INTP2		


6.4 Operation

When real-time output is enabled by bit 7 (RTPOE) = 1 in the real-time output port control register, data in the real-time output buffer register (RTBH, RTBL) is transferred to the output latch synchronized with the generation of the selected transfer trigger (set by EXTR and BYTE^{Note}). Based on the setting of the real-time output port mode register (RTPM), only the transferred data for the bits specified in the real-time output port are output from bits RTP0 to RTP7. A port pin set in the port mode by RTPM can be used as a general-purpose I/O port pin.

When the real-time output operation is disabled by RTPOE = 0, RTP0 to RTP7 output 0 regardless of the RTPM setting.

Note EXTR: Bit 4 of the real-time output port control register (RTPC) BYTE: Bit 5 of the real-time output port control register (RTPC)

Figure 6-5. Example of Operation Timing of Real-Time Output Port (EXTR = 0, BYTE = 0)

A: Software processing by INTTM2 (RTBH write)

B: Software processing by INTTM1 (RTBL write)

6.5 Usage of Real-Time Output Function

- (1) Disabling the real-time output operation

 Set bit 7 (RTPOE) = 0 in the real-time output port control register (RTPC).
- (2) Initial settings
 - Set 0 in the output latch (since the output latch and real-time output are configured as a logical AND).
 - · Set the port to output mode.
 - Set the initial value in the real-time output buffer registers (RTBH, RTBL).
- (3) Enable real-time output operation.

RTPOE = 1

- (4) After generating the selected transfer trigger, the RTBH and RTBL values are output from the pin. Set the next real-time output value in RTBH and RTBL by using trigger interrupt servicing, or by some other means.
- (5) Subsequently, the next real-time output values are sequentially set in RTBH and RTBL by the interrupt servicing for the selected trigger.

6.6 Cautions

For the initial setting, set bit 7 (RTPOE) in the real-time output port control register (RTPC) to 0 to disable the real-time output operation.

CHAPTER 7 TIMER OVERVIEW

The μ PD784225/784225Y Subseries includes one on-chip 16-bit timer/event counter, two on-chip 8-bit timer/event counters, and two 8-bit timers.

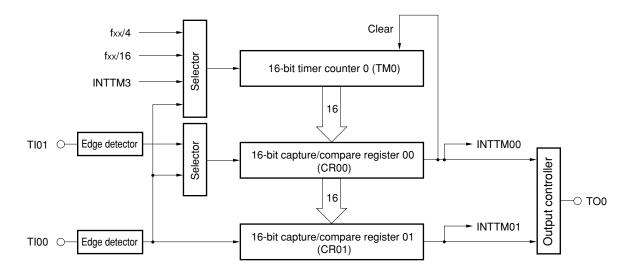

Since a total of six interrupt requests are supported, these timer/event counters can function as six timer/event counter units.

Table 7-1. Timer Operation

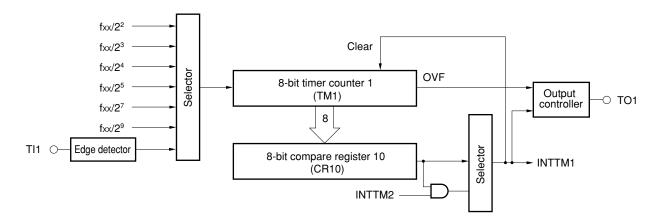
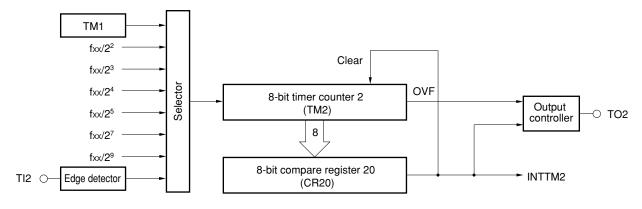
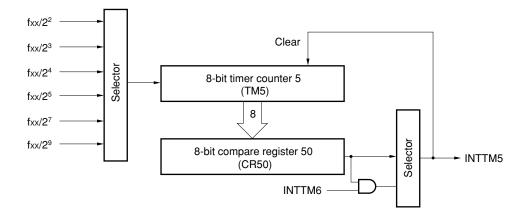

Item	Name	16-Bit Timer/ Event Counter	8-Bit Timer/ Event Counter 1	8-Bit Timer/ Event Counter 2	8-Bit Timer 5	8-Bit Timer 6
Count width	8 bits	_	√	V	$\sqrt{}$	√
	16 bits	√	V		√	
Operation mode	Interval timer	1 ch	1 ch	1 ch	1 ch	1 ch
	External event counter	√	√	V	_	_
Function	Timer output	1 ch	1 ch	1 ch	_	_
	PPG output	√	_	_	_	_
	PWM output	_	√	V	_	_
	Square-wave output	√	V	V	_	_
	One-shot pulse output	√	_	_	_	_
	Pulse width measurement	2 inputs	_	_	_	_
	No. of interrupt requests	2	1	1	1	1

Figure 7-1. Block Diagram of Timer (1/2)


16-bit timer/event counter

8-bit timer/event counter 1


8-bit timer/event counter 2

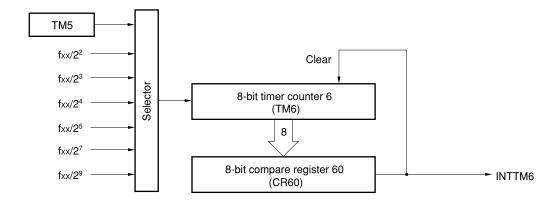

Remark OVF: Overflow flag

Figure 7-1. Block Diagram of Timer (2/2)

8-bit timer 5

8-bit timer 6

CHAPTER 8 16-BIT TIMER/EVENT COUNTER

8.1 Function

The 16-bit timer/event counter has the following functions.

- · Interval timer
- · PPG output
- · Pulse width measurement
- · External event counter
- · Square-wave output
- · One-shot pulse output

(1) Interval timer

When the 16-bit timer/event counter is used as an interval timer, it generates an interrupt request at predetermined time intervals.

(2) PPG output

The 16-bit timer/event counter can output a square wave whose frequency and output pulse width can be freely set.

(3) Pulse width measurement

The 16-bit timer/event counter can be used to measure the pulse width of a signal input from an external source.

(4) External event counter

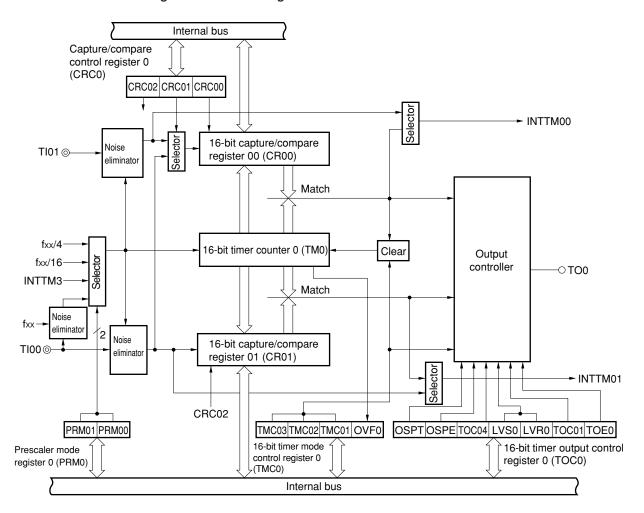
The 16-bit timer/event counter can be used to measure the number of pulses of a signal input from an external source.

(5) Square wave output

The 16-bit timer/event counter can output a square wave with any frequency.

(6) One-shot pulse output

The 16-bit timer/event counter can output a one-shot pulse with any output pulse width.


8.2 Configuration

The 16-bit timer/event counter includes the following hardware.

Table 8-1. Configuration of 16-Bit Timer/Event Counter

Item	Configuration	
Timer counter	16 bits × 1 (TM0)	
Register	16-bit capture/compare register: 16 bits × 2 (CR00, CR01)	
Timer output	1 (TO0)	
Control registers	16-bit timer mode control register 0 (TMC0) Capture/compare control register 0 (CRC0) 16-bit timer output control register 0 (TOC0) Prescaler mode register 0 (PRM0)	

Figure 8-1. Block Diagram of 16-Bit Timer/Event Counter

(1) 16-bit timer counter 0 (TM0)

TM0 is a 16-bit read-only register that counts count pulses.

The counter is incremented in synchronization with the rising edge of an input clock. If the count value is read during operation, input of the count clock is temporarily stopped, and the count value at that point is read. The count value is reset to 0000H in the following cases.

- <1> RESET is input.
- <2> TMC03 and TMC02 are cleared.
- <3> Valid edge of TI00 is input in the clear & start mode entered by inputting valid edge of TI00.
- <4> Match between TM0 and CR00 in the clear & start mode entered on match between TM0 and CR00.
- <5> If bit 6 of TOC0 (OSPT) is set or the valid edge of TI00 is input in the one-shot pulse output mode.

(2) Capture/compare register 00 (CR00)

CR00 is a 16-bit register that functions as a capture register and as a compare register. Whether this register functions as a capture or compare register is specified by using bit 0 (CRC00) of capture/compare control register 0.

· When using CR00 as compare register

The value set to CR00 is always compared with the count value of 16-bit timer counter 0 (TM0). When the values of the two match, an interrupt request (INTTM00) is generated. When TM00 is used as an interval timer, CR00 can also be used as a register that holds the interval time.

· When using CR00 as capture register

The valid edge of the TI00 or TI01 pin can be selected as a capture trigger. The valid edges for TI00 and TI01 are set with prescaler mode register 0 (PRM0).

Tables 8-2 and 8-3 show the conditions that apply when the capture trigger is specified as the valid edge of the TI00 pin and the valid edge of the TI01 pin respectively.

Table 8-2. Valid Edge of TI00 Pin and Capture Trigger of CR00

ES01	ES00	Valid Edge of TI00 Pin	Capture Trigger of CR00
0	0	Falling edge Rising edge	
0	1	Rising edge	Falling edge
1	0	Setting prohibited Setting prohibited	
1	1	Both rising and falling edges	No capture operation

Table 8-3. Valid Edge of TI01 Pin and Capture Trigger of CR00

ES11	ES10	Valid Edge of TI01 Pin	Capture Trigger of CR00
0	0	Falling edge Falling edge	
0	1	Rising edge	Rising edge
1	0	Setting prohibited	Setting prohibited
1	1	Both rising and falling edges	Both rising and falling edges

CR00 is set by a 16-bit memory manipulation instruction.

RESET input sets CR00 to 0000H.

Caution Set any value other than 0000H in CR00. When using the register as an event counter, a one-pulse count operation is not possible.

(3) Capture/compare register 01 (CR01)

This is a 16-bit register that can be used as a capture register and a compare register. Whether it is used as a capture register or compare register is specified by bit 2 (CRC02) of capture/compare control register 0.

· When using CR01 as compare register

The value set to CR01 is always compared with the count value of 16-bit timer counter 0 (TM0). When the values of the two match, an interrupt request (INTTM01) is generated.

· When using CR01 as capture register

The valid edge of the TI00 pin can be selected as a capture trigger. The valid edge for TI00 is set with prescaler mode register 0 (PRM0).

Table 8-4 shows the conditions that apply when the capture trigger is specified as the valid edge of the TI00 pin.

Table 8-4. Valid Edge of TI00 Pin and Capture Trigger of CR01

ES01	ES00	Valid Edge of TI00 Pin	Capture Trigger of CR01
0	0	Falling edge Falling edge	
0	1	Rising edge	Rising edge
1	0	Setting prohibited	Setting prohibited
1	1	Both rising and falling edges	Both rising and falling edges

CR01 is set by a 16-bit memory manipulation instruction.

RESET input sets CR01 to 0000H.

Caution Set any value other than 0000H in CR01. When using the register as an event counter, a one-pulse count operation is not possible.

8.3 Control Registers

The following four registers control the 16-bit timer/event counter.

- 16-bit timer mode control register 0 (TMC0)
- Capture/compare control register 0 (CRC0)
- 16-bit timer output control register 0 (TOC0)
- Prescaler mode register 0 (PRM0)

(1) 16-bit timer mode control register 0 (TMC0)

This register specifies the operation mode of the 16-bit timer, and the clear mode, output timing, and overflow detection of 16-bit timer counter 0 (TM0).

TMC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TMC0 to 00H.

Caution 16-bit timer counter 0 (TM0) starts operating when TMC02 and TMC03 are set to values other than 0, 0 (operation stop mode). To stop the operation, set TMC02 and TMC03 to 0, 0.

Figure 8-2. Format of 16-Bit Timer Mode Control Register 0 (TMC0)

Address: 0FF18H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TMC0	0	0	0	0	TMC03	TMC02	TMC01	OVF0

TMC03	TMC02	TMC01	Selection of operation mode/ clear mode	Selection of TO0 output timing	Generation of interrupt
0	0	0	Operation stop (TM0 is cleared	Not affected	Not generated.
0	0	1	to 0).		
0	1	0	Free-running mode	Match between TM0 and CR00 or match between TM0 and CR01	Generated on match between TM0 and CR00 and match between TM0
0	1	1		Match between TM0 and CR00, match between TM0 and CR01, or valid edge of Tl00	and CR01.
1	0	0	Clears and starts at valid edge of TI00.	Match between TM0 and CR00 or match between TM0 and CR01	
1	0	1		Match between TM0 and CR00, match between TM0 and CR01, or valid edge of Tl00	
1	1	0	Clears and starts on match between TM0 and CR00.	Match between TM0 and CR00 or match between TM0 and CR01	
1	1	1		Match between TM0 and CR00, match between TM0 and CR01, or valid edge of TI00	

0VF0	Detection of overflow of 16-bit timer counter 0
0	Overflow
1	No overflow

Cautions 1. Before changing the clear mode and TO0 output timing, be sure to stop the timer operation (reset TMC02 and TMC03 to 0, 0).

The valid edge of the TI00 pin is selected by using prescaler mode register 0 (PRM0).

- When a mode in which the timer is cleared and started on a match between TM0 and CR00, the OVF0 flag is set to 1 when the count value of TM0 changes from FFFFH to 0000H with CR00 set to FFFFH.
- 3. The software trigger (bit 6 (OSPT) of 16-bit timer output control register 0 (TOC0) = 1) and the external trigger (TI00 input) are always valid in one-shot pulse output mode. If the software trigger is used in one-shot pulse output mode, the TI00 pin cannot be used as a general-purpose port pin. Therefore, fix the TI00 pin to either high level or low level.

Remark TO0: Output pin of the 16-bit timer/event counter

TI00: Input pin of the 16-bit timer/event counter

TM0: 16-bit timer counter 0 CR00: Compare register 00 CR01: Compare register 01

(2) Capture/compare control register 0 (CRC0)

This register controls the operation of the capture/compare registers (CR00 and CR01).

CRC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CRC0 to 00H.

Figure 8-3. Format of Capture/Compare Control Register 0 (CRC0)

Address: FF16H After reset: 04H R/W Symbol 7 6 5 3 2 0 4 1 CRC0 0 0 0 0 CRC02 CRC01 CRC00

CRC02	Selection of operation mode of CR01
0	Operates as compare register.
Operates as capture register.	

CRC01	Selection of capture trigger of CR00
0	Captured at valid edge of TI01.
1	Captured in reverse phase of valid edge of TI00.

CRC00	Selection of operation mode of CR00
0	Operates as compare register.
1	Operates as capture register.

Cautions 1. Before setting CRC0, be sure to stop the timer operation.

2. When the mode in which the timer is cleared and started on a match between 16-bit timer counter 0 (TM0) and CR00 is selected by 16-bit timer mode control register 0 (TMC0), do not specify CR00 as a capture register.

(3) 16-bit timer output control register 0 (TOC0)

This register controls the operation of the 16-bit timer/event counter output controller by setting or resetting via timer-output level software, enabling or disabling reverse output, enabling or disabling output of the 16-bit timer/event counter, enabling or disabling the one-shot pulse output operation, and selecting an output trigger for a one-shot pulse by software.

TOC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TOC0 to 00H.

Figure 8-4 shows the format of TOC0.

Figure 8-4. Format of 16-Bit Timer Output Control Register 0 (TOC0)

Address: 0FF1AH After reset: 00H R/W 3 2 0 Symbol 7 (6) (5) 4 1 TOC0 0 OSPT OSPE TOC04 LVS0 LVR0 TOC01 TOE0

OSPT	Output trigger control of one-shot pulse by software
0	One-shot pulse output disabled
1	One-shot pulse output enabled

OSPE	Controls of one-shot pulse output operation
0	Successive pulse output
1	One-shot pulse output

TOC04	Timer output control on match between CR01 and TM0	
0	Inversion disabled	
1	Inversion enabled	

LVS0	LVR0	Timer output control by software
0	0	Not affected
0	1	Reset (0)
1	0	Set (1)
1	1	Setting prohibited

TOC01	Timer output control on match between CR00 and TM0 and valid edge of TI00	
0	Inversion disabled	
1	Inversion enabled	

TOE0	Output control of 16-bit timer/event counter	
0	Output disabled (output is fixed to 0 level)	
1	Output enabled	

Cautions 1. Before setting TOC0, be sure to stop the timer operation.

- 2. LVS0 and LVR0 are 0 when read after data has been set to them.
- 3. OSPT is 0 when read because it is automatically cleared after data has been set.

(4) Prescaler mode register 0 (PRM0)

This register selects the count clock of the 16-bit timer/event counter and the valid edge of the TI00 and TI01 input.

PRM0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PRM0 to 00H.

Figure 8-5. Format of Prescaler Mode Register 0 (PRM0)

Address: 0FF1CH After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 PRM0 ES11 ES10 ES01 ES00 0 0 PRM01 PRM00

ES11	ES10	Selection of valid edge of TI01
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

ES01	ES00	Selection of valid edge of TI00
0	0	Falling edge
0	1	Rising edge
1	0	Setting prohibited
1	1	Both falling and rising edges

PRM01	PRM00	Selection of count clock
0	0	fxx/4 (3.13 MHz)
0	1	fxx/16 (781 kHz)
1	0	INTTM3 (timer output for clock)
1	1	Valid edge of TI00

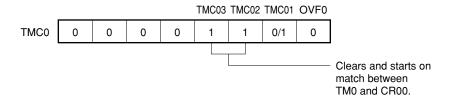
Caution When selecting the valid edge of TI00 as the count clock, do not specify the valid edge of TI00 to clear and start the timer and as a capture trigger. Also, ensure that the count clock frequency is fxx/4 or lower.

Remark Figures in parentheses apply to operation at fxx = 12.5 MHz

8.4 Operation

8.4.1 Operation as interval timer (16 bits)

The 16-bit timer/counter operates as an interval timer when 16-bit timer mode control register 0 (TMC0) and capture/compare control register 0 (CRC0) are set as shown in Figure 8-6.


In this case, the 16-bit timer/event counter repeatedly generates an interrupt at the time interval specified by the count value set in advance to 16-bit capture/compare register 00 (CR00).

When the count value of 16-bit timer counter 0 (TM0) matches the set value of CR00, the value of TM0 is cleared to 0, and the timer continues counting. At the same time, an interrupt request signal (INTTM00) is generated.

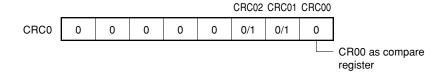

The count clock of the 16-bit timer/event counter can be selected by bits 0 and 1 (PRM00 and PRM01) of prescaler mode register 0 (PRM0).

Figure 8-6. Control Register Settings When Timer 0 Operates as Interval Timer

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the interval timer function. For details, refer to **Figures 8-2** and **8-3**.

Figure 8-7. Configuration of Interval Timer

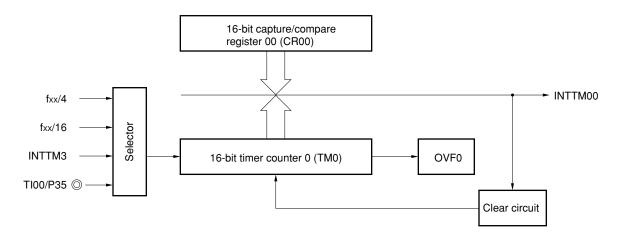
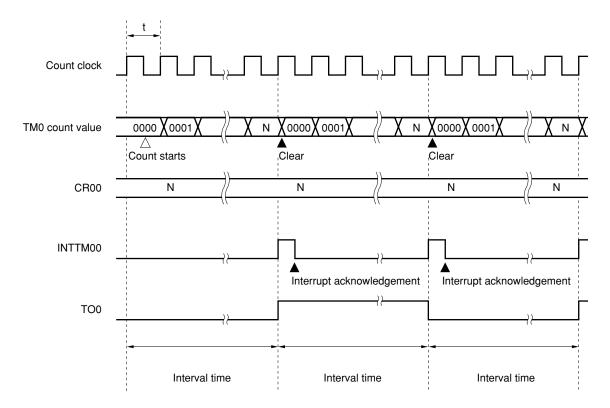
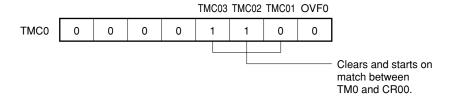



Figure 8-8. Timing of Interval Timer Operation

Remark Interval time = $(N + 1) \times t$: N = 0001H to FFFFH


8.4.2 PPG output operation

The 16-bit timer/event counter can be used for PPG (Programmable Pulse Generator) output by setting 16-bit timer mode control register 0 (TMC0) and capture/compare control register 0 (CRC0) as shown in Figure 8-9.

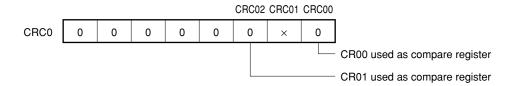
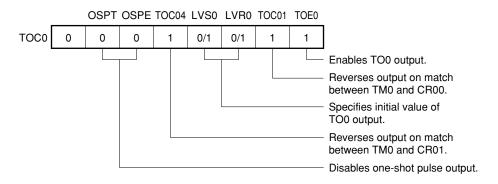

The PPG output function outputs a rectangular wave with a cycle specified by the count value set in advance to 16-bit capture/compare register 00 (CR00) and a pulse width specified by the count value set in advance to 16-bit capture/compare register 01 (CR01).

Figure 8-9. Control Register Settings in PPG Output Operation


(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

(c) 16-bit timer output control register 0 (TOC0)

Remark x: Don't care

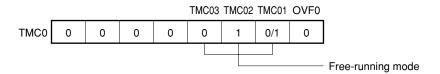
Caution Make sure that CR00 and CR01 are set to 0000H ≤ CR01 < CR00 ≤ FFFFH.

8.4.3 Pulse width measurement

16-bit timer counter 0 (TM0) can be used to measure the pulse widths of the signals input to the TI00/P35 and TI01/P36 pins.

Measurement can be carried out with TM0 used as a free-running counter or by restarting the timer in synchronization with the edge of the signal input to the TI00/P35 pin.

(1) Pulse width measurement with free-running counter and one capture register


If the edge specified by prescaler mode register 0 (PRM0) is input to the TI00/P35 pin when 16-bit timer counter 0 (TM0) is used as a free-running counter (refer to **Figure 8-10**), the value of TM0 is loaded to 16-bit capture/compare register 01 (CR01), and an external interrupt request signal (INTTM01) is set.

The edge is specified by using bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0). The rising edge, falling edge, or both the rising and falling edges can be selected.

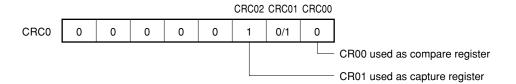

The valid edge is detected through sampling at the count clock cycle selected by prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected twice. Therefore, noise with a short pulse width can be eliminated.

Figure 8-10. Control Register Settings for Pulse Width Measurement with Free-Running Counter and One Capture Register

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the pulse width measurement function. For details, refer to **Figures 8-2** and **8-3**.

Figure 8-11. Configuration for Pulse Width Measurement with Free-Running Counter

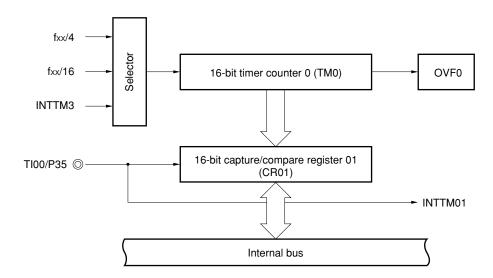
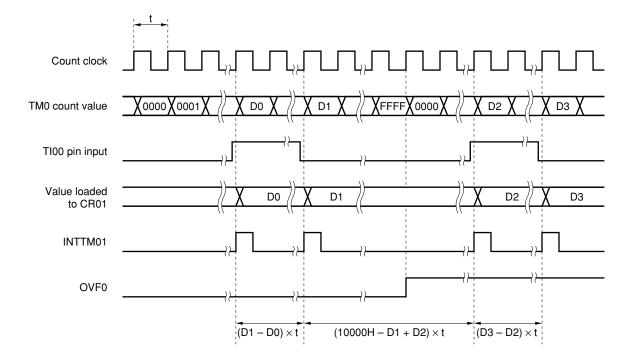



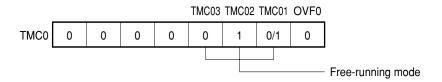
Figure 8-12. Timing of Pulse Width Measurement with Free-Running Counter and One Capture Register (with Both Edges Specified)

Caution For simplification purposes, delay due to noise elimination is not taken into consideration in the capture operation by Tl00 pin input and in the interrupt request generation timing in the above figure. For a more accurate picture, refer to Figure 8-14 CR01 Capture Operation with Rising Edge Specified.

(2) Measurement of two pulse widths with free-running counter

The pulse widths of the two signals respectively input to the TI00/P35 and TI01/P36 pins can be measured when 16-bit timer counter 0 (TM0) is used as a free-running counter (refer to **Figure 8-13**).

When the edge specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0) is input to the TI00/P35 pin, the value of the TM0 is loaded to 16-bit capture/compare register 01 (CR01) and an external interrupt request signal (INTTM01) is set.


When the edge specified by bits 6 and 7 (ES10 and ES11) is input to the TI01/P36 pin, the value of TM0 is loaded to 16-bit capture/compare register 00 (CR00), and an external interrupt request signal (INTTM00) is set.

The rising, falling, or both rising and falling edges can be specified for the TI00/P35 and TI01/P36 pins.

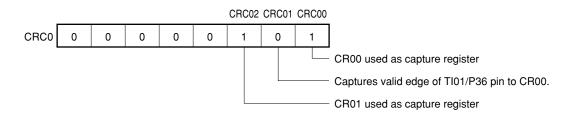
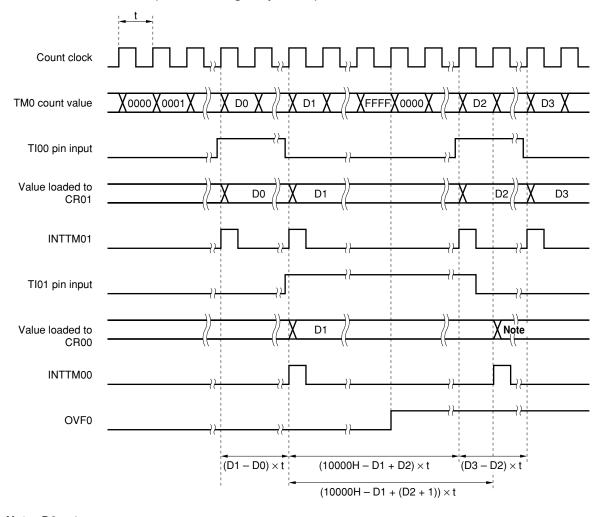

The valid edge of Tl00/P35 pin and Tl01/P36 pin is detected through sampling at the count clock cycle selected by prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected twice. Therefore, noise with a short pulse width can be eliminated.

Figure 8-13. Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)


Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the pulse width measurement function. For details, refer to **Figures 8-2** and **8-3**.

Capture operation (free-running mode)

The following figure illustrates the operation of the capture register when the capture trigger is input.

Figure 8-14. CR01 Capture Operation with Rising Edge Specified

Figure 8-15. Timing of Pulse Width Measurement with Free-Running Counter (with Both Edges Specified)

Note D2 + 1

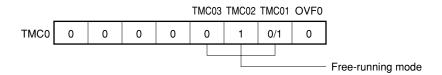
Caution For simplification purposes, delay due to noise elimination is not taken into consideration in the capture operation by TI00 and TI01 pin input and in the interrupt request generation timing in the above figure. For a more accurate picture, refer to Figure 8-14 CR01 Capture Operation with Rising Edge Specified.

(3) Pulse width measurement with free-running counter and two capture registers

When 16-bit timer counter 0 (TM0) is used as a free-running counter (refer to **Figure 8-16**), the pulse width of the signal input to the TI00/P35 pin can be measured.

When the edge specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0) is input to the TI00/P35 pin, the value of TM0 is loaded to 16-bit capture/compare register 01 (CR01), and an external interrupt request signal (INTTM01) is set.

The value of TM0 is also loaded to 16-bit capture/compare register 00 (CR00) when an edge reverse to the one that triggers capturing to CR01 is input.


The edge of the TI00/P35 pin is specified by bits 4 and 5 (ES00 and ES01). The rising or falling edge can be specified.

The valid edge of TI00/P35 pin is detected through sampling at the count clock cycle selected by prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected twice. Therefore, noise with a short pulse width can be eliminated.


Caution If the valid edge of the TI00/P35 pin is specified to be both the rising and falling edges, capture/compare register 00 (CR00) cannot perform its capture operation.

Figure 8-16. Control Register Settings for Pulse Width Measurement with Free-Running Counter and Two Capture Registers

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the pulse width measurement function. For details, refer to **Figures 8-2** and **8-3**.

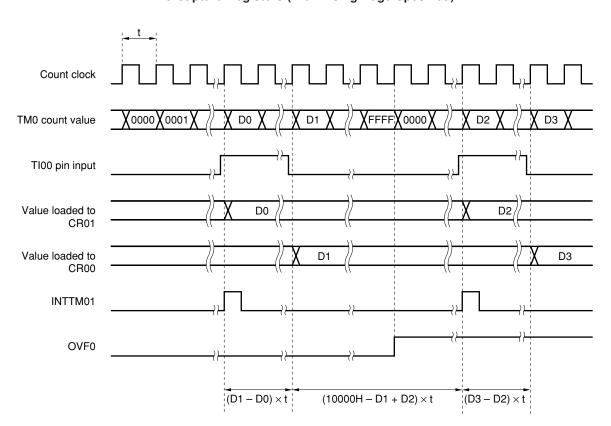
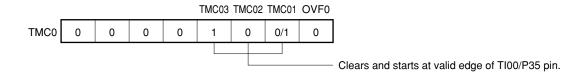


Figure 8-17. Timing of Pulse Width Measurement with Free-Running Counter and Two Capture Registers (with Rising Edge Specified)

Caution For simplification purposes, delay due to noise elimination is not taken into consideration in the capture operation by Tl00 pin input and in the interrupt request generation timing in the above figure. For a more accurate picture, refer to Figure 8-14 CR01 Capture Operation with Rising Edge Specified.

(4) Pulse width measurement by restarting

When the valid edge of the TI00/P35 pin is detected, the pulse width of the signal input to the TI00/P35 pin can be measured by clearing 16-bit timer counter 0 (TM0) once and then resuming counting after loading the count value of TM0 to 16-bit capture/compare register 01 (CR01) (Refer to **Figure 8-18**).


The edge of the TI00/P35 pin is specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0). The rising or falling edge can be specified.

The valid edge is detected through sampling at the count clock cycle selected by prescaler mode register 0 (PRM0), and the capture operation is not performed until the valid level is detected twice. Therefore, noise with a short pulse width can be eliminated.

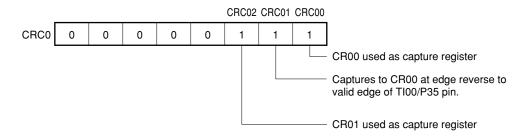

Caution If the valid edge of the TI00/P35 pin is specified to be both the rising and falling edges, capture/compare register 00 (CR00) cannot perform its capture operation.

Figure 8-18. Control Register Settings for Pulse Width Measurement by Restarting

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the pulse measurement function. For details, refer to **Figures 8-2** and **8-3**.

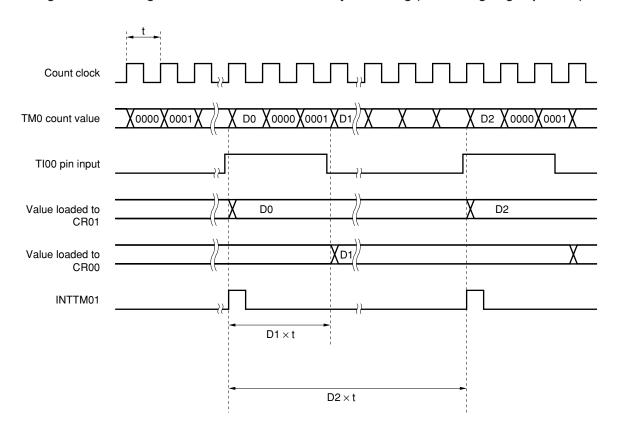


Figure 8-19. Timing of Pulse Width Measurement by Restarting (with Rising Edge Specified)

Caution For simplification purposes, delay due to noise elimination is not taken into consideration in the capture operation by TI00 pin input and in the interrupt request generation timing in the above figure. For a more accurate picture, refer to Figure 8-14 CR01 Capture Operation with Rising Edge Specified.

8.4.4 Operation as external event counter

The 16-bit timer/event counter can be used as an external event counter which counts the number of clock pulses input to the TI00/P35 pin from an external source by using 16-bit timer counter 0 (TM0).

Each time the valid edge specified by prescaler mode register 0 (PRM0) is input to the Tl00/P35 pin, TM0 is incremented.

To perform a count operation using the TI00/P35 pin input clock, specify the TI00 valid edge with bits 0 and 1 of PRM0 (PRM00, PRM01).

Set CR00 to a value other than 0000H (one-pulse count operation is not possible).

The edge of the TI00/P35 pin is specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0). The rising, falling, or both the rising and falling edges can be specified.

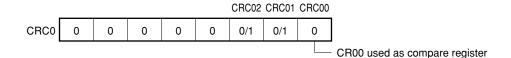

When using the TI00 pin input as the count clock, sampling for valid edge detection is locked by the main system clock (fxx) and the capture operation is not performed until the valid level is detected twice. Therefore, noise with a short pulse width can be eliminated.

Figure 8-20. Control Register Settings in External Event Counter Mode

(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the external event counter function. For details, refer to **Figures 8-2** and **8-3**.

Figure 8-21. Configuration of External Event Counter

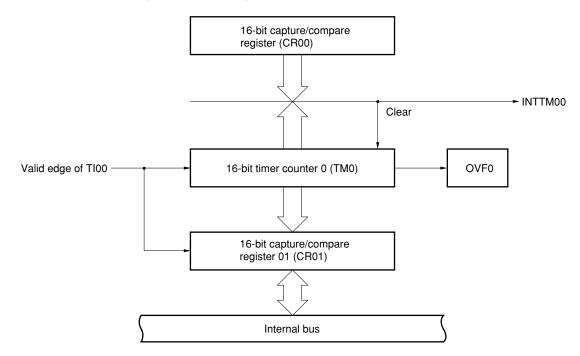
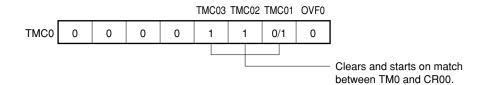


Figure 8-22. Timing of External Event Counter Operation (with Rising Edge Specified)

Caution Read TM0 when reading the count value of the external event counter.


8.4.5 Operation to output square wave

The 16-bit timer/event counter outputs a square wave of any frequency at the interval specified by the count value preset to 16-bit capture/compare register 00 (CR00).

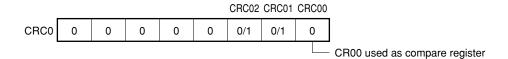
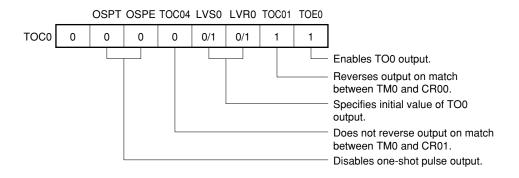
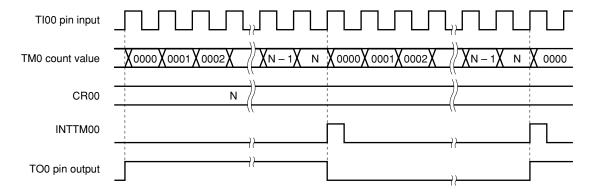

By setting bits 0 (TOE0) and 1 (TOC01) of 16-bit timer output control register 0 (TOC0) to 1, the output status of the TO0/P30 pin is inverted at the interval specified by the count value preset to CR00. In this way, a square wave of any frequency can be output.

Figure 8-23. Control Register Settings in Square Wave Output Mode


(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)



(c) 16-bit timer output control register 0 (TOC0)

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the square-wave output function. For details, refer to **Figures 8-2** to **8-4**.

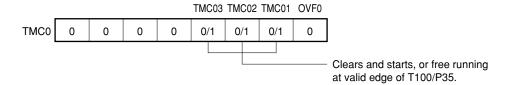
Figure 8-24. Timing of Square Wave Output Operation

8.4.6 Operation to output one-shot pulse

The 16-bit timer/event counter can output a one-shot pulse in synchronization with a software trigger and an external trigger (TI00/P35 pin input).

(1) One-shot pulse output with software trigger

A one-shot pulse can be output from the TO0/P30 pin by setting 16-bit timer mode control register 0 (TMC0), capture/compare control register 0 (CRC0), and 16-bit timer output control register 0 (TOC0) as shown in Figure 8-25, and by setting bit 6 (OSPT) of TOC0 by software.


By setting OSPT to 1, the 16-bit timer/event counter is cleared and started, and its output is asserted at the count value set in advance to 16-bit capture/compare register 01 (CR01). After that, the output is deasserted at the count value set in advance to 16-bit capture/compare register 00 (CR00).

Even after the one-shot pulse has been output, TM0 continues its operation. To stop TM0, TMC0 must be reset to 00H.

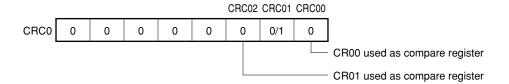
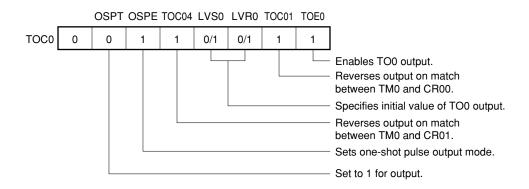

- Cautions 1. Do not set OSPT to 1 while the one-shot pulse is being output. To output the one-shot pulse again, wait until INTTM00, which occurs on a match between TM0 and CR00, occurs.
 - 2. The software trigger (bit 6 (OSPT) of 16-bit timer output control register 0 (TOC0) = 1) and the external trigger (TI00 input) are always valid in one-shot pulse output mode. If the software trigger is used in one-shot pulse output mode, the TI00 pin cannot be used as a general-purpose port pin. Therefore, fix the TI00 pin to either high level or low level.

Figure 8-25. Control Register Settings for One-Shot Pulse Output by Software Trigger


(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

(c) 16-bit timer output control register 0 (TOC0)

Caution Set CR00 and CR01 to a value in the following range. $0000H < CR01 < CR00 \le FFFFH$

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the one-shot pulse output function. For details, refer to **Figures 8-2** to **8-4**.

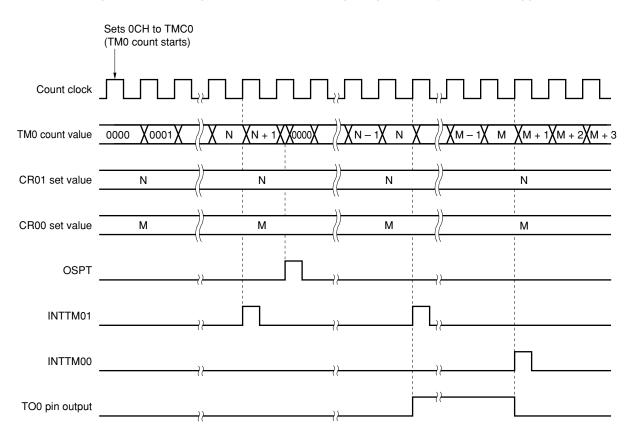


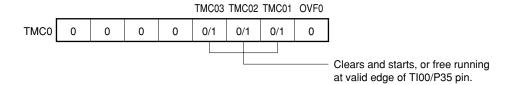
Figure 8-26. Timing of One-Shot Pulse Output Operation by Software Trigger

- Cautions 1. 16-bit timer counter 0 starts operating as soon as TMC02 and TMC03 are set to a value other than 0, 0 (operation stop mode).
 - 2. The software trigger (bit 6 (OSPT) of 16-bit timer output control register 0 (TOC0) = 1) and the external trigger (TI00 input) are always valid in one-shot pulse output mode. If the software trigger is used in one-shot pulse output mode, the TI00 pin cannot be used as a general-purpose port pin. Therefore, fix the TI00 pin to either high level or low level.

(2) One-shot pulse output with external trigger

A one-shot pulse can be output from the TO0/P30 pin by setting 16-bit timer mode control register 0 (TMC0), capture/compare control register 0 (CRC0), and 16-bit timer output control register 0 (TOC0) as shown in Figure 8-27, and by using the valid edge of the Tl00/P35 pin as an external trigger.

The valid edge of the TI00/P35 pin is specified by bits 4 and 5 (ES00 and ES01) of prescaler mode register 0 (PRM0). The rising, falling, or both the rising and falling edges can be specified.


When the valid edge of the TI00/P35 pin is detected, the 16-bit timer/event counter is cleared and started, and the output is asserted at the count value set in advance to 16-bit capture/compare register 01 (CR01).

After that, the output is deasserted at the count value set in advance to 16-bit capture/compare register 00 (CR00).

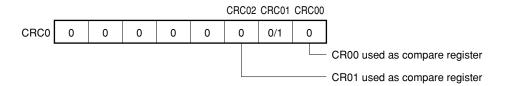
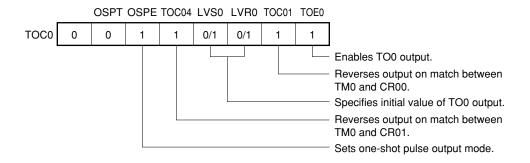

- Cautions 1. If the external trigger is generated while the one-shot pulse is being output, the counter is cleared and restarted, and the one-shot pulse is output again.
 - 2. The software trigger (bit 6 (OSPT) of 16-bit timer output control register 0 (TOC0) = 1) and the external trigger (TI00 input) are always valid in one-shot pulse output mode. If the software trigger is used in one-shot pulse output mode, the TI00 pin cannot be used as a general-purpose port pin. Therefore, fix the TI00 pin to either high level or low level.

Figure 8-27. Control Register Settings for One-Shot Pulse Output by External Trigger


(a) 16-bit timer mode control register 0 (TMC0)

(b) Capture/compare control register 0 (CRC0)

(c) 16-bit timer output control register 0 (TOC0)

Caution Set CR00 and CR01 to a value in the following range. $0000H < \text{CR01} < \text{CR00} \le \text{FFFFH}$

Remark 0/1: When these bits are reset to 0 or set to 1, other functions can be used together with the one-shot pulse output function. For details, refer to **Figures 8-2** to **8-4**.

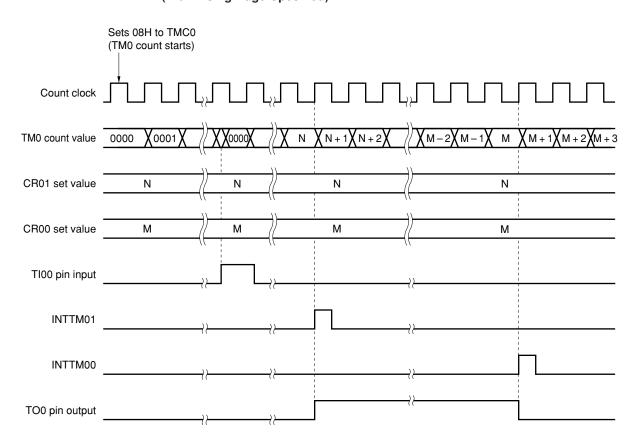
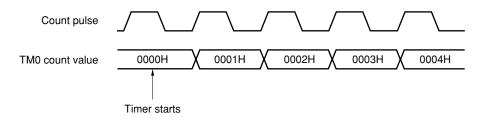


Figure 8-28. Timing of One-Shot Pulse Output Operation by External Trigger (with Rising Edge Specified)


- Cautions 1. 16-bit timer counter 0 starts operating as soon as TMC02 and TMC03 are set to a value other than 0, 0 (operation stop mode).
 - 2. The software trigger (bit 6 (OSPT) of 16-bit timer output control register 0 (TOC0) = 1) and the external trigger (TI00 input) are always valid in one-shot pulse output mode. If the software trigger is used in one-shot pulse output mode, the TI00 pin cannot be used as a general-purpose port pin. Therefore, fix the TI00 pin to either high level or low level.

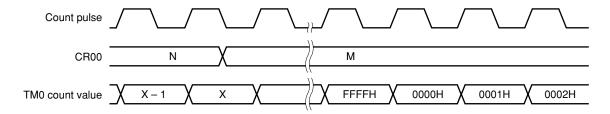
8.5 Cautions

(1) Error on starting timer

An error of up to 1 clock occurs before the match signal is generated after the timer is started. This is because 16-bit timer counter 0 (TM0) is started asynchronously to the count pulse.

Figure 8-29. Start Timing of 16-Bit Timer Counter 0

(2) 16-bit compare register settings


Set 16-bit capture/compare registers 00 and 01 (CR00, 01) to a value other than 0000H.

A one-pulse count operation is consequently not possible when using these registers as event counters.

(3) Operation after changing compare register during timer count operation

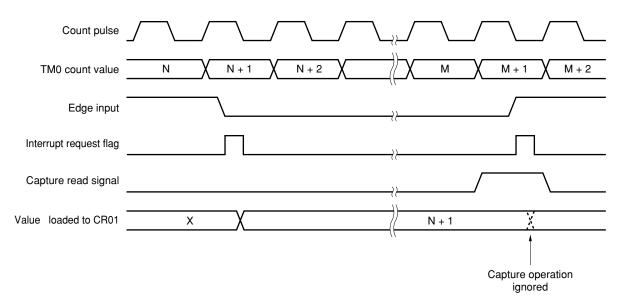
If the value to which the current value of 16-bit capture/compare register 00 (CR00) has been changed is less than the value of 16-bit timer counter 0 (TM0), TM0 continues counting, overflows, and starts counting again from 0. If the new value of CR00 (M) is less than the old value (N), the timer must be restarted after the value of CR00 has been changed.

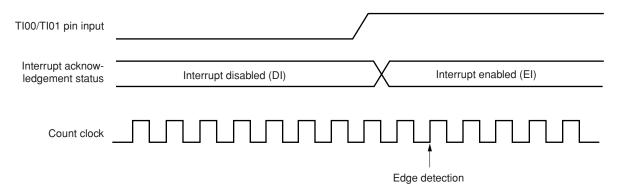
Figure 8-30. Timing After Changing Compare Register During Timer Count Operation

Remark N > X > M

(4) Data hold timing of capture register

If the valid edge is input to the TI00/P35 pin while 16-bit capture/compare register 01 (CR01) is being read, CR01 performs the capture operation, but this capture value is not guaranteed. However, the interrupt request flag (INTTM01) is set as a result of detection of the valid edge




Figure 8-31. Data Hold Timing of Capture Register

(5) Setting valid edge

To set the valid edge of the TI00/P35 pin, set bits 2 and 3 of 16-bit timer mode control register 0 (TMC0) to 0,0 as soon as the timer operation has been halted. The valid edge is specified with bits 4 and 5 of prescaler mode register 0 (ES00, ES01).

(6) Cautions on edge detection

- <1> When the TI00/TI01 pin is high level immediately after system reset, it may be detected as a rising edge after the first 16-bit timer/event counter operation is enabled. Bear this in mind when pulling up, etc.
- <2> Regardless of whether interrupt acknowledgement is disabled (DI) or enabled (EI), the edge of the external input signal is detected at the second clock after the signal is changed.

(7) Trigger for one-shot pulse

The software trigger (bit 6 (OSPT) of 16-bit timer output control register 0 (TOC0) = 1) and the external trigger (TI00 input) are always valid in one-shot pulse output mode.

If the software trigger is used in one-shot pulse output mode, the Tl00 pin cannot be used as a general-purpose port pin. Therefore, fix the Tl00 pin to either high level or low level.

(8) Re-triggering one-shot pulse

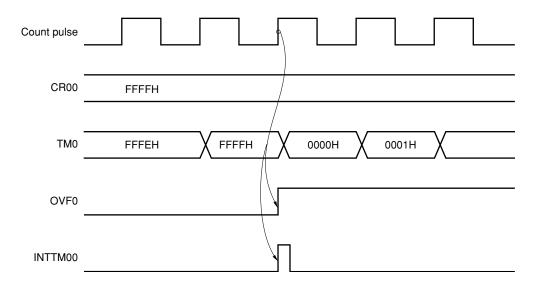
(a) One-shot pulse output by software

When a one-shot pulse is output, do not set OSPT to 1. Do not output the one-shot pulse again until INTTM00, which occurs on match between TM0 and CR00, occurs.

(b) One-shot pulse output with external trigger

If the external trigger is generated while the one-shot pulse is being output, the counter is cleared and restarted, and the one-shot pulse is output again.

(9) Operation of OVF0 flag


The OVF0 flag is set to 1 in the following case.

Select mode in which 16-bit timer/event counter is cleared and started on a match between TM0 and CR00

↓
Set CR00 to FFFFH.
↓

When TM0 counts up from FFFFH to 0000H

Figure 8-32. Operation Timing of OVF0 Flag

(10) Conflicting operations

- <1> Conflict between the read period of the 16-bit capture/compare registers (CR00 and CR01) and the capture trigger input (CR00 and CR01 are used as capture registers)

 The capture trigger input has priority. The read data of CR00 and CR01 is undefined.
- <2> Match timing conflict between the write the period of the 16-bit capture/compare registers (CR00 and CR01) and 16-bit timer counter 0 (TM0). (CR00 and CR01 are used as compare registers)
 A match discrimination is not normally performed. Do not perform write to CR00 and CR01 around the match timing.

CHAPTER 9 8-BIT TIMER/EVENT COUNTERS 1, 2

9.1 Functions

8-bit timer/event counters 1 and 2 (TM1, TM2) have the following two modes.

- Mode using 8-bit timer/event counters 1 and 2 (TM1, TM2) alone (discrete mode)
- Mode using 8-bit timer/event counters 1 and 2 connected in cascade (16-bit resolution: cascade connection mode)

These two modes are described next.

(1) Mode using 8-bit timer/event counters 1 and 2 alone (discrete mode)

The timer operates as an 8-bit timer/event counter with the following functions.

- Interval timer
- · External event counter
- · Square-wave output
- · PWM output

(2) Mode using 8-bit timer/event counters 1 and 2 connected in cascade (16-bit resolution: cascade connection mode)

The timer operates as a 16-bit timer/event counter connected in cascade with the following functions.

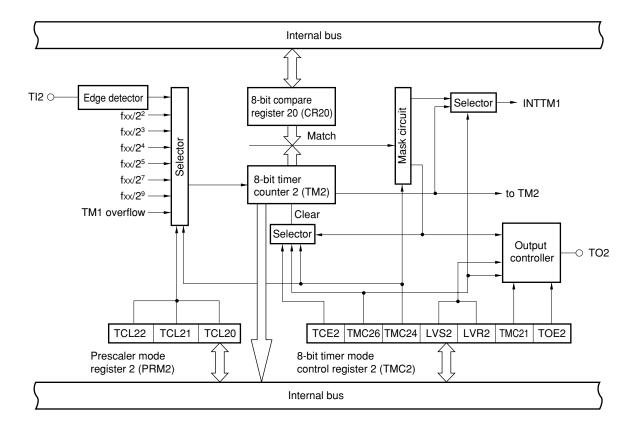
- · Interval timer with 16-bit resolution
- · External event counter with 16-bit resolution
- Square-wave output with 16-bit resolution

9.2 Configuration

8-bit timer/event counters 1 and 2 include the following hardware.

Table 9-1. Configuration of 8-Bit Timer/Event Counters 1 and 2

Item	Configuration
Timer counter	8-bit × 2 (TM1, TM2)
Register	8-bit × 2 (CR10, CR20)
Timer output	2 (TO1, TO2)
Control registers	8-bit timer mode control register 1 (TMC1) 8-bit timer mode control register 2 (TMC2) Prescaler mode register 1 (PRM1) Prescaler mode register 2 (PRM2)


Figure 9-1. Block Diagram of 8-Bit Timer/Event Counters 1 and 2 (1/2)

(1) 8-bit timer/event counter 1

Figure 9-1. Block Diagram of 8-Bit Timer/Event Counters 1 and 2 (2/2)

(2) 8-bit timer/event counter 2

(1) 8-bit timer counters 1 and 2 (TM1, TM2)

TM1 and TM2 are 8-bit read-only registers that count the count pulses.

The counter is incremented in synchronization with the rising edge of the count clock. When the count is read out during operation, the count clock input temporarily stops and the count is read at that time. In the following cases, the count becomes 00H.

- <1> RESET is input.
- <2> TCEn is cleared.
- <3> TMn and CRn0 match in the clear and start mode.

Caution In cascade connection mode, the count becomes 00H by clearing both bit 7 (TCE1) of 8-bit timer mode control register 1 (TMC1) and bit 7 (TCE2) of 8-bit timer mode control register 2 (TMC2).

Remark n = 1, 2

(2) 8-bit compare registers 10 and 20 (CR10, CR20)

The values set in CR10 and CR20 are compared to the count value in 8-bit timer register 1 (TM1) and 8-bit timer counter 2 (TM2), respectively. If the two values match, an interrupt request (INTTM1, INTTM2) is generated (except in the PWM mode).

The values of CR10 and CR20 can be set in the range of 00H to FFH, and can be written during counting.

Caution Be sure to stop the timer before setting data in cascade connection mode. To stop the timer operation, clear both bit 7 of TMC1 (TCE1) and bit 7 of TMC2 (TCE2).

9.3 Control Registers

The following four registers control 8-bit timer/event counters 1 and 2.

- 8-bit timer mode control registers 1 and 2 (TMC1, TMC2)
- Prescaler mode registers 1 and 2 (PRM1, PRM2)

(1) 8-bit timer mode control registers 1 and 2 (TMC1, TMC2)

TMC1 and TMC2 make the following six settings.

- <1> Control of the counting for 8-bit timer counters 1 and 2 (TM1, TM2).
- <2> Selection of the operation mode of 8-bit timer counters 1 and 2 (TM1, TM2).
- <3> Selection of the discrete mode or cascade mode.
- <4> Setting of the state of the timer output (only for TMC2).
- <5> Control of the timer or selection of the active level in PWM (free-running) mode.
- <6> Control of timer output.

TMC1 and TMC2 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TMC1 and TMC2 to 00H.

Figures 9-2 and 9-3 show the TMC1 format and TMC2 format respectively.

Figure 9-2. Format of 8-Bit Timer Mode Control Register 1 (TMC1)

Address: 0FF54H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TMC1	TCE1	TMC16	0	0	LVS1	LVR1	TMC11	TOE1

TCE1	TM1 count control
0	Counting is disabled (prescaler disabled) after the counter is cleared to 0.
1	Start counting

TMC16	TM1 operation mode selection
0	Clear and start mode when TM1 and CR10 match.
1	PWM (free-running) mode

LVS1	LVR1	Timer output control by software
0	0	No change
0	1	Reset (to 0)
1	0	Set (to 1)
1	1	Setting prohibited

TMO11	Other than PWM mode (TMC16 = 0)	PWM mode (TMC16 = 1)		
TMC11	Timer output control	Active level selection		
0	Disable inversion operation	Active high		
1	Enable inversion operation	Active low		

TOE1	Timer output control
0	Output disabled (port mode)
1	Output enabled

Caution When selecting the TM1 operation mode using TMC16, stop the timer operation in advance.

Remarks 1. In the PWM mode, the PWM output is set to the inactive level by TCE1 = 0.

2. If LVS1 and LVR1 are read after setting data, 0 is read.

Figure 9-3. Format of 8-Bit Timer Mode Control Register 2 (TMC2)

Address: 0FF55H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TMC2	TCE2	TMC26	0	TMC24	LVS2	LVR2	TMC21	TOE2

TCE2	TM2 count control
0	Counting is disabled (prescaler disabled) after the counter is cleared to 0.
1	Start counting

TMC26	TM2 operation mode selection
0	Clear and start mode when TM2 and CR20 match
1	PWM (free-running) mode

TMC24	Discrete mode or cascade connection mode selection	
0	Discrete mode	
1	Cascade connection mode (connection with TM1)	

LVS2	LVR2	Timer output control by software
0	0	No change
0	1	Reset (to 0)
1	0	Set (to 1)
1	1	Setting prohibited

TMCO4	Other than PWM mode (TMC26 = 0)	PWM mode (TMC26 = 1)
TMC21	Timer output control	Active level selection
0	Disable inversion operation	Active high
1	Enable inversion operation	Active low

TOE2	Timer output control
0	Output disabled (port mode)
1	Output enabled

Caution When selecting the TM2 operation mode using TMC26 or selecting discrete/cascade connection mode using TMC24, stop timer operation in advance. To stop the timer operation during cascade connection, clear both bit 7 (TCE1) of 8-bit timer mode control register 1 (TMC1) and bit 7 (TCE2) of TMC2.

Remarks 1. In the PWM mode, the PWM output is set to the inactive level by TCE2 = 0.

2. If LVS2 and LVR2 are read after setting data, 0 is read.

(2) Prescaler mode registers 1 and 2 (PRM1, PRM2)

This register sets the count clock of 8-bit timer counters 1 and 2 (TM1, TM2) and the valid edge of the TI1 and TI2 inputs.

PRM1 and PRM2 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PRM1 and PRM2 to 00H.

Figure 9-4. Format of Prescaler Mode Register 1 (PRM1)

Address: 0FF56H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
PRM1	0	0	0	0	0	TCL12	TCL11	TCL10

TCL12	TCL11	TCL10	Count clock selection
0	0	0	Falling edge of TI1
0	0	1	Rising edge of TI1
0	1	0	fxx/4 (3.13 MHz)
0	1	1	fxx/8 (1.56 MHz)
1	0	0	fxx/16 (781 kHz)
1	0	1	fxx/32 (391 kHz)
1	1	0	fxx/128 (97.6 kHz)
1	1	1	fxx/512 (24.4 kHz)

Cautions 1. If data different from that of PRM1 is written, stop the timer beforehand.

- 2. Be sure to set bits 3 to 7 of PRM1 to 0.
- 3. When specifying the valid edge of TI1 for the count clock, set the count clock to fxx/4 or below.

Remark Values in parentheses apply to operation at fxx = 12.5 MHz.

Figure 9-5. Format of Prescaler Mode Register 2 (PRM2)

Address: 0FF57H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
PRM2	0	0	0	0	0	TCL22	TCL21	TCL20

TCL22	TCL21	TCL20	Count clock selection
0	0	0	Falling edge of TI2
0	0	1	Rising edge of TI2
0	1	0	fxx/4 (3.13 MHz)
0	1	1	fxx/8 (1.56 MHz)
1	0	0	fxx/16 (781 kHz)
1	0	1	fxx/32 (391 kHz)
1	1	0	fxx/128 (97.6 kHz)
1	1	1	fxx/512 (24.4 kHz)

Cautions 1. If data different from that of PRM2 is written, stop the timer beforehand.

- 2. Be sure to set 0 to bits 3 to 7 of PRM2.
- 3. When specifying the valid edge of TI2 for the count clock, set the count clock to fxx/4 or below.

Remark Figures in parentheses apply to operation at fxx = 12.5 MHz.

9.4 Operation

9.4.1 Operation as interval timer (8-bit operation)

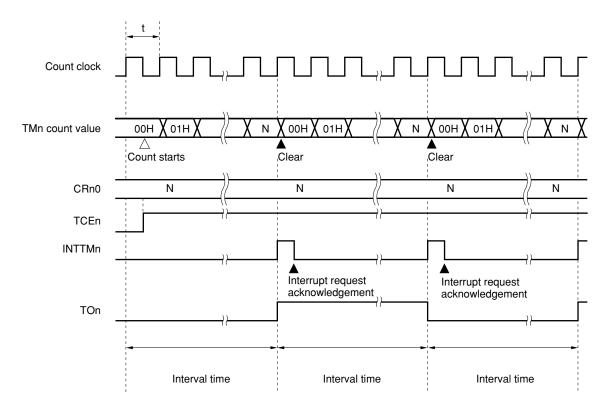
The timer operates as an interval timer that repeatedly generates interrupt requests at the interval of the count preset in 8-bit compare registers 10 and 20 (CR10, CR20).

If the count in 8-bit timer counters 1 and 2 (TM1, TM2) matches the value set in CR10 and CR20, the values of TM1 and TM2 are cleared to 0 and the count continues. At the same time, an interrupt request signal (INTTM1, INTTM2) is generated.

The TM1 and TM2 count clock can be selected with bits 0 to 2 (TCLn0 to TCLn2) of prescaler mode registers 1 and 2 (PRM1, PRM2).

<Setting method>

- <1> Set each register.
 - · PRMn: Selects the count clock.
 - · CRn0: Compare value
 - TMCn: Selects the clear and start mode when TMn and CRn0 match.

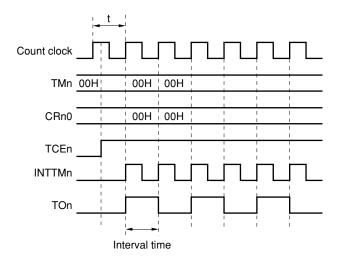

$$(TMCn = 0000 \times \times \times 0B, \times = Don't care)$$

- <2> When TCEn = 1 is set, counting starts.
- <3> When the values of TMn and CRn0 match, INTTMn is generated (TMn is cleared to 00H).
- <4> Then, INTTMn is repeatedly generated at the same interval. When counting stops, set TCEn = 0.

Remark n = 1, 2

Figure 9-6. Timing of Interval Timer Operation (1/3)

(a) Basic operation



Remarks 1. Interval time = $(N + 1) \times t$: N = 00H to FFH

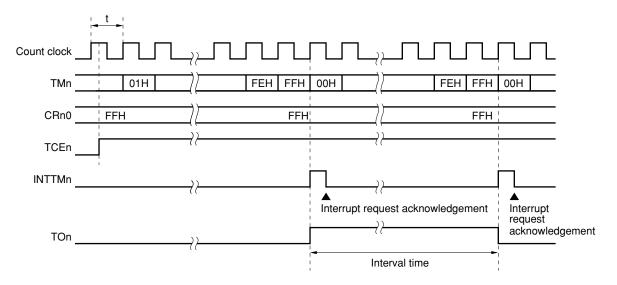
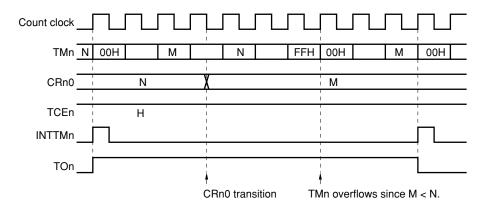

2. n = 1, 2

Figure 9-6. Timing of Interval Timer Operation (2/3)

(b) When CRn0 = 00H


(c) When CRn0 = FFH

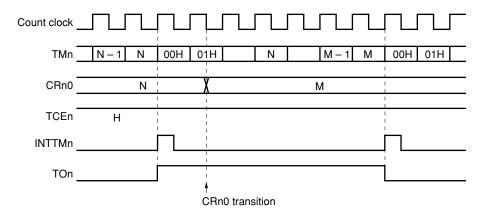

Remark n = 1, 2

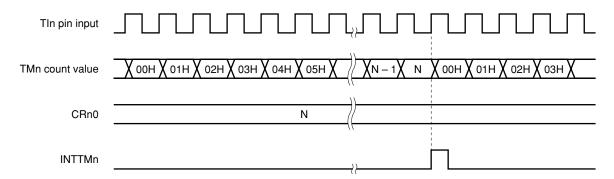
Figure 9-6. Timing of Interval Timer Operation (3/3)

(d) Operated by CRn0 transition (M < N)

(e) Operated by CRn0 transition (M > N)

Remark n = 1, 2

9.4.2 Operation as external event counter


The external event counter counts the number of external clock pulses that are input to the TI1/P33 and TI1/P34 pins with 8-bit timer counters 1 and 2 (TM1, TM2).

Each time the valid edge specified by prescaler mode registers 1 and 2 (PRM1, PRM2) is input, TM1 and TM2 are incremented. The edge setting is selected to be either the rising edge or falling edge.

If the count of TM1 and TM2 matches the values of 8-bit compare registers 10 and 20 (CR10, CR20), TM1 and TM2 are cleared to 0 and an interrupt request signal (INTTM1, INTTM2) is generated.

INTTM1 and INTTM2 are generated each time the values of the TM1 and TM2 match the values of CR10 and CR20.

Figure 9-7. Timing of External Event Counter Operation (with Rising Edge Is Specified)

Remark N = 00H to FFH n = 1, 2

9.4.3 Operation to output square-wave (8-bit resolution)

A square wave with any frequency is output at the interval preset in 8-bit compare registers 10 and 20 (CR10, CR20). By setting bit 0 of 8-bit timer mode control registers 1 and 2 (TMC1, TMC2) to 1, the output state of TO1 and TO2 is inverted with the count preset in CR510 and CR20 as the interval. Therefore, square wave output of any frequency (duty cycle = 50%) is possible.

<Setting method>

- <1> Set the registers.
 - · Set the port latch, which also functions as a timer output pin and the port mode register to 0.
 - · PRMn: Selects the count clock.
 - · CRn0: Compare value
 - TMCn: Clear and start mode when TMn and CRn0 match.

LVSn	LVRn	Timer Output Control by Software
1	0	High-level output
0	1	Low-level output

Inversion of timer output enabled Timer output enabled \rightarrow TOEn = 1

- <2> When TCEn = 1 is set, the counter starts operating.
- <3> If the values of TMn and CRn0 match, the timer output is inverted. Also, INTTMn is generated and TMn is cleared to 00H.
- <4> Then, the timer output is inverted at the same interval to output a square wave from TOn.

Remark n = 1, 2

9.4.4 Operation to output 8-bit PWM

By setting bit 6 (TMC16, TMC26) of 8-bit timer mode control registers 1 and 2 (TMC1, TMC2) to 1, the timer operates as a PWM output.

Pulses with the duty cycle determined by the value set in 8-bit compare registers 10 and 20 (CR10, CR20) is output from TO1 and TO2.

Set the width of the active level of the PWM pulse in CR10 and CR20. The active level can be selected by bit 1 (TMC11, TMC12) of TMC1 and TMC2.

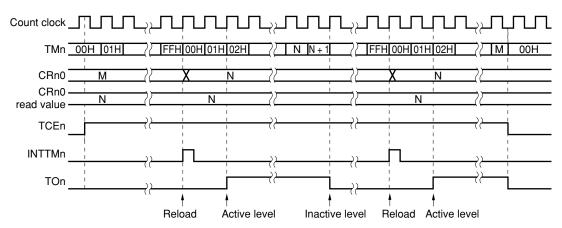
The count clock can be selected by bits 0 to 2 (TCLn0 to TCLn2) of prescaler mode registers 1 and 2 (PRM1, PRM2).

The PWM output can be enabled and disabled by bit 0 (TOE1, TOE2) of TMC1 and TMC2.

(1) Basic operation of the PWM output

<Setting method>

- <1> Set the port latch, which also functions as a timer output pin and the port mode register to 0.
- <2> Set the active level width in 8-bit compare register n (CRn0).
- <3> Select the count clock in prescaler mode register n (PRMn).
- <4> Set the active level in bit 1 (TMCn1) of TMCn.
- <5> Set bit 0 of TMCn (TOEn) to 1 to enable timer output.
- <6> If bit 7 (TCEn) of TMCn is set to 1, counting starts. When counting stops, set TCEn to 0.


<PWM output operation>

- <1> When counting starts, the PWM output (output from TOn) outputs the inactive level until an overflow occurs.
- <2> When an overflow occurs, the active level is output. The active level is output until CRn0 and the count of 8-bit timer counter n (TMn) match.
- <3> The PWM output after CRn and the count value match is the inactive level until an overflow occurs again.
- <4> Steps <2> and <3> repeat until counting stops.
- <5> If counting is stopped by TCEn = 0, the PWM output goes to the inactive level.

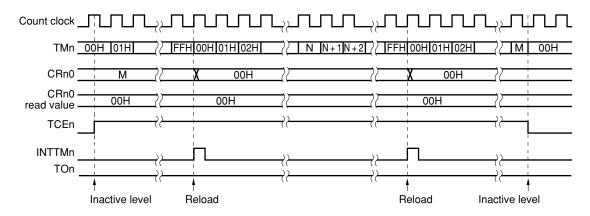
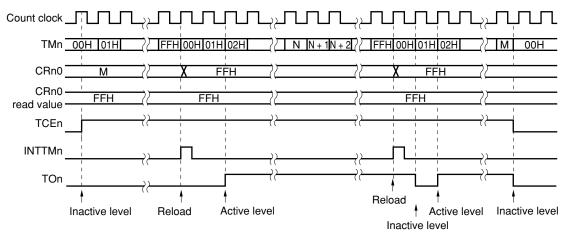
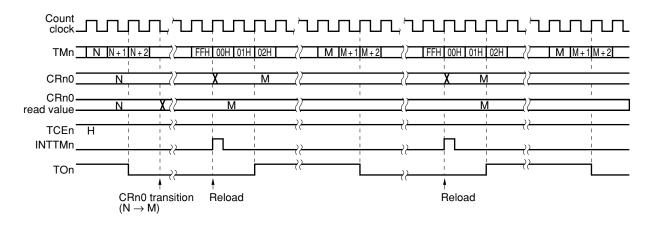

Remark n = 1, 2

Figure 9-8. Timing of PWM Output


(a) Basic operation (active level = H)

(b) When CRn0 = 0


(c) When CRn0 = FFH

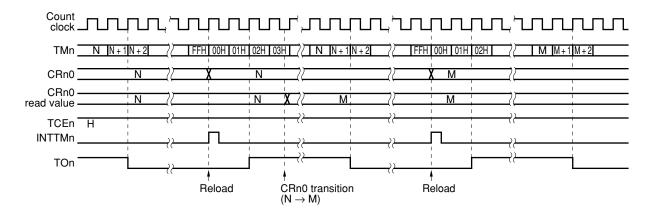
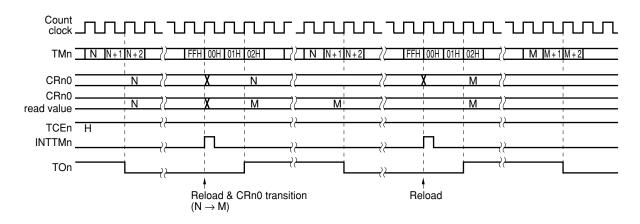

Remark n = 1, 2

Figure 9-9. Timing of Operation Based on CRn0 Transitions


(a) When the CRn0 value changes from N to M before TMn overflows

(b) When the CRn0 value changes from N to M after TMn overflows

(c) When the CRn0 value changes from N to M within two clocks (00H, 01H) immediately after TMn overflows

Remarks 1. n = 1, 2

2. CRn0(M): Master side, CRn0(S): Slave side

9.4.5 Operation as interval timer (16-bit operation)

· Cascade connection (16-bit timer) mode

By setting bit 4 (TMC24) of 8-bit timer mode control register 2 (TMC2) to 1, the timer enters the timer/counter mode with 16-bit resolution.

With the count preset in 8-bit compare registers 10 and 20 (CR10, CR20) as the interval, the timer operates as an interval timer by repeatedly generating interrupt requests.

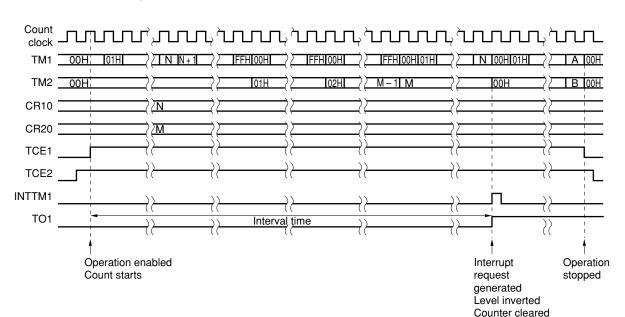
<Setting method>

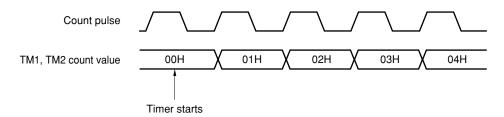
- <1> Set each register.
 - PRM1: TM1 selects the count clock. TM2 connected in cascade is not used for setting.
 - CRn0: Compare values (each compare value can be set from 00H to FFH).
 - TMCn: Select the clear and start mode when TMn and CRn0 match.

TM1
$$\rightarrow$$
 TMC1 = 0000 \times \times 0B, \times : Don't care
TM2 \rightarrow TMC2 = 0001 \times \times 0B, \times : Don't care

- <2> Setting TCE2 = 1 in TMC2 and finally setting TCE1 = 1 in TMC1 starts the count operation.
- <3> If the values of TMn of all timers connected in cascade and CRn0 match, INTTM1 of TM1 is generated. (TM1 and TM2 are cleared to 00H.)
- <4> INTTM1 are repeatedly generated at the same interval.
 - Cautions 1. Always set the compare register (CR10, CR20) after stopping timer operation.
 - 2. If the TM2 count value matches CR20 even when used in a cascade connection, INTTM2 of TM2 is generated. Always mask the higher timer in order to disable interrupts.
 - 3. Set TCE1 and TCE2 in TM2 first. Set TM1 last.
 - 4. Restarting and stopping the count is possible by setting only 1 or 0 in TCE1 of TMC1 to start and stop operation. Note, however, that the TCE1 bit of TMC1 and TCE2 bit of TMC2 must be cleared when setting the compare register (CR10, CR20).

Figure 9-10 shows a timing example of the cascade connection mode with 16-bit resolution.

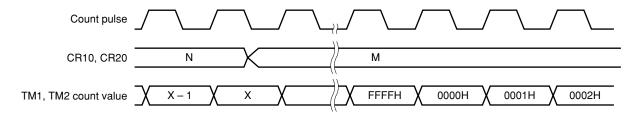



Figure 9-10. Cascade Connection Mode with 16-Bit Resolution

9.5 Cautions

(1) Error when the timer starts

An error of up to 1 clock occurs before the match signal is generated after the timer is started. This is because 8-bit timer counters 1 and 2 (TM1, TM2) are started asynchronously to the count pulse.


Figure 9-11. Start Timing of 8-Bit Timer Counter

(2) Operation after the compare register is changed while the timer is counting

If the value after 8-bit compare registers 10 and 20 (CR10, CR20) changes is less than the value of 8-bit timer counter 1 and 2 (TM1, TM2), counting continues, overflows, and counting starts again from 0. Consequently, when the value (M) after CR10 and CR20 change is less than the value (N) before the change, the timer must be restarted after CR10 and CR20 change.

Figure 9-12. Timing After Compare Register Changes During Timer Counting

Caution Except when the TI1, TI2 input is selected, always set TCE1 = 0, TCE2 = 0 before setting the STOP mode.

Remark N > X > M

(3) TM1, TM2 read out during timer operation

Since the count clock stops temporarily when TM1 and TM2 are read during operation, select a waveform with a high and low level that exceed 2 cycles of the CPU clock for the count clock.

When reading TM1 and TM2 in cascade connection mode, to avoid reading while the count is changing, take measures such as obtaining a count match by reading twice using software.

CHAPTER 10 8-BIT TIMERS 5, 6

10.1 Functions

8-bit timers 5 and 6 (TM5, TM6) have the following two modes.

- Mode using 8-bit timers 5 and 6 (TM5, TM6) alone (discrete mode)
- Mode using 8-bit timers 5 and 6 connected in cascade (16-bit resolution: cascade connection mode)

These two modes are described next.

(1) Mode using 8-bit timers 5 and 6 alone (discrete mode)

The timer operates as an 8-bit timer with the following function.

· Interval timer

(2) Mode using 8-bit timers 5 and 6 connected in cascade (16-bit resolution: cascade connection mode)

The timer operates as a 16-bit timer connected in cascade with the following functions.

· Interval timer with 16-bit resolution

10.2 Configuration

8-bit timers 5 and 6 include the following hardware.

Table 10-1. Configuration of 8-Bit Timers 5 and 6

Item	Configuration
Timer counter	8-bit × 2 (TM5, TM6)
Register	8-bit × 2 (CR50, CR60)
Control register	8-bit timer mode control register 5 (TMC5) 8-bit timer mode control register 6 (TMC6) Prescaler mode register 5 (PRM5) Prescaler mode register 6 (PRM6)

Figure 10-1. Block Diagram of 8-Bit Timers 5 and 6 (1/2)

(1) 8-bit timer 5

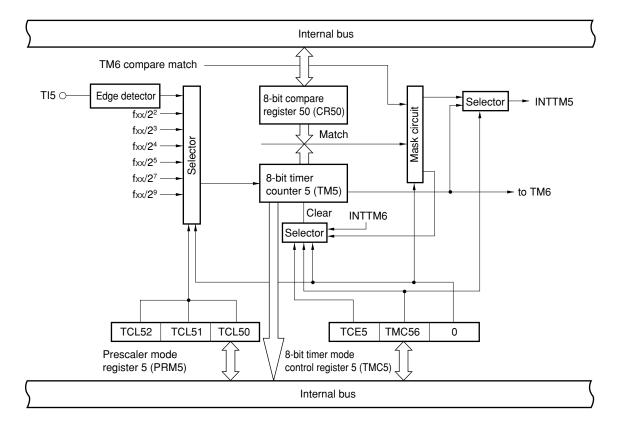
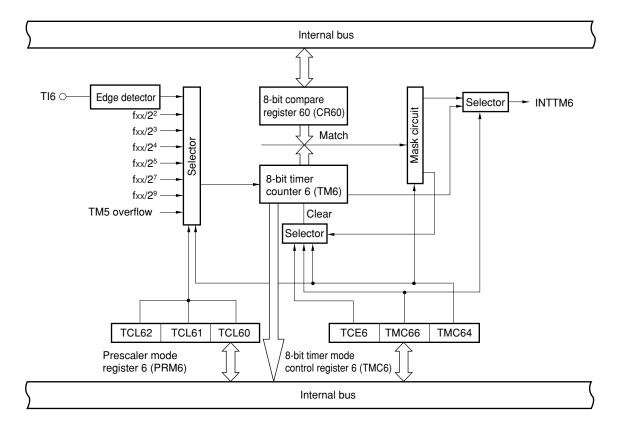



Figure 10-1. Block Diagram of 8-Bit Timers 5 and 6 (2/2)

(2) 8-bit timer 6

(1) 8-bit timer counters 5 and 6 (TM5, TM6)

TM5 and TM6 are 8-bit read-only registers that count the count pulses.

The counter is incremented in synchronization with the rising edge of the count clock. When the count is read out during operation, the count clock input temporarily stops and the count is read at that time. In the following cases, the count becomes 00H.

- <1> RESET is input.
- <2> TCEn is cleared.
- <3> TMn and CRn0 match in the clear and start mode.

Caution In cascade connection mode, the count becomes 00H by clearing bit 7 (TCE5) of 8-bit timer mode control register 5 (TMC5) and bit 7 (TCE6) of 8-bit timer mode control register 6 (TMC6).

Remark n = 5, 6

(2) 8-bit compare registers 50 and 60 (CR50, CR60)

The value set in CR50 and CR60 are compared to the count value in 8-bit timer counter 5 (TM5) and 8-bit timer counter 6 (TM6), respectively. If the two values match, an interrupt request (INTTM5, INTTM6) is generated (except in the PWM mode).

The values of CR50 and CR60 can be set in the range of 00H to FFH, and can be written during counting.

Caution Be sure to stop the timer operation before setting data in cascade connection mode. To stop the timer operation, clear both TCE5 of TMC5 and TCE6 of TMC6.

10.3 Control Registers

The following four registers control 8-bit timers 5 and 6.

- 8-bit timer mode control registers 5 and 6 (TMC5, TMC6)
- Prescaler mode registers 5 and 6 (PRM5, PRM6)

(1) 8-bit timer mode control registers 5 and 6 (TMC5, TMC6)

TMC5 and TMC6 make the following three settings.

- <1> Control of the counting for 8-bit timer counters 5 and 6 (TM5, TM6).
- <2> Selection of the operation mode of 8-bit timer counters 5 and 6 (TM5, TM6).
- <3> Selection of the discrete mode or cascade connection mode (TMC6 only).

TMC5 and TMC6 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets TMC5 and TMC6 to 00H.

Figures 10-2 and 10-3 show the TMC5 format and TMC6 format respectively.

Figure 10-2. Format of 8-Bit Timer Mode Control Register 5 (TMC5)

Address: 0FF68H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TMC5	TCE5	TMC56	0	0	0	0	0	0

TCE5	TM5 count control
0	Counting is disabled (prescaler disabled) after the counter is cleared to 0.
1	Start counting

TMC56	TM5 operation mode selection
0	Clear and start mode when TM5 and CR50 match.
1	PWM (free running) mode

Caution When selecting the TM5 operation mode using TMC56, stop the timer operation in advance.

Remarks 1. In the PWM mode, the PWM output is set to the inactive level by TCE5 = 0.

2. If LVS5 and LVR5 are read after setting data, 0 is read.

Figure 10-3. Format of 8-Bit Timer Mode Control Register 6 (TMC6)

Address: 0FF69H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
TMC6	TCE6	TMC66	0	TMC64	0	0	0	0

TCE6	TM6 count control
0	Counting is disabled (prescaler disabled) after the counter is cleared to 0.
1	Start counting

TMC66	TM6 operation mode selection					
0	Clear and start mode when TM6 and CR60 match					
1	PWM (free running) mode					

TMC64	Discrete mode or cascade connection mode selection					
0	Discrete mode					
1	Cascade connection mode (connection with TM5)					

Caution When selecting the TM6 operation mode using TMC66 or selecting discrete/cascade connection mode using TMC64, stop the timer operation in advance. To stop the timer operation during cascade connection, clear both bit 7 (TCE5) of 8-bit timer mode control register 5 (TMC5) and bit 7 (TCE6) of TMC6.

(2) Prescaler mode registers 5 and 6 (PRM5, PRM6)

This register sets the count clock of 8-bit timer counters 5 and 6 (TM5, TM6). PRM5 and PRM6 are set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets PRM5 and PRM6 to 00H.

Figure 10-4. Format of Prescaler Mode Register 5 (PRM5)

Address: 0FF6CH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
PRM5	0	0	0	0	0	TCL52	TCL51	TCL50

TCL52	TCL51	TCL50	Count clock selection
0	1	0	fxx/4 (3.13 MHz)
0	1	1	fxx/8 (1.56 MHz)
1	0	0	fxx/16 (781 kHz)
1	0	1	fxx/32 (391 kHz)
1	1	0	fxx/128 (97.6 kHz)
1	1	1	fxx/512 (24.4 kHz)
Other than above			Setting prohibited

Cautions 1. If data different from that of PRM5 is written, stop the timer beforehand.

2. Be sure to set bits 3 to 7 of PRM5 to 0.

Remark Values in parentheses apply to operation at fxx = 12.5 MHz.

Figure 10-5. Format of Prescaler Mode Register 6 (PRM6)

Address: 0FF6DH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
PRM6	0	0	0	0	0	TCL62	TCL61	TCL60

TCL62	TCL61	TCL60	Count clock selection
0	1	0	fxx/4 (3.13 MHz)
0	1	1	fxx/8 (1.56 MHz)
1	0	0	fxx/16 (781 kHz)
1	0	1	fxx/32 (391 kHz)
1	1	0	fxx/128 (97.6 kHz)
1	1	1	fxx/512 (24.4 kHz)
Other than above			Setting prohibited

Cautions 1. If data different from that of PRM6 is written, stop the timer beforehand.

2. Be sure to set bits 3 to 7 of PRM6 to 0.

Remark Values in parentheses apply to operation at fxx = 12.5 MHz.

10.4 Operation

10.4.1 Operation as interval timer (8-bit operation)

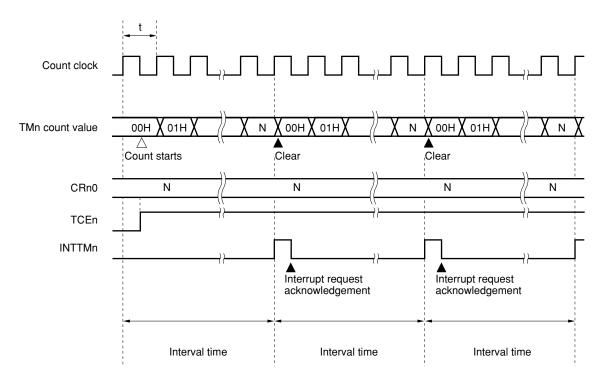
The timer operates as an interval timer that repeatedly generates interrupt requests at the interval of the count preset in 8-bit compare registers 50 and 60 (CR50, CR60).

If the count in 8-bit timer counters 5 and 6 (TM5, TM6) matches the value set in CR50 and CR60, the values of TM5 and TM6 are cleared to 0 and the count continues. At the same time, an interrupt request signal (INTTM5, INTTM6) is generated.

The TM5 and TM6 count clock can be selected with bits 0 to 2 (TCLn0 to TCLn2) of prescaler mode registers 5 and 6 (PRM5, PRM6).

<Setting method>

- <1> Set each register.
 - · PRMn: Selects the count clock.
 - · CRn0: Compare value
 - TMCn: Selects the clear and start mode when TMn and CRn0 match.

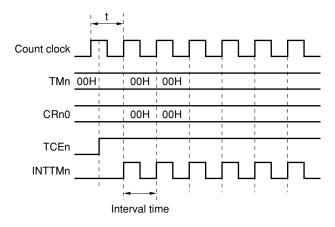

$$(TMCn = 0000 \times \times \times 0B, \times = Don't care)$$

- <2> When TCEn = 1 is set, counting starts.
- <3> When the values of TMn and CRn0 match, INTTMn is generated (TMn is cleared to 00H).
- <4> Then, INTTMn is repeatedly generated at the same interval. When counting stops, set TCEn = 0.

Remark n = 5, 6

Figure 10-6. Timing of Interval Timer Operation (1/3)

(a) Basic operation



Remarks 1. Interval time = $(N + 1) \times t$; N = 00H to FFH

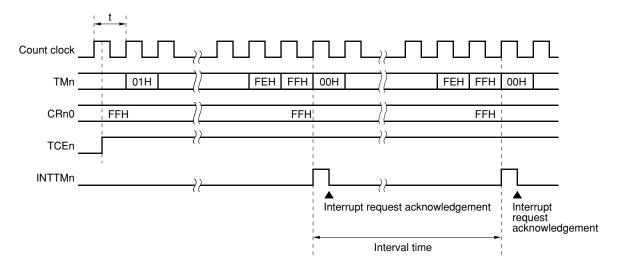
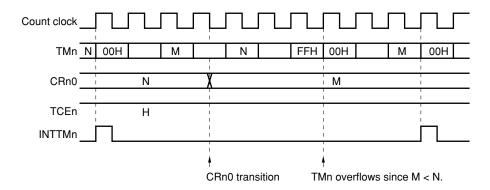

2. n = 5, 6

Figure 10-6. Timing of Interval Timer Operation (2/3)

(b) When CRn0 = 00H


(c) When CRn0 = FFH

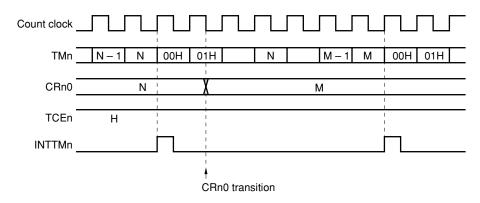
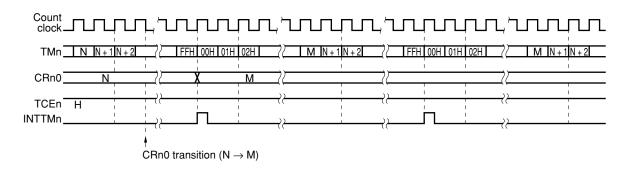

Remark n = 5, 6

Figure 10-6. Timing of Interval Timer Operation (3/3)

(d) Operated by CRn0 transition (M < N)


(e) Operated by CRn0 transition (M > N)

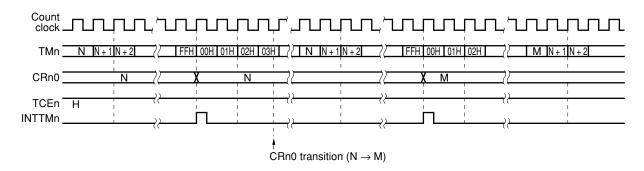
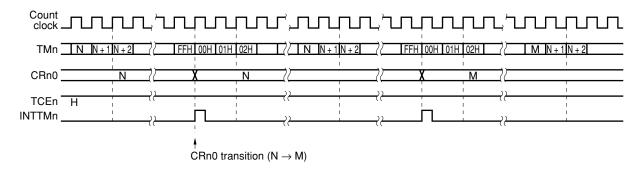

Remark n = 5, 6

Figure 10-7. Timing of Operation Based on CRn0 Transitions


(a) When the CRn0 value changes from N to M before TMn overflows

(b) When the CRn0 value changes from N to M after TMn overflows

(c) When the CRn0 value changes from N to M within two clocks (00H, 01H) immediately after TMn overflows

Remark n = 5, 6

10.4.2 Operation as interval timer (16-bit operation)

· Cascade connection (16-bit timer) mode

By setting bit 4 (TMC64) of 8-bit timer mode control register 6 (TMC6) to 1, the timer enters the timer mode with 16-bit resolution.

With the count preset in 8-bit compare registers 50 and 60 (CR50, CR60) as the interval, the timer operates as an interval timer by repeatedly generating interrupt requests.

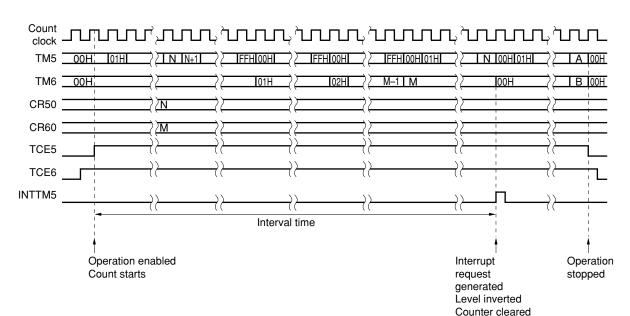
<Setting method>

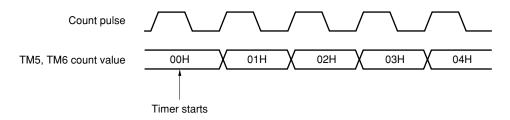
- <1> Set each register.
 - PRM5: TM5 selects the count clock. TM6 connected in cascade is not used for setting.
 - CRn0: Compare values (each compare value can be set from 00H to FFH).
 - TMCn: Select the clear and start mode when TMn and CRn0 match.

$$\left(\begin{array}{c}
TM5 \rightarrow TMC5 = 0000 \times \times \times 0B, \times: Don't care \\
TM6 \rightarrow TMC6 = 0001 \times \times \times 0B, \times: Don't care
\end{array}\right)$$

- <2> Setting TCE6 = 1 for TMC6 and setting TCE5 = 1 for 8-bit timer mode control register 5 (TMC5) starts the count operation.
- <3> If the values of TMn of all timers connected in cascade and CRn0 match, INTTM5 of TM5 is generated. (TM5 and TM6 are cleared to 00H.)
- <4> INTTM5 are repeatedly generated at the same interval.
 - Cautions 1. Always set the compare register (CR50, CR60) after stopping timer operation.
 - 2. If the TM6 count value matches CR60 even when used in a cascade connection, INTTM6 of TM6 is generated. Always mask TM6 in order to disable interrupts.
 - 3. Set TCE5 and TCE6 in TM6 first. Set TM5 last.
 - 4. Restarting and stopping the count is possible by setting 1 or 0 only in TCE5 of TMC5. Note, however, that TCE5 of TMC5 and bit 7 (TCE6) of TMC6 must be cleared when setting CR50 and CR60.

Figure 10-8 shows a timing example of the cascade connection mode with 16-bit resolution.

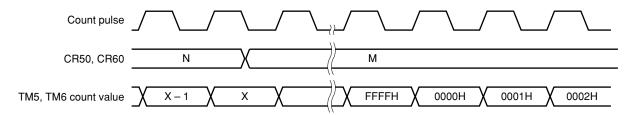



Figure 10-8. Cascade Connection Mode with 16-Bit Resolution

10.5 Cautions

(1) Error when the timer starts

An error of up to 1 clock occurs before the match signal is generated after the timer is started. This is because 8-bit timer counters 5 and 6 (TM5, TM6) are started asynchronously to the count pulse.


Figure 10-9. Start Timing of 8-Bit Timer Counter

(2) Operation after the compare register is changed while the timer is counting

If the value after 8-bit compare registers 50 and 60 (CR50, CR60) changes is less than the value of 8-bit timer counters 5 and 6 (TM5, TM6), counting continues, overflows, and counting starts again from 0. Consequently, when the value (M) after CR50 and CR60 change is less than the value (N) before the change, the timer must be restarted after CR50 and CR60 change.

Figure 10-10. Timing After Compare Register Changes During Timer Counting

Caution Except when the TI5, TI6 input is selected, always set TCE5 = 0, TCE6 = 0 before setting the STOP mode.

Remark N > X > M

(3) TM5, TM6 read out during timer operation

Since reading out TM5 and TM6 during operation occurs while the selected clock is temporarily stopped, select a high- or low-level waveform that is longer than the selected clock.

When reading TM5 and TM6 in cascade connection mode, to avoid reading while the count is changing, take measures such as obtaining a count match by reading twice using software.

CHAPTER 11 WATCH TIMER

11.1 Function

The watch timer has the following functions.

- · Watch timer
- Interval timer

The watch timer and interval timer functions can be used at the same time.

(1) Watch timer

The watch timer generates an interrupt request (INTWT) at time intervals of 2^{14} /fw or 2^{5} /fw by using the main system clock of 4.19 MHz or subsystem clock of 32.768 kHz.

Caution A time interval of 0.5 second cannot be generated by the 12.5 MHz main system clock. Use the 32.768 kHz subsystem clock to generate the 0.5-second time interval.

Remark fw: Watch timer clock oscillation frequency (fxx/2⁷ or fxT)

fxx: Main system clock oscillation frequency fxr: Subsystem clock oscillation frequency

(2) Interval timer

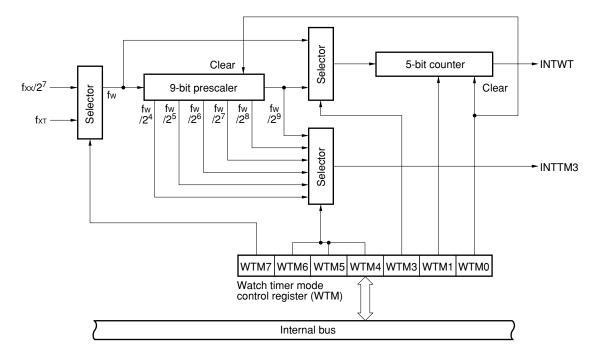
The watch timer generates an interrupt request (INTTM3) at time intervals specified in advance.

Table 11-1. Interval Time of Interval Timer

Interval Time	fxx = 12.5 MHz	fxx = 4.19 MHz	fxt = 32.768 kHz
$2^{11} \times 1/fxx$	164 μs	488 μs	488 μs
$2^{12} \times 1/fxx$	328 μs	977 μs	977 μs
$2^{13} \times 1/fxx$	655 μs	1.95 ms	1.95 ms
$2^{14} \times 1/fxx$	1.31 ms	3.91 ms	3.91 ms
2 ¹⁵ × 1/fxx	2.62ms	7.81 ms	7.81 ms
2 ¹⁶ × 1/fxx	5.24 ms	15.6 ms	15.6 ms

Remark fxx: Main system clock oscillation frequency

fxT: Subsystem clock oscillation frequency


11.2 Configuration

The watch timer includes the following hardware.

Table 11-2. Configuration of Watch Timer

Item	Configuration	
Counter	5 bits × 1	
Prescaler	9 bits × 1	
Control register	Watch timer mode control register (WTM)	

Figure 11-1. Block Diagram of Watch Timer

Remark fxx: Main system clock oscillation frequency

fxt: Subsystem clock oscillation frequency

fw: Watch timer clock oscillation frequency (fxx/2 7 or fxT)

11.3 Watch Timer Control Register

Watch timer mode control register (WTM)

This register enables or disables the count clock and operation of the watch timer, sets the interval time of the prescaler, controls the operation of the 5-bit counter, and sets the set time of the watch flag.

WTM is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets WTM to 00H.

Figure 11-2. Format of Watch Timer Mode Control Register (WTM)

Address: 0FF9CH After reset: 00H R/W Symbol 6 (1) (0) 7 5 4 3 2 WTM WTM7 WTM6 WTM5 WTM4 WTM3 0 WTM1 WTM0

WTM7	Selects count clock of watch timer	
0	Main system clock (fxx/2 ⁷)	
1	Subsystem clock (fxr)	

WTM6	WTM5	WTM4	Selects interval time of prescaler
0	0	0	2 ⁴ /fw (488 μs)
0	0	1	2 ⁵ /fw (977 μs)
0	1	0	2 ⁶ /fw (1.95 ms)
0	1	1	2 ⁷ /fw (3.91 ms)
1	0	0	2 ⁸ /fw (7.81 ms)
1	0	1	2 ⁹ /fw (15.6 ms)
Other than above			Setting prohibited

WTM3	Selects set time of watch flag
0	2 ¹⁴ /fw (0.5 s)
1	2 ⁵ /fw (977 μs)

WTM1	Controls operation of 5-bit counter	
0	Clear after operation stop	
1	Start	

WTM0	Controls operation of 5-bit counter	
0	Operation stop (clear both prescaler and timer)	
1	Operation enable	

Cautions 1. Stop the timer operation before overwriting WTM.

2. Do not overwrite WTM when both the watch timer and interval timer are being used. If the timer is stopped to overwrite WTM, both the prescaler and timer are cleared, causing an error to occur for the watch timer interrupt (INTWT).

Remarks 1. fw: Watch timer clock oscillation frequency (fxx/2⁷ or fxT)

fxx: Main system clock oscillation frequency

fxT: Subsystem clock oscillation frequency

2. Figures in parentheses apply to operation at fw = 32.768 kHz.

11.4 Operation

11.4.1 Operation as watch timer

The watch timer operates with time intervals of 2^{14} /fw or 2^{5} /fw with the main system clock (4.19 MHz) or subsystem clock (32.768 kHz).

The watch timer generates an interrupt request (INTWT) at fixed time intervals.

The count operation of the watch timer is started when bits 0 (WTM0) and 1 (WTM1) of the watch timer mode control register (WTM) are set to 1. When these bits are cleared to 0, the 5-bit counter is cleared, and the watch timer stops the count operation.

When the interval timer function is started at the same time, the watch timer can be started from 0 seconds by resetting WTM1 to 0. However, an error of up to 2¹⁴/fw or 2⁵/fw may occur when the watch timer overflows (INTWT).

Caution A time interval of 0.5 second cannot be generated by the 12.5 MHz main system clock. Use the 32.768 kHz subsystem clock to generate the 0.5-second time interval

11.4.2 Operation as interval timer

The watch timer can also be used as an interval timer that repeatedly generates an interrupt request (INTTM3) at intervals specified by a count value set in advance.

The interval time can be selected by bits 4 through 6 (WTM4 through WTM6) of the watch timer mode control register (WTM).

fxx = 12.5 MHzWTM6 WTM5 WTM4 Interval Time fxx = 4.19 MHz $f_{XT} = 32.768 \text{ kHz}$ $2^4 \times 1/\text{fw}$ 0 0 0 164 μs 488 μs $488 \mu s$ $2^5 \times 1/fw$ 0 0 1 328 µs 977 μs 977 μs 1 0 $2^6 \times 1/\text{fw}$ 655 μs 1.95 ms 1.95 ms 0 1 1 $2^7 \times 1/fw$ 1.31 ms 3.91 ms 3.91 ms $2^8 \times 1/fw$ 0 0 2.62 ms 7.81 ms 7.81 ms 1 5.24 ms $2^9 \times 1/fw$ 0 15.6 ms 15.6 ms 1 1 Setting prohibited Other than above

Table 11-3. Interval Time of Interval Timer

Cautions 1. Stop the timer operation before overwriting WTM.

2. Do not overwrite WTM when both the watch timer and interval timer are being used. If the timer is stopped to overwrite WTM, both the prescaler and timer are cleared, causing an error to occur for the watch timer interrupt (INTWT).

Remark fw: Watch timer clock oscillation frequency ($fxx/2^7$ or fxT)

fxx: Main system clock frequency

fxt: Subsystem clock oscillation frequency

Figure 11-3. Operation Timing of Watch Timer/Interval Timer

Caution When enabling operation of the watch timer mode control register (WTM), watch timer, and 5-bit counter, the time until the first watch timer interrupt request (INTWT) is generated is not exactly the same time as set by bits 4 to 6 of WTM (WTM4 to WTM6). This is because the 5-bit counter starts counting 1 cycle after 9-bit prescaler output. Following the first INTWT generation, the INTWT signal is generated at the set interval time.

Remarks n: Number of interval timer operations

CHAPTER 12 WATCHDOG TIMER

The watchdog timer detects inadvertent program loops.

Program or system errors are detected by the generation of watchdog timer interrupts. Therefore, at each location in the program, the instruction that clears the watchdog timer (starts the count) within a constant time is input.

If the watchdog timer overflows without executing the instruction that clears the watchdog timer within the set period, a watchdog timer interrupt (INTWDT) is generated to signal a program error.

12.1 Configuration

Figure 12-1 is a block diagram of the watchdog timer.

RUN^{Note}
HALT
IDLE
STOP

Watchdog timer

fclk/2²¹
fclk/2²⁰

fclk/2¹⁹

fclk/2¹⁷

INTWDT

Figure 12-1. Block Diagram of Watchdog Timer

Note Write 1 to bit 7 (RUN) of the watchdog timer mode register (WDM).

Remark fclk: Internal system clock (fxx to fxx/8)

12.2 Control Register

Watchdog timer mode register (WDM)

The WDM is the 8-bit register that controls watchdog timer operation.

To prevent the watchdog timer from erroneously clearing this register due to an inadvertent program loop, this register is only written by a special instruction. This special instruction has a special code format (4 bytes) in the MOV WDM #byte instruction. Writing takes place only when the third and fourth opcodes are mutual 1's complements. If the third and fourth opcodes are not mutual 1's complements and not written, the operand error interrupt is generated. In this case, the return address saved in the stack is the address of the instruction that caused the error. Therefore, the address that caused the error can be identified from the return address saved in the stack.

If returning by simply using the RETB instruction from the operand error, an infinite loop results.

Since an operand error interrupt is generated only when the program inadvertently loops (the correct special instruction is only generated when MOV WDM #byte is described in the NEC assembler RA78K4), make the program initialize the system.

Other write instructions (MOV WDM, A; AND WDM, #byte instruction, SET1 WDM, etc.) are ignored and nothing happens. In other words, WDM is not written, and interrupts, such as operand error interrupts, are not generated. After a system reset (RESET input), when the watchdog timer starts (when the RUN bit is set to 1), the WDM contents cannot change. Only a reset can stop the watchdog timer. The watchdog timer can be cleared by a special instruction.

WDM can be read by an 8-bit data transfer instruction.

RESET input sets WDM to 00H.

Figure 12-2 shows the WDM format.

Figure 12-2. Format of Watchdog Timer Mode Register (WDM)

Address: 0	FFC2H After	r reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
WDM	RUN	0	0	WDT4	0	WDT2	WDT1	0

RUN	Watchdog timer operation setting	
0	Stops the watchdog timer.	
1	Clears the watchdog timer and starts counting.	

WDT4	Watchdog timer interrupt request priority
0	Watchdog timer interrupt request <nmi input="" interrupt="" pin="" request<="" td=""></nmi>
1	Watchdog timer interrupt request >NMI pin input interrupt request

WDT2	WDT1	Count clock	Overflow time [ms] (fclk = 12.5 MHz)
0	0	fcLк/2 ¹⁷	10.5
0	1	fcLк/2 ¹⁹	41.9
1	0	fcLк/2 ²⁰	83.9
1	1	fcLK/2 ²¹	167.8

- Cautions 1. The watchdog timer mode register (WDM) can only by written by a special instruction (MOV WDM, #byte).
 - 2. When writing to WDM to set the RUN bit to 1, write the same value every time. Even if different values are written, the contents written the first time cannot be updated.
 - 3. Once the RUN bit is set to 1, it cannot be reset to 0 by the software.

Remark fclk: Internal system clock (fxx to fxx/8)

fxx: Main system clock oscillation frequency

12.3 Operations

12.3.1 Count operation

The watchdog timer is cleared by setting the RUN bit of the watchdog timer mode register (WDM) to 1 to start counting. After the RUN bit is set to 1, when the overflow time set by bits WDT2 and WDT1 in WDM has elapsed, a non-maskable interrupt (INTWDT) is generated.

If the RUN bit is reset to 1 before the overflow time elapses, the watchdog timer is cleared, and counting restarts.

12.3.2 Interrupt priority order

The watchdog timer interrupt (INTWDT) can be specified as either maskable or non-maskable according to the interrupt selection control register (SNMI) setting. When writing 0 to bit 1 (SWDT) of SNMI, the watchdog timer interrupt can be used as a non-maskable interrupt. In addition to INTWDT, non-maskable interrupts include the interrupt (NMI) from the NMI pin. By setting bit 4 of the watchdog timer mode register (WDM), the acknowledgment order when INTWDT and NMI are simultaneously generated can be set.

If acknowledging the NMI is given priority, even if INTWDT is generated in an NMI servicing program that is being executed, INTWDT is not acknowledged, but is acknowledged after the NMI servicing program ends.

12.4 Cautions

12.4.1 General cautions when using the watchdog timer

- (1) The watchdog timer is one way to detect an inadvertent program loop, but not all the program loops can be detected. Therefore, in a device that demands particularly high reliability, the inadvertent program loop must be detected early not only by the on-chip watchdog timer but by an externally attached circuit; and when returning to the normal state or while in the stable state, processing like stopping the operation must be possible.
- (2) The watchdog timer cannot detect inadvertent program loops in the following cases.
 - <1> When the watchdog timer is cleared in a timer interrupt servicing program
 - <2> When there are successive temporary stores of interrupt requests and macro services (see 22.9 When Interrupt Requests and Macro Service Are Temporarily Held Pending)
 - <3> When an inadvertent program loop is caused by logical errors in the program (when each module in the program operates normally, but the entire system does not operate properly), and when the watchdog timer is periodically cleared
 - <4> When the watchdog timer is periodically cleared by an instruction group that is executed during an inadvertent program loop
 - <5> When the STOP mode and HALT mode or IDLE mode is the result of an inadvertent program loop
 - <6> When the watchdog timer also inadvertently loops when the CPU hangs up because of introduced noise

In cases <1>, <2>, and <3>, detection becomes possible by correcting the program.

In case <4>, the watchdog timer can be cleared only by the 4-byte special instruction. Similarly in <5>, if there is no 4-byte special instruction, the STOP mode and HALT mode or IDLE mode cannot be set. Since the result of the inadvertent program loop is to enter state <2>, three or more bytes of consecutive data must be a specific pattern (example, BT PSWL.bit, \$\$). Therefore, the results of <4>, <5>, and the inadvertent program loop are believed to very rarely enter state <2>.

12.4.2 Cautions about the μ PD784225 Subseries watchdog timer

- (1) The watchdog timer mode register (WDM) can only be written by a special instruction (MOV WDM, #byte).
- (2) If the RUN bit is set to 1 by writing to the watchdog timer mode register (WDM), write the same value every time. Even when different values are written, the contents written the first time cannot be changed.
- (3) Once the RUN bit is set to 1, it cannot be reset to 0 by the software.

CHAPTER 13 A/D CONVERTER

13.1 Functions

The A/D converter converts analog inputs into digital values, and is configured by eight 8-bit resolution channels (ANI0 to ANI7).

Successive approximation is used as the conversion method, and conversion results are saved in the 8-bit A/D conversion result register (ADCR).

A/D conversion can be started by the following two methods.

(1) Hardware start

Conversion is started by trigger input (P03) (rising edge, falling edge, or both rising and falling edges can be specified).

(2) Software start

Conversion is started by setting the A/D converter mode register (ADM).

Select one channel for analog input from ANI0 to ANI7, and perform A/D conversion. If hardware start is used, A/D conversion stops at the end of the A/D conversion operation. If software start is used, the A/D conversion operation is repeated. Each time one A/D conversion is completed, an interrupt request (INTAD) is issued.

13.2 Configuration

The A/D converter includes the following hardware.

Table 13-1. Configuration of A/D Converter

Item	Configuration
Analog input	8 channels (ANI0 to ANI7)
Control registers	A/D converter mode register (ADM) A/D converter input selection register (ADIS)
Registers	Successive approximation register (SAR) A/D conversion result register (ADCR)

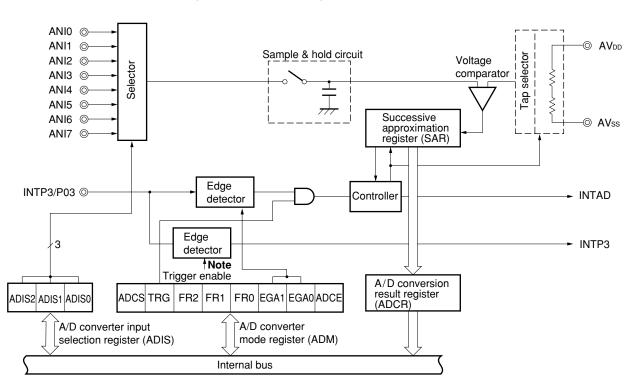


Figure 13-1. Block Diagram of A/D Converter

Note Valid edge specified with bit 3 (EGP3, EGN3) of external interrupt rising edge/falling edge enable register 0 (EGP0, EGN0) (Refer to Figure 21-1 Format of External Interrupt Rising Edge Enable Register 0 (EGP0) and External Interrupt Falling Edge Enable Register 0 (EGN0)).

(1) Successive approximation register (SAR)

Compares the voltage of the analog input with the voltage tap (comparison voltage) from the series resistor string, and saves the result from the most significant bit (MSB).

The contents of SAR will be transmitted across to the A/D conversion result register after the least significant bit (LSB) is saved (A/D conversion finished).

(2) A/D conversion result register (ADCR)

Holds A/D conversion results. At the end of each A/D conversion operation, the conversion result from the successive approximation register is loaded.

ADCR is read with an 8-bit memory manipulation operation.

RESET input makes ADCR undefined.

(3) Sample & hold circuit

Samples analog inputs one by one as they are sent from the input circuit, and sends them to the voltage comparator. The sampled analog input voltages are saved during A/D conversion.

(4) Voltage comparator

Compares the analog input voltage with the output voltage of the series resistor string.

(5) Series resistor string

Placed between AVDD and AVss, generates the voltage that is compared with that of the analog input signal.

(6) ANIO to ANI7 pins

Eight analog input channels used for inputting analog data to the A/D converter for A/D conversion. Pins not selected for analog input with the A/D converter input selection register (ADIS) can be used as input ports.

- Cautions 1. Use the ANI0 to ANI7 input voltages within the rated voltage range. Inputting a voltage equal to or greater than AVDD, or equal to or smaller than AVSS (even if within the absolute maximum rated range) will cause the channel's conversion values to become undefined, or may affect the conversion values of other channels.
 - 2. Analog input pins (AN10 to AN17) function alternately as input port pins (P10 to P17). When performing an A/D conversion with any one of the AN10 to AN17 inputs selected, do not execute input instructions to port 1 during conversion, otherwise the conversion resolution may decrease. When a digital pulse is applied to a pin that adjoins the pin undergoing A/D conversion, the expected A/D conversion value may not be acquired due to coupling noise. Therefore do not apply a pulse to a pin that adjoins the pin undergoing A/D conversion.

(7) AVss pin

Ground pin of the A/D converter. Always use this pin at the same potential as the Vss pin, even when not using the A/D converter.

(8) AV_{DD} pin

Analog power supply pin and reference voltage input pin of the A/D converter. Always use this pin at the same potential as the VDD pin, even when not using the A/D converter.

13.3 Control Registers

The A/D converter is controlled by the following two registers.

- A/D converter mode register (ADM)
- A/D converter input selection register (ADIS)

(1) A/D converter mode register (ADM)

Used to set the A/D conversion time of the analog input to be converted, start/stop of the conversion operation, and external triggers.

ADM is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets ADM to 00H.

Figure 13-2. Format of A/D Converter Mode Register (ADM)

Address: 0FF80H After reset: 00H R/W (2) 0 6 (5) 4 (3) (1) Symbol (7) ADM ADCS TRG FR2 FR1 FR0 EGA1 EGA0 ADCE

ADCS	A/D conversion control
0	Conversion stop
1	Conversion enable

TRG	Software start/hardware start selection
0	Software start
1	Hardware start

FR2	FR1	FR0	A/D conversion time selection			
FN2	FNI	FNU	Number of clocks	@fxx = 12.5 MHz	@fxx = 6.25 MHz	
0	0	0	144/fxx	Setting prohibited	23.0 μs	
0	0	1	120/fxx	Setting prohibited	19.2 μs	
0	1	0	96/fxx	Setting prohibited	15.4 μs	
1	0	0	288/fxx	23.0 μs	46.1 μs	
1	0	1	240/fxx	19.2 μs	38.4 μs	
1	1	0	192/fxx	15.4 μs	30.7 μs	
Other than above		_	Setting prohibited			

EGA1	EGA0	External trigger signal valid edge selection
0	0	No edge detection
0	1	Detection of falling edge
1	0	Detection of rising edge
1	1	Detection of both falling and rising edges

ADCE	Reference voltage circuit control
0	Circuit stopped ^{Note}
1	Circuit operating

Note The reference voltage circuit operates when ADCS is 1

Cautions 1. Set the A/D conversion time as follows.

When V_{DD} = 2.7 V to 5.5 V: 14 μ s or more

When V_{DD} = 2.0 V to 2.7 V: 28 μ s or more

When $V_{DD} = 1.9 \text{ V}$ to 2.0 V: 48 μ s or more (μ PD78F4225, 78F4225Y)

When $V_{DD} = 1.8 \text{ V}$ to 2.0 V: 48 μ s or more (μ PD784224, 784225, 784224Y, 784225Y)

- 2. When overwriting FR0 to FR2 to different data, temporarily halt the A/D conversion operations before continuing.
- 3. If ADCS is set after ADCE is set and the following time has elapsed, the first A/D conversion value can be used.

When V_{DD} = 2.7 V to 5.5 V: 14 μ s or more

When V_{DD} = 2.0 V to 2.7 V: 28 μ s or more

When V_{DD} = 1.9 V to 2.0 V: 48 μ s or more (μ PD78F4225, 78F4225Y)

When V_{DD} = 1.8 V to 2.0 V: 48 μ s or more (μ PD784224, 784225, 784224Y, 784225Y)

4. If ADCS is set when ADCE = 0, the first A/D conversion value is undefined.

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

(2) A/D converter input selection register (ADIS)

Used to specify the input ports for analog signals to be A/D converted.

ADIS can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets ADIS to 00H.

Figure 13-3. Format of A/D Converter Input Selection Register (ADIS)

Address: 0	FF81H After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADIS	0	0	0	0	0	ADIS2	ADIS1	ADIS0

ADIS2	ADIS1	ADIS0	Analog input channel setting
0	0	0	ANIO
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

13.4 Operations

13.4.1 Basic operations of A/D converter

- <1> Select one channel for A/D conversion with the A/D converter input selection register (ADIS).
- <2> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> After sampling has been performed for a certain time, the sample & hold circuit enters the hold status, and the input analog voltage is held until A/D conversion ends.
- <4> Bit 7 of the successive approximation register (SAR) is set. The tap selector sets the voltage tap for the series resistance string at (1/2)AV_{DD}.
- <5> The difference in voltage between the series resistance string's voltage tap and analog input is compared with the voltage comparator. If the analog input is greater than (1/2)AV_{DD}, the setting for the MSB in SAR will remain the same. If it is smaller than (1/2)AV_{DD}, the MSB will be reset.
- Next, bit 6 of SAR is automatically set, and the next comparison is started. The series resistor string voltage tap is selected as shown below according to bit 7 to which a result has already been set.
 - Bit 7 = 1: (3/4)AVDD
 Bit 7 = 0: (1/4)AVDD

The voltage tap and analog input voltage are compared, and bit 6 of SAR is manipulated according to the result, as follows.

- Analog input voltage ≥ Voltage tap: Bit 6 = 1
- Analog input voltage < Voltage tap: Bit 6 = 0
- <7> Comparisons of this kind are repeated until bit 0 of SAR.
- <8> When comparison of all eight bits is completed, the valid digital result remains in SAR, and this value is transferred to the A/D conversion result and latched.

At the same time, it is possible to issue an A/D conversion end interrupt request (INTAD).

Caution The value of the first A/D conversion is undefined if ADCS is set when bit 0 (ADCE) of the A/D converter mode register (ADM) is 0.

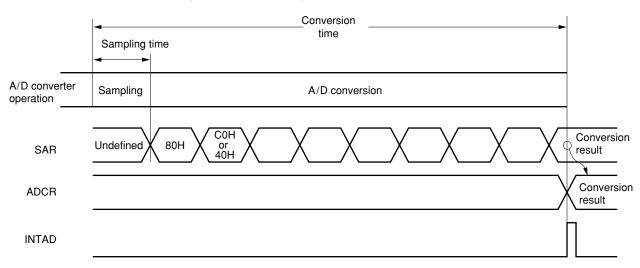


Figure 13-4. Basic Operations of A/D Converter

A/D conversion is performed continuously until bit 7 (ADCS) of the A/D converter mode register (ADM) is reset 0 by software.

If a write operation to ADM or the A/D converter input selection register (ADIS) is performed during A/D conversion, the conversion operation is initialized and conversion starts from the beginning if the ADCS bit is set 1.

RESET input makes the A/D conversion result register (ADCR) undefined.

If bit 0 (ADCE) of the A/D converter mode register is not set to 1, the value of the first A/D conversion is undefined immediately after A/D conversion starts. Poll the A/D conversion end interrupt request (INTAD) and discard the first A/D conversion result.

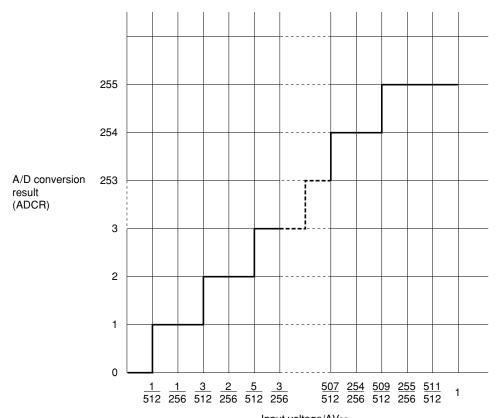
13.4.2 Input voltage and conversion result

The relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the A/D conversion result (value saved in the A/D conversion result register (ADCR)) is expressed by the following equation.

ADCR = INT
$$\left(\frac{V_{\text{IN}}}{AV_{\text{DD}}} \times 256 + 0.5\right)$$

or

$$(ADCR - 0.5) \times \frac{AV_{DD}}{256} \le V_{IN} < (ADCR + 0.5) \times \frac{AV_{DD}}{256}$$


Remark INT(): Function returning the integer portion of the value in parentheses

VIN: Analog input voltage AVDD: AVDD pin voltage

ADCR: A/D conversion result register (ADCR) value

Figure 13-5 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 13-5. Relationship Between Analog Input Voltage and A/D Conversion Result

Input voltage/AVDD

13.4.3 Operation modes of A/D converter

Select one channel for analog input from between ANI0 to ANI7 with the A/D converter input selection register (ADIS) and commence A/D conversion.

A/D conversion can be started in the following two ways.

- · Hardware start: Conversion start by trigger input (P03)
- Software start: Conversion start by setting A/D converter mode register (ADM)

In addition to this, the result of A/D conversion will be stored in the A/D conversion result register (ADCR), and at the same time, an interrupt request signal (INTAD) will be issued.

(1) A/D conversion operation by hardware start

The A/D conversion operation can be made to enter the standby status by setting "1" to bit 6 (TRG) and bit 7 (ADCS) of the A/D converter mode register (ADM). When an external trigger signal (P03) is input, conversion of the voltage applied to the analog input pin set with ADIS begins.

The result of conversion will be stored in the A/D conversion result register (ADCR) when the A/D conversion operation has finished, and an interrupt request signal (INTAD) will be issued. When the A/D conversion operation that was started completes the first A/D conversion, no other A/D conversion operation is started unless an external trigger signal is input.

The A/D conversion process will be suspended if ADCS is overwritten during A/D conversion, and it will enter a standby mode until a new external trigger signal is input. The A/D conversion process will be restarted from the beginning when an external trigger signal is input once again. The A/D conversion process will be started when the next external trigger signal is received when ADCS is overwritten with A/D conversion in the standby mode.

If, during A/D conversion, data where ADCS is 0 is written to ADM, A/D conversion is immediately stopped.

Caution When P03/INTP3 is used as the external trigger input (P03), specify the valid edge with bits 1 and 2 (EGA0 and EGA1) of the A/D converter mode register (ADM) and set the interrupt mask flag (PMK3) to 1.

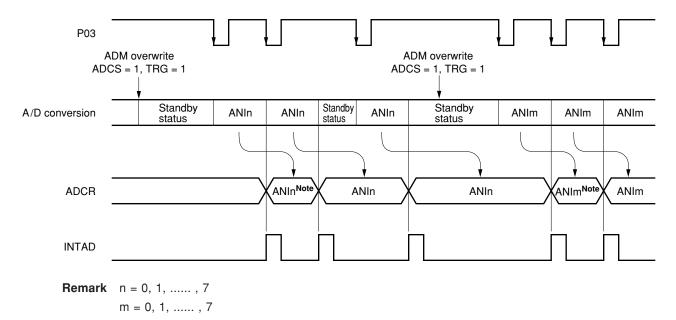


Figure 13-6. A/D Conversion Operation by Hardware Start (When Falling Edge Is Specified)

Note If bit 0 (ADCE) of the A/D converter mode register is not set to 1, the value of the first A/D conversion is undefined immediately after A/D conversion starts. Poll the A/D conversion end interrupt request (INTAD) and discard the first A/D conversion result.

(2) A/D conversion operation by software start

A/D conversion of the voltage applied to the analog input pin specified with the A/D converter input selected register (ADIS) is started by setting "0" to bit 6 (TRG) and "1" to bit 7 (ADCS) of the A/D converter mode register (ADM).

When A/D conversion ends, the conversion result is saved in the A/D conversion result register (ADCR), and an interrupt request signal (INTAD) is issued. When an A/D conversion operation that was started completes the first A/D conversion, the next A/D conversion starts immediately. A/D conversion operations are performed continuously until new data is written to ADM.

The A/D conversion process will be suspended if ADCS is overwritten during A/D conversion, and an A/D conversion operation for the newly selected analog input channel will be started.

If, during A/D conversion, data where ADCS is 0 is written to ADM, the A/D conversion operation is immediately stopped.

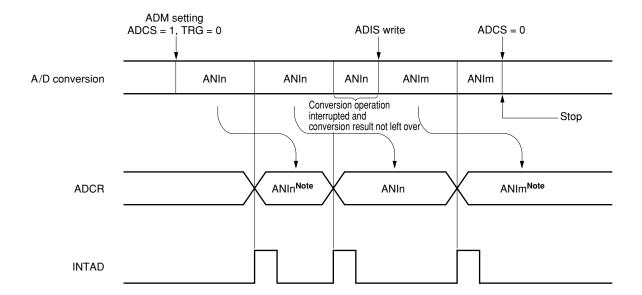


Figure 13-7. A/D Conversion Operation by Software Start

Remark
$$n = 0, 1,, 7$$

 $m = 0, 1,, 7$

Note If bit 0 (ADCE) of the A/D converter mode register is not set to 1, the value of the first A/D conversion is undefined immediately after A/D conversion starts. Poll the A/D conversion end interrupt request (INTAD) and discard the first A/D conversion result.

13.5 Reading A/D Converter Characteristics Table

Words used specifically for the A/D converter are defined below.

(1) Resolution

The lowest identifiable analog input voltage, or the ratio of the analog input voltage to one bit of a digital output, is known as 1LSB (least significant bit). The ratio to the full scale of 1LSB is expressed as %FSR (full-scale range).

In the case of 8-bit resolution:

$$1LSB = 1/2^8 = 1/256$$

= 0.4%FSB5

The accuracy is unrelated to the resolution, and is determined by the overall error.

(2) Overall error

This indicates the maximum difference between the actual and theoretical measurement values.

Zero-scale error, full-scale error, integral linearity error, differential linearity error, and combinations of these errors are expressed as the overall error.

Note that the quantization error is not included in the overall error.

(3) Quantization error

When analog values are converted to digital values, an error of $\pm 1/2$ LSB inevitably occurs. In an A/D converter, because analog input voltages within a range of \pm 1/2 LSB are converted into the same digital code, this quantization error cannot be avoided.

Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error values shown in the characteristics table.

Figure 13-8. Overall Error

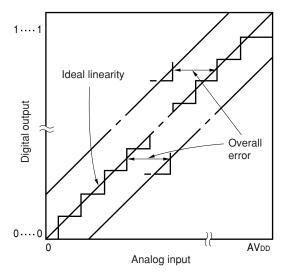
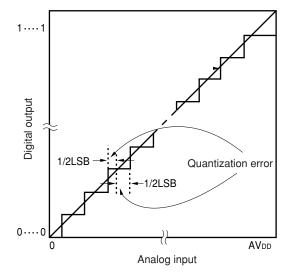



Figure 13-9. Quantization Error

(4) Zero-scale error

This expresses the difference between the actual and theoretical analog input voltage measurement values when the digital output changes from 0·····000 to 0·····001 (1/2LSB). If the actual value is higher than the theoretical value, the zero-scale error indicates the difference between the actual and theoretical analog input voltage measurement values when the digital output changes from 0·····010 (3/2LSB).

(5) Full-scale error

This expresses the difference between the actual and theoretical analog input voltage measurement values when the digital output changes from $1 \cdot \cdot \cdot \cdot \cdot 111$ (full-scale - 3/2LSB).

(6) Integral linearity error

This expresses the extent to which the conversion characteristics differ from the theoretical linear relationship. The integral linearity error indicates the maximum error between the actual and theoretical measurement values when the zero-scale and full-scale errors are both 0.

(7) Differential linearity error

This expresses the difference between the actual and theoretical measurement values of the width output by a certain code when the width output by a theoretical code is 1LSB.

Figure 13-10. Zero-Scale Error

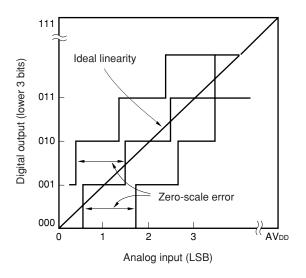


Figure 13-11. Full-Scale Error

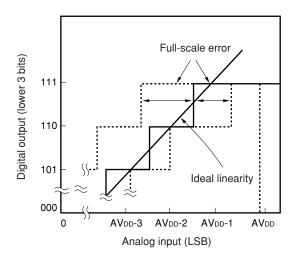


Figure 13-12. Integral Linearity Error

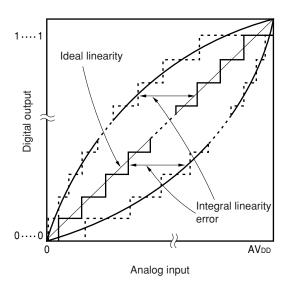
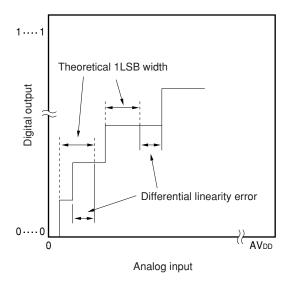



Figure 13-13. Differential Linearity Error

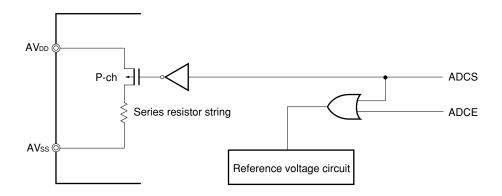


(8) Conversion time

This expresses the time from when the analog input voltage is applied to when the digital output is obtained. The sampling time is included in the conversion time value shown in the characteristic table.

(9) Sampling time

This is the time during which the analog switch is on to allow the analog voltage to be fetched in the sample & hold circuit.


13.6 Cautions

(1) Current consumption in standby mode

The A/D converter operation is stopped in the standby mode. At this time, the current consumption can be reduced by setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 0 or by stopping the reference voltage circuit (bit 0 of ADM (ADCE) = 0).

The method to reduce the current consumption in the standby mode is shown in Figure 13-14.

Figure 13-14. Method to Reduce Current Consumption in Standby Mode

(2) ANI0 to ANI7 input range

Use the ANI0 to ANI7 input voltages within the rated voltage range. Inputting a voltage equal to or greater than AV_{DD}, or equal to or smaller than AV_{SS} (even if within the absolute maximum rated range) will cause the channel's conversion values to become undefined, or may affect the conversion values of other channels.

(3) Conflicting operations

<1> Conflict between A/D conversion result register (ADCR) write and read of ADCR by instruction at conversion end

The read operation to ADCR is prioritized. After the read operation, a new conversion result is written to ADCR.

<2> Conflict between ADCR write and external trigger signal input at conversion end

External trigger signals cannot be received during A/D conversion. Therefore, external trigger signals are not received during an ADCR write operation.

<3> Conflict between ADCR write and A/D converter mode register (ADM) write, or between A/D converter input selection register (ADIS) write at conversion end

The write operation to ADM or ADIS is prioritized. A write to ADCR is not performed. Moreover, no interrupt signal (INTAD) is issued at conversion end.

(4) Anti-noise measures

Attention must be paid to noise fed to AV_{DD} and ANI0 to ANI7 to preserve the 8-bit resolution. The influence of noise grows proportionally to the output impedance of the analog input source. Therefore, it is recommended to connect C externally, as shown in Figure 13-15.

If there is the possibility that noise equal to or greater than AV_{DD}, or equal to or smaller than AV_{SS} may enter, clamp with a diode having a small V_F (0.3 or less).

AV_{DD}

ANI0 to ANI7

V_{DD}

AV_{SS}

V_{SS1}

Figure 13-15. Handling of Analog Input Pin

(5) ANIO/P10 to ANI7/P17

The analog input pins (ANI0 to ANI7) can also be used as input port pins (P10 to P17).

Do not execute an input command that corresponds with port 1 during conversion if any of the ANI0 to ANI7 pins have been selected for A/D conversion, as this would result in a lowered resolution.

Moreover, if a digital pulse is applied to other analog input pins during A/D conversion, the A/D conversion value will not be obtained as expected because of coupling noise. Therefore, do not apply a pulse to other analog input pins during A/D conversion.

(6) Input impedance of AVDD pin

In the μ PD784225, the AV_{DD} pin can also be used as the reference voltage source and a series resistor string of approximately 46 k Ω is connected between the AV_{DD} and AVss pins.

Therefore, if the output impedance of the reference voltage source is high, connecting in series a series resistor string between the AV_{DD} and AV_{SS} pins will result in a large reference voltage error.

(7) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the A/D converter input selection register (ADIS) is changed. Owing to this, there will be cases when the A/D conversion result and ADIF that correspond with the pre-amended analog input immediately prior to ADM overwriting will be set if the analog input pin is amended during A/D conversion. It must therefore be noted that the ADIF will be set regardless of whether the A/D conversion for the amended analog input has finished or not when ADIF is read immediately after ADIS has been overwritten. Moreover, if A/D conversion is stopped once and then resumed, clear ADIF before resuming conversion.

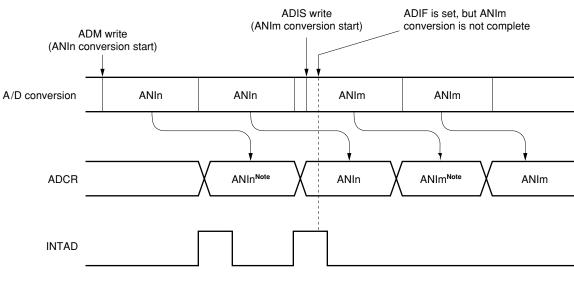


Figure 13-16. A/D Conversion End Interrupt Request Generation Timing

Remark $n = 0, 1, \dots, 7$ $m = 0, 1, \dots, 7$

Note If bit 0 (ADCE) of the A/D converter mode register is not set to 1, the value of the first A/D conversion is undefined immediately after A/D conversion starts. Take measures such as polling the A/D conversion end interrupt request (INTAD) and discarding the first A/D conversion result.


(8) Bit 0 (ADCE) of A/D converter mode register (ADM)

Setting ADCE to 1 allows the value of the first A/D conversion immediately after A/D conversion operation start to be used.

(9) Conversion result immediately after A/D conversion is started

If bit 7 (ADCS0) of the A/D converter mode register (ADM) is set to 1 without setting bit 0 (ADCE) to 1, the value of the first A/D conversion is undefined immediately after the A/D conversion operation starts. Take measures such as polling the A/D conversion end interrupt request (INTAD) and discarding the first conversion result.

Figure 13-17. Conversion Results Immediately After A/D Conversion Is Started

(10) Reading A/D conversion result register (ADCR)

If the conversion result register (ADCR) is read after stopping the A/D conversion operation, the conversion result may be undefined. Therefore, be sure to read ADCR before stopping operation of the A/D converter.

(11) Timing that makes the A/D conversion result undefined

If the timing of the end of A/D conversion and the timing of the stop of operation of the A/C converter conflict, the A/D conversion value may be undefined. Because of this, be sure to read the A/D conversion result while the A/D converter is in operation. Furthermore, when reading an A/D conversion result after the A/D converter operation has stopped, be sure to have done so by the time the next conversion result is complete. The conversion result read timing is shown in Figures 13-18 and 13-19 below.

Figure 13-18. Conversion Result Read Timing (When Conversion Result Is Undefined)

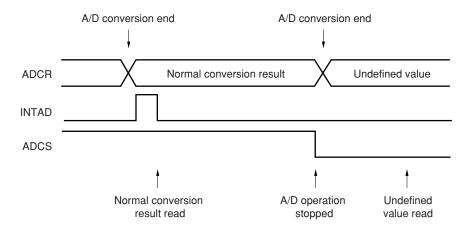
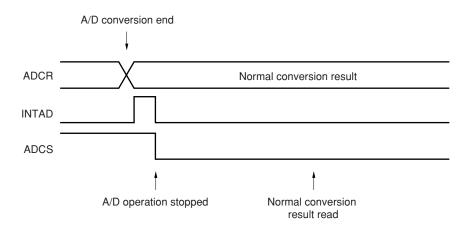



Figure 13-19. Conversion Result Read Timing (When Conversion Result Is Normal)

(12) Cautions on board design

In order to avoid negative effects from digital circuit noise on the board, analog circuits must be placed as far away as possible from digital circuits. It is particularly important to prevent analog and digital signal lines from crossing or coming into close proximity, as A/D conversion characteristics are vulnerable to degradation from the induction of noise or other such factors.

Connect AVss and Vss1 to a single stable location on the board.

(13) VDD0 and AVDD pins

The AV_{DD} pin functions as the analog circuit power supply pin and the A/D converter's reference voltage input pin, and also supplies power to the input circuits of ANI0/P10 to ANI7/P17.

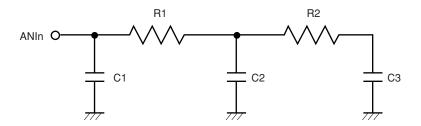
Connect a capacitor between the V_{DDO} and AV_{DD} pins to minimize conversion error caused by noise. Note also that the voltage applied to the V_{DDO} and AV_{DD} pins following the resumption of A/D conversion after it was stopped may be unstable, causing a degradation in the accuracy of the A/D conversion. Be sure to connect a capacitor between the V_{DDO} and AV_{DD} pins in this case also. An example of capacitor connection is shown in Figure 13-20 below.

Figure 13-20. Example of Capacitor Connection Between VDDO and AVDD

Remark C1, C2: 4.7 μ F to 10 μ F (reference values)

C3, C4: 0.01 μ F to 0.1 μ F (reference values)

Connect C3 and C4 as close to the pins as possible.


(14) Internal equivalence circuit and allowable signal source impedance of ANI0 to ANI7

In order to complete sampling within the sampling time and obtain a high enough A/D conversion accuracy, it is necessary to sufficiently reduce the impedance of the sensor and other signal sources. Figure 13-21 shows the internal equivalence circuit of the ANI0 to ANI7 pins in the microcontroller.

If the impedance of the signal source is high, it can be made to seem smaller by connecting a large capacitance to the ANI0 to ANI7 pins. A circuit example is shown in Figure 13-22. In this case, because a low pass filter is configured in the circuit, impedance will no longer be able to follow analog signals with large differential coefficients.

When converting high-speed analog signals or performing conversion in scan mode, be sure to insert a low-impedance buffer.

Figure 13-21. Internal Equivalence Circuit of ANI0 to ANI7 Pins

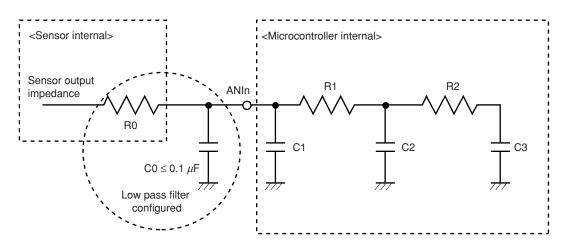

Remark n = 0 to 7

Table 13-2. Resistance and Capacitance Values for Equivalence Circuits (Reference Values)

V _{DD0}	R1	R2	C1	C2	C3
1.8 V	75 kΩ	30 kΩ	3 pF	4 pF	2 pF
2.7 V	12 kΩ	8 kΩ	3 pF	3 pF	2 pF
4.5 V	3 kΩ	2.7 kΩ	3 pF	1.4 pF	2 pF

Caution The resistance and capacitance values in Table 13-2 cannot be guaranteed.

Figure 13-22. Example of Circuit When Signal Source Impedance Is High

Remark n = 0 to 7

CHAPTER 14 D/A CONVERTER

14.1 Function

The D/A converter converts the digital input into analog values and consists of two voltage output D/A converter channels with 8-bit resolution.

The conversion method is an R-2R resistor ladder.

Set DACE0 of D/A converter mode register 0 (DAM0) and DACE1 of D/A converter mode register 1 (DAM1) to start D/A conversion.

The D/A converter has the following two modes.

(1) Normal mode

After D/A conversion, the analog voltage is immediately output.

(2) Real-time output mode

After D/A conversion, the analog voltage is output synchronized with the output trigger.

Since a sine wave is created when this mode is used, MSK modems can be easily incorporated into cordless phones.

Caution If only one channel of the D/A converter is used when AV_{REF1} < V_{DD}, make either of the following settings at pins that are not used for analog output.

- · Set the port mode register (PM13X) to 1 (input mode) and connect to Vss.
- Set the port mode register (PM13X) to 0 (output mode) and the output latch to 0, and output a low level.

14.2 Configuration

The D/A converter includes the following hardware.

Table 14-1. Configuration of D/A Converter

Item	Configuration
Registers	D/A conversion setting register 0 (DACS0) D/A conversion setting register 1 (DACS1)
Control registers	D/A converter mode register 0 (DAM0) D/A converter mode register 1 (DAM1)

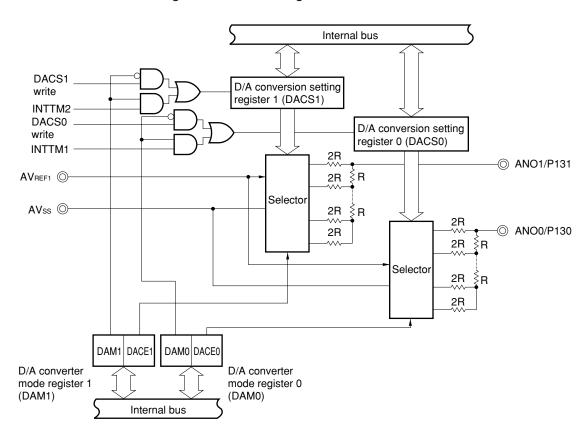


Figure 14-1. Block Diagram of D/A Converter

(1) D/A conversion setting registers 0 and 1 (DACS0, DACS1)

DACS0 and DACS1 set the analog voltages that are output to the ANO0 and ANO1 pins, respectively. DACS0 and DACS1 are set by an 8-bit memory manipulation instruction.

RESET input sets DACS0 and DACS1 to 00H.

The analog voltages output by the ANO0 and ANO1 pins are determined by the following equation.

ANOn output voltage =
$$AV_{REF1} \times \frac{DACSn}{256}$$

n = 0, 1

- Cautions 1. In the real-time output mode, when the data set in DACS0 and DACS1 is read before the output trigger is generated, the set data is not read and the previous data is read.
 - 2. In the real-time output mode, set the data of DACS0 and DACS1 until the next output trigger is generated after the output trigger is generated.

14.3 Control Registers

D/A converter mode registers 0 and 1 (DAM0, DAM1)

The D/A converter is controlled by D/A converter mode registers 0 and 1 (DAM0, DAM1). These registers enable or stop the operation of the D/A converter.

DAM0 and DAM1 are set by a 1-bit and 8-bit memory manipulation instruction.

RESET input sets DAM0 and DAM1 to 00H.

Figure 14-2. Format of D/A Converter Mode Registers 0 and 1 (DAM0, DAM1)

Address: 0	FF86H, 0FF8	37H After res	et: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DAMn	0	0	0	0	0	0	DAMn	DACEn

DAMn	D/A converter channel n operation mode
0	Normal mode
1	Real-time output mode

DACEn	D/A converter channel n control
0	Stop conversion
1	Enable conversion

Cautions 1. When the D/A converter is used, set the alternate-function port pins to the input mode and disconnect the pull-up resistors.

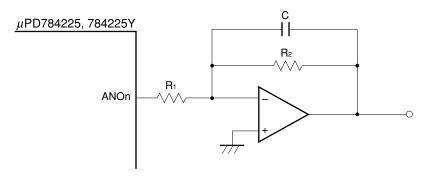
- 2. Always set bits 2 to 7 to 0.
- 3. The output when the D/A converter operation has stopped enters a high-impedance state.
- 4. The output triggers in the real-time output mode are INTTM1 for channel 0 and INTTM2 for channel 1.

Remark n = 0, 1

14.4 Operation

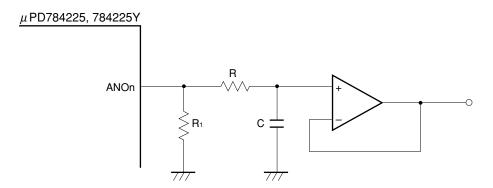
- <1> Select the operation mode of channel 0 using DAM0 of D/A converter mode register 0 (DAM0) and the operation mode of channel 1 using DAM1 of D/A converter mode register 1 (DAM1).
- <2> Set the data that corresponds to the analog voltages that are output to pins ANO0/P130 and ANO1/P131 of D/A conversion setting registers 0 and 1 (DACS0, DACS1).
- <3> Set DACE0 of DAM0 and DACE1 of DAM1 to start D/A conversion for channels 0 and 1, respectively.
- <4> After D/A conversion in the normal mode, the analog voltages at pins ANO0/P130 and ANO1/P131 are immediately output. In the real-time output mode, the analog voltage is output synchronized with the output trigger.
- <5> In the normal mode, the output analog voltages are maintained until new data is set in DACS0 and DACS1. In the real-time output mode, after new data is set in DACS0 and DACS1, it is held until the next output trigger is generated.

Caution Set DACE0 and DACE1 after data has been set in DACS0 and DACS1.


14.5 Cautions

(1) Output impedance of the D/A converter

Since the output impedance of the D/A converter is high, current cannot be taken from the ANOn pin (n = 0,1). If the input impedance of the load is low, insert a buffer amplifier between the load and the ANOn pin. In addition, use the shortest possible wire from the buffer amplifier or load (to increase the output impedance). If the wire is long, surround it with a ground pattern.


Figure 14-3. Buffer Amplifier Insertion Example

(a) Inverting Amplifier

• The input impedance of the buffer amplifier is R₁.

(b) Voltage follower

- The input impedance of the buffer amplifier is R_1 .
- If there is no R₁ and RESET is low, the output is undefined.

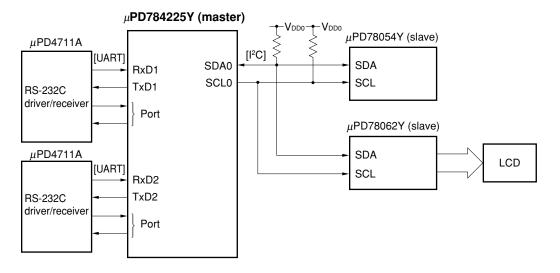
(2) Output voltage of the D/A converter

Since the output voltage of the D/A converter changes in stages, use the signals output from the D/A converter after passing them through a low-pass filter.

(3) AVREF1 pin

Handle pins not being used for analog output in either of the following ways when the D/A converter is only using one channel with $AV_{REF1} < V_{DD}$.

- Set the port mode register (PM13X) to 1 (input mode) and connect to Vsso.
- Set the port mode register (PM13X) to 0 (output mode), set the output latch to 0, and output a low level.


CHAPTER 15 SERIAL INTERFACE OVERVIEW

The μ PD784225 Subseries has a serial interface with three independent channels. Therefore, communication outside and within the system can be performed simultaneously using all three channels.

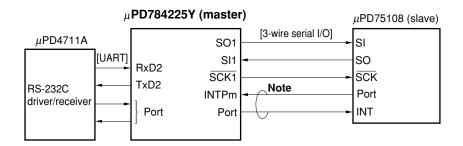

- Asynchronous serial interface (UART)/3-wire serial I/O (IOE) \times 2 channels
 - \rightarrow See CHAPER 16.
- Clocked serial interface (CSI) × 1 channel
 - 3-wire serial I/O mode (MSB first)
 - \rightarrow See **CHAPTER 17**.
 - I²C bus mode (multimaster compatible) (only in the μ PD784225Y Subseries)
 - → See CHAPTER 18.

Figure 15-1. Serial Interface Example

(a) $UART + I^2C$

(b) UART + 3-wired serial I/O

Note Handshake lines

CHAPTER 16 ASYNCHRONOUS SERIAL INTERFACE/3-WIRE SERIAL I/O

The μ PD784225 provides two on-chip serial interface channels for which the asynchronous serial interface (UART) mode and the 3-wire serial I/O (IOE) mode can be selected.

These two serial interface channels have exactly the same functions.

Table 16-1. Differences in Names Between UART1/IOE1 and UART2/IOE2

Item	UART1/IOE1	UART1/IOE2
Pin name	P22/ASCK1/SCK1, P20/RxD1/SI1, P21/TxD1/SO1	P72/ASCK2/SCK2, P70/RxD2/SI2, P71/TxD2/SO2
Asynchronous serial interface mode register	ASIM1	ASIM2
Name of bits inside asynchronous serial interface mode register	TXE1, RXE1, PS11, PS10, CL1, SL1, ISRM1	TXE2, RXE2, PS21, PS20, CL2, SL2, ISRM2
Asynchronous serial interface status register	ASIS1	ASIS2
Name of bits inside asynchronous serial interface status register	PE1, FE1, OVE1	PE2, FE2, OVE2
Serial operation mode register	CSIM1	CSIM2
Name of bits inside serial operation mode register	CSIE1, MODE1, SCL11, SCL10	CSIE2, MODE2, SCL21, SCL20
Baud rate generator control register	BRGC1	BRGC2
Name of bits inside baud rate generator control register	TPS10 to TPS12, MDL10 to MDL13	TPS20 to TPS22, MDL20 to MDL23
Interrupt request name	INTSR1/INTCSI1, INTSER1, INTST1	INTSR2/INTCSI2, INTSER2, INTST2
Interrupt control register and name of bits used in this chapter	SRIC1, SERIC1, STIC1, SRIF1, SERIF1, STIF1	SRIC2, SERIC2, STIC2, SRIF2, SERIF2, STIF2

16.1 Switching Asynchronous Serial Interface Mode and 3-Wire Serial I/O Mode

The asynchronous serial interface mode and the 3-wire serial I/O mode cannot be used at the same time. These modes can be switched by setting asynchronous serial interface mode registers 1 and 2 (ASIM1, ASIM2) and serial operation mode registers 1 and 2 (CSIM1, CSIM2), as shown in Figure 16-1 below.

After 6 R/W Address reset PS11 PS10 ASIM1 TXE1 RXE1 CL1 SL1 ISRM1 0 0FF70H 00H R/W PS21 ASIM2 TXE2 RXE2 PS20 CL2 SL2 ISRM2 0 0FF71H 00H R/WSpecification of operation in asynchronous serial interface mode (see Figure 16-3). RXE1 CSIE1 TXE1 Operation mode TXE2 RXE2 CSIE2 0 0 0 Operation stopped mode 3-wire serial I/O mode 0 1 0 Asynchronous serial interface 0 0 1 mode 0 1 0 1 0 1 Other than above Setting prohibited After 5 4 3 2 0 Address R/W reset CSIM1 CSIE1 0 0 0 MODE1 SCL11 SCL10 0FF91H 00H R/W MODE2 SCL21 SCL20 CSIM2 0 0 0 0FF92H 00H R/W Specification of operation in 3-wire serial I/O mode (see Figure 16-13).

Figure 16-1. Switching Asynchronous Serial Interface Mode and 3-Wire Serial I/O Mode

Table 16-2. Serial Interface Operation Mode Settings

(1) Operation stopped mode

AS	lMn	(CSIMr	า	PM20	P20	PM21	P21	PM22	P22	First	First Shift P20/RxD1/SI1 P21/TxD		P21/TxD1/SO1	P22/ASCK1/SCK1
TXEn	RXEn	CSIEn	SCLn1	SCLn0	PM70	P70	PM71	P71	PM72	P72	Bit	Clock	P70/RxD2/SI2	P71/TxD2/SO2	P72/ASCK2/SCK2
													Pin Function	Pin Function	Pin Function
0	0	0	×	×	×Note 1	-	-	P20	P21	P22					
											P70 P71 P72		P72		
Other than above											Setting	prohibited			

(2) Asynchronous serial interface mode

AS	lMn	(CSIM	n	PM20	P20	PM21	P21	PM22	P22	First	Shift	P20/RxD1/SI1	P21/TxD1/SO1	P22/ASCK1/SCK1
TXEn	RXEn	CSIEn	SCLn1	SCLn0	PM70	P70	PM71	P71	PM72	P72	Bit	Clock	P70/RxD2/SI2	P71/TxD2/SO2	P72/ASCK2/SCK2
													Pin Function	Pin Function	Pin Function
1	0	0	×	×	×Note 1	×Note 1	ONote 2	0	1	×	LSB	External	P20	TxDn	ASCKn input
												clock	P70	(CMOS output)	
									×Note 1	×Note 1		Internal			P22
												clock			P72
0	1				1	×	×Note 1	×Note 1	1	×		External	RxDn	P21	ASCKn input
												clock		P71	
									×Note 1	×Note 1		Internal			P22
												clock			P72
1	1						ONote 2	0	1	×		External		TxDn	ASCKn input
												clock		(CMOS output)	
									×Note 1	×Note 1		Internal			P22
												clock			P72
	Other than above						Setting prohibited								

(3) 3-wire serial I/O mode

AS	Mn	(CSIM	n	PM20	P20	PM21	P21	PM22 P22 First Shift P20/RxD1/SI1 P21/TxD1/SO1 F		P22/ASCK1/SCK1				
TXEn	RXEn	CSIEn	SCLn1	SCLn0	PM70	P70	PM71	P71	PM72	P72	Bit	Clock	P70/RxD2/SI2	P71/TxD2/SO2	P72/ASCK2/SCK2
													Pin Function	Pin Function	Pin Function
0	0	1	0	0	1 Note 3	×Note 3	0	0	1	×	MSB	External	SIn ^{Note 3}	SOn	SCKn input
												clock		(CMOS output)	
			Note 4	Note 4					0	0		Internal			SCKn output
												clock			
Other than above									Setting	g prohibited					

Notes 1. These pins can be used for port functions.

- 2. Refer to 16.3.2 Asynchronous serial interface (UART) mode (2) Communication operation (c) Transmission.
- 3. When only transmission is used, these pins can be used as P20 and P70 (CMOS I/O).
- 4. Refer to serial operation mode registers 1 and 2 (CSIM1, CSIM2).

Remark ×: Don't care

n = 1, 2

16.2 Asynchronous Serial Interface Mode

The asynchronous serial interface (UART: Universal Asynchronous Receiver Transmitter) offers the following two modes.

(1) Operation stopped mode

This mode is used when serial transfer is not performed to reduce the power consumption.

(2) Asynchronous serial interface (UART) mode

This mode is used to send and receive the 1-byte data that follows the start bit, and supports full-duplex transmission.

A UART-dedicated baud rate generator is provided on-chip, enabling transmission at any baud rate within a broad range. The baud rate can also be defined by dividing the input clock to the ASCK pin.

The MIDI standard baud rate (31.25 Kbps) can be used by utilizing the UART-dedicated baud rate generator.

16.2.1 Configuration

The asynchronous serial interface includes the following hardware.

Figure 16-2 shows the block diagram of the asynchronous serial interface.

Table 16-3. Configuration of Asynchronous Serial Interface

Item	Configuration
Registers	Transmit shift registers 1, 2 (TXS1, TXS2) Receive shift registers 1, 2 (RX1, RX2) Receive buffer registers 1, 2 (RXB1, RXB2)
Control registers	Asynchronous serial interface mode registers 1, 2 (ASIM1, ASIM2) Asynchronous serial interface status registers 1, 2 (ASIS1, ASIS2) Baud rate generator control registers 1, 2 (BRGC1, BRGC2)

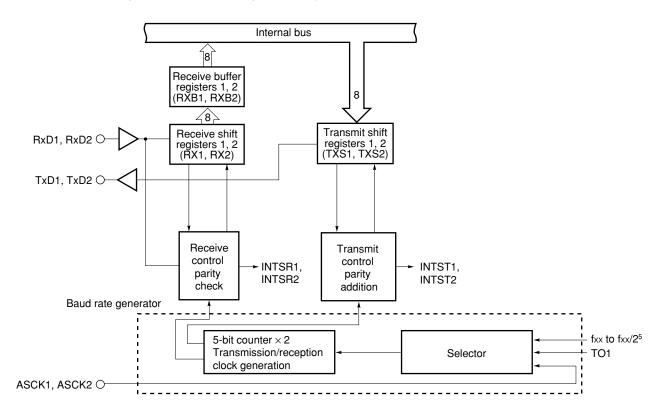


Figure 16-2. Block Diagram in Asynchronous Serial Interface Mode

(1) Transmit shift registers 1, 2 (TXS1, TXS2)

These registers are used to set transmit data. Data written to TXS1 and TXS2 is sent as serial data.

If a data length of 7 bits is specified, bits 0 to 6 of the data written to TXS1 and TXS2 are transferred as transmit data. Transmission is started by writing data to TXS1 and TXS2.

TX1 and TX2 can be written with an 8-bit memory manipulation instruction, but cannot be read.

RESET input sets TXS1 and TXS2 to FFH.

Caution Do not write to TXS1 and TXS2 during transmission.

TXS1, TXS2 and receive buffer registers 1, 2 (RXB1, RXB2) are allocated to the same address. Therefore, attempting to read TXS1 and TXS2 will result in reading the values of RXB1 and RXB2.

(2) Receive shift registers 1, 2 (RX1, RX2)

These registers are used to convert serial data input to the RxD1 and RxD2 pins to parallel data. Receive data is transferred to receive buffer registers 1 and 2 (RXB1, RSB2) one byte at a time as it is received. RX1 and RX2 cannot be directly manipulated by program.

(3) Receive buffer registers 1, 2 (RXB1, RXB2)

These registers are used to hold receive data. Each time one byte of data is received, new receive data is transferred from receive shift registers 1 and 2 (RX1, RX2)

If a data length of 7 bits is specified, receive data is transferred to bits 0 to 6 of RXB1 and RXB2, and the MSB of RXB1 and RXB2 always becomes 0.

RXB1 and RXB2 can be read by an 8-bit memory manipulation instruction, but cannot be written. RESET input sets RXB1 and RXB2 to FFH.

Caution RXB1, RXB2 and transmit shift registers 1, 2 (TXB1, TXB2) are allocated to the same address. Therefore, attempting to read RXB1 and RXB2 will result in reading the values of TXB1 and TXB2.

(4) Transmission controller

This circuit controls transmit operations such as the addition of a start bit, parity bit, and stop bit(s) to data written to transmit shift registers 1 and 2 (TXS1, TXS2), according to contents set to asynchronous serial interface mode registers 1 and 2 (ASIM1, ASIM2).

(5) Reception controller

This circuit controls reception according to the contents set to asynchronous serial interface mode registers 1 and 2 (ASIM1, ASIM2). It also performs error check for parity errors, etc., during reception and transmission. If it detects an error, it sets a value corresponding to the nature of the error in asynchronous serial interface status registers 1 and 2 (ASIS1, ASIS2).

16.2.2 Control registers

The asynchronous serial interface is controlled by the following six registers.

- Asynchronous serial interface mode registers 1, 2 (ASIM1, ASIM2)
- Asynchronous serial interface status registers 1, 2 (ASIS1, ASIS2)
- Baud rate generator control registers 1, 2 (BRGC1, BRGC2)

(1) Asynchronous serial interface mode registers 1, 2 (ASIM1, ASIM2)

ASIM1 and ASIM2 are 8-bit registers that control serial transfer using the asynchronous serial interface.

ASIM1 and ASIM2 are set by a 1-bit or 8-bit memory manipulation operation.

RESET input sets ASIM1 and ASIM2 to 00H.

Figure 16-3. Format of Asynchronous Serial Interface Mode Registers 1 and 2 (ASIM1, ASIM2)

Address: 0FF70H, 0FF71H After reset: 00H R/W (7)(6) Symbol 5 4 3 2 0 1 0Note ASIMn TXEn RXEn PSn1 PSn0 CLn SLn ISRMn

TXEn	RXEn	Operation mode	RxD1/P20, RxD2/P70 pin function	TxD1/P21, TxD2/P71 pin function
0	0	Operation stop	Port function	Port function
0	1	UART mode (Receive only)	Serial function	Port function
1	0	UART mode (Transmit only)	Port function	Serial function
1	1	UART mode (Transmit/Receive)	Serial function	Serial function

PSn1	PSn0	Parity bit specification
0	0	No parity
0	1	Always add 0 parity during transmission Do not perform parity check during reception (parity error not generated)
1	0	Odd parity
1	1	Even parity

CLn	Transmit data character length specification
0	7 bits
1	8 bits

SLn	Transmit data stop bit length specification
0	1 bit
1	2 bits

ISRMn	Receive completion interrupt control at error occurrence
0	Generate receive completion interrupt request when error occurs
1	Do not generate receive completion interrupt request when error occurs

Note Be sure to write "0" to bit 0.

Caution Switch across to the operational mode after stopping serial sending and receiving operations.

(2) Asynchronous serial interface status registers 1 and 2 (ASIS1, ASIS2)

ASIS1 and ASIS2 are registers used display the type of error when a receive error occurs.

ASIS1 and ASIS2 can be read by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets ASIS1 and ASIS2 to 00H.

Figure 16-4. Format of Asynchronous Serial Interface Status Registers 1 and 2 (ASIS1, ASIS2)

Address: 0	FF72H, 0FF7	73H After res	et: 00H F	R/W				
Symbol	7	6	5	4	3	2	1	0
ASISn	0	0	0	0	0	PEn	FEn	OVEn

PEn	Parity error flag						
0	Parity error not generated						
1	Parity error generated (when parity of transmit data does not match)						

FEn	Framing error flag	
0	aming error not generated	
1	Framing error generated ^{Note 1} (when stop bit(s) is not detected)	

OVEn	Overrun error flag	
0	Overrun error not generated	
1	Overrun error generated ^{Note 2} (When next receive operation is completed before data from receive buffer register is read)	

Notes 1. Even if the stop bit length has been set to 2 bits with bit 2 (SLn) of asynchronous serial interface mode register n (ASIMn), stop bit detection during reception is only 1 bit.

2. Be sure to read receive buffer register n (RXBn) when an overrun error occurs. An overrun error is generated each time data is received until RXBn is read.

Remark n = 1, 2

(3) Baud rate generator control registers 1 and 2 (BRGC1, BRGC2)

BRGC1 and BRGC2 are registers used to set the serial clock of the asynchronous serial interface.

BRGC1 and BRGC2 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets BRGC1 and BRGC2 to 00H.

Figure 16-5. Format of Baud Rate Generator Control Registers 1 and 2 (BRGC1, BRGC2)

Address: 0FF76H, 0FF77H After reset: 00H R/W Symbol 0 7 6 5 4 3 2 1 BRGCn 0 TPSn2 TPSn1 TPSn0 MDLn3 MDLn2 MDLn1 MDLn0

TPSn2	TPSn1	TPSn0	5-bit counter source clock selection	m
0	0	0	0 External clock (ASCKn)	
0	0	1	fxx (12.5 MHz)	0
0	1	0	fxx/2 (6.25 MHz)	1
0	1	1	fxx/4 (3.13 MHz)	2
1	0	0	fxx/8 (1.56 MHz)	3
1	0	1	fxx/16 (781 kHz)	4
1	1	0	fxx/32 (391 kHz)	5
1	1	1	TO1 (TM1 output)	0

MDLn3	MDLn2	MDLn1	MDLn0	Baud rate generator input clock selection	k
0	0	0	0	fscк/16	0
0	0	0	1	fscк/17	1
0	0	1	0	fscк/18	2
0	0	1	1	fscк/19	3
0	1	0	0	fsck/20	4
0	1	0	1	fsck/21	5
0	1	1	0	fsck/22	6
0	1	1	1	fsck/23	7
1	0	0	0	fsck/24	8
1	0	0	1	fscк/25	9
1	0	1	0	fsck/26	10
1	0	1	1	fsck/27	11
1	1	0	0	fsck/28	12
1	1	0	1	fscк/29	13
1	1	1	0	fsck/30	14
1	1	1	1	Setting prohibited	_

Cautions 1. If a write operation to BRGC1 and BRGC2 is performed during communication, the baud rate generator output will become garbled and normal communication will not be achieved. Consequently, do not write to BRGC1 or BRGC2 during communication.

2. Refer to CHAPTER 29 ELECTRICAL SPECIFICATIONS for details of the high-/low-level width of ASCKn when selecting the external clock (ASCKn) for the source clock of the 5-bit counter.

Cautions 3. Set the 8-bit timer mode control register 1 (TMC1) as follows when selecting TO1 for the source clock of the 5-bit counter.

TMC16 = 0, LVS1 = 0, LVR1 = 0, TMC11 = 1

Moreover, set TOE1 to 0 when TO1 is not output externally and TOE1 to 1 when TO1 is output externally.

Remarks 1. n = 1, 2

- **2.** Figures in parentheses apply to operation at fxx = 12.5 MHz.
- 3. fsck: Source clock of 5-bit counter
- **4.** m: Value set in TPSn0 to TPSn2 ($0 \le m \le 5$)
- **5.** k: Value set in MDLn0 to MDLn3 ($0 \le k \le 14$)

16.3 Operation

The asynchronous serial interface has the following two operation modes.

- · Operation stop mode
- · Asynchronous serial interface (UART) mode

16.3.1 Operation stopped mode

Serial transfer cannot be performed in the operation stopped mode, resulting in reduced power consumption. Moreover, in the operation stopped mode, pins can be used as regular ports.

(1) Register setting

The operation stopped mode is set by asynchronous serial interface mode registers 1 and 2 (ASIM1, ASIM2). ASIM1 and ASIM2 are set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets ASIM1 and ASIM2 to 00H.

Address: 0FF70H, 0FF71H After reset: 00H R/W Symbol (7)(6) 5 2 4 3 0 1 ONote ASIMn TXEn RXEn PSn1 PSn0 CLn SLn ISRMn

TXEn	RXEn	Operation mode	RxD1/P20, RxD2/P70 pin function	TxD1/P21, TxD2/P71 pin function
0	0	Operation stop	Port function	Port function
0	1	UART mode (Receive only)	Serial function	Port function
1	0	UART mode (Transmit only)	Port function	Serial function
1	1	UART mode (Transmit/Receive)	Serial function	Serial function

Note Be sure to write "0" to bit 0.

Caution Switch the operation mode after stopping serial transmission and reception.

16.3.2 Asynchronous serial interface (UART) mode

This mode is used to transmit and receive the 1-byte data following the start bit, and supports full-duplex operation. A UART-dedicated baud rate generator is provided on-chip, enabling communication at any baud rate within a broad range.

The MIDI standard baud rate (31.25 Kbps) can be used by utilizing the UART-dedicated baud rate generator.

(1) Register setting

The UART mode is set with asynchronous serial interface mode registers 1 and 2 (ASIM1, ASIM2), asynchronous serial interface status registers 1 and 2 (ASIS1, ASIS2), and baud rate generator control registers 1 and 2 (BRGC1, BRGC2).

(a) Asynchronous serial interface mode registers 1 and 2 (ASIM1, ASIM2)

ASIM1 and ASIM2 can be set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets ASIM1 and ASIM2 to 00H.

Address: 0FF70H, 0FF71H After reset: 00H R/W

 $\overline{7}$ (6) 5 Symbol 4 3 2 1 0 ONote ASIMn TXEn RXEn PSn1 PSn0 CLn SLn ISRMn

TXEn	RXEn	Operation mode	RxD1/P20, RxD2/P70 pin function	TxD1/P21, TxD2/P71 pin function
0	0	Operation stop	Port function	Port function
0	1	UART mode (Receive only)	Serial function	Port function
1	0	UART mode (Transmit only)	Port function	Serial function
1	1	UART mode (Transmit/Receive)	Serial function	Serial function

PSn1	PSn0	Parity bit specification	
0	0	No parity	
0	1	Always add 0 parity during transmission Do not perform parity check during reception (parity error not generated)	
1	0	Odd parity	
1	1	Even parity	

CLn	Character length specification
0	7 bits
1	8 bits

SLn	Transmit data stop bit length specification
0	1 bit
1	2 bits

ISRMn	Receive completion interrupt control at error occurrence	
0	Generate receive completion interrupt when error occurs	
1	Do not generate receive completion interrupt when error occurs	

Note Be sure to write "0" to bit 0.

Caution Switch the operation mode after stopping serial transmission and reception.

(b) Asynchronous serial interface status registers 1 and 2 (ASIS1, ASIS2)

 $\overline{\text{ASIS1}}$ and ASIS2 can be read by a 1-bit or 8-bit memory manipulation instruction. $\overline{\text{RESET}}$ input sets ASIS1 and ASIS 2 to 00H.

Address: 0FF72H, 0FF73H After reset: 00H (2) (1) (0) 7 Symbol 6 5 4 3 **ASISn** 0 0 0 0 PEn FEn **OVEn**

PEn	Parity error flag	
0	Parity error not generated	
1	Parity error generated (when parity of transmit data does not match)	

FEn	Framing error flag	
0	Framing error not generated	
1	Framing error generated ^{Note 1} (when stop bit(s) is not detected)	

OVEn	Overrun error flag
0	Overrun error not generated
1	Overrun error generated ^{Note 2} (When next receive operation is completed before data from receive buffer register is read)

Notes 1. Even if the stop bit length has been set to 2 bits with bit 2 (SLn) of asynchronous serial interface mode register n (ASIMn), stop bit detection during reception is only 1 bit.

2. Be sure to read receive buffer register n (RXBn) when an overrun error occurs. An overrun error is generated each time data is received until RXBn is read.

(c) Baud rate generator control registers 1 and 2 (BRGC1, BRGC2)

BRGC1 and BRGC2 are set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets BRGC1 and BRGC2 to 00H.

Address: 0FF76H, 0FF77H After reset: 00H R/W

Symbol 7 6 5 4 3 2 0 BRGCn TPSn2 TPSn1 TPSn0 MDLn3 MDLn2 MDLn1 MDLn0

TPSn2	TPSn1	TPSn0	5-bit counter source clock selection	m
0	0	0	External clock (ASCKn)	0
0	0	1	fxx (12.5 MHz)	0
0	1	0	fxx/2 (6.25 MHz)	1
0	1	1	fxx/4 (3.13 MHz)	2
1	0	0	fxx/8 (1.56 MHz)	3
1	0	1	fxx/16 (781 kHz)	4
1	1	0	fxx/32 (391 kHz)	5
1	1	1	TO1 (TM1 output)	0

MDLn3	MDLn2	MDLn1	MDLn0	Baud rate generator input clock selection	k
0	0	0	0	fscк/16	0
0	0	0	1	fscк/17	1
0	0	1	0	fscк/18	2
0	0	1	1	fscк/19	3
0	1	0	0	fsck/20	4
0	1	0	1	fsck/21	5
0	1	1	0	fsck/22	6
0	1	1	1	fscк/23	7
1	0	0	0	fsck/24	8
1	0	0	1	fscк/25	9
1	0	1	0	fsck/26	10
1	0	1	1	fscк/27	11
1	1	0	0	fscк/28	12
1	1	0	1	fscк/29	13
1	1	1	0	fscк/30	14
1	1	1	1	Setting prohibited	_

Cautions 1. If a write operation to BRGC1 and BRGC2 is performed during communication, the baud rate generator output will become garbled and normal communication will not be achieved. Consequently, do not write to BRGC1 or BRGC2 during communication.

Refer to CHAPTER 29 ELECTRICAL SPECIFICATIONS for details of the high-/low-level width of ASCKn when selecting the external clock (ASCKn) for the source clock of the 5-bit counter.

Cautions 3. Set the 8-bit timer mode control register 1 (TMC1) as follows when selecting TO1 for the source clock of the 5-bit counter.

Moreover, set TOE1 to 0 when TO1 is not output externally and TOE1 to 1 when TO1 is output externally.

Remarks 1. n = 1, 2

- **2.** Figures in parentheses apply to operation at fxx = 12.5 MHz.
- 3. fsck: Source clock of 5-bit counter
- **4.** m: Value set in TPSn0 to TPSn2 ($0 \le m \le 5$)
- 5. k: Value set in MDLn0 to MDLn3 ($0 \le k \le 14$)

The transmit/receive clock for the baud rate to be generated is the signal obtained by dividing the 5-bit counter source clock.

· Generation of transmit/receive clock for baud rate

The baud rate is obtained from the following equation.

[Baud rate] =
$$\frac{T}{2^{m+1} \times (k+16)}$$
 [Hz]

T: 5-bit counter source clock

- When using a divided main system clock: Main system clock (fxx)
- When an external clock (ASCKn) is selected: Output frequency of ASCKn
- When the timer 1 output (TO1) is selected: Output frequency of TO1

m: Value set in TPSn0 to TPSn2 ($0 \le m \le 5$)

k: Value set in MDLn0 to MDLn3 ($0 \le k \le 14$)

Baud rate capacity error range

The baud rate capacity range depends on the number of bits per frame and the counter division ratio [1/(16 + k)].

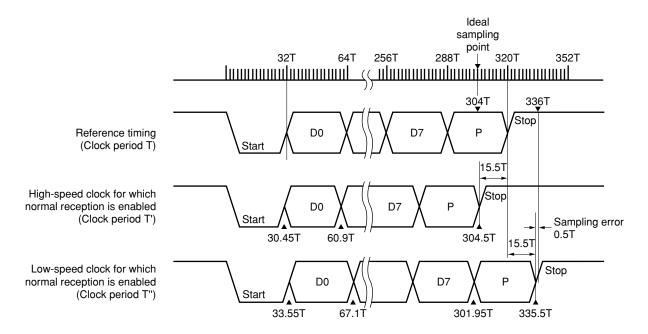

Table 16-3 shows the relationship between the main system clock and the baud rate, Table 16-6 shows a baud rate allowable error example.

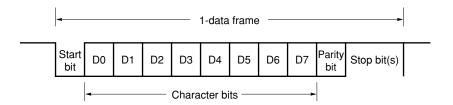
Table 16-4. Relationship Between Main System Clock and Baud Rate

Baud Rate	fxx = 12.5 N	1Hz	fxx = 6.25 MHz		fxx = 3.00 MHz	
(bps)	BRGC Value	Error (%)	BRGC Value	Error (%)	BRGC Value	Error (%)
2400	_		_	_	64H	2.34
4800	_	_	64H	1.73	54H	2.34
9600	64H	1.73	54H	1.73	44H	2.34
19200	54H	1.73	44H	1.73	34H	2.34
31250	49H	0.00	39H	0.00	28H	0.00
38400	44H	1.73	34H	1.73	24H	2.34
76800	34H	1.73	24H	1.73	14H	2.34
150K	24H	1.73	14H	1.73	_	_
300K	14H	1.73	_	_	_	_

Remark When TM1 output is used, 150 to 38400 bps is supported (during operation at fxx = 12.5 MHz)

Figure 16-6. Baud Rate Allowable Error Considering Sampling Errors (When k = 0)

Remark T: 5-bit counter source clock period


Baud rate allowable error (k = 0)
$$\frac{\pm 15.5}{320} \times 100 = 4.8438$$
 (%)

(2) Communication operation

(a) Data format

The format for transmitting and receiving data is shown in Figure 16-7.

Figure 16-7. Format of Asynchronous Serial Interface Transmit/Receive Data

Each data frame is composed of the bits outlined below.

- Start bit...... 1 bit
- Character bits 7 bits/8 bits
- Parity bit Even parity/odd parity/0 parity/no parity
- Stop bit(s) 1 bit/2 bits

Specification of the character bit length inside data frames, selection of the parity, and selection of the stop bit length, are performed with asynchronous serial interface mode register n (ASIMn).

If 7 bits has been selected as the number of character bits, only the lower 7 bits (bits 0 to 6) are valid. In the case of transmission, the most significant bit (bit 7) is ignored. In the case of reception, the most significant bit (bit 7) always becomes "0".

The setting of the serial transfer rate is performed with the ASIMn and baud rate generator control register n (BRGCn).

If a serial data reception error occurs, it is possible to determine the contents of the reception error by reading the status of asynchronous serial interface status register n (ASISn).

(b) Parity types and operations

Parity bits serve to detect bit errors in transmit data. Normally, the parity bit used on the transmit side and the receive side are of the same type. In the case of even parity and odd parity, it is possible to detect "1" bit (odd number) errors. In the case of 0 parity and no parity, errors cannot be detected.

(i) Even parity

· During transmission

Makes the number of "1"s in transmit data that includes the parity bit even. The value of the parity bit changes as follows.

```
If the number of "1" bits in transmit data is odd: 1 if the number of "1" bits in transmit data is even: 0
```

· During reception

The number of "1" bits in receive data that includes the parity bit is counted, and if it is odd, a parity error occurs.

(ii) Odd parity

· During transmission

Odd parity is the reverse of even parity. It makes the number of "1"s in transmit data that includes the parity bit odd. The value of the parity bit changes as follows.

```
If the number of "1" bits in transmit data is odd: 0 if the number of "1" bits in transmit data is even: 1
```

· During reception

The number of "1" bits in receive data is counted, and if it is even, a parity error occurs.

(iii) 0 Parity

During transmission, makes the parity bit "0", regardless of the transmit data.

A parity bit check is not performed during reception. Therefore, no parity error occurs, regardless of whether the parity bit value is "0" or "1".

(iv) No parity

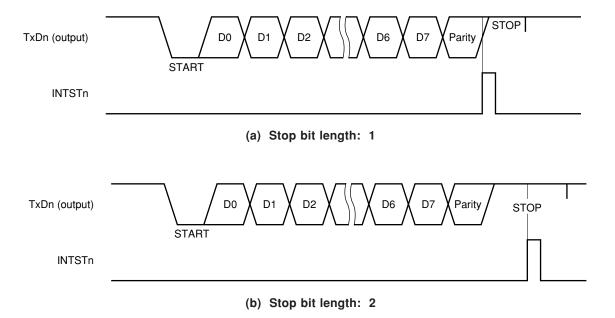
No parity is appended to transmit data.

Transmit data is received assuming that it has no parity bit. No parity error can occur because there is no parity bit.

(c) Transmission

Transmission is begun by writing transmit data to transmission shift register n (TXSn). The start bit, parity bit, and stop bit(s) are automatically added.

The contents of transmit shift register n (TXSn) are shifted out upon transmission start, and when transmit shift register n (TXSn) becomes empty, a transmit interrupt (INTSTn) is generated.


Caution In the case of UART transmission, follow the procedure below when performing transmission for the first time.

- <1> Set the port to the input mode (PM21 = 1 or PM71 = 1), and write 0 to the port latch.
- <2> Set bit 7 (TXEn) of asynchronous serial interface mode register n (ASIMn) to 1 to enable UART transmission (output a high level from the TXDn pin).
- <3> Set the port to the output mode (PM21 = 0 or PM71 = 0).
- <4> Write transmit data to TXSn, and start transmission.

If the port is set to the output mode first, 0 will be output from the pins, which may cause malfunction.

Remark n = 1, 2

Figure 16-8. Asynchronous Serial Interface Transmit Completion Interrupt Request Timing

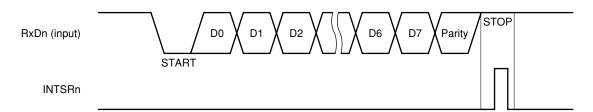
Caution Do not write to asynchronous serial interface mode register n (ASIMn) during transmission. If you write to the ASIMn register during transmission, further transmission operations may become impossible (in this case, input RESET to return to normal). Whether transmission is in progress or not can be judged by software, using the transmit completion interrupt (INTSTn) or the interrupt request flag (STIFn) set by INTSTn.

(d) Reception

When the RXEn bit of asynchronous serial interface mode register n (ASIMn) is set to 1, reception is enabled and sampling of the RxDn pin input is performed.

Sampling of the RxDn pin input is performed by the serial clock set by baud rate generator control register n (BRGCn).

The 5-bit counter for the baud rate generator will begin counting when the RxDn pin input reaches low level, and the 'start timing' signal for data sampling will be output when half of the time set for the baud rate has passed. If the result of re-sampling the RxDn pin input with this start timing signal is low level, the RxDn pin input is perceived as the start bit, the 5-bit counter is initialized and begins counting, and data sampling is performed. When, following the start bit, character data, the parity bit, and one stop bit are detected, reception of one frame of data is completed.


When reception of one frame of data is completed, the receive data in the shift register is transferred to receive shift register n (RXBn), and a receive completion interrupt (INTSRn) is generated.

Also, even if an error occurs, the receiving data for which the error occurred is transferred to RXBn. If an error occurs, when bit 1 (ISRMn) of ASIMn is cleared (0), INTSRn is generated. (refer to **Figure 16-10**). When bit ISRMn is set (1), INTSRn is not generated.

When bit RXEn is reset to 0 during a receive operation, the receive operation is immediately stopped. At this time, the contents of RXBn and ASISn remain unchanged, and INTSRn and INTSERn are not generated.

Remark n = 1, 2

Figure 16-9. Asynchronous Serial Interface Receive Completion Interrupt Request Timing

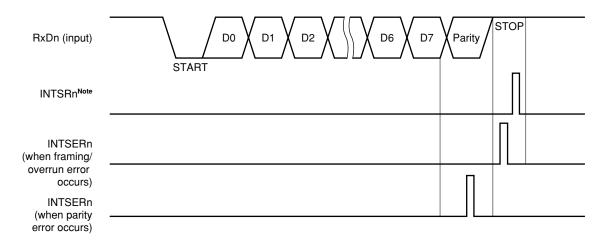
Caution Even when a receive error occurs, be sure to read receive buffer register n (RXBn).

If RXBn is not read, an overrun error will occur during reception of the next data, and the reception error status will continue indefinitely.

(e) Receive error

Errors that occur during reception are of three types: parity errors, framing errors, and overrun errors. As the data reception result error flag is set inside asynchronous serial interface status register n (ASISn), the receive error interrupt request (INTSERn) is generated. The receive error interrupt is generated before a receive completion interrupt request (INTSRn). Receive error causes are shown in Table 16-4.

What type of error has occurred during reception can be detected by reading the contents of asynchronous serial interface status register n (ASISn) during processing of the receive error interrupt (INTSERn) (refer to **Table 16-5** and **Figure 16-10**).


The contents of ASISn are reset to 0 either when receive buffer register n (RXBn) is read or when the next data is received (if the next data has an error, this error flag is set).

Remark n = 1, 2

Table 16-5. Receive Error Causes

Receive Error	Cause		
Parity error	Parity specified for transmission and parity of receive data don't match	04H	
Framing error	Stop bit was not detected		
Overrun error	Next data reception was completed before data was read from the receive buffer register	01H	

Figure 16-10. Receive Error Timing

Note INTSRn will not be triggered if an error occurs when the ISRMn bit has been set (1).

- Cautions 1. The contents of ASISn are reset to 0 either when receive buffer register n (RXBn) is read or when the next data is received. To find out the contents of the error, be sure to read ASIS before reading RXBn.
 - 2. Be sure to read receive buffer register n (RXBn) even when a receive error occurs. If RXBn is not read, an overrun error will occur at reception of the next data, and the receive error status will continue indefinitely.

16.3.3 Standby mode operation

(1) HALT mode operation

The serial transfer operation is normally performed.

(2) STOP mode or IDLE mode operation

(a) When internal clock is selected as serial clock

Asynchronous serial interface mode register n (ASIMn), transmit shift register n (TXSn), receive shift register n (RXn), and receive buffer register n (RXBn) stop operation holding the value immediately before the clock stops.

If the clock stops (STOP mode) during transmission, the TxDn pin output data immediately before the clock stopped is held. If the clock stops during reception, receive data up to immediately before the clock stopped is stored, and subsequent operation is stopped. When the clock is restarted, reception is resumed.

Remark n = 1, 2

(b) When external clock is selected as serial clock

Serial transmission is performed normally. However, interrupt requests are held pending without being acknowledged. Interrupt requests are acknowledged after the STOP mode or IDLE mode has been released through NMI input, INTP0 to INTP5 input, or INTWT.

16.4 3-Wire Serial I/O Mode

This mode is used to perform 8-bit data transfer with the serial clock (SCK1, SCK2), serial output (SO1, SO2), and serial input (SI1, SI2) lines.

The 3-wire serial I/O mode supports simultaneous transmit/receive operations, thereby reducing the data transfer processing time.

The start bit of 8-bit data for serial transfer is fixed as the MSB.

The 3-wire serial I/O mode is effective when connecting peripheral I/O or a display controller with an on-chip clocked serial interface.

16.4.1 Configuration

The 3-wire serial I/O mode includes the following hardware.

Figure 16-11 shows the block diagram for the 3-wire serial I/O mode.

Table 16-6. 3-Wire Serial I/O Configuration

Item Configuration			
Registers	Serial I/O shift registers 1, 2 (SIO1, SIO2)		
Control registers	Serial operation mode registers 1, 2 (CSIM1, CSIM2)		

Internal bus Serial I/O shift registers 1, 2 SI1, SI2 O-(SIO1, SIO2) SO1, SO2 O-Serial Interrupt SCK1, SCK2 O-INTCSI1, clock generator INTCSI2 counter TO2 Serial clock Selector fxx/8 controller fxx/16

Figure 16-11. Block Diagram in 3-Wire Serial I/O Mode

Serial I/O shift registers 1 and 2 (SIO1, SIO2)

These are 8-bit registers that perform parallel-serial conversion, and serial transmission/reception (shift operation) in synchronization with the serial clock.

SIOn is set by an 8-bit memory manipulation instruction.

When bit 7 (CSIEn) of serial operation mode register n (CSIMn) is 1, serial operation can be started by writing/reading data to/from SIOn.

During transmission, data written to SIOn is output to the serial output pin (SOn).

During reception, data is read into SIOn from the serial input pin (SIn).

RESET input sets SIO1 and SIO2 to 00H.

Caution During a transfer operation, do not access SIOn other than access as a transfer start trigger (read and write are prohibited when MODEn = 0 and MODEn = 1, respectively).

16.4.2 Control registers

Serial operation mode registers 1 and 2 (CSIM1, CSIM2)

CSIM1 and CSIM2 are used to set the serial clock, operation mode, and operation enable/disable in the 3-wire serial I/O mode.

CSIM1 and SCIM2 can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CSIM1 and CSIM2 to 00H.

Figure 16-12. Format of Serial Operation Mode Registers 1 and 2 (CSIM1, CSIM2)

Address: 0FF91H, 0FF92H After reset: 00H R/W (7)Symbol 6 5 4 3 2 1 0 CSIMn **CSIEn** 0 0 0 MODEn SCLn1 SCLn0 0

0015	SIOn operation enable/disable setting				
CSIEn	Shift register operation	Serial counter	Port		
0	Operation disabled	Clear	Port function ^{Note}		
1	Operation enabled	Counter operation enabled	Serial function + port function		

	Transfer operation mode flag				
MODEn	Operation mode	Transfer start trigger	SOn output		
0	Transmit/receive mode	SIOn write	Normal output		
1	Receive only mode	SIOn read	Fix to low level		

SCLn1	SCLn0	Clock selection
0	0	External clock to SCKn
0	1	8-bit timer counter 2 (TM2) output (TO2)
1	0	fxx/8 (1.56 MHz)
1	1	fxx/16 (781 kHz)

Notes 1. When CSIEn = 0 (SIOn operation stop status), pins connected to SIn, SOn and SCKn can be used as ports.

2. Set the external clock and TO2 to fxx/8 or below when selecting the external clock (SCKn) and TM2 output (TO2) for the clock.

Remarks 1. n = 1, 2

2. Figures in parentheses apply to operation at fxx = 12.5 MHz.

16.4.3 Operation

The following two types of 3-wire serial I/O operation modes are available.

- · Operation stopped mode
- 3-wire serial I/O mode

(1) Operation stopped mode

Serial transfer is not possible in the operation stopped mode, which reduces power consumption. Moreover, in operation stopped mode, pins can be used as normal I/O ports.

(a) Register setting

The operation stop mode is set by serial operation registers 1 and 2 (CSIM1, CSIM2). CSIM1 and CSIM2 can be set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets CSIM1 and CSIM2 to 00H.

Figure 16-13. Format of Serial Operation Mode Registers 1 and 2 (CSIM1, CSIM2)

Address: 0	FF91H, 0FF9	92H After res	et: 00H F	R/W				
Symbol	7	6	5	4	3	2	1	0
CSIMn	CSIEn	0	0	0	0	MODEn	SCLn1	SCLn0

0.011	SIOn operation enable/disable setting					
CSII	CSIEn Shift register operation		Shift register operation Serial counter			
0)	Operation disabled	Clear	Port function ^{Note}		
1		Operation enabled	Counter operation enabled	Serial function + port function		

Note When CSIEn = 0 (SIOn operation stop status), pins connected to SIn, SOn and SCKn can be used as ports.

(2) 3-wire serial I/O mode

The 3-wire serial I/O mode is effective when connecting peripheral I/O or a display controller with an on-chip clocked serial interface.

This mode is used to perform communication with the serial clock (SCK1, SCK2), serial output (SO1, SO2), and serial input (SI1, SI2) lines.

(a) Register setting

The 3-wire serial I/O mode is set by serial operation mode registers 1 and 2 (CSIM1, CSIM2). CSIM1 and CSIM2 can be set by a 1-bit or 8-bit memory manipulation instruction. RESET input sets CSIM1 and CSIM2 to 00H.

Figure 16-14. Format of Serial Operation Mode Registers 1 and 2 (CSIM1, CSIM2)

Address: 0FF91H, 0FF92H After reset: 00H R/W (7)Symbol 6 5 4 3 2 0 1 CSIMn **CSIEn** 0 0 0 0 MODEn SCLn1 SCLn0

0015	SIOn operation enable/disable setting					
CSIEn	Shift register operation Serial counter		Port			
0	Operation disabled	Clear	Port function ^{Note}			
1	Operation enabled	Counter operation enabled	Serial function + port function			

MODEn	Transfer operation mode flag		
	Operation mode	Transfer start trigger	SOn output
0	Transmit/receive mode	SIOn write	Normal output
1	Receive only mode	SIOn read	Fix to low level

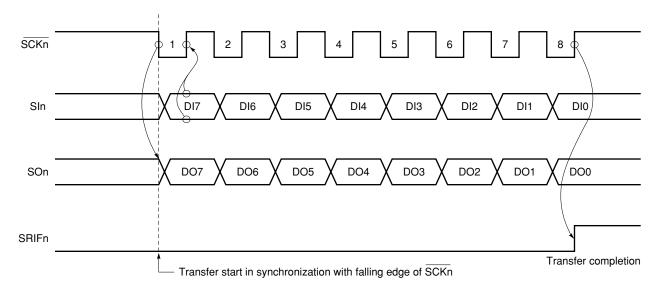
SCLn1	SCLn0	Clock selection
0	0	External clock to SCKn
0	1	8-bit timer counter 2 (TM2) output (TO2)
1	0	fxx/8 (1.56 MHz)
1	1	fxx/16 (781 kHz)

- **Notes** 1. When CSIEn = 0 (SIOn operation stop status), pins connected to SIn, SOn and SCKn can be used as ports.
 - 2. Set the external clock and TO2 to fxx/8 or below when selecting the external clock (SCKn) and TM2 output (TO2) for the clock.

Remarks 1. n = 1, 2

2. Figures in parentheses apply to operation at fxx = 12.5 MHz.

(b) Communication operation


The 3-wire serial I/O mode performs data transfer in 8-byte units. Data is transmitted and received one byte at a time in synchronization with the serial clock.

The shift operation of the serial I/O shift register n (SIOn) is performed in synchronization with the falling edge of the serial clock (SCKn). Transmit data is held in the SOn latch, and is output from the SOn pin. Receive data input to the SIn pin is latched to SIOn at the rising edge of the SCKn signal.

SIOn operation is automatically stopped when 8-bit transfer ends, and an interrupt request flag (SRIFn) is set.

Remark n = 1, 2

Figure 16-15. 3-Wire Serial I/O Mode Timing

Remark n = 1, 2

(c) Transfer start

Serial transfer is started by setting transmit data to (or reading) serial I/O shift register n (SIOn) when the following two conditions are satisfied.

- SIOn operation control bit (CSIEn) = 1
- Following 8-bit serial transfer, the internal serial clock is stopped, or SCKn is high level
- · Transmit/receive mode

When CSIEn = 1 and MODEn = 0, and transfer is started when SIOn is written

· Receive-only mode

When CSIEn = 1 and MODEn = 1, and transfer is started when SIOn is read.

Caution After data is written to SIOn, transfer will not start even if CSIEn is set to "1".

Serial transfer automatically stops at the end of 8-bit transfer, and the interrupt request flag (SRIFn) is set.

CHAPTER 17 3-WIRE SERIAL I/O MODE

17.1 Function

This mode transfers 8-bit data by using the three lines of the serial clock (SCK0), the serial output (SO0), and the serial input (SI0).

Since the 3-wire serial I/O mode can perform simultaneous transmission and reception, the data transfer processing time becomes shorter.

The start bit of the 8-bit data to be serially transferred is fixed to the MSB.

The 3-wire serial I/O mode is effective when connecting peripheral I/O or a display controller with an internal clocked serial interface.

17.2 Configuration

The 3-wire serial I/O mode includes the following hardware.

Figure 17-1 is a block diagram of the clocked serial interface (CSI) in the 3-wire serial I/O mode.

Table 17-1. 3-Wire Serial I/O Configuration

Item	Configuration	
Register	Serial I/O shift register 0 (SIO0)	
Control register	Serial operation mode register 0 (CSIM0)	

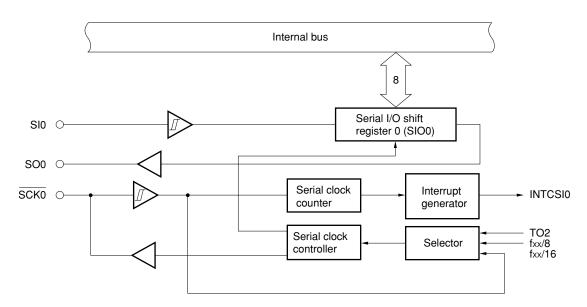


Figure 17-1. Block Diagram of Clocked Serial Interface (in 3-Wire Serial I/O Mode)

• Serial I/O shift register 0 (SIO0)

This 8-bit shift register performs parallel to serial conversion and serial communication (shift operations) synchronized with the serial clock.

SIO0 is set by an 8-bit memory manipulation instruction.

When bit 7 (CSIE0) in serial operation mode register 0 (CSIM0) is 1, serial operation starts by writing data to or reading it from SIO0.

When transmitting, the data written to SIO0 is output to the serial output (SO0).

When receiving, data is read from the serial input (SI0) to SIO0.

RESET input sets SIO0 to 00H.

Caution Do not access SIO0 during a transfer except for an access that becomes a transfer start trigger.

(When MODE0 = 0, reading is disabled, and when MODE0 = 1, writing is disabled.)

17.3 Control Registers

Serial operation mode register 0 (CSIM0)

The CSIM0 register sets the serial clock and operation mode to the 3-wire serial I/O mode, and enables or stops operation.

CSIM0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CSIM0 to 00H.

Figure 17-2. Format of Serial Operation Mode Register 0 (CSIM0)

Address: 0FF90H After reset: 00H R/W (7)Symbol 6 5 4 3 2 1 0 CSIM0 CSIE0 0 0 0 0 MODE0 SCL01 SCL00

CSIE0	SIO	operation enable/disable setting				
USIEU	Shift register operation	Serial counter	Port			
0	Operation disabled	Clear	Port function ^{Note}			
1	Operation enabled	Count enabled	Serial function + Port function			

MODE0		ransfer operation mode flag				
MODEO	Operation mode	Transfer start trigger	SO0 output			
0	Transmit/receive communication mode	SIO0 write	Normal output			
1	Receive only mode	SIO0 read	Fixed low			

SCL01	SCL00	Clock selection	
0	0	External clock to SCK0	
0	1	8-bit timer counter 2 (TM2) output (TO2)	
1	0	fxx/8 (1.56 MHz)	
1	1	fxx/16 (781 kHz)	

Note If CSIE0 = 0 (SIO0 operation stopped state), the pins connected to SI0, SO0 and $\overline{\text{SCK0}}$ can function as ports.

Cautions 1. Set 8-bit timer mode control register 2 (TMC2) as follows when selecting 8-bit timer counter 2 (TM2) output as the clock.

TMC26 = 0, TMC24 = 0, LVS2 = 0, LVR2 = 0, TMC21 = 1

Moreover, set TOE2 to 0 when TO2 is not output externally and TOE2 to 1 when TO2 is output externally.

2. Set the external clock and TO2 to fxx/8 or below when selecting the external clock (SCKn) and TM2 output (TO2) for the clock.

Remark Figures in parentheses apply to operation at fxx = 12.5 MHz.

Table 17-2. Serial Interface Operation Mode Settings

(1) Operation stopped mode

	CSIM0		PM25	P25	PM26	P26	PM27	P27	First	Shift	P25/SI0/SDA0	P26/SO0	P27/SCK0/SCL0
CSIE0	SCL01	SCL00							Bit	Clock	Pin Function	Pin Function	Pin Function
0	×	×	×Note 1	-	_	P25	P26	P27					
	Other than above							Setting	g prohibited				

(2) 3-wire serial I/O mode

	CSIM0		PM25	P25	PM26	P26	PM27	P27	First	Shift	P25/SI0/SDA0	P26/SO0	P27/SCK0/SCL0
CSIE0	SCL01	SCL00							Bit	Clock	Pin Function	Pin Function	Pin Function
1	0	0	1 Note 2	×Note 2	0	0	1	×	MSB	External	SIONote 2	SO0	SCK0 input
										clock		(CMOS output)	
	Note 3	Note 3					0	0		Internal			SCK0 output
										clock			
Other than above							Setting	g prohibited					

Notes 1. These pins can be used for port functions.

2. When only transmission is used, this pin can be used as P25 (CMOS I/O).

3. Refer to serial operation mode register 0 (CSIM0).

Remark ×: Don't care

17.4 Operation

3-wire serial I/O has the following two operation modes.

- · Operation stopped mode
- 3-wire serial I/O mode

(1) Operation stopped mode

Since serial transfers are not performed in the operation stopped mode, the power consumption can be decreased.

In the operation stopped mode, the pins can be used as ordinary I/O port pins.

(a) Register settings

The operation stopped mode is set by serial operation mode register 0 (CSIM0).

CSIM0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CSIM0 to 00H.

Figure 17-3. Format of Serial Operation Mode Register 0 (CSIM0)

Address: 0	FF90H Afte	er reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
CSIM0	CSIE0	0	0	0	0	MODE0	SCL01	SCL00

CSIE0	SIO	O operation enable/disable setting				
CSIEU	Shift register operation	Serial counter	Port			
0	Operation disabled	Clear	Port function ^{Note}			
1	Operation enabled	Operation count enabled	Serial function + port function			

Note If CSIE0 = 0 (SIO0 operation stopped state), the pins connected to SI0, SO0 and SCK0 can function as ports.

(2) 3-wire serial I/O mode

The 3-wire serial I/O mode is effective when connecting peripheral I/O or a display controller with an internal clocked serial interface.

Communication is over three lines, the serial clock (SCKO), serial output (SOO), and serial input (SIO).

(a) Register setting

The 3-wire serial I/O mode is set by in serial operation mode register 0 (CSIM0).

CSIM0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CSIM0 to 00H.

Figure 17-4. Format of Serial Operation Mode Register 0 (CSIM0)

Address: 0FF90H After reset: 00H R/W (7)Symbol 6 2 0 5 3 1 CSIM0 0 MODE0 CSIE0 0 0 0 SCL01 SCL00

CSIE0	SIO	0 operation enable/disable se	tting
USIEU	Shift register operation	Serial counter	Port
0	Operation disabled Clear		Port function ^{Note}
1	Operation enabled	Operation count enabled	Serial function + port function

MODE0		Transfer operation mode flag				
MODEO	Operation mode	Operation mode Transfer start trigger				
0	Transmit/receive communication mode	SIO0 write	Normal output			
1	Receive only mode	SIO0 read	Low level fixed			

SCL01	SCL00	Clock selection
0	0	External clock to SCK0
0	1	8-bit timer counter 2 (TM2) output (TO2)
1	0	fxx/8 (1.56 MHz)
1	1	fxx/16 (781 kHz)

Note If CSIE0 = 0 (SIO0 operation stopped state), the pins connected to SI0, SO0 and $\overline{\text{SCK0}}$ can function as ports.

Cautions 1. Set 8-bit timer mode control register 2 (TMC2) as follows when selecting 8-bit timer counter 2 (TM2) output as the clock.

TMC26 = 0, TMC24 = 0, LVS2 = 0, LVR2 = 0, TMC21 = 1

Moreover, set TOE2 to 0 when TO2 is not output externally and TOE2 to 1 when TO2 is output externally.

2. Set the external clock and TO2 to fxx/8 or below when selecting the external clock ($\overline{SCK0}$) and TM2 output (TO2) for the clock.

Remark Figures in parentheses apply to operation at fxx = 12.5 MHz.

(b) Communication operation

The 3-wire serial I/O mode transmits and receives data in 8-bit units. Data is transmitted and received with each bit synchronized with the serial clock.

The shifting of serial I/O shift register 0 (SIO0) is synchronized with the falling edge of the serial clock ($\overline{SCK0}$). The transmitted data is held in the latch and output from the SO0 pin. At the rising edge of $\overline{SCK0}$, the received data that was input to the SI0 pin is latched to SIO0.

At the end of the 8-bit transfer, the SIO0 operation automatically stops and the interrupt request flag (CSIIF0) is set.

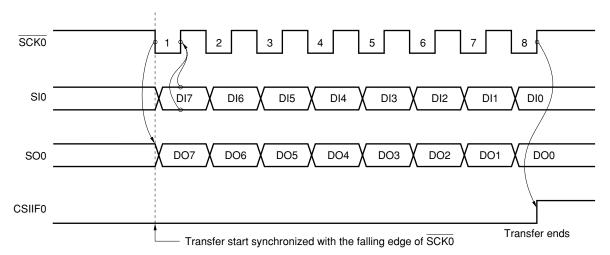


Figure 17-5. 3-Wire Serial I/O Mode Timing

(c) Start transfer

If the following two conditions are satisfied, the serial transfer starts when the transfer data is set in the serial I/O shift register (SIO0).

- Control bit (CSIE0) = 1 during SIO0 operation
- After an 8-bit serial transfer, the internal serial clock enters the stopped state or SCKO is high.
- Transmit/receive communication mode
 When CSIE0 = 1 and MODE0 = 0, the transfer starts with an SIO0 write.
- Receive only mode
 When CSIE0 = 1 and MODE0 = 1, the transfer starts with an SIO0 read.

Caution Even if CSIE0 becomes 1 after the data is written to SIO0, transfer does not start.

Serial transfer is automatically stopped by the end of the 8-bit transfer, and the interrupt request flag (CSIIF0) is set.

CHAPTER 18 I²C BUS MODE (μPD784225Y SUBSERIES ONLY)

18.1 Function Overview

• I²C (Inter IC) bus mode (supporting multi master)

This interface communicates with devices that conform to the I²C bus format.

Eight bit data transfers with multiple devices are performed by the two lines of the serial clock (SCL0) and the serial data bus (SDA0).

In the I^2C bus mode, the master can output the start condition, data, and stop condition on the serial data bus to the slaves.

The slaves automatically detect the received data by hardware. The I^2C bus control portion of the application program can be simplified by using this function.

Since SCL0 and SDA0 become open-drain outputs in the I²C bus mode, pull-up resistors are required on the serial clock line and serial data bus line.

- Cautions 1. If the power to the μ PD784225Y is disconnected while μ PD784225Y functions are not used, I²C communication may no longer be possible. Even when not being used, do not disconnect the power to the μ PD784225Y.
 - 2. If the I²C bus mode is used, set the SCL0/P27 and SDA0/P25 pins to N-channel open-drains by setting the port function control register (PF2).

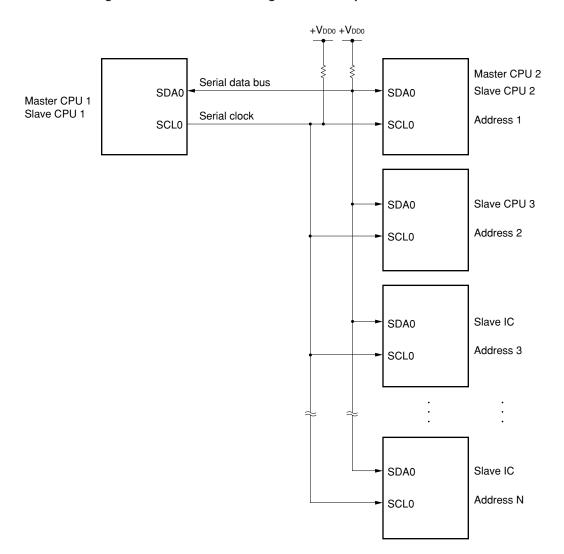


Figure 18-1. Serial Bus Configuration Example in I²C Bus Mode

18.2 Configuration

The clocked serial interface in the I^2C bus mode includes the following hardware. Figure 18-2 is a block diagram of clocked serial interface (IIC0) in the I^2C bus mode.

Table 18-1. I²C Bus Mode Configuration

Item	Configuration
Registers	Serial shift register 0 (IIC0) Slave address register 0 (SVA0)
Control registers	I ² C bus control register 0 (IICC0) I ² C bus status register 0 (IICS0) Prescaler mode register 0 for serial clock (SPRM0)

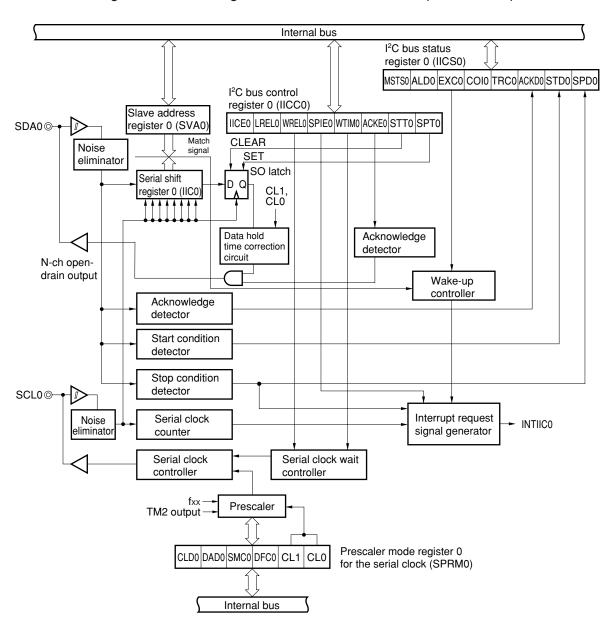


Figure 18-2. Block Diagram of Clocked Serial Interface (I²C Bus Mode)

(1) Serial shift register 0 (IIC0)

The IIC0 register converts 8-bit serial data into 8-bit parallel data and 8-bit parallel data into 8-bit serial data. IIC0 is used in both transmission and reception.

The actual transmission and reception are controlled by writing and reading IIC0.

IIC0 is set by an 8-bit memory manipulation instruction.

RESET input sets IIC0 to 00H.

(2) Slave address register 0 (SVA0)

When used as a slave, this register sets a slave address.

SVA0 is set by an 8-bit memory manipulation instruction.

RESET input sets SVA0 to 00H.

(3) SO latch

The SO latch holds the output level of the SDA0 pin.

(4) Wake-up controller

This circuit generates an interrupt request when the address set in slave address register 0 (SVA0) and the receive address match, or when an extended code is received.

(5) Clock selector

This selects the sampling clock that is used.

(6) Serial clock counter

The serial clock that is output or input during transmission or reception is counted to check 8-bit data communication.

(7) Interrupt request signal generator

This circuit controls the generation of the interrupt request signal (INTIIC0).

The I²C interrupt request is generated by the following two triggers.

- Eighth or ninth clock of the serial clock (set by the WTIM0 bit Note)
- Interrupt request is generated by detecting the stop condition (set by the SPIE0 bitNote)

Note WTIM0 bit: Bit 3 in I²C bus control register 0 (IICC0) SPIE0 bit: Bit 4 in I²C bus control register 0 (IICC0)

(8) Serial clock controller

In the master mode, the clock output to pin SCL0 is generated by the sampling clock.

(9) Serial clock wait controller

This circuit controls the wait timing.

(10) Acknowledge output circuit, stop condition detector, start condition detector, acknowledge detector

These circuits output and detect the control signals.

(11) Data hold time correction circuit

This circuit generates the hold time of the data to the falling edge of the serial clock.

18.3 Control Registers

The I²C bus mode is controlled by the following three registers.

- I²C bus control register 0 (IICC0)
- I²C bus status register 0 (IICS0)
- Prescaler mode register 0 for serial clock (SPRM0)

The following registers are also used.

- Serial shift register 0 (IIC0)
- Slave address register 0 (SVA0)

(1) I²C bus control register 0 (IICC0)

The IICC0 register enables and disables the I^2C bus mode, sets the wait timing, and sets other I^2C bus mode operations.

IICC0 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets IICC0 to 00H.

Figure 18-3. Format of I²C Bus Control Register 0 (IICC0) (1/4)

Address: 0FFB0H After reset: 00H R/W Symbol 6 (5) 4 3 2 1 0 7 IICC0 IICE0 LREL0 WREL0 SPIE0 WTIM0 ACKE0 STT0 SPT0

IICE0	I ² C operation enable				
0	Operation disabled. Presets the I ² C bus status register (IICS0). Stops internal operation. SCL0 and SDA0 lines output low level.				
1	Enables operation.				
Clear co	endition (IICE0 = 0)	• Set condition (IICE0 = 1)			
Cleared by an instruction When RESET is input		Set by an instruction			

LREL0	Release communication	
0	Normal operation	
1	Releases microcontroller from the current communication and sets it in the wait state. Automatically clears after execution. The extended code that is unrelated to the base is used during reception. The SCL0 and SDA0 lines are put in the high impedance state. The following flags are cleared. • STD0 • ACKD0 • TRC0 • COI0 • EXC0 • MSTS0 • STT0 • SPT0	
Until the following communication participation conditions are satisfied, the wait state that released the microcontroller from communication is entered. • Start as the master after detecting the stop condition. • Address match or extended code reception after the start condition		
Clear condi	Clear condition (LREL0 = 0) ^{Note} Set condition (LREL0 = 1)	
 Automatically cleared after execution. When RESET is input 		

WREL0	Wait release	
0	The wait is not released.	
1	The wait is released. After the wait is released, it is automatically cleared.	
Clear condition (WREL0 = 0)Note		Set condition (WREL0 = 1)
Automatically cleared after execution. When RESET is input		Set by an instruction

SPIE0	Enable/disable generation of interrupt request by stop condition detection	
0	Disable	
1	Enable	
Clear condition (SPIE0 = 0)Note		Set condition (SPIE0 = 1)
_	by an instruction ESET is input	Set by an instruction

Note This flag signal becomes invalid by setting IICE0 to 0.

Figure 18-3. Format of I²C Bus Control Register 0 (IICC0) (2/4)

WTIM0	Control of wait and interrupt request generation		
0	Interrupt request generated at the falling edge of the eighth clock For the master: After the eighth clock is output, wait with the clock output low.		
	· ·	input, the master waits with the clock low.	
1	Interrupt request generated at the falling edge of the ninth clock		
	For the master: After the ninth clock is output, wait with the clock output low.		
	For the slave: After the ninth clock is input, the master waits with the clock low.		
This bit setting becomes invalid during an address transfer, and becomes valid after the transfer ends. In the master, a wait is inserted at the falling edge of the ninth clock in an address transfer. The slave that received the base address inserts a wait at the falling edge of the ninth clock after the acknowledge is generated. The slave that received the extended code inserts the waits at the falling edge of the eighth clock.			
Clear condi	Clear condition $(WTIM0 = 0)^{Note}$ Set condition $(WTIM0 = 1)$		
 Cleared by an instruction When RESET is input • Set by an instruction			

ACKE0	Acknowledge control	
0	Acknowledge is disabled.	
1	Acknowledge is enabled. The SDA0 line du control is invalid during an address transfer.	ring the ninth clock period goes low. However, the When EXC0 = 1, the control is valid.
Clear condition (ACKE0 = 0) ^{Note}		Set condition (ACKE0 = 1)
Cleared by an instruction When RESET is input		Set by an instruction

Note This flag signal becomes invalid by setting IICE0 to 0.

Figure 18-3. Format of I²C Bus Control Register 0 (IICC0) (3/4)

STT0	Start condition trigger	
0	The start condition is not generated.	
1	 When the bus is released (stop condition): The start condition is generated (started as the master). The SDA0 line is changed from high to low, and the start condition is generated. Then, the standard time is guaranteed, and SCL0 goes low. When not participating with the bus: The trigger functions as the start condition reserved flag. When set, the start condition is automatically generated after the bus is released. Wait status (when master) The wait status is canceled and the restart condition is generated. 	
Cautions on set timing • Master reception: Setting is prohibited during transfer. STT0 can be set only during the wait period after ACKE0 = 0 is set and the fact that reception is completed is passed to the slave. • Master transmission: During the ACK0 acknowledge period, the start condition may not be normally generated. Set STT0 during the wait period. • Setting synchronized to SPT0 is prohibited. • Resetting between setting STT0 and the generation of the clear condition is prohibited.		
Clear condi	ition (STT0 = 0)	Set condition (STT0 = 1)
 Cleared by an instruction IICE0 = 0 LREL0 = 1 When arbitration failed Clear after generating the start condition in the master. When RESET is input 		Set by an instruction

Figure 18-3. Format of I²C Bus Control Register 0 (IICC0) (4/4)

SPT0	Stop condition trigger		
0	The stop condition is not generated.		
1	The stop condition is generated (ends the transfer as the master). After the SDA0 line goes low, the SCL0 line goes high, or wait until SCL0 goes high. Then, the standard time is guaranteed; the SDA0 line is changed from low to high; and the stop condition is generated.		
Cautions or	n set timing		
Master i	Master reception: Setting is prohibited during transfer. SPT0 can be set only during the wait period after ACK0=0 is set and the fact that reception is completed is passed to the slave.		
Master t	r transmission: During the ACK0 acknowledge period, the start condition may not be normally generated. Set SPT0 during the wait period.		
Setting :	synchronized to STT0 is prohibited.		
	 Resetting between setting SPT0 and the generation of the clear condition is prohibited. Set SPT0 only by the master^{Note}. 		
When W	 When WTIM0 = 0 is set, be aware that if SPT0 is set during the wait period after the eighth clock is output, 		
the stop	the stop condition is generated during the high level of the ninth clock after the wait is released.		
	When the ninth clock must be output, set WTIM0 = $0 \rightarrow 1$ during the wait period after the eighth clock is output, and set SPT0 during the wait period after the ninth clock is output.		
Clear condi	ition (SPT0 = 0)	Set condition (SPT0 = 1)	
Cleared	by an instruction	Set by an instruction	
• IICE0 =	0		
• LREL0 :	= 0		
	rbitration failed		
	ically clear after the stop condition is detected ESET is input		

Note Set SPT0 only by the master. However, SPT0 must be set once and the stop condition generated to operate the master by the time the first stop condition is detected after operation is enabled. For details, refer to **18.5.15 Additional warnings**.

Cautions 1. When bit 3 (TRC0) = 1 in I^2C bus status register 0 (IICS0), after WREL0 is set at the ninth clock and the wait is released, TRC0 is cleared, and the SDA0 line becomes high impedance.

2. SPT0 and STT0 are 0 when read after data has been set.

(2) I²C bus status register 0 (IICS0)

The IICS0 register displays the status of the I²C bus.

IICS0 is set by a 1-bit or 8-bit memory manipulation instruction. IICS0 can only be read.

RESET input sets IICS0 to 00H.

Figure 18-4. Format of I²C Bus Status Register 0 (IICS0) (1/3)

Address: 0FFB6H After reset: 00H R 2 (7) 6 (5) 4 3 1 0 Symbol IICS0 MSTS0 ALD0 EXC0 COI0 TRC0 ACKD0 STD0 SPD0

MSTS0	Master state	
0	Slave state or communication wait state	
1	Master communication state	
Clear condi	ition (MSTS0 = 0)	Set condition (MSTS0 = 1)
When AClearedWhen II	ne stop condition is detected $LD0 = 1$ by $LREL0 = 1$ $CE0 = 1 \rightarrow 0$ $ESET$ is input	When start condition is generated

ALD0	Arbitration failed detection	
0	No arbitration state or arbitration win state	
1	Arbitration failed state. MSTS0 is cleared.	
Clear condition (ALD0 = 0)		Set condition (ALD0 = 1)
Automatically cleared after IICS0 is read ^{Note} When IICE0 = 1 → 0 When RESET is input		When arbitration failed

EXC0	Extended code reception detection	
0	The extended code is not received.	
1	The extended code is received.	
Clear condition (EXC0 = 0) Set condition (EXC0 = 1)		Set condition (EXC0 = 1)
When the ClearedWhen II	the start condition is detected the stop condition is detected by LREL0 = 1 $\frac{CE0}{ESET} = 1 \rightarrow 0$ $\frac{CES}{ESET} = 1 = 1$	When the most significant four bits of the received address data are 0000 or 1111 (set by the rising edge of the eighth clock)

Note This is cleared when a bit manipulation instruction is executed for other bits in IICS0.

Figure 18-4. Format of I²C Bus Status Register 0 (IICS0) (2/3)

COI0	Address match detection	
0	The address does not match.	
1	The address matches.	
Clear condition (COI0 = 0)		Set condition (COI0 = 1)
During sClearedWhen III	start condition detection stop condition detection by LREL0 = 1 \sim 0 ESET is input	When the received address matches the base address (SVA0) (set at the rising edge of the eighth clock)

TRC0	Transmission/reception state detection	
0	Reception state (not the transmission state). The SDA0 line has high impedance.	
1	Transmission state. The value in the SO latch can be output to the SDA0 line (valid after the falling edge of the ninth clock of the first byte)	
Clear conditi	ion (TRC0 = 0)	Set condition (TRC0 = 1)
Cleared to When IIC Cleared to When AL When RE In the maste When 1 in (transfer) In the slave When the	e stop condition is detected by LREL0 = 1 CE0 = 1 → 0 by WREL0 = 1 ^{Note} _D0 = 0 → 1 ESET is input er is output to the first byte LSB direction specification bit) e start condition is detected articipating in the communication	In the master • When the start condition is generated In the slave • When 1 is input to the LSB of the first byte (transfer direction specification bit)

Note If a wait is cancelled by setting bit 5 (WREL0) of I²C bus control register 0 (IICC0) at the ninth clock while bit 3 (TRC0) of I²C bus status register 0 (IICS0) is 1, TRC0 is cleared and the SDA0 line becomes high impedance.

Figure 18-4. Format of I²C Bus Status Register 0 (IICS0) (3/3)

ACKD0	Ackn	owledge detection					
0	The acknowledge is not detected.						
1	The acknowledge is detected.						
Clear cond	ition (ACKD0 = 0)	Set condition (ACKD0 = 1)					
At the riClearedWhen II	ne stop condition is detected ising edge of the first clock in the next byte by LREL0 = 1 $CE0 = 1 \rightarrow 0$ RESET is input	When the SDA0 line is low at the rising edge of the ninth clock of SCL0					

STD0	Start	condition detection							
0	The start condition is not detected.								
1	The start condition is detected. This indicat	ne start condition is detected. This indicates the address transfer period.							
Clear condi	ition (STD0 = 0)	Set condition (STD0 = 1)							
At the ri after traClearedWhen II	ne stop condition is detected sing edge of the first clock of the next byte insterring the address by LREL0 = 1 $CE0 = 1 \rightarrow 0$ \overline{ESET} is input	When the start condition is detected							

SPD0	Stop	Stop condition detection							
0	The stop condition is not detected.								
1	The stop condition is detected. Communica	ne stop condition is detected. Communication is ended by the master, and the bus is released.							
Clear condi	tion (SPD0 = 0)	Set condition (SPD0 = 1)							
clock in start cor	bit is set, at the rising edge of the first the address transfer byte after detecting the addition $\frac{\text{CE0}}{\text{ESET}} = 1 \rightarrow 0$	When the stop condition is detected							

Remark LREL0: Bit 6 of I^2C bus control register 0 (IICC0) IICE0: Bit 7 of I^2C bus control register 0 (IICC0)

(3) Prescaler mode register 0 for serial clock (SPRM0)

The SPRM0 register sets the transfer clock of the I^2C bus. SPRM0 is set by a 1-bit or 8-bit memory manipulation instruction. $\overline{\text{RESET}}$ input sets SPRM0 to 00H.

Figure 18-5. Format of Prescaler Mode Register 0 for Serial Clock (SPRM0) (1/2)

Address:	0FFB2H	After reset: (00H R/W	lote				
Symbol	7	6	(5)	4	3	2	1	0
SPRM0	0	0	CLD	DAD	SMC	DFC	CL1	CL0

CLD	SCL0 line level dete	ction (valid only when IICE0 = 1)		
0	Detects a low SCL0 line.			
1	Detects a high SCL0 line.			
Clear condi	ition (CLD = 0)	Set condition (CLD = 1)		
When III	ne SCL0 line is low CE0 = 0 ESET is input	When the SCL0 line is high		

DAD	SDA0 line level dete	ection (valid only when IICE0 = 1)		
0	Detects a low SDA0 line.			
1	Detects a high SDA0 line.			
Clear condi	ition (DAD = 0)	Set condition (DAD = 1)		
When II	ne SDA0 line is low CE0 = 0 ESET is input	When the SDA0 line is high		

Note Bits 4 and 5 are read only.

Figure 18-5. Format of Prescaler Mode Register 0 for Serial Clock (SPRM0) (2/2)

SMC ^{Note 1}	DFCNote 2	CL1	CL0	Transfer clock	fxx setting allowable range
0	1/0	0	0	fxx/44	2 to 4.19 MHz
0	1/0	0	1	fxx/86	4.19 to 8.38 MHz
0	1/0	1	0	fxx/172	8.38 to 12.5 MHz
0	1/0	1	1	TM2 output/66	
1	1/0	0	1/0	fxx/24	4 to 8.38 MHz
1	1/0	1	0	fxx/48	8 to 12.5 MHz
1	1/0	1	1	TM2 output/18	

Notes 1. SMC: Bit to change operation mode

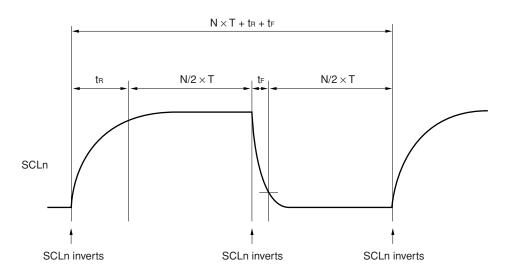
0: Operates in normal mode

1: Operates in high-speed mode

2. DFC: Bit to control digital filter operation

0: Digital filter off1: Digital filter on

Cautions 1. Rewrite the SPRM0 after clearing the IICE0.


2. Set the transfer clock as follows:

When SMC = 0: 100 kHz or below When SMC = 1: 400 kHz or below

Remarks 1. IICE0: Bit 7 of I²C bus control register 0 (IICC0)

2. The transfer clock does not change due to the ON/OFF setting of bit 2 (DFC) in high-speed mode.

3. IIC clock: Clock frequency when fxx/N is selected

IIC clock frequency: fscL = $1/(N \times T + tR + tF)$ T = 1/fxx, tR: SCLn rise time, tF: SCLn fall time **Example** When fxx = 12.5 MHz, N = 172, t_R = 200 ns, t_F = 50 ns IIC clock frequency: $1/(172 \times 80 \text{ ns} + 200 \text{ ns} + 50 \text{ ns}) \cong 71.4 \text{ kHz}$

(4) Serial shift register 0 (IIC0)

This register performs serial communication (shift operation) synchronized with the serial clock.

Although this register can be read and written in 1-bit and 8-bit units, do not write data to IIC0 during a data transfer.

Address: 0	FFB8H A	fter reset: 00	H R/W					
Symbol	7	6	5	4	3	2	1	0
IIC0								

(5) Slave address register 0 (SVA0)

This register stores the slave address of the I²C bus.

It can be read and written in 8-bit units, but bit 0 is fixed to 0.

Address: 0	FFB4H A	After reset: 00	H R/W					
Symbol	7	6	5	4	3	2	1	0
SVA0								0

18.4 I²C Bus Mode Function

18.4.1 Pin configuration

The serial clock pin (SCL0) and the serial data bus pin (SDA0) have the following configurations.

- (1) SCL0 I/O pin for the serial clock
 - The outputs to both the master and slave are N-ch open drains. The input is a Schmitt input.
- (2) SDA0 Shared I/O pin for serial data

The outputs to both the master and slave are N-ch open drains. The input is a Schmitt input.

Since the outputs of the serial clock line and serial data bus line are N-ch open drains, external pull-up resistors are required.

Master device

SCL0

SCL0

SCL0

Clock output

Clock input

Data output

Data input

Data input

SDA0

Slave device

SCL0

SCL0

SCL0

SCL0

SCL0

Data output

Data output

Data input

Figure 18-6. Pin Configuration

18.5 I²C Bus Definitions and Control Method

Next, the serial data communication formats of the I²C bus and the meanings of the signals used are described. Figure 18-7 shows the transfer timing of the start condition, data, and stop condition that are output on the serial data bus of the I²C bus.

SCL0 1-7 8 9 1-7 8 9 SDA0 Start Address R/W ACK Data ACK Stop condition

Figure 18-7. Serial Data Transfer Timing of I²C Bus

The master outputs the start condition, slave address, and stop condition.

The acknowledge signal (ACK) can be output by either the master or slave. (Normally, this is output on the side receiving 8-bit data.)

The serial clock (SCL0) continues to be output by the master. However, the slave can extend the SCL0 low-level period and insert waits.

18.5.1 Start condition

When the SCL0 pin is high, the start condition is the SDA0 pin changing from high to low. The start conditions for the SCL0 and SDA0 pins are the signals output when the master starts the serial transfer to the slave. The slave has hardware that detects the start condition.

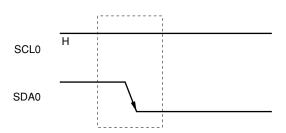
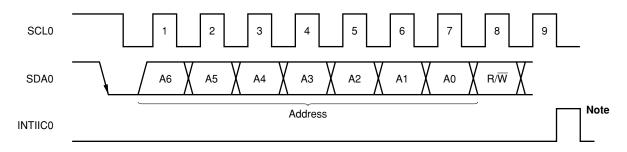


Figure 18-8. Start Condition

The start condition is output when bit 1 (STT0) of I^2C bus control register 0 (IICC0) is set to 1 in the stop condition detection state (SPD0: when bit 0 = 1 in I^2C bus status register 0 (IICS0)). In addition, when the start condition is detected, bit 1 (STD0) in IICS0 is set to 1.


18.5.2 Address

The 7-bit data following the start condition defines the address.

The address is 7-bit data that is output so that the master selects a specific slave from the multiple slaves connected to the bus line. Therefore, the slaves on the bus line must have different addresses.

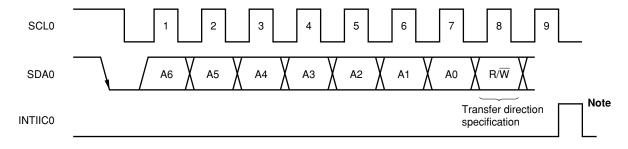
The slave detects this condition by hardware, and determines whether the 7-bit data matches slave address register 0 (SVA0). After the slave was selected when the 7-bit data matched the SVA0 value, communication with the master continues until the master sends a start or stop condition.

Figure 18-9. Address

Note When the base address or extended code is received during slave operation, INTIIC0 is not generated.

The address is output by writing the slave address and the transfer direction described in **18.5.3 Transfer direction specification** to serial shift register 0 (IIC0) as 8-bit data. In addition, the received address is written to IIC0.

The slave address is allocated to the higher seven bits of IIC0.


18.5.3 Transfer direction specification

Since the master specifies the transfer direction after the 7-bit address, 1-bit data is transmitted.

A transfer direction specification bit of 0 indicates that the master transmits the data to the slave.

A transfer direction specification bit of 1 indicates that the master receives the data from the slave.

Figure 18-10. Transfer Direction Specification

Note When the base address or extended code is received during slave operation, INTIIC0 is not generated.

18.5.4 Acknowledge signal (ACK)

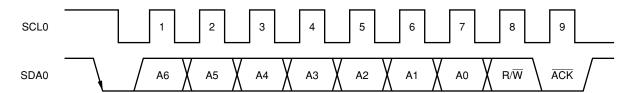
The acknowledge signal verifies the reception of the serial data on the transmitting and receiving sides.

The receiving side returns the acknowledge signal each time 8-bit data is received. Usually, after transmitting 8-bit data, the transmitting side receives an acknowledge signal. However, if the master receives, the acknowledge signal is not output when the last data is received. After an 8-bit transmission, the transmitting side detects whether the receiving side returned an acknowledge signal. If an acknowledge signal is returned, the next processing is performed assuming that reception was correctly performed. Since reception has not been performed correctly if the acknowledge signal is not returned from the slave, the master outputs the stop condition to stop transmission.

If an acknowledge signal is not returned, the following two causes are considered.

- <1> The reception is not correct.
- <2> The last data has been received.

When the receiving side sets the SDA0 line low at the ninth clock, the acknowledge signal becomes active (normal reception response).


If bit 2 (ACKE0) = 1 in I^2C bus control register 0 (IICC0), the acknowledge signal automatic generation enable state is entered.

Bit 3 (TRC0) in I^2C bus status register 0 (IICS0) is set by the data in the eighth bit following the 7-bit address information. However, set ACKE0 = 1 in the reception state when TRC0 bit is 0.

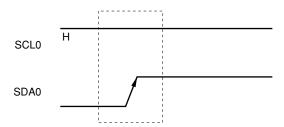
When the slave is receiving (TRC0 = 0), the slave side receives multiple bytes and the next data is not required, when ACKE0 = 0, the master side cannot start the next transfer.

Similarly, if the next data is not needed when the master is receiving (TRC0 = 0), set ACKE0 = 0 so that the \overline{ACK} signal is not generated when you want to output a restart or stop condition. This prevents the output of MSB data in the data on the SDA0 line when the slave is transmitting (transmission stopped).

Figure 18-11. Acknowledge Signal

When receiving the base address, the automatic output of the acknowledge is synchronized with the falling edge of the eighth clock of SCL0 regardless of the ACKE0 value. When receiving at an address other than the base address, the acknowledge signal is not output.

The output method of the acknowledge signal when receiving data is as follows based on the wait timing.


- When 8 clock waits are selected: The acknowledge signal is synchronized with the falling edge of the eighth clock of SCL output by setting ACKE0 = 1 before the wait is released.
- When 9 clock waits are selected: By setting ACKE0 = 1 beforehand, the acknowledge signal is synchronized with the falling edge of the eighth clock of SCL0 and is automatically output.

18.5.5 Stop condition

When the SCL0 pin is high and the SDA0 pin changes from low to high, a stop condition occurs.

The stop condition is the signal output by the master to the slave when serial transfer ends. The slave has hardware that detects the stop condition.

Figure 18-12. Stop Condition

The stop condition is generated when bit 0 (SPT0) of I^2C bus control register 0 (IICC0) is set to 1. And when the stop condition is detected, if bit 0 (SPD0) in I^2C bus status register 0 (IICS0) is set to 1 and bit 4 (SPIE0) of IICC0 is also set to 1, INTIIC0 is generated.

18.5.6 Wait signal (WAIT)

The wait signal notifies the other side that the master or slave is being prepared (wait state) for data communication. The wait state is reported to the other side by setting the SCL0 pin low. When both the master and the slave are released from the wait state, the next transfer can start.

Figure 18-13. Wait Signal (1/2)

(1) The master has a 9-clock wait, and the slave has an 8-clock wait (Master: Transmitting, Slave: Receiving, ACKE0 = 1)

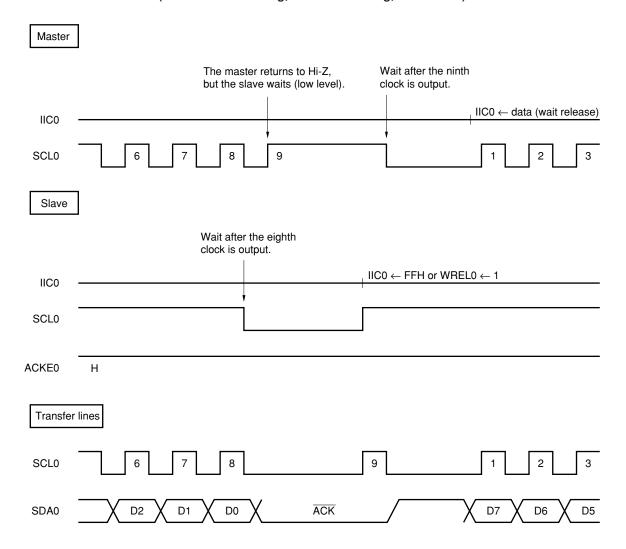
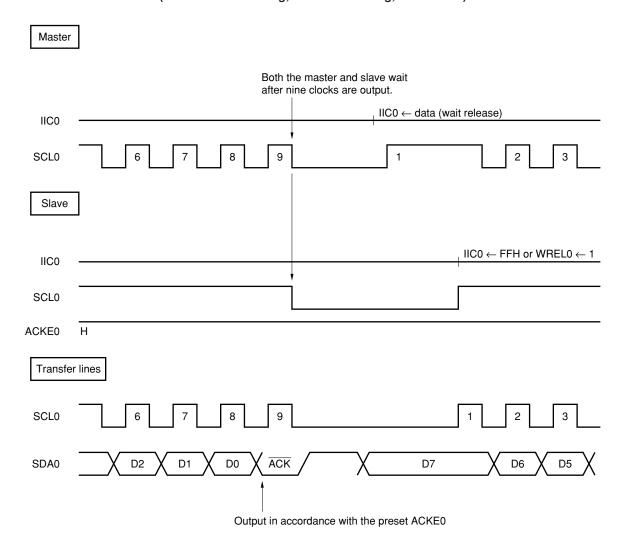



Figure 18-13. Wait Signal (2/2)

(2) Both the master and slave have 9-clock waits (Master: Transmitting, Slave: Receiving, ACKE0 = 1)

Remark ACKE0: Bit 2 in I²C bus control register 0 (IICC0) WREL0: Bit 5 in I²C bus control register 0 (IICC0)

A wait is automatically generated by setting bit 3 (WTIM0) of I²C bus control register 0 (IICC0).

Normally, when bit 5 (WREL0) = 1 in IICC0 or FFH is written to serial shift register 0 (IIC0), the receiving side releases the wait; when data is written to IIC0, the transmitting side releases the wait.

In the master, the wait can be released by the following methods.

- IICC0 bit 1 (STT0) = 1
- IICC0 bit 0 (SPT0) = 1


18.5.7 I²C interrupt request (INTIIC0)

This section describes the values of I²C bus status register 0 (IICS0) at the INTIIC0 interrupt request generation timing and the INTIIC0 interrupt request timing.

(1) Master operation

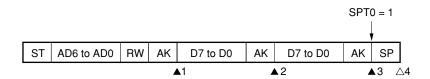
(a) Start - Address - Data - Data - Stop (normal communication)

<1> When WTIM0 = 0

 \blacktriangle 1: IICS0 = 10×××110B

 \blacktriangle 2: IICS0 = 10×××000B

 $\blacktriangle 3$: IICS0 = 10×××000B (WTIM0 = 1)


▲4: IICS0 = 10×××00B △5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1

▲1: IICS0 = 10×××110B

 \blacktriangle 2: IICS0 = 10×××100B

 $\blacktriangle 3$: IICS0 = 10××××00B

 $\triangle 4$: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(b) Start - Address - Data - Start - Address - Data - Stop (Restart)

<1> When WTIM0 = 0

▲1: IICS0 = 10×××110B

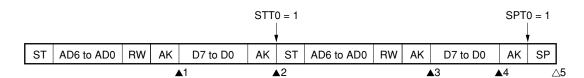
 \blacktriangle 2: IICS0 = 10×××000B (WTIM0 = 1)

 $\blacktriangle 3$: IICS0 = 10××××00B (WTIM0 = 0)

 $\blacktriangle 4$: IICS0 = 10×××110B (WTIM0 = 0)

 \blacktriangle 5: IICS0 = 10×××000B (WTIM0 = 1)

 $\blacktriangle6$: IICS0 = 10×××00B


△7: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

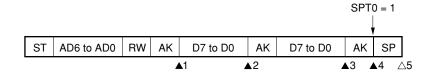
<2> When WTIM0 = 1

 \blacktriangle 1: IICS0 = 10×××110B

 $\triangle 2$: IICS0 = $10 \times \times \times \times 00B$

 $\blacktriangle 3$: IICS0 = $10 \times \times \times 110B$

 $\blacktriangle 4$: IICS0 = $10 \times \times \times \times 00B$


 \triangle 5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

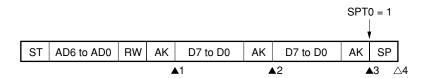
(c) Start - Code - Data - Data - Stop (Extended code transmission)

<1> When WTIM0 = 0

▲1: IICS0 = 1010×110B

▲2: IICS0 = 1010×000B

▲3: IICS0 = 1010×000B (WTIM0 = 1)


▲4: IICS0 = 1010××00B △5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1

▲1: IICS0 = 1010×110B

▲2: IICS0 = 1010×100B

▲3: IICS0 = 1010××00B

△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(2) Slave operation (when receiving slave address data (SVA0 match))

(a) Start - Address - Data - Data - Stop

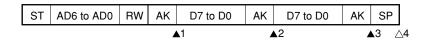
<1> When WTIM0 = 0

	ST AD6 to AD0 RW AK D7 to D0 AK D7 to D0	AK	SP
--	--	----	----

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001×000B

▲3: IICS0 = 0001×000B


△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

×: Don't care

<2> When WTIM0 = 1

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001×100B

▲3: IICS0 = 0001××00B

△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(b) Start - Address - Data - Start - Address - Data - Stop

<1> When WTIM0 = 0 (SVA0 match after restart)

CT ADC + ADO DAN AN D7 + ADO AN CT ADC + ADO DAN AN D7 + ADO AN CD	51	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
--	----	------------	----	----	----------	----	----	------------	----	----	----------	----	----

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001×000B

▲3: IICS0 = 0001×110B

▲4: IICS0 = 0001×000B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

×: Don't care

<2> When WTIM0 = 1 (SVA0 match after restart)

				1		2	I.			.3		4
ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001××00B

▲3: IICS0 = 0001×110B

▲4: IICS0 = 0001××00B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(c) Start - Address - Data - Start - Code - Data - Stop

<1> When WTIM0 = 0 (extended code received after restart)

51	AD6 to AD0	RW	AK	D7 to D0	AK	51	AD6 to AD0	RW	AK	D7 to D0	AK	SP
ST	AD6 to AD0	DW	ΛIZ	D7 to D0	ΔIZ	ST	ADC to ADO	DW	A 1/	D7 to D0	ΔIZ	J

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001×000B

▲3: IICS0 = 0010×010B

▲4: IICS0 = 0010×000B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1 (extended code received after restart)

	•			.1		2			3	4		5 /	∆6
ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP	ĺ

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001××00B

▲3: IICS0 = 0010×010B

▲4: IICS0 = 0010×110B

▲5: IICS0 = 0010××00B

△6: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(d) Start - Address - Data - Start - Address - Data - Stop

<1> When WTIM0 = 0 (no address match after restart (not extended code))

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			4	1	∆ 2					1 3		

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001×000B

▲3: IICS0 = 00000×10B

 $\triangle 4$: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1 (no address match after restart (not extended code))

						2				. 3		
ST	AD6 to AD0	RW	AK	D7to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP

▲1: IICS0 = 0001×110B

▲2: IICS0 = 0001××00B

▲3: IICS0 = 00000×10B

△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(3) Slave operation (when receiving the extended code)

(a) Start - Code - Data - Data - Stop

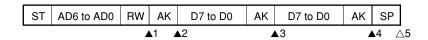
<1> When WTIM0 = 0

			1		2		A 3	/	ı ∖4
ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP	

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×000B

▲3: IICS0 = 0010×000B


△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×110B

▲3: IICS0 = 0010×100B

▲4: IICS0 = 0010××00B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(b) Start - Code - Data - Start - Address - Data - Stop

<1> When WTIM0 = 0 (SVA0 match after restart)

01	ADO TO ADO	1100	. 1	D7 10 D0	711	01	ADO IO ADO	1100	AIX	2	A 4	<u> </u>
ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×000B

▲3: IICS0 = 0001×110B

▲4: IICS0 = 0001×000B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1 (SVA0 match after restart)

01	ADO TO ADO	1100	11 /	2	AIX	2	ADO IO ADO	1100	AIX	D7 10 B0	AIX	<u> </u>
СТ	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×110B

▲3: IICS0 = 0010××00B

▲4: IICS0 = 0001×110B

▲5: IICS0 = 0001××00B

 \triangle 6: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(c) Start - Code - Data - Start - Code - Data - Stop

<1> When WTIM0 = 0 (extended code received after restart)

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP	
		A	1		∆ 2				\ 3		▲ 4		_

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×000B

▲3: IICS0 = 0010×010B

▲4: IICS0 = 0010×000B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1 (extended code received after restart)

			11 4	2		.3			4	5		16 /
ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×110B

▲3: IICS0 = 0010××00B

▲4: IICS0 = 0010×010B

▲5: IICS0 = 0010×110B

▲6: IICS0 = 0010××00B

 $\triangle 7$: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

(d) Start - Code - Data - Start - Address - Data - Stop

<1> When WTIM0 = 0 (no address match after restart (not an extended code))

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
		4	1		1 2				4	1 3		Δ

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×000B

▲3: IICS0 = 00000×10B

△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1 (no address match after restart (not an extended code))

	ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
--	----	------------	----	----	----------	----	----	------------	----	----	----------	----	----

▲1: IICS0 = 0010×010B

▲2: IICS0 = 0010×110B

▲3: IICS0 = $0010 \times \times 00B$

▲4: IICS0 = 00000×10B

△5: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

(4) Not participating in communication

(a) Start - Code - Data - Data - Stop

ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP

 \triangle 1: IICS0 = 00000001B

Remarks \triangle : Generated only when SPIE0 = 1

(5) Arbitration failed operation (operates as the slave after arbitration fails)

(a) When arbitration failed during the transfer of slave address data

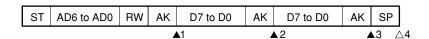
<1> When WTIM0 = 0

	1.			V1	12		A 3		\4
ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP	

▲1: IICS0 = 0101×110B (Example: Read ALD0 during interrupt servicing.)

▲2: IICS0 = 0001×000B

▲3: IICS0 = 0001×000B


△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

<2> When WTIM0 = 1

▲1: IICS0 = 0101×110B (Example: Read ALD0 during interrupt servicing.)

▲2: IICS0 = 0001×100B

▲3: IICS0 = 0001××00B

 $\triangle 4$: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

(b) When arbitration failed while transmitting an extended code

<1> When WTIM0 = 0

 ST
 AD6 to AD0
 RW
 AK
 D7 to D0
 AK
 D7 to D0
 AK
 SP

▲1: IICS0 = 0110×010B (Example: Read ALD0 during interrupt servicing.)

▲2: IICS0 = 0010×000B ▲3: IICS0 = 0010×000B △4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

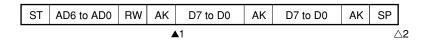
x: Don't care

<2> When WTIM0 = 1

ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP	
			M	2	4	1 3	4	4	_ ∆5

▲1: IICS0 = 0110×010B (Example: Read ALD0 during interrupt servicing.)

▲2: IICS0 = 0010×110B ▲3: IICS0 = 0010×100B ▲4: IICS0 = 0010×00B △5: IICS0 = 00000001B


Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

×: Don't care

(6) Arbitration failed operation (no participation after arbitration failed)

(a) When arbitration failed while transmitting slave address data

▲1: IICS0 = 01000110B (Example: Read ALD0 during interrupt servicing.)

△2: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

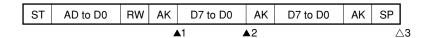
(b) When arbitration failed while transmitting an extended code

ST	AD6 to AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP
		4	1					

▲1: IICS0 = 0110×010B (Example: Read ALD0 during interrupt servicing.)

Set LREL0 = 1 from the software.

△2: IICS0 = 00000001B


Remarks ▲: Always generated.

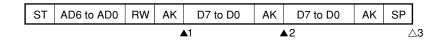
 \triangle : Generated only when SPIE0 = 1

x: Don't care

(c) When arbitration failed during a data transfer

<1> When WTIM0 = 0

▲1: IICS0 = 10001110B


▲2: IICS0 = 01000000B (Example: Read ALD0 during interrupt servicing.)

△3: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

<2> When WTIM0 = 1

▲1: IICS0 = 10001110B

▲2: IICS0 = 01000100B (Example: Read ALD0 during interrupt servicing.)

△3: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

(d) When failed in the restart condition during a data transfer

<1> Not an extended code (Example: SVA0 does not match)

▲1: IICS0 = 1000×110B

▲2: IICS0 = 01000110B (Example: Read ALD0 during interrupt servicing.)

△3: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care
Dn = D6 to D0

<2> Extended code

ST	AD6 to AD0	RW	AK	D7 to Dn	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			4	1 1			4	2			Ζ

▲1: IICS0 = 1000×110B

▲2: IICS0 = 0110×010B (Example: Read ALD0 during interrupt servicing.)

IICC0:LREL0 = 1 set by software.

△3: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

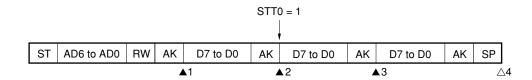
×: Don't care

Dn = D6 to D0

(e) When failed in the stop condition during a data transfer

ST	AD6 to AD0	RW	AK	D7 to Dn	SP
				1	Δ

▲1: IICS0 = 1000×110B △2: IICS0 = 01000001B


Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

 \times : Don't care Dn = D6 to D0

(f) When arbitration failed at a low data level and the restart condition was about to be generated

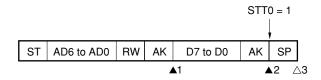
WTIM0 = 1

▲1: IICS0 = 1000×110B

▲2: IICS0 = 1000××00B

▲3: IICS0 = 01000100B (Example: Read ALD0 during interrupt servicing.)

 $\triangle 4$: IICS0 = 00000001B


Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

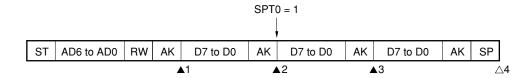
(g) When arbitration failed in a stop condition and the restart condition was about to be generated

WTIM0 = 1

▲1: IICS0 = 1000×110B

▲2: IICS0 = 1000××00B

△3: IICS0 = 01000001B


Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

(h) When arbitration failed in the low data level and the stop condition was about to be generated

WTIM0 = 1

▲1: IICS0 = 1000×110B

▲2: IICS0 = 1000××00B

▲3: IICS0 = 01000000B (Example: Read ALD0 during interrupt servicing.)

△4: IICS0 = 00000001B

Remarks ▲: Always generated.

 \triangle : Generated only when SPIE0 = 1

x: Don't care

18.5.8 Interrupt request (INTIIC0) generation timing and wait control

By setting the WTIM0 bit in I²C bus control register 0 (IICC0), INTIIC0 is generated at the timing shown in Table 18-2 and wait control is performed.

Table 18-2. INTIICO Generation Timing and Wait Control

VA/TIMAG	D	uring Slave Operati	on	Du	ıring Master Operat	ion
WTIM0	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission
0	9Notes 1, 2	8Note 2	8Note 2	9	8	8
1	9Notes 1, 2	gNote 2	gNote 2	9	9	9

- Notes 1. The INTIIC0 signal and wait of the slave are generated on the falling edge of the ninth clock only when the address set in slave address register 0 (SVA0) matches.

 In this case, ACK is output regardless of the ACKE0 setting. The slave that received the extended code generates INTIIC0 at the falling edge of the eighth clock.
 - 2. When the address that received SVA0 does not match, INTIIC0 and wait are not generated.

Remark The numbers in the table indicate the number of clocks of the serial clock. In addition, the interrupt request and wait control are both synchronized with the falling edge of the serial clock.

(1) When transmitting and receiving an address

- When the slave is operating: The interrupt and wait timing are determined regardless of the WTIM0 bit.
- When the master is operating: The interrupt and wait timing are generated by the falling edge of the ninth clock regardless of the WTIM0 bit.

(2) When receiving data

· When the master and slave are operating: The interrupt and wait timing are set by the WTIM0 bit.

(3) When transmitting data

When the master and slave are operating: The interrupt and wait timing are set by the WTIM0 bit.

(4) Releasing a wait

The following four methods release a wait.

- WREL0 = 1 in I²C bus control register 0 (IICC0)
- Writing to serial shift register 0 (IIC0)
- Setting the start condition (STT0 = 1 in IICC0)
- Setting the stop condition (SPT0 = 1 in IICC0)

When an eight-clock wait is selected (WTIM0 = 0), the output level of \overline{ACK} must be determined before releasing the wait.

(5) Stop condition detection

INTIIC0 is generated when the stop condition is detected.

18.5.9 Address match detection

In the I²C bus mode, the master can select a specific slave device by transmitting the slave address.

Address matching can be detected automatically by the hardware. When the base address is set in slave address register 0 (SVA0), if the slave address transmitted from the master matches the address set in SVA0, or if the extended code is received, an INTIIC0 interrupt request occurs.

18.5.10 Error detection

In the I²C bus mode, since the state of the serial bus (SDA0) during transmission is input to serial shift register 0 (IIC0) of the transmitting device, transmission errors can be detected by comparing the IIC0 data before and after the transmission. In this case, if the two data differ, it can be judged that a transmission error occurred.

18.5.11 Extended codes

- (1) If the most significant four bits of the receiving address are "0000" or "1111", an extended code is received and the extended code received flag (EXC0) is set. The interrupt request (INTIIC0) is generated at the falling edge of the eighth clock. The local address stored in slave address register 0 (SVA0) is not affected.
- (2) In 10-bit address transfers, the following occurs when "111110XX" is set in SVA0 and "111110XX0" is transferred from the master. However, INTIIC0 is generated at the falling edge of the eighth clock.

Higher 4 bits of data match: EXC0 = 1^{Note}
 7-bit data match: COI0 = 1^{Note}

Note EXC0: Bit 5 of I²C bus status register 0 (IICS0) COI0: Bit 4 of I²C bus status register 0 (IICS0)

(3) Since the processing after an interrupt request is generated differs depending on the data that follows the extended code, this processing is performed by software.

For example, when operation as a slave is not desired after an extended code is received, enter the next communication wait state by setting bit 6 (LREL0) = 1 of I^2C bus control register 0 (IICC0).

Table 18-3. Definitions of Extended Code Bits

Slave Address	R/W Bit	Description
0000 000	0	General call address
0000 000	1	Start byte
0000 001	×	CBUS address
0000 010	×	Address reserved in the different bus format
1111 0××	×	10-bit slave address setting

18.5.12 Arbitration

When multiple masters simultaneously output start conditions (when STT0 = 1 occurs before STD0 = 1^{Note}), the master communicates while the clock is adjusted until the data differ. This operation is called arbitration.

A master that failed arbitration sets the arbitration failed flag (ALD0) of I²C bus status register 0 (IICS0) at the timing of the failed arbitration. The SCL0 and SDA0 lines enter the high impedance state, and the bus is released.

Failed arbitration is detected when ALD0 = 1 by software at the timing of the interrupt request generated next (eighth or ninth clock, stop condition detection, etc.).

At the timing for generating the interrupt request, refer to 18.5.7 I²C interrupt request (INTIIC0).

Note STD0: Bit 1 in I²C bus status register 0 (IICS0) STT0: Bit 1 in I²C bus control register 0 (IICC0)

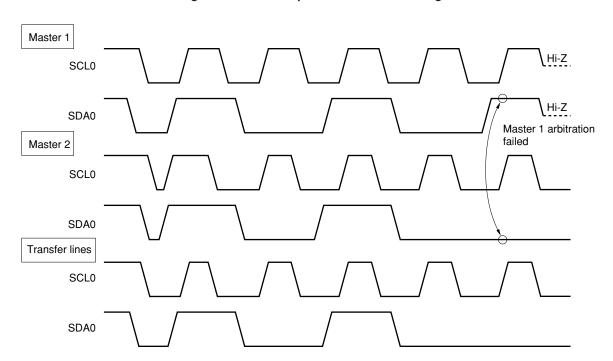


Figure 18-14. Example of Arbitration Timing

Table 18-4. Arbitration Generation States and Interrupt Request Generation Timing

Arbitration Generation State	Interrupt Request Generation Timing
During address transmission	Falling edge of clock 8 or 9 after byte transfer ^{Note 1}
Read/write information after address transmission	
During extended code transmission	
Read/write information after extended code transmission	
During data transmission	
During ACK transfer period after data transmission	
Restart condition detection during data transfer	
Stop condition detection during data transfer	When stop condition is output (SPIE0 = 1)Note 2
Data is low when the restart condition is about to be output.	Falling edge of clock 8 or 9 after byte transfer ^{Note 1}
The restart condition should be output, but the stop condition is detected.	Stop condition is output (SPIE0 = 1)Note 2
Data is low when the stop condition is about to be output.	Falling edge of clock 8 or 9 after byte transfer ^{Note 1}
SCL0 is low when the restart condition is about to be output.	

- **Notes 1.** If WTIM0 = 1 (bit 3 = 1 in I²C bus control register 0 (IICC0)), an interrupt request is generated at the timing of the falling edge of the ninth clock. If WTIM0 = 0 and the slave address of the extended code is received, an interrupt request is generated at the timing of the falling edge of the eighth clock.
 - 2. When arbitration is possible, use the master to set SPIE0 = 1.

Remark SPIE0: Bit 5 in I²C bus control register 0 (IICC0)

18.5.13 Wake-up function

This is a slave function of the I²C bus and generates an interrupt request (INTIIC0) when the base address and extended code are received.

When the address does not match, an unused interrupt request is not generated, and efficient processing is possible.

When the start condition is detected, the wake-up standby function is entered. Since the master can become a slave in an arbitration failure (when a start condition was output), the wake-up standby function is entered while the address is transmitted.

However, when the stop condition is detected, the generation of interrupt requests is enabled or disabled based on the setting of bit 5 (SPIE0) in I²C bus control register 0 (IICC0) unrelated to the wake-up function.

18.5.14 Communication reservation

When you want the master to communicate after being in a non-participation state on the bus, the start condition can be transmitted when the bus is released by reserving communication. The following two states are included when the bus does not participate.

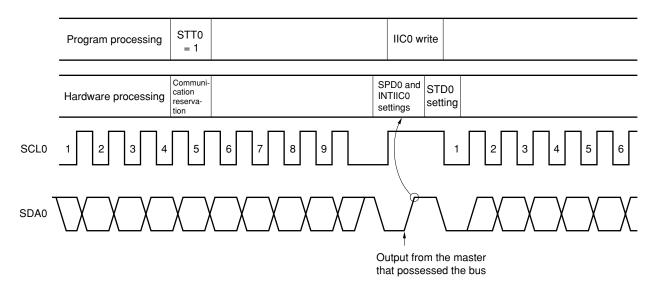
- · When there was no arbitration in the master and the slave
- When the extended code is received and operation is not as a slave (bus released when ACK is not returned, and bit 6 (LREL0) = 1 in the I²C bus control register (IICC0))

When bit 1 (STT0) of IICC0 is set in the not participating state in the bus, after the bus is released (after stop condition detection), the start condition is automatically generated, and the wait state is entered. When the bus release is detected (stop condition detection), the address transfer starts as the master by the write operation of serial shift register 0 (IIC0). In this case, set bit 4 (SPIE0) in IICC0.

When STT0 is set, whether it operates as a start condition or for communication reservation is determined by the bus state.

- When the bus is released Start condition generation
- When the bus is not released (standby state) Communication reservation

The method that detects the operation of STT0 sets STT0 and verifies the STT0 bit again after the wait time elapses.


Use the software to save the wait time, which is listed in Table 18-5. The wait time can be set by bits 3, 1, and 0 (SMC, CL1, CL0) of prescaler mode register 0 for serial clock (SPRM0).

SMC CL1 CL0 Wait Time 0 n Ω 26 clocks × 1/fxx 0 0 1 46 clocks × 1/fxx 0 1 0 92 clocks × 1/fxx 0 1 1 37 clocks × 1/TM2 output 1 0 0 16 clocks × 1/fxx 1 0 1 1 1 0 32 clocks × 1/fxx 1 1 1 13 clocks × 1/TM2 output

Table 18-5. Wait Times

Figure 18-15 shows the timing of communication reservation.

Figure 18-15. Timing of Communication Reservation

IIC0: Serial shift register

STT0: Bit 1 in I²C bus control register 0 (IICC0) STD0: Bit 1 in I²C bus status register 0 (IICS0) SPD0: Bit 0 in I²C bus status register 0 (IICS0)

The communication reservation is accepted at the following timing. After bit 1 (STD0) = 1 in I^2C bus status register 0 (IICS0), the communication is reserved by bit 1 (STT0) = 1 in I^2C bus control register 0 (IICC0) until the stop condition is detected.

Figure 18-16. Communication Reservation Acceptance Timing

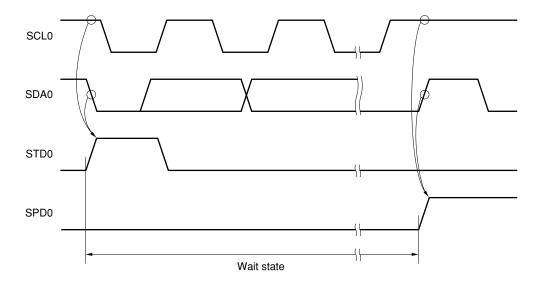


Figure 18-17 shows the communication reservation procedure.

DΙ SET1 STT0 ; Set the STT0 flag (communication reservation). Define communication ; Define that communication is being reserved. reservation. (Defines and sets the user flag to any RAM.) Wait ; Save the wait time by the software (see Table 18-5). (Communication reservation)Note Yes MSTS0 = 0? ; Check the communication reservation. No (Start condition generated) Communication ; Clear the user flag. reservation is released. MOV IIC0, #xxH ; IIC0 write

Figure 18-17. Communication Reservation Procedure

Note When the communication is being reserved, serial shift register 0 (IIC0) is written by the stop condition interrupt.

ΕI

Remark STT0: Bit 1 in I²C bus control register 0 (IICC0)

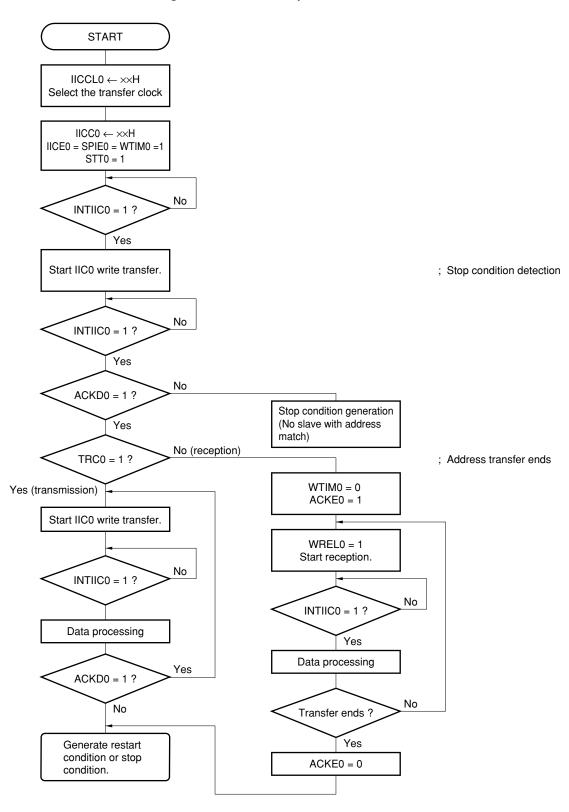
MSTS0: Bit 7 in I²C bus status register 0 (IICS0)

IIC0: Serial shift register 0

18.5.15 Additional cautions

After a reset, when the master is communicating from the state where the stop condition is not detected (bus is not released), perform master communication after the stop condition is first generated and the bus is released.

Multiple masters cannot communicate in the state where the bus is not released (the stop condition is not detected). The following procedure generates the stop condition.


- <1> Set prescaler mode register 0 (SPRM0) for the serial clock.
- <2> Set bit 7 (IICE0) in I²C bus control register 0 (IICC0).
- <3> Set bit 0 of IICC0.

18.5.16 Communication operation

(1) Master operation

The following example shows the master operation procedure.

Figure 18-18. Master Operation Procedure

(2) Slave operation

The following example is the slave operating procedure.

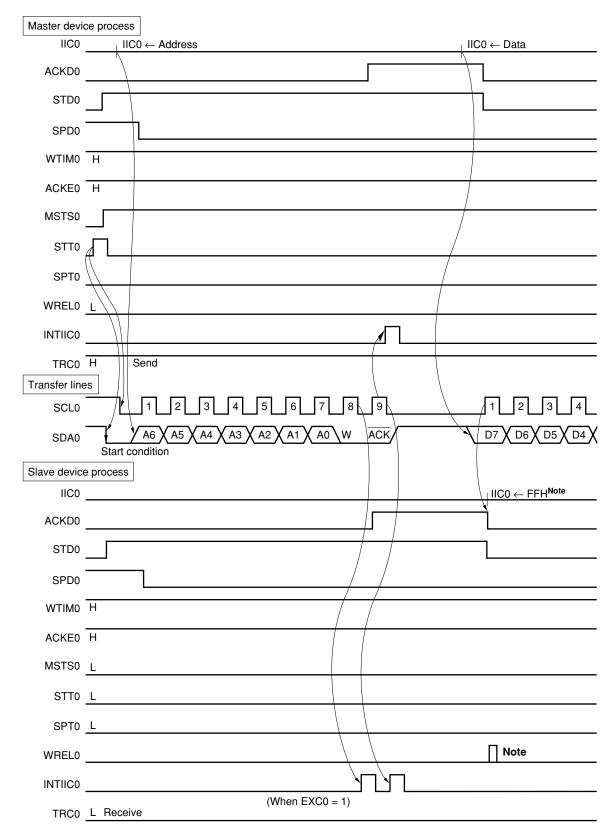
START $\mathsf{IICC0} \leftarrow \mathsf{x}\!\!\times\!\!\mathsf{H}$ IICE0 = 1No INTIIC0 = 1 ? Yes Yes EXC0 = 1? No Participate in No communication? No COI0 = 1 ? LREL0 = 1Yes Yes No TRC0 = 1 ? WTIM0 = 0Yes ACKE0 = 1 WTIM0 = 1Start IIC0 write transfer. WREL0 = 1Start reception. No INTIIC0 = 1 ? No INTIIC0 = 1 ? Data processing Yes Data processing Yes ACKD0 = 1 ? No Transfer ends? No Yes Detect restart condition ACKE0 = 0 or stop condition.

Figure 18-19. Slave Operating Procedure

18.6 Timing Charts

In the I²C bus mode, the master outputs an address on the serial bus and selects one of the slave devices from multiple slave devices as the communication target.

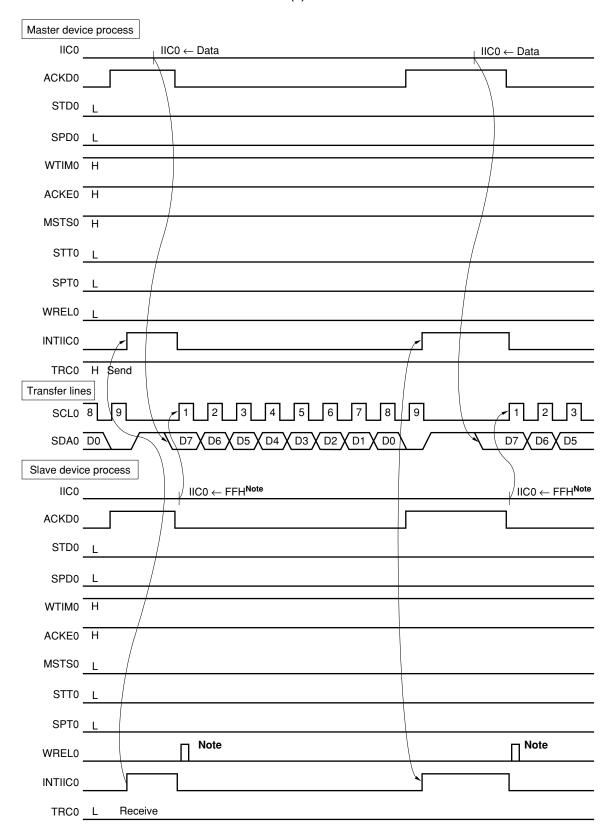
The master transmits the TRC0 bit, bit 3 of I²C bus status register 0 (IICS0), that indicates the transfer direction of the data after the slave address and starts serial communication with the slave.


Figures 18-20 and 18-21 are the timing charts for data communication.

Shifting of serial shift register 0 (IIC0) is synchronized with the falling edge of the serial clock (SCL0). The transmission data is transferred to the SO0 latch and output from the SDA0 pin with the MSB first.

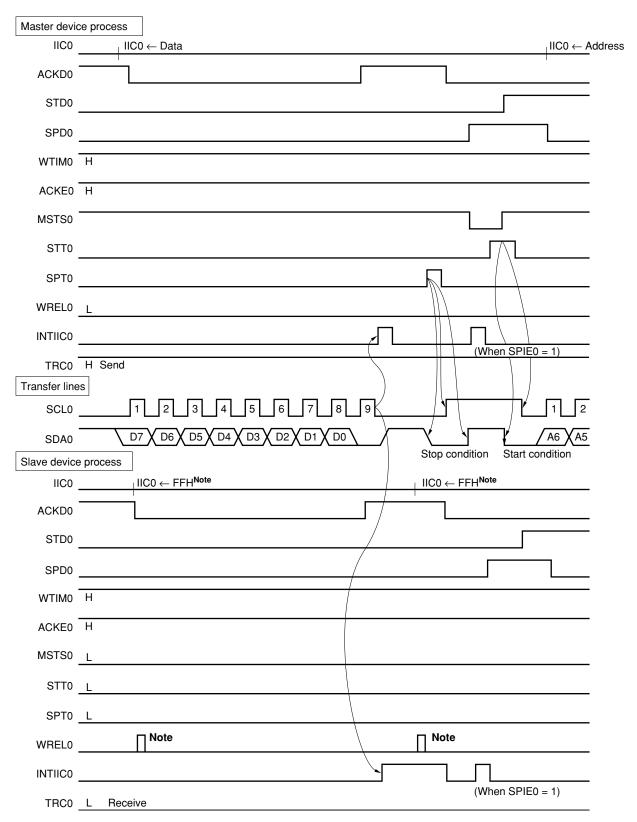
The data input at the SDA0 pin is received by IIC0 at the rising edge of SCL0.

Figure 18-20. Master → Slave Communication Example (When Master and Slave Select 9-Clock Wait) (1/3)


(1) Start condition - Address

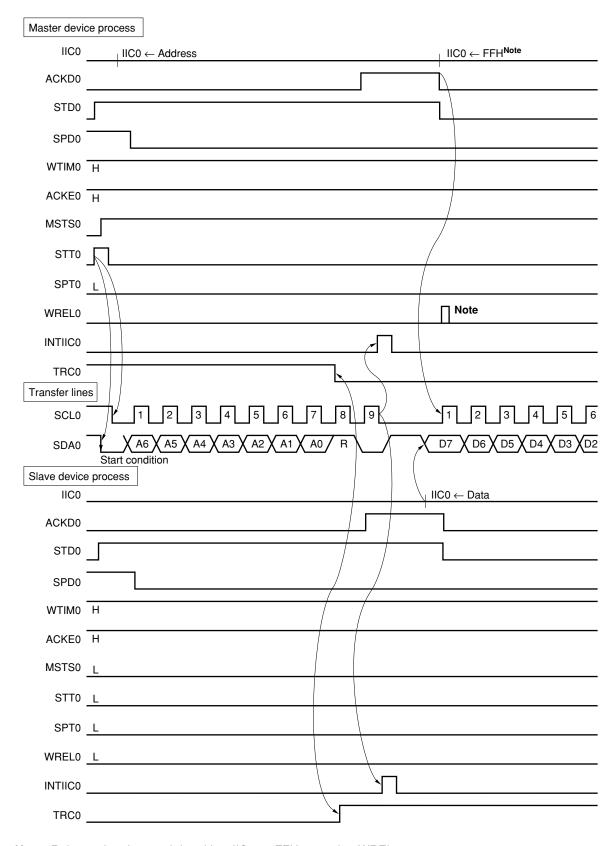
Note Release the slave wait by either IIC0 \leftarrow FFH or setting WREL0.

Figure 18-20. Master \to Slave Communication Example (When Master and Slave Select 9-Clock Wait) (2/3)


(2) Data

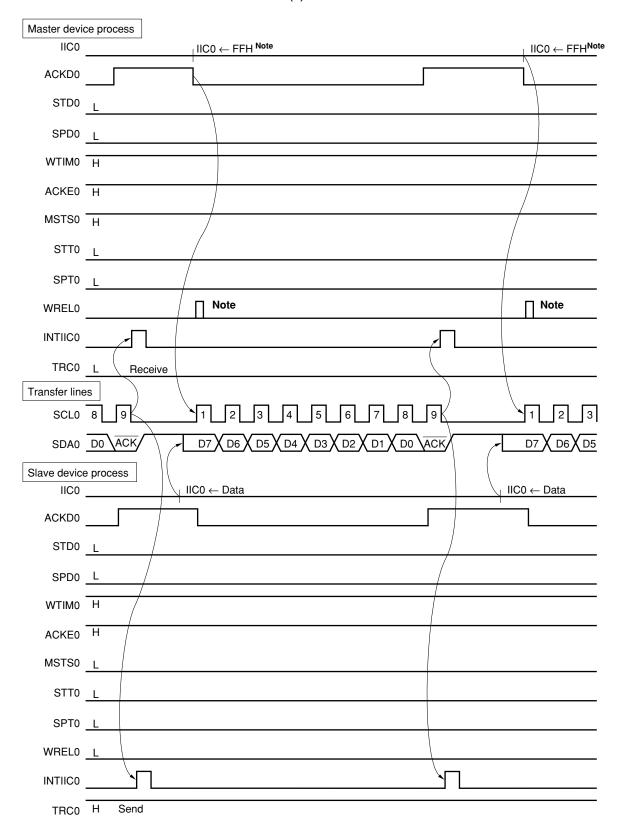
Note Release the slave wait by either IIC0 \leftarrow FFH or setting WREL0.

Figure 18-20. Master \to Slave Communication Example (When Master and Slave Select 9-Clock Wait) (3/3)


(3) Stop condition

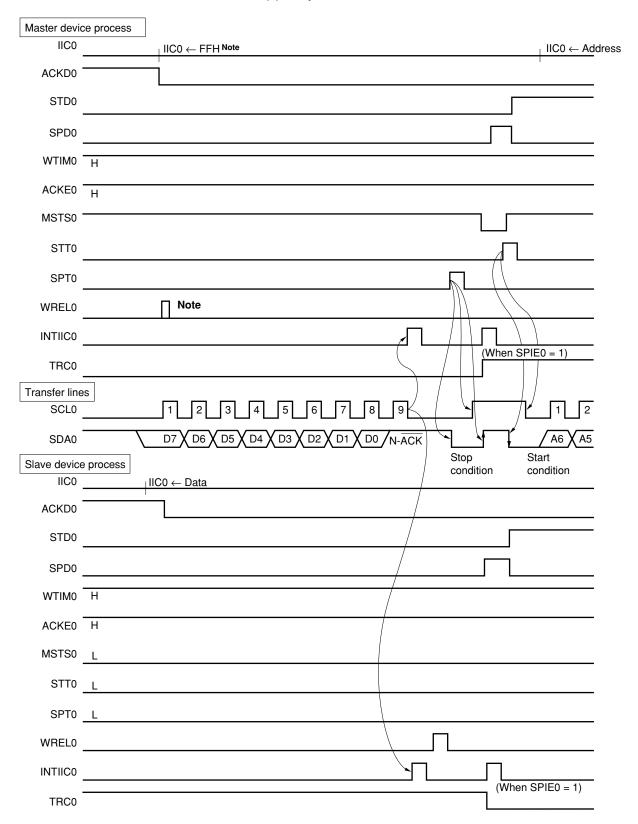
Note Release the slave wait by either IIC0 ← FFH or setting WREL0.

Figure 18-21. Slave → Master Communication Example (When Master and Slave Select 9-Clock Wait) (1/3)


(1) Start condition - Address

Note Release the slave wait by either IIC0 \leftarrow FFH or setting WREL0.

Figure 18-21. Slave → Master Communication Example (When Master and Slave Select 9-Clock Wait) (2/3)


(2) Data

Note Release the slave wait by either IIC0 \leftarrow FFH or setting WREL0.

Figure 18-21. Slave → Master Communication Example (When Master and Slave Select 9-Clock Wait) (3/3)

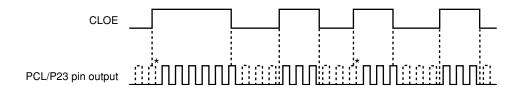
(3) Stop condition

Note Release the slave wait by either IIC0 ← FFH or setting WREL0.

CHAPTER 19 CLOCK OUTPUT FUNCTION

19.1 Functions

The clock output function is used to output the clock supplied to a peripheral LSI or carrier output during remote transmission. The clock selected by the clock output control register (CKS) is output from the PCL/P23 pin.

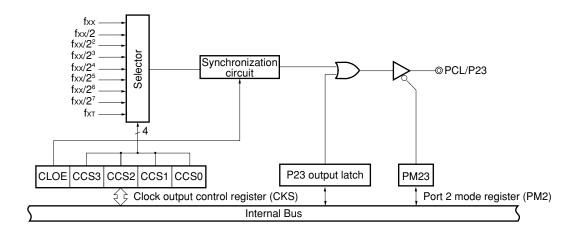

To output the clock pulse, follow the procedure described below.

- <1> Select the output frequency of the clock pulse (while clock pulse output is disabled) with bits 0 to 3 (CCS0 to CCS3).
- <2> Set the P23 output latch to 0.
- <3> Set bit 3 (PM23) of the port mode register (PM2) to 0 (to set the output mode).
- <4> Set bit 4 (CLOE) of CKS to 1.

Caution If the output latch of P23 is set to 1, clock output cannot be used.

Remark The clock output function is designed so that pulses with a narrow width are not output when clock output enable/disabled is switched (See "*" in **Figure 19-1**).

Figure 19-1. Remote Control Output Application Example


19.2 Configuration

The clock output function includes the following hardware.

Table 19-1. Configuration of Clock Output Function

Item	Configuration
Control registers	Clock output control register (CKS) Port 2 mode register (PM2)

Figure 19-2. Block Diagram of Clock Output Function

19.3 Control Registers

The following two registers are used to control the clock output function.

- · Clock output control register (CKS)
- Port 2 mode register (PM2)

(1) Clock output control register (CKS)

This register sets the PCL output clock.

CKS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CKS to 00H.

Remark CKS provides a function for setting the buzzer output clock in addition to setting the PCL output clock.

Figure 19-3. Format of Clock Output Control Register (CKS)

Address: 0FF40H After reset: 00H R/W

Symbol 7 6 5 4 3 2 0 1 CKS **BZOE** BCS₁ BCS0 CLOE CCS3 CCS2 CCS1 CCS0

BZOE Buzzer output control (Refer to Figure 20-2)

BCS1 BCS0 Buzzer output frequency selection (Refer to **Figure 20-2**)

CLOE	Clock output control
0	Clock output stop
1	Clock output start

CCS3	CCS2	CCS1	CCS0	Clock output frequency selection
0	0	0	0	fxx (12.5 MHz)
0	0	0	1	fxx/2 (6.25 MHz)
0	0	1	0	fxx/4 (3.13 MHz)
0	0	1	1	fxx/8 (1.56 MHz)
0	1	0	0	fxx/16 (781 kHz)
0	1	0	1	fxx/32 (391 kHz)
0	1	1	0	fxx/64 (195 kHz)
0	1	1	1	fxx/128 (97.7 kHz)
1	0	0	0	fxт (32.768 kHz)
Other than above		Setting prohibited		

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

2. fx: Main system clock oscillation frequency

3. fxT: Subsystem clock oscillation frequency

4. Figures in parentheses apply to operation at fxx = 12.5 MHz or fxT = 32.768 kHz.

(2) Port 2 mode register (PM2)

This register sets input/output for port 2 in 1-bit units.

When using the P23/PCL pin for clock output, set the output latch of PM23 and P23 to 0.

PM2 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM2 to FFH.

Figure 19-4. Format of Port 2 Mode Register (PM2)

Address: 0FF22H After reset: FFH R/W Symbol 7 6 5 4 3 2 1 0 PM2 PM27 PM26 PM25 PM24 PM23 PM22 PM21 PM20

PM2n	P2n pin I/O mode selection (n = 0 to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

CHAPTER 20 BUZZER OUTPUT FUNCTIONS

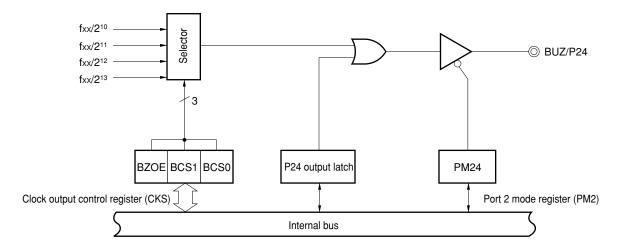
20.1 Function

This function outputs a square wave at frequencies of 1.5 kHz, 3.1 kHz, 6.1 kHz, and 12.2 kHz. The buzzer frequency selected by the clock output control register (CKS) is output from the BUZ/P24 pin.

The following procedure outputs the buzzer frequency.

- <1> Select the buzzer output frequency by using bits 5 to 7 (BCS0, BCS1, BZOE) of CKS. (In a state where the buzzer is prohibited from sounding.)
- <2> Set the P24 output latch to 0.
- <3> Set bit 4 (PM24) of the port 2 mode register (PM2) to 0 (to set the output mode).

Caution When the output latch of P24 is set to 1, the buzzer output cannot be used.


20.2 Configuration

The buzzer output function includes the following hardware.

Table 20-1. Configuration of Buzzer Output Function

Item	Configuration
Control register	Clock output control register (CKS) Port 2 mode register (PM2)

Figure 20-1. Block Diagram of Buzzer Output Function

20.3 Control Registers

The buzzer output function is controlled by the following two registers.

- Clock output control register (CKS)
- Port 2 mode register (PM2)

(1) Clock output control register (CKS)

This register sets the frequency of the buzzer output.

CKS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CKS to 00H.

Remark CKS provides a function for setting the clock for PCL output in addition to setting the buzzer output frequency.

Figure 20-2. Format of Clock Output Control Register (CKS)

Address: 0FF40H After reset: 00H R/W Symbol 7 2 0 6 5 4 3 1 BCS1 CKS **BZOE** BCS0 CLOE CCS3 CCS2 CCS₁ CCS0

BZOE	Buzzer output buzzer
0	Stop buzzer output
1	Start buzzer output

BCS1	BCS0	Buzzer output frequency selection
0	0	fxx/2 ¹⁰ (12.2 kHz)
0	1	fxx/2 ¹¹ (6.1 kHz)
1	0	fxx/2 ¹² (3.1 kHz)
1	1	fxx/2 ¹³ (1.5 kHz)

CLOE	Clock output control (Refer to Figure 19-3)
------	---

CCS3	CCS2	CCS1	CCS0	Clock output frequency selection		
				(Refer to Figure 19-3)		

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

2. fx: Main system clock oscillation frequency

3. Figures in parentheses apply to operation with fxx = 12.5 MHz.

(2) Port 2 mode register (PM2)

This register sets port 2 input/output in 1-bit units.

When the P24/BUZ pin is used as the buzzer output function, set the output latches of PM24 and P24 to 0.

PM2 is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PM2 to FFH.

Figure 20-3. Format of Port 2 Mode Register (PM2)

Address: 0FF22H After reset: FFH R/W Symbol 7 6 5 4 3 2 1 0 PM2 PM27 PM26 PM25 PM24 PM23 PM22 PM21 PM20

PM2n	P2n pin I/O mode selection (n = 0 to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

CHAPTER 21 EDGE DETECTION FUNCTION

The P00 to P05 pins have an edge detection function that can be programmed to detect the rising edge or falling edge and send the detected edge to on-chip hardware components.

The edge detection function is always functioning, even in the STOP mode and IDLE mode.

21.1 Control Registers

 External interrupt rising edge enable register 0 (EGP0), external interrupt falling edge enable register 0 (EGN0)

The EGP0 and EGN0 registers specify the valid edge to be detected by the P00 to P05 pins. They can be read/written by an 8-bit or 1-bit manipulation instruction.

RESET input sets EGP0 and EGN0 to 00H.

Figure 21-1. Format of External Interrupt Rising Edge Enable Register 0 (EGP0) and External Interrupt Falling Edge Enable Register 0 (EGN0)

Address: 0	FFA0H After	r reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
EGP0	0	0	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0
Address: 0FFA2H After reset: 00H R/W								
Symbol	7	6	5	4	3	2	1	0
EGN0	0	0	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

EGPn	EGNn	INTPn pin valid edge (n = 0 to 5)
0	0	Interrupt disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

21.2 Edge Detection of P00 to P05 Pins

The P00 to P05 pins do not incorporate an analog delay-based noise eliminator. Therefore, a valid edge is input to the pins and edge detection is performed (acknowledged) immediately after passing through the hysteresis-type input buffer.

P00 to P05 input mode
(in input mode)

INTP0, INTP1, INTP2/NMI
INTP3 to INTP5
(to interrupt controller)

P00 to P05 output mode
(in output mode)

Figure 21-2. Block Diagram of P00 to P05 Pins

CHAPTER 22 INTERRUPT FUNCTIONS

The μ PD784225 is provided with three interrupt request service modes (refer to **Table 22-1**). These three service modes can be set as required in the program. However interrupt servicing by macro service can only be selected for interrupt request sources provided with the macro service processing mode shown in Table 22-2. Context switching cannot be selected for non-maskable interrupts or operand error interrupts.

Multiple-interrupt control using 4 priority levels can easily be performed for maskable vectored interrupts.

Table 22-1. Interrupt Request Service Modes

Interrupt Request Service Mode	Servicing Performed	PC & PSW Contents	Service
Vectored interrupts	Software	Saving to & restoring from stack	Executed by branching to service program at address ^{Note} specified by vector table
Context switching		Saving to & restoring from fixed area in register bank	Executed by automatic switching to register bank specified by vector table and branching to service program at address ^{Note} specified by fixed area in register bank
Macro service	Hardware (firmware)	Retained	Execution of preset service such as data transfer between memory and I/O

Note The start addresses of all interrupt service programs must be in the base area. If the body of a service program cannot be located in the base area, a branch instruction to the service program should be written in the base area.

22.1 Interrupt Request Sources

The μ PD784225 has the 28 interrupt request sources shown in Table 22-2, with a vector table allocated to each.

Table 22-2. Interrupt Request Sources (1/2)

Type of Interrupt Request	Default Priority	Interrupt Request Generating Source	Generating Unit	Interrupt Control Register Name	Context Switching	Macro Service	Macro Service Control Word Address	Vector Table Address
Software	None	BRK instruction execution	_	_	Not possible	Not possible		003EH
		BRKCS instruction execution	_	_	Possible	Not possible	_	_
Operand error	None	Invalid operand in MOV STBC, #byte instruction or MOV WDM, #byte instruction, and LOCATION instruction	_	_	Not possible	Not possible	_	003CH
Non- maskable	None	NMI (pin input edge detection)	Edge detection	_	Not possible	Not possible	_	0002H
		INTWDT (watchdog timer overflow)	Watchdog timer	_	Not possible	Not possible	_	0004H

Table 22-2. Interrupt Request Sources (2/2)

Type of Interrupt Request	Default Priority	Interrupt Request Generating Source	Generating Unit	Interrupt Control Register Name	Context Switching	Macro Service	Macro Service Control Word Address	Vector Table Address
Maskable	0	INTWDTM (watchdog timer overflow)	Watchdog timer	WDTIC	Possible	Possible	0FE06H	0006H
	1	INTP0 (pin input edge detection)	Edge	PIC0			0FE08H	0008H
_	2	INTP1 (pin input edge detection)	detection	PIC1			0FE0AH	000AH
	3	INTP2 (pin input edge detection)		PIC2			0FE0CH	000CH
	4	INTP3 (pin input edge detection)		PIC3			0FE0EH	000EH
	5	INTP4 (pin input edge detection)		PIC4			0FE10H	0010H
	6	INTP5 (pin input edge detection)		PIC5			0FE12H	0012H
	7	INTIIC0 (CSI0 I ² C bus transfer end) ^{Note} INTCSI0 (CSI0 3-wire transfer end)	Clocked serial	CSIIC0			0FE16H	0016H
			interface					
	8	INTSER1 (ASI1 UART reception error)	Asynchronous	SERIC1			0FE18H	0018H
	9	INTSR1 (ASI1 UART reception end)	serial interface/	SRIC1			0FE1AH	001AH
		INTCSI1 (CSI1 3-wire transfer end)	clocked					
	10	INTST1 (ASI1 UART transmission end)	serial interface 1	STIC1			0FE1CH	001CH
	11	INTSER2 (ASI2 UART reception error)	Asynchronous	SERIC2			0FE1EH	001EH
	12	INTSR2 (ASI2 UART reception end)	serial interface/	SRIC2			0FE20H	0020H
		INTCSI2 (CSI2 3-wire transfer end)	clocked					
	13	INTST2 (ASI2 UART transmission end)	serial interface 2	STIC2			0FE22H	0022H
	14	INTTM3 (reference time interval signal from watch timer)	Watch timer	TMIC3			0FE24H	0024H
	15	INTTM00 (match signal generation of 16-bit timer counter 0 and capture/ compare register 00 (CR00))	Timer/ counter	TMIC00			0FE26H	0026H
	16	INTTM01 (match signal generation of 16-bit timer counter 0 and capture/ compare register 01 (CR01))		TMIC01			0FE28H	0028H
	17	INTTM1 (match signal generation of 8-bit timer counter 1)	Timer/ counter 1	TMIC1			0FE2AH	002AH
	18	INTTM2 (match signal generation of 8-bit timer counter 2)	, , , , , , , , , , , , , , , , , , , ,			0FE2CH	002CH	
	19	INTAD (A/D converter conversion end)	A/D converter	ADIC			0FE2EH	002EH
	20	INTTM5 (match signal generation of 8-bit timer counter 5)	Timer/ counter 5	TMIC5			0FE30H	0030H
	21	INTTM6 (match signal generation of 8-bit timer counter 6)	Timer/ counter 6	TMIC6			0FE32H	0032H
	22	INTWT (watch timer overflow)	Watch timer	WTIC	1		0FE38H	0038H

Note μ PD784225Y Subseries only

- **Remarks 1.** The default priority is a fixed number and indicates the order of priority when interrupt requests specified as having the same priority are generated simultaneously.
 - 2. ASI: Asynchronous serial interface
 - CSI: Clocked serial interface
 - 3. The watchdog timer has two interrupt sources, a non-maskable interrupt (INTWDT) and a maskable interrupt (INTWDTM), either (but not both) of which can be selected.

22.1.1 Software interrupts

Interrupts by software consist of the BRK instruction, which generates a vectored interrupt, and the BRKCS instruction, which performs context switching.

Software interrupts are acknowledged even in the interrupt disabled state, and are not subject to priority control.

22.1.2 Operand error interrupts

These interrupts are generated if there is an illegal operand in an MOV STBC, #byte instruction or MOV WDMC, #byte instruction, and LOCATION instruction.

Operand error interrupts are acknowledged even in the interrupt disabled state, and are not subject to priority control.

22.1.3 Non-maskable interrupts

A non-maskable interrupt is generated by NMI pin input or the watchdog timer.

Non-maskable interrupts are acknowledged unconditionally Note, even in the interrupt disabled state. They are not subject to interrupt priority control, and have a higher priority than any other interrupt.

Note Except during execution of the service program for the same non-maskable interrupt, or during execution of the service program for a higher-priority non-maskable interrupt.

22.1.4 Maskable interrupts

A maskable interrupt is one subject to masking control according to the setting of an interrupt mask flag. In addition, acknowledgment enabling/disabling can be specified for all maskable interrupts by means of the IE flag in the program status word (PSW).

In addition to normal vectored interrupts, maskable interrupts can be acknowledged by context switching and macro servicing (though some interrupts cannot use macro servicing: refer to **Table 22-2**).

The priority order for maskable interrupt requests when interrupt requests of the same priority are generated simultaneously is predetermined (default priority) as shown in Table 22-2. Also, multiservicing control can be performed with interrupt priorities divided into 4 levels. However, macro service requests are acknowledged without regard to priority control or the IE flag.

22.2 Interrupt Servicing Modes

There are three μ PD784225 interrupt servicing modes, as follows.

- · Vectored interrupt servicing
- · Macro servicing
- · Context switching

22.2.1 Vectored interrupt servicing

When an interrupt is acknowledged, the program counter (PC) and program status word (PSW) are automatically saved to the stack, a branch is made to the address indicated by the data stored in the vector table, and the interrupt service routine is executed.

22.2.2 Macro servicing

When an interrupt is acknowledged, CPU execution is temporarily suspended and data transfer is performed by hardware. Since macro servicing is performed without the intermediation of the CPU, it is not necessary to save or restore CPU statuses such as the program counter (PC) and program status word (PSW) contents. This is therefore very effective in improving the CPU service time (refer to **22.8 Macro Service Function**).

22.2.3 Context switching

When an interrupt is acknowledged, the prescribed register bank is selected by hardware, a branch is made to a preset vector address in the register bank, and at the same time the current program counter (PC) and program status word (PSW) are saved in the register bank (refer to 22.4.2 BRKCS instruction software interrupt (software context switching) acknowledgment operation and 22.7.2 Context switching).

Remark "Context" refers to the CPU registers that can be accessed by a program while that program is being executed. These registers include general-purpose registers, the program counter (PC), program status word (PSW), and stack pointer (SP).

22.3 Interrupt Servicing Control Registers

 μ PD784225 interrupt servicing is controlled for each interrupt request by various control registers that specify interrupt servicing. The interrupt control registers are listed in Table 22-3.

Table 22-3. Control Registers

Register Name	Symbol	Function
Interrupt control registers	WDTIC, PIC0, PIC1, PIC2, PIC3, PIC4, PIC5, CSIIC0, SERIC1, SRIC1, STIC1, SERIC2, SRIC2, STIC2, TMIC3, TMIC00, TMIC01, TMIC1, TMIC5, TMIC6, WTIC	Record the generation of interrupt requests, control masking, specify vectored interrupt servicing or macro service processing, enable or disable the context switching function, and specify priority.
Interrupt mask registers	MK0 (MK0L, MK0H) MK1 (MK1L, MK1H)	Control masking of maskable interrupt requests. Associated with the mask control flag in the interrupt control register. Can be accessed in word or byte units.
In-service priority register	ISPR	Records priority of interrupt request currently acknowledged.
Interrupt mode control register	IMC	Controls nesting of maskable interrupt with priority specified as lowest level (level 3).
Interrupt selection control register	SNMI	Selects whether to use input signal from the P02 pin and the interrupt signal from the watchdog timer as a maskable interrupt or NMI.
Watchdog timer mode register	WDM	Specifies the priority of interrupts from the NMI pin input and overflow of the watchdog timer.
Program status word	PSW	Enables or disables acknowledging maskable interrupts.

An interrupt control register is allocated to each interrupt source. The flags of each register perform control of the contents corresponding to the relevant bit position in the register. The interrupt control register flag names corresponding to each interrupt request signal are shown in Table 22-4.

Table 22-4. Flag List of Interrupt Control Registers for Interrupt Requests

Default	Interrupt	Interrupt Control Register								
Priority	Request Signal		Interrupt Request Flag	Interrupt Mask Flag	Macro Service Enable Flag	Priority Speci- fication Flag	Context Switching Enable Flag			
0	INTWDTM	WDTIC	WDTIF	WDTMK	WDTISM	WDTPR0 WDTPR1	WDTCSE			
1	INTP0	PIC0	PIF0	РМК0	PISM0	PPR00 PPR01	PCSE0			
2	INTP1	PIC1	PIF1	PMK1	PISM1	PPR10 PPR11	PCSE1			
3	INTP2	PIC2	PIF2	PMK2	PISM2	PPR20 PPR21	PCSE2			
4	INTP3	PIC3	PIF3	РМК3	PISM3	PPR30 PPR31	PCSE3			
5	INTP4	PIC4	PIF4	PMK4	PISM4	PPR40 PPR41	PCSE4			
6	INTP5	PIC5	PIF5	PMK5	PISM5	PPR50 PPR51	PCSE5			
7	INTIIC0 INTCSI0	CSIIC0	CSIIF0	CSIMK0	CSIISM0	CSIPR00 CSIPR01	CSICSE0			
8	INTSER1	SERIC1	SERIF1	SERMK1	SERISM1	SERPR10 SERPR11	SERCSE1			
9	INTSR1 INTCSI1	SRIC1	SRIF1	SRMK1	SRISM1	SRPR10 SRPR11	SRCSE1			
10	INTST1	STIC1	STIF1	STMK1	STISM1	STPR10 STPR11	STCSE1			
11	INTSER2	SERIC2	SERIF2	SERMK2	SERISM2	SERPR20 SERPR21	SERCSE2			
12	INTSR2 INTCSI2	SRIC2	SRIF2	SRMK2	SRISM2	SRPR20 SRPR21	SRCSE2			
13	INTST2	STIC2	STIF2	STMK2	STISM2	STPR20 STPR21	STCSE2			
14	INTTM3	TMIC3	TMIF3	ТММКЗ	TMISM3	TMPR30 TMPR31	TMCSE3			
15	INTTM00	TMIC00	TMIF00	TMMK00	TMISM00	TMPR000 TMPR001	TMCSE00			
16	INTTM01	TMIC01	TMIF01	TMMK01	TMISM01	TMPR010 TMPR011	TMCSE01			
17	INTTM1	TMIC1	TMIF1	TMMK1	TMISM1	TMPR10 TMPR11	TMCSE1			
18	INTTM2	TMIC2	TMIF2	TMMK2	TMISM2	TMPR20 TMPR21	TMCSE2			
19	INTAD	ADIC	ADIF	ADMK	ADISM	ADPR00 ADPR01	ADCSE			
20	INTTM5	TMIC5	TMIF5	TMMK5	TMISM5	TMPR50 TMPR51	TMCSE5			
21	INTTM6	TMIC6	TMIF6	TMMK6	TMISM6	TMPR60 TMPR61	TMCSE6			
22	INTWT	WTIC	WTIF	WTMK	WTISM	WTPR0 WTPR1	WTCSE			

22.3.1 Interrupt control registers

An interrupt control register is allocated to each interrupt source, and performs priority control, mask control, etc., for the corresponding interrupt request. The interrupt control register format is shown in Figure 22-1.

(1) Priority specification flags (xxPR1/xxPR0)

The priority specification flags specify the priority of individual interrupt sources for the 23 maskable interrupts. Up to 4 priority levels can be specified, and a number of interrupt sources can be specified at the same level. Among maskable interrupt sources, level 0 is the highest priority.

If multiple interrupt requests are generated simultaneously among interrupt source of the same priority level, they are acknowledged in default priority order.

These flags can be manipulated bit-wise by software.

RESET input sets all bits to 1.

(2) Context switching enable flag (xxCSE)

The context switching enable flag specifies that a maskable interrupt request is to be serviced by context switching.

In context switching, the register bank specified beforehand is selected by hardware, a branch is made to a vector address stored beforehand in the register bank, and at the same time the current contents of the program counter (PC) and program status word (PSW) are saved in the register bank.

Context switching is suitable for real-time processing, since execution of interrupt servicing can be started faster than with normal vectored interrupt servicing.

This flag can be manipulated bit-wise by software.

RESET input sets all bits to 0.

(3) Macro service enable flag (××ISM)

The macro service enable flag specifies whether an interrupt request corresponding to that flag is to be handled as a vectored interrupt or by context switching, or by macro servicing.

When macro service processing is selected, at the end of the macro service (when the macro service counter reaches 0) the macro service enable flag is automatically cleared (0) by hardware (vectored interrupt servicing/context switching servicing).

This flag can be manipulated bit-wise by software.

RESET input sets all bits to 0.

(4) Interrupt mask flag (××MK)

An interrupt mask flag specifies enabling/disabling of vectored interrupt servicing and macro service processing for the interrupt request corresponding to that flag.

The interrupt mask contents are not changed by the start of interrupt servicing, etc., and are the same as the interrupt mask register contents (refer to 22.3.2 Interrupt mask registers (MK0, MK1)).

Macro service processing requests are also subject to mask control, and macro service requests can also be masked with this flag.

This flag can be manipulated by software.

RESET input sets all bits to 1.

(5) Interrupt request flag (××IF)

An interrupt request flag is set (1) by generation of the interrupt request that corresponds to that flag. When the interrupt is acknowledged, the flag is automatically cleared (0) by hardware.

This flag can be manipulated by software.

RESET input sets all bits to 0.

Figure 22-1. Interrupt Control Register (xxICn) (1/3)

Address: 0FFE0H to 0FFE6H, 0FFE8H After reset: 43H R/W								
Symbol	7	6	5	4	3	2	1	0
WDTIC	WDTIF	WDTMK	WDTISM	WDCSE	0	0	WDTPR1	WDTPR0
PIC0	PIF0	PMK0	PISM0	PCSE0	0	0	PPR01	PPR00
PIC1	PIF1	PMK1	PISM1	PCSE1	0	0	PPR11	PPR10
•								
PIC2	PIF2	PMK2	PISM2	PCSE2	0	0	PPR21	PPR20
PIC3	PIF3	РМК3	PISM3	PCSE3	0	0	PPR31	PPR30
PIC4	PIF4	PMK4	PISM4	PCSE4	0	0	PPR41	PPR40
PIC5	PIF5	PMK5	PISM5	PCSE5	0	0	PPR51	PPR50
CSIIC0	CSIIF0	CSIMK0	CSIISM0	CSICSE0	0	0	CSIPR01	CSIPR00

xxIFn	Interrupt request generation
0	No interrupt request (interrupt signal is not generated)
1	Interrupt request (interrupt signal is generated)

xxMKn	Interrupt servicing enable/disable
0	Interrupt servicing enabled
1	Interrupt servicing disabled

xxISMn	Interrupt servicing mode specification
0	Vectored interrupt servicing/context switching processing
1	Macro service processing

xxCSEn	Context switching processing specification
0	Processing as vectored interrupt
1	Processing by context switching

xxPRn1	xxPRn0	Interrupt request priority specification
0	0	Priority 0 (highest priority)
0	1	Priority 1
1	0	Priority 2
1	1	Priority 3

Figure 22-1. Interrupt Control Register (xxICn) (2/3)

Address:	0FFE9H to	0FFF1H	After re	eset: 43H	R/V	V		
Symbol	7	6	5	4	3	2	1	0
SERIC1	SERIF1	SERMK1	SERISM1	SERCSE1	0	0	SERPR11	SERPR10
ı							I	
SRIC1	SRIF1	SRMK1	SRISM1	SRCSE1	0	0	SRPR11	SRPR10
STIC1	STIF1	STMK1	STISM1	STCSE1	0	0	STPR11	STPR10
			ı	ı				
SERIC2	SERIF2	SERMK2	SERISM2	SERCSE2	0	0	SERPR21	SERPR20
SRIC2	SRIF2	SRMK2	SRISM2	SRCSE2	0	0	SRPR21	SRPR20
STIC2	STIF2	STMK2	STISM2	STCSE2	0	0	STPR21	STPR20
TMIC3	TMIF3	ТММКЗ	TMISM3	TMCSE3	0	0	TMPR31	TMPR30
TMIC00	TMIF00	TMMK00	TMISM00	TMCSE00	0	0	TMPR001	TMPR000
TMIC01	TMIF01	TMMK01	TMISM01	TMCSE01	0	0	TMPR011	TMPR010
				· · · · · · · · · · · · · · · · · · ·			•	

xxIFn	Interrupt request generation
0	No interrupt request (interrupt signal is not generated)
1	Interrupt request (interrupt signal is generated)

xxMKn	Interrupt servicing enable/disable
0	Interrupt servicing enabled
1	Interrupt servicing disabled

xxISMn	Interrupt servicing mode specification
0	Vectored interrupt servicing/context switching processing
1	Macro service processing

xxCSEn	Context switching processing specification
0	Processing as vectored interrupt
1	Processing by context switching

xxPRn1	xxPRn0	Interrupt request priority specification
0	0	Priority 0 (Highest priority)
0	1	Priority 1
1	0	Priority 2
1	1	Priority 3

Figure 22-1. Interrupt Control Register (xxICn) (3/3)

Address	: 0FFF2H t	o OFFF6H, C	FFF9H	After reset	: 43H	R/W		
Symbol	7	6	5	4	3	2	1	0
TMIC1	TMIF1	TMMK1	TMISM1	TMCSE1	0	0	TMPR11	TMPR10
1						I	I	
TMIC2	TMIF2	TMMK2	TMISM2	TMCSE2	0	0	TMPR21	TMPR20
ADIO	ADIE	ADMI	151011	40005			ADDDOL	400000
ADIC	ADIF	ADMK	ADISM	ADCSE	0	0	ADPR01	ADPR00
TMIC5	TMIF5	TMMK5	TMISM5	TMCSE5	0	0	TMPR51	TMPR50
1								
TMIC6	TMIF6	TMMK6	TMISM6	TMCSE6	0	0	TMPR61	TMPR60
ĺ						I	I	
WTIC	WTIF	WTMK	WTISM	WTCSE	0	0	WTPR1	WTPR0
		xxIFn	Interrupt request generation					
		0	No interrup	lo interrupt request (interrupt signal is not generated)				
		1	Interrupt re	Interrupt request (interrupt signal is generated)				
xxMKn				Interrupt servicing enable/disable				
0 Interrupt			Interrupt s	pt servicing enabled				
1 Interrupt				ervicing disa	bled			
				· · · · · · · · · · · · · · · · · · ·				
	Interrupt servicing mode specification							

xxISMn	Interrupt servicing mode specification
0	Vectored interrupt servicing/context switching processing
1	Macro service processing

xxCSEn	Context switching processing specification
0	Processing as vectored interrupt
1	Processing by context switching

xxPRn1	xxPRn0	Interrupt request priority specification
0	0	Priority 0 (Highest priority)
0	1	Priority 1
1	0	Priority 2
1	1	Priority 3

22.3.2 Interrupt mask registers (MK0, MK1)

The MK0 and MK1 registers are composed of interrupt mask flags. MK0 and MK1 are 16-bit registers that can be manipulated in 16-bit units. In addition MK0 can be manipulated in 8-bit units as MK0L and MK0H, and similarly MK1 can be manipulated as MK1L and MK1H.

In addition, each bit of MK0 and MK1 can be manipulated individually with a bit manipulation instruction in 1-bit units. Each interrupt mask flag controls enabling/disabling of the corresponding interrupt request.

When an interrupt mask flag is set (1), acknowledgment of the corresponding interrupt request is disabled.

When an interrupt mask flag is cleared (0), the corresponding interrupt request can be acknowledged as a vectored interrupt or macro service request.

Each interrupt mask flag in MK0 and MK1 is the same flag as the interrupt mask flag in the interrupt control register. MK0 and MK1 are provided for blanket control of interrupt masking.

After RESET input, MK0 and MK1 are set to FFFFH, and all maskable interrupts are disabled.

Figure 22-2. Format of Interrupt Mask Registers (MK0, MK1)

<Byte access>

Address:	: 0FFACH to 0FFAFH		After r	eset: FFH	R/W			
Symbol	7	6	5	4	3	2	1	0
MK0L	1	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	WDTMK
_								
МКОН	TMMK3	STMK2	SRMK2	SERMK2	STMK1	SRMK1	SERMK1	CSIMK0
-								
MK1L	1	TMMK6	TMMK5	ADMK	TMMK2	TMMK1	TMMK01	TMMK00
MK1H	1	1	1	1	1	1	WTMK	1
	1							
	xxMKn Interrupt request enable/disable							
		0	Interrupt servicing enabled					
		1	Interrupt se	ervicing disa	bled			

<Word access>

Address: 0FFACH, 0FFAEH			After reset: FFFFH R/W					
Symbol	15	14	13	12	11	10	9	8
MK0	TMMK3	STMK2	SRMK2	SERMK2	STMK1	SRMK1	SERMK1	CSIMK0
•	7	6	5	4	3	2	1	0
	1	PMK5	PMK4	РМК3	PMK2	PMK1	PMK0	WDTMK
	15	14	13	12	11	10	9	8
MK1	1	1	1	1	1	1	WTMK	1
•	7	6	5	4	3	2	1	0
	1	TMMK6	TMMK5	ADMK	TMMK2	TMMK1	TMMK01	TMMK00
		xxMKn	Interrupt request enable/disable					
		0	Interrupt servicing enabled					
		1	Interrupt se	ervicing disa	bled			

22.3.3 In-service priority register (ISPR)

The ISPR shows the priority level of the maskable interrupt currently being serviced and the non-maskable interrupt being processed. When a maskable interrupt request is acknowledged, the bit corresponding to the priority of that interrupt request is set (1), and remains set until the service program ends. When a non-maskable interrupt is acknowledged, the bit corresponding to the priority of that non-maskable interrupt is set (1), and remains set until the service program ends.

When the RETI or RETCS instruction is executed, the bit among those set (1) in the ISPR that corresponds to the highest-priority interrupt request is automatically cleared (0) by hardware.

The contents of the ISPR are not changed by execution of the RETB or RETCSB instruction.

RESET input clears the ISPR to 00H.

Figure 22-3. Format of In-Service Priority Register (ISPR)

		_			-		-	
Address:	0FFA8H		After r	reset: 00H	R			
Symbol	7	6	5	4	3	2	1	0
ISPR	NMIS	WDTS	0	0	ISPR3	ISPR2	ISPR1	ISPR0
•								
		NMIS			NMI proces	ssing status		
0 NMI interrupt is not ackn				knowledged.				
1 NMI interrupt is acknowledged.								
		WDTS		Watchdo	og timer inte	rrupt servici	ng status	
		0	Watchdog	timer interru	upt is not ack	nowledged.		
	Watchdog timer interrupt is acknowledged.							
ISPRn Priority level (n = 0 to 3)								
0 Interrupt of priority level n is not acknowledged.					l.			

Caution The in-service priority register (ISPR) is a read-only register. The microcontroller may malfunction if this register is written.

Interrupt of priority level n is acknowledged.

22.3.4 Interrupt mode control register (IMC)

IMC contains the PRSL flag. The PRSL flag specifies enabling/disabling of nesting of maskable interrupts for which the lowest priority level (level 3) is specified.

When IMC is manipulated, the interrupt disabled state (DI state) should be set first to prevent malfunction.

IMC can be read or written by an 8-bit manipulation instruction or bit manipulation instruction.

RESET input sets the IMC register to 80H.

Figure 22-4. Format of Interrupt Mode Control Register (IMC)

Address:	0FFAAH		After reset: 80H			R/W		
Symbol	7	6	5	4	3	2	1	0
IMC	PRSL	0	0	0	0	0	0	0

PRSL	Nesting control of maskable interrupts (lowest level)
0	Interrupts with level 3 (lowest level) can be nested.
1	Nesting of interrupts with level 3 (lowest level) is disabled.

22.3.5 Watchdog timer mode register (WDM)

The WDT4 bit of WDM specifies the priority of NMI pin input non-maskable interrupts and watchdog timer overflow non-maskable interrupts.

WDM can be written to only by a dedicated instruction. This dedicated instruction, MOV WDM, #byte, has a special code configuration (4 bytes), and a write is not performed unless the 3rd and 4th bytes of the operation code are mutual complements.

If the 3rd and 4th bytes of the operation code are not mutual 1's complements, a write is not performed and an operand error interrupt is generated. In this case, the return address saved in the stack area is the address of the instruction that was the source of the error, and thus the address that was the source of the error can be identified from the return address saved in the stack area.

If recovery from an operand error is simply performed by means of the RETB instruction, an endless loop will result. As an operand error interrupt is only generated in the event of an inadvertent program loop (with the NEC assembler, RA78K4, only the correct dedicated instruction is generated when MOV WDM, #byte is written), initialize the system by program.

Other write instructions (MOV WDM, A; AND WDM, #byte; SET1 WDM.7, etc.) are ignored and do not perform any operation. That is, a write is not performed to WDM, and an interrupt such as an operand error interrupt is not generated.

WDM can be read at any time by a data transfer instruction.

RESET input clears the WDM register to 00H.

Figure 22-5. Format of Watchdog Timer Mode Register (WDM)

Address:	0FFC2H		After i	reset : 00H	R/V	V			
Symbol	7	6	5	4	3	2	1	0	
WDM	RUN	0	0	WDT4	0	WDT2	WDT1	0	
RUN			Specifies operation of watchdog timer (refer to Figure 12-2).						
WDT4 Priority of watchdog timer interrupt request									
		0	Watchdog	timer interru	pt request <	: NMI pin inp	out interrupt	request	
1			Watchdog timer interrupt request > NMI pin input interrupt request						
WDT2			WDT1	Specifies c (refer to Fi	ount clock o gure 12-2).	f watchdog t	timer		

Caution The watchdog timer mode register (WDM) can be written only by using a dedicated instruction (MOV WDM, #byte).

22.3.6 Interrupt selection control register (SNMI)

SNMI selects whether to use interrupt request signals from the watchdog timer and inputs from the P02 pin as maskable interrupts or non-maskable interrupts.

Since the bits of this register can be set (1) only once after reset, the bits should be cleared (0) by reset.

SNMI is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears SNMI to 00H.

Figure 22-6. Format of Interrupt Selection Control Register (SNMI)

Address: 0FFA9H		After reset: 00H		/W				
Symbol	7	6	5	4	3	2	1	0
SNMI	0	0	0	0	0	0	SWDT	SNMI

SWDT	Watchdog timer interrupt selection
0	Use as non-maskable interrupt. Interrupt servicing cannot be disabled with interrupt mask register.
1	Use as maskable interrupt. Vectored interrupts and macro servicing can be used. Interrupt servicing can be disabled with interrupt mask register.

SNMI	P02 pin function selection
0	Use as INTP2. Vectored interrupts and macro servicing can be used. Interrupt servicing can be disabled with interrupt mask register. At this time, the standby mode set by the P02 pin is released with a maskable interrupt.
1	Use as NMI. Interrupt servicing cannot be disabled with interrupt mask register. At this time, the standby mode set by the P02 pin is released with an NMI.

22.3.7 Program status word (PSW)

The PSW is a register that holds the current status of instruction execution results and interrupt requests. The IE flag that sets enabling/disabling of maskable interrupts is mapped in the lower 8 bits of the PSW (PSWL).

PSWL can be read or written to with an 8-bit manipulation instruction, and can also be manipulated with a bit manipulation instruction or dedicated instruction (EI/DI).

When a vectored interrupt is acknowledged or the BRK instruction is executed, PSWL is saved to the stack and the IE flag is cleared (0). PSWL is also saved to the stack by the PUSH PSW instruction, and is restored from the stack by the RETI, RETB and POP PSW instructions.

When context switching or the BRKCS instruction is executed, PSWL is saved to a fixed area in the register bank, and the IE flag is cleared (0). PSWL is restored from the fixed area in the register bank by the RETCSI or RETCSB instruction.

RESET input clears PSWL to 00H.

Figure 22-7. Format of Program Status Word (PSWL)

After res	After reset: 00H									
Symbol	7	6	5	4	3	2	1	0		
PSWL	S	Z	RSS	AC	IE	P/V	0	CY		
		S	Used for normal instruction execution							
		z								
		RSS								
		AC								
		IE Enable or disable interrupt acknowledgment								
		0	Disabled							
		1	Enabled							
		P/V	Used for n	ormal instru	ction executi	ion				
		CY								

22.4 Software Interrupt Acknowledgment Operations

A software interrupt is acknowledged in response to execution of the BRK or BRKCS instruction. Software interrupts cannot be disabled.

22.4.1 BRK instruction software interrupt acknowledgment operation

When the BRK instruction is executed, the program status word (PSW) and program counter (PC) are saved in that order to the stack, the IE flag is cleared (0), the vector table (003EH/003FH) contents are loaded into the lower 16 bits of the PC, and 0000B into the higher 4 bits, and a branch is performed (the start of the service program must be in the base area).

The RETB instruction must be used to return from a BRK instruction software interrupt.

Caution The RETI instruction must not be used to return from a BRK instruction software interrupt.

22.4.2 BRKCS instruction software interrupt (software context switching) acknowledgment operation

The context switching function can be initiated by executing the BRKCS instruction.

The register bank to be used after context switching is specified by the BRKCS instruction operand.

When the BRKCS instruction is executed, the program branches to the start address of the interrupt service program (which must be in the base area) stored beforehand in the specified register bank, and the contents of the program status word (PSW) and program counter (PC) are saved in the register bank.

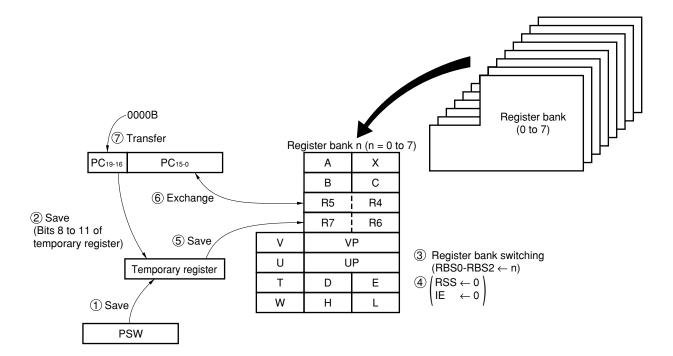


Figure 22-8. Context Switching Operation by Execution of BRKCS Instruction

The RETCSB instruction is used to return from a software interrupt generated by the BRKCS instruction. The RETCSB instruction must specify the start address of the interrupt service program for when context switching is next performed by the BRKCS instruction. This interrupt service program start address must be in the base area.

Caution The RETCS instruction must not be used to return from a BRKCS instruction software interrupt.

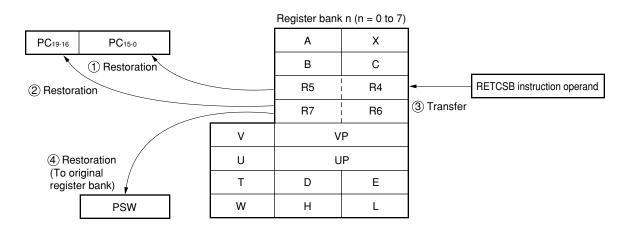


Figure 22-9. Return from BRKCS Instruction Software Interrupt (RETCSB Instruction Operation)

22.5 Operand Error Interrupt Acknowledgement Operation

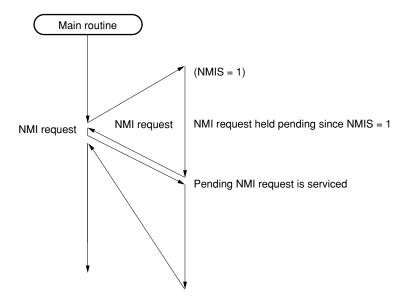
An operand error interrupt is generated when the data obtained by inverting all the bits of the 3rd byte of the operand of the MOV STBC, #byte instruction or LOCATION instruction or the MOV WDM, #byte instruction does not match the 4th byte of the operand. Operand error interrupts cannot be disabled.

When an operand error interrupt is generated, the program status word (PSW) and the start address of the instruction that caused the error are saved to the stack, the IE flag is cleared (0), the vector table value is loaded into the program counter (PC), and a branch is performed (within the base area only).

As the address saved to the stack is the start address of the instruction in which the error occurred, simply writing an RETB instruction at the end of the operand error interrupt service program will result in generation of another operand error interrupt. You should therefore either process the address in the stack or initialize the program by referring to 22.12 Restoring Interrupt Function to Initial State.

22.6 Non-Maskable Interrupt Acknowledgment Operation

Non-maskable interrupts are acknowledged even in the interrupt disabled state. Non-maskable interrupts can be acknowledged at all times except during execution of the service program for an identical non-maskable interrupt or a non-maskable interrupt of higher priority.


The relative priorities of non-maskable interrupts are set by the WDT4 bit of the watchdog timer mode register (WDM) (see 22.3.5 Watchdog timer mode register (WDM)).

Except in the cases described in 22.9 When Interrupt Requests and Macro Service Are Temporarily Held Pending, a non-maskable interrupt request is acknowledged immediately. When a non-maskable interrupt request is acknowledged, the program status word (PSW) and program counter (PC) are saved in that order to the stack, the IE flag is cleared (0), the in-service priority register (ISPR) bit corresponding to the acknowledged non-maskable interrupt is set (1), the vector table contents are loaded into the PC, and a branch is performed. The ISPR bit that is set (1) is the NMIS bit in the case of a non-maskable interrupt due to edge input to the NMI pin, and the WDTS bit in the case of watchdog timer overflow.

When the non-maskable interrupt service program is executed, non-maskable interrupt requests of the same priority as the non-maskable interrupt currently being executed and non-maskable interrupts of lower priority than the non-maskable interrupt currently being executed are held pending. A pending non-maskable interrupt is acknowledged after completion of the non-maskable interrupt service program currently being executed (after execution of the RETI instruction). However, even if the same non-maskable interrupt request is generated more than once during execution of the non-maskable interrupt service program, only one non-maskable interrupt is acknowledged after completion of the non-maskable interrupt service program.

Figure 22-10. Non-Maskable Interrupt Request Acknowledgment Operations (1/2)

(a) When a new NMI request is generated during NMI service program execution

(b) When a watchdog timer interrupt request is generated during NMI service program execution (when the watchdog timer interrupt priority is higher (when WDT4 in the WDM = 1))

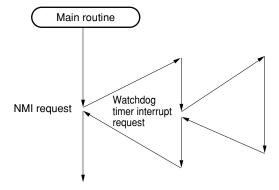
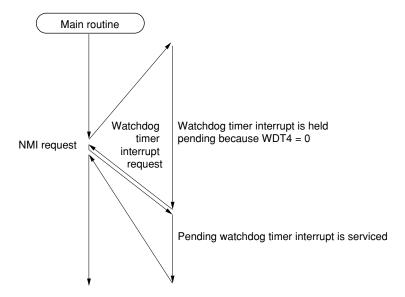
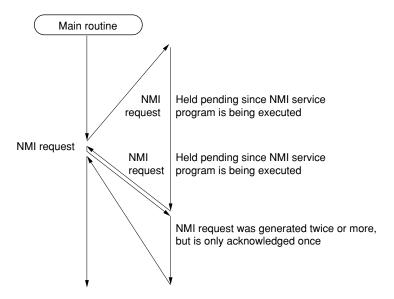




Figure 22-10. Non-Maskable Interrupt Request Acknowledgment Operations (2/2)

(c) When a watchdog timer interrupt request is generated during NMI service program execution (when the NMI interrupt priority is higher (when WDT4 in the WDM = 0))

(d) When an NMI request is generated twice during NMI service program execution

- Cautions 1. Macro service requests are acknowledged and serviced even during execution of a non-maskable interrupt service program. To avoid macro service processing being performed during a non-maskable interrupt service program, manipulate the interrupt mask register in the non-maskable interrupt service program to prevent macro service generation.
 - 2. The RETI instruction must be used to return from a non-maskable interrupt. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used. Refer to Section 22.12 Restoring Interrupt Function to Initial State when a program is to be restarted from the initial status after a non-maskable interrupt acknowledgement.
 - 3. Non-maskable interrupts are always acknowledged, except during non-maskable interrupt service program execution (except when a high non-maskable interrupt request is generated during execution of a low-priority non-maskable interrupt service program) and for a certain period after execution of the special instructions shown in 22.9. Therefore, a non-maskable interrupt will be acknowledged even when the stack pointer (SP) value is undefined, in particular after reset release, etc. In this case, depending on the value of the SP, it may happen that the program counter (PC) and program status word (PSW) are written to the address of a write-inhibited special function register (SFR) (see Table 3.6 in 3.9 Special Function Registers (SFRs)), and the CPU becomes deadlocked, or an unexpected signal is output from a pin, or the PC and PSW are written to an address at which RAM is not incorporated, with the result that the return from the non-maskable interrupt service program is not performed normally and a software malfunction occurs.

Therefore, the program following RESET release must be as shown below.

CSEG AT 0
DW STRT
CSEG BASE

STRT:

LOCATION 0FH; or LOCATION 0H MOVG SP, #imm24

22.7 Maskable Interrupt Acknowledgment Operation

A maskable interrupt can be acknowledged when the interrupt request flag is set (1) and the mask flag for that interrupt is cleared (0). When servicing is performed by a macro service, the interrupt is acknowledged and serviced by the macro service immediately. In the case of vectored interruption and context switching, an interrupt is acknowledged in the interrupt enabled state (when the IE flag is set (1)) if the priority of that interrupt is one for which acknowledgment is permitted.

If maskable interrupt requests are generated simultaneously, the interrupt for which the highest priority is specified by the priority specification flag is acknowledged. If the interrupts have the same priority specified, they are acknowledged in accordance with their default priorities.

A pending interrupt is acknowledged when a state in which it can be acknowledged is established.

The interrupt acknowledgment algorithm is shown in Figure 22-11.

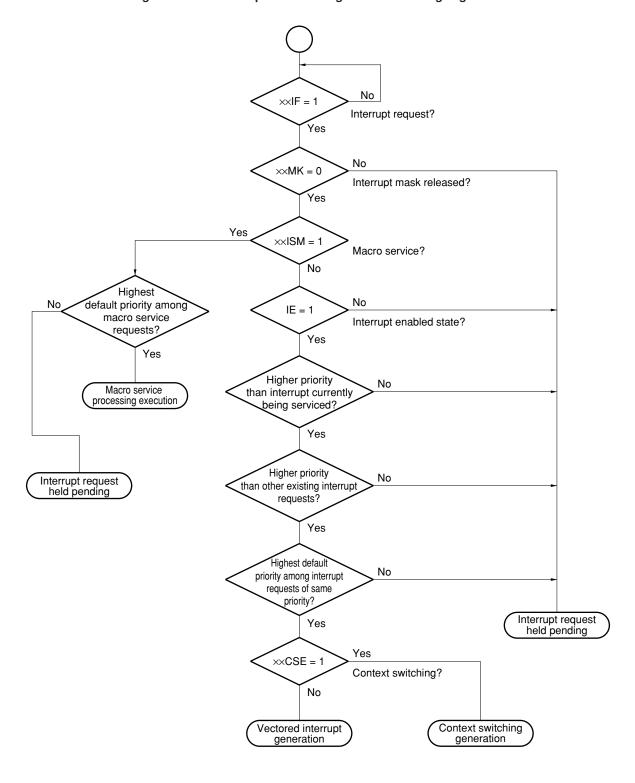


Figure 22-11. Interrupt Acknowledgment Processing Algorithm

22.7.1 Vectored interrupt

When a vectored interrupt maskable interrupt request is acknowledged, the program status word (PSW) and program counter (PC) are saved in that order to the stack, the IE flag is cleared (0) (the interrupt disabled status is set), and the in-service priority register (ISPR) bit corresponding to the priority of the acknowledged interrupt is set (1). Also, data in the vector table predetermined for each interrupt request is loaded into the PC, and a branch is performed. The return from a vectored interrupt is performed by means of the RETI instruction.

Caution When a maskable interrupt is acknowledged by vectored interrupt, the RETI instruction must be used to return from the interrupt. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used.

22.7.2 Context switching

Initiation of the context switching function is enabled by setting (1) the context switching enable flag of the interrupt control register.

When an interrupt request for which the context switching function is enabled is acknowledged, the register bank specified by the lowest 3 bits of the lower address (even address) of the corresponding vector table address is selected.

The vector address stored beforehand in the selected register bank is transferred to the program counter (PC), and at the same time the contents of the PC and program status word (PSW) up to that time are saved in the register bank and branching is performed to the interrupt service program.

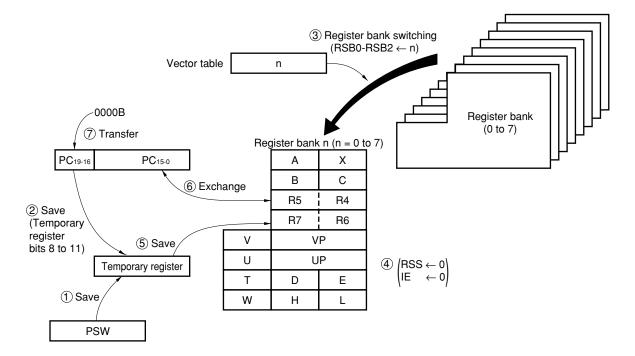
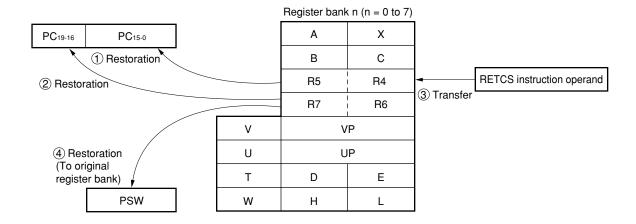



Figure 22-12. Context Switching Operation by Generation of an Interrupt Request

The RETCS instruction is used to return from an interrupt that uses the context switching function. The RETCS instruction must specify the start address of the interrupt service program to be executed when that interrupt is acknowledged next. This interrupt service program start address must be in the base area.

Caution The RETCS instruction must be used to return from an interrupt serviced by context switching. Subsequent interrupt acknowledgment will not be performed normally if a different instruction is used.

Figure 22-13. Return from Interrupt That Uses Context Switching by Means of RETCS Instruction

22.7.3 Maskable interrupt priority levels

The μ PD784225 performs multiple interrupt servicing in which an interrupt is acknowledged during servicing of another interrupt. Multiple interrupts can be controlled by priority levels.

There are two kinds of priority control, control by default priority and programmable priority control in accordance with the setting of the priority specification flag. In priority control by means of default priority, interrupt servicing is performed in accordance with the priority preassigned to each interrupt request (default priority) (refer to **Table 22-2**). In programmable priority control, interrupt requests are divided into four levels according to the setting of the priority specification flag. Interrupt requests for which multiple interruption is permitted are shown in Table 22-5.

Since the IE flag is cleared (0) automatically when an interrupt is acknowledged, when multiple interruption is used, the IE flag should be set (1) to enable interrupts by executing the IE instruction in the interrupt service program, etc.

Table 22-5. Multiple Interrupt Servicing

Priority of Interrupt Currently Being Acknowledged	ISPR Value	IE Flag in PSW	PRSL in IMC Register	Acknowledgeable Maskable Interrupts
No interrupt being	00000000	0	×	All macro service requests only
acknowledged		1	×	All maskable interrupts
3	00001000	0	×	All macro service requests only
		1	0	All maskable interrupts
		1	1	All macro service requests Maskable interrupts specified as priority 0/1/2
2	0000×100	0	×	All macro service requests only
		1	×	All macro service requests Maskable interrupts specified as priority 0/1
1	0000××10	0	×	All macro service requests only
		1	×	All macro service requests Maskable interrupts specified as priority 0
0	0000×××1	×	×	All macro service requests only
Non-maskable interrupts	1000××× 0100××× 1100×××	×	×	All macro service requests only

Main routine a servicing b servicing ΕI ΕI Interrupt request a Interrupt (Level 3) request b Since interrupt request b has a higher (Level 2) priority than interrupt request a, and interrupts are enabled, interrupt request b is acknowledged. c servicing Interrupt Interrupt request c request d The priority of interrupt request d is (Level 3) (Level 2) higher than that of interrupt request c, but since interrupts are disabled, interrupt request d is held pending. d servicing e servicing ΕI Interrupt Although interrupts are enabled, Interrupt request e request f interrupt request f is held pending (Level 2) (Level 3) since it has a lower priority than interrupt request e. f servicing g servicing Although interrupts are enabled, Interrupt interrupt request h is held pending request h since it has the same priority as (Level 1) Interrupt request g interrupt request g. (Level 1) h servicing

Figure 22-14. Examples of Servicing When Another Interrupt Request Is Generated During Interrupt Servicing (1/3)

Figure 22-14. Examples of Servicing When Another Interrupt Request Is Generated During Interrupt Servicing (2/3)

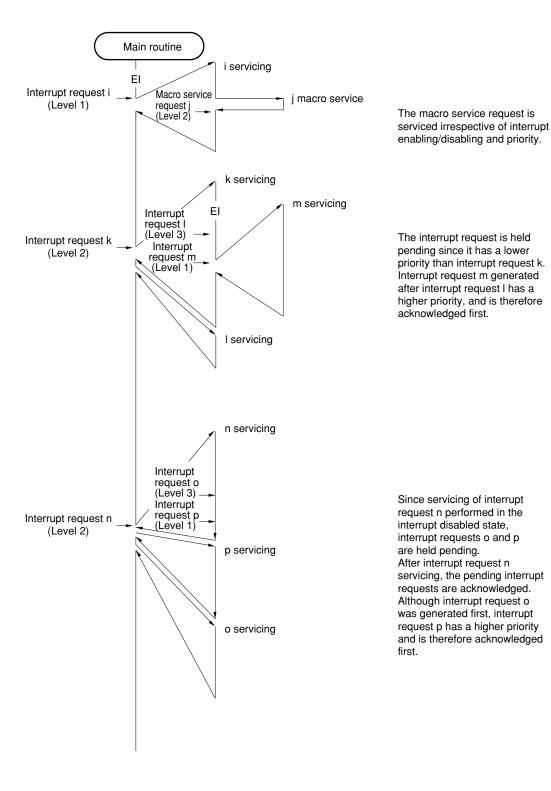
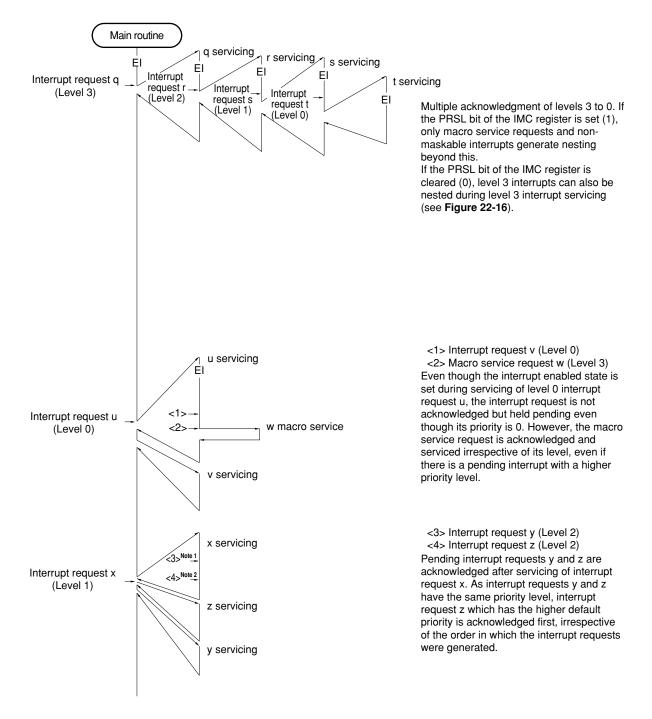



Figure 22-14. Examples of Servicing When Another Interrupt Request Is Generated During Interrupt Servicing (3/3)

- Notes 1. Low default priority
 - 2. High default priority
- **Remarks 1.** "a" to "z" in the figure above are arbitrary names used to differentiate between the interrupt requests and macro service requests.
 - 2. High/low default priorities in the figure indicate the relative priority levels of the two interrupt requests.

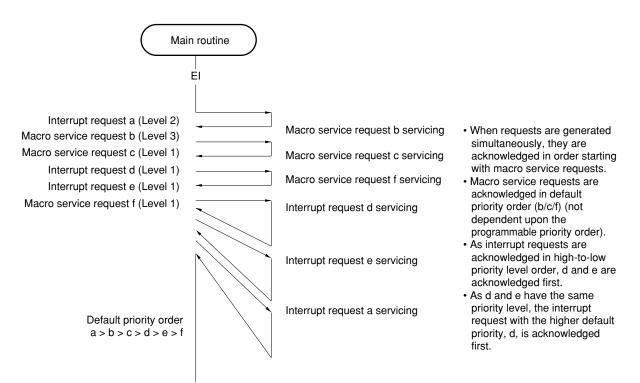
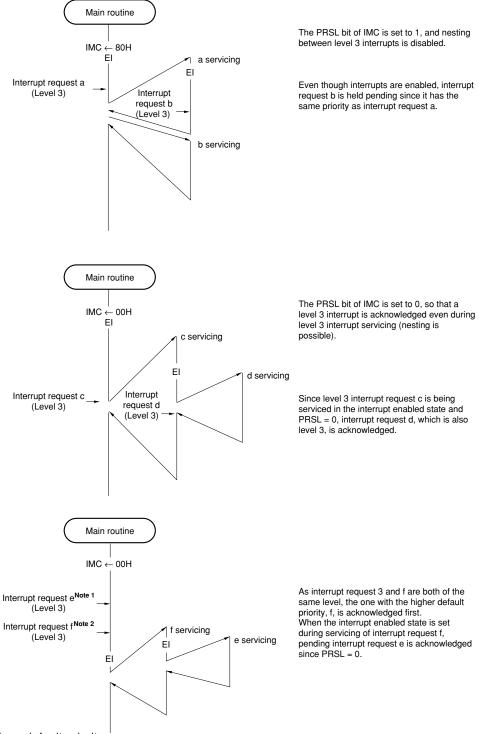



Figure 22-15. Examples of Servicing of Simultaneously Generated Interrupt Requests

Remark "a" to "f" in the figure above are arbitrary names used to differentiate between the interrupt requests and macro service requests.

Figure 22-16. Differences in Level 3 Interrupt Acknowledgment According to IMC Register Setting

- Notes 1. Low default priority
 - 2. High default priority
- **Remarks 1.** "a" to "f" in the figure above are arbitrary names used to differentiate between the interrupt requests and macro service requests.
 - 2. High/low default priorities in the figure indicate the relative priority levels of the two interrupt requests.

22.8 Macro Service Function

22.8.1 Outline of macro service function

Macro service is one method of servicing interrupts. With a normal interrupt, the program counter (PC) and program status word (PSW) are saved, and the start address of the interrupt service program is loaded into the PC, but with macro servicing, different processing (mainly data transfers) is performed instead of this processing. This enables interrupt requests to be responded to quickly, and moreover, since transfer processing is faster than processing by a program, the processing time can also be reduced.

Also, since a vectored interrupt is generated after processing has been performed the specified number of times, another advantage is that vectored interrupt programs can be simplified.

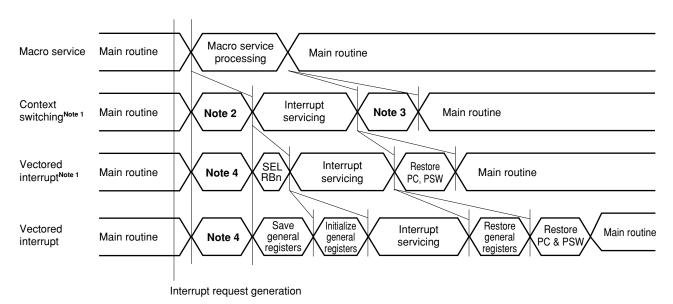


Figure 22-17. Differences Between Vectored Interrupt and Macro Service Processing

Notes 1. When register bank switching is used, and an initial value has been set in the register beforehand

- 2. Register bank switching by context switching, saving of PC and PSW
- 3. Register bank, PC and PSW restoration by context switching
- 4. PC and PSW saved to the stack, vector address loaded into PC

22.8.2 Types of macro servicing

Macro servicing can be used with the 23 kinds of interrupts shown in Table 22-6. There are four kinds of operations, selectable according to the application.

Table 22-6. Interrupts for Which Macro Servicing Can Be Used

Default Priority	Interrupt Request Generation Source	Generating Unit	Macro Service Control Word Address
0	INTWDTM (Watchdog timer overflow)	Watchdog timer	0FE06H
1	INTP0 (Pin input edge detection)	Edge detection	0FE08H
2	INTP1 (Pin input edge detection)		0FE0AH
3	INTP2 (Pin input edge detection)		0FE0CH
4	INTP3 (Pin input edge detection)		0FE0EH
5	INTP4 (Pin input edge detection)		0FE10H
6	INTP5 (Pin input edge detection)		0FE12H
7	INTIIC0 (CSI0 I ² C bus transfer end) ^{Note}	Clocked serial	0FE16H
	INTCSI0 (CSI0 3-wire transfer end)	interface	
8	INTSER1 (ASI1 UART reception error)	Asynchronous	0FE18H
9	INTSR1 (ASI1 UART reception end)	serial interface/	0FE1AH
	INTCSII (CSI1 3-wire transfer end)	clocked serial	
10	INTST1 (ASI1 UART transmission end)	interface 1	0FE1CH
11	INTSER2 (ASI2 UART reception error)	Asynchronous	0FE1EH
12	INTSR2 (ASI2 UART reception end)	serial interface/	0FE20H
	INTCSI2 (CSI2 3-wire transfer end)	clocked serial	
13	INTST2 (ASI2 UART transmission end)	interface 2	0FE22H
14	INTTM3 (Reference time interval signal from watch timer)	Watch timer	0FE24H
15	INTTM00 (Match signal generation of 16-bit timer register 0 and capture/compare register 00 (CR00))	Timer/Counter	0FE26H
16	INTTM01 (Match signal generation of 16-bit timer register 0 and capture/compare register 01 (CR01))		0FE28H
17	INTTM1 (Match signal generation of 8-bit timer counter 1)	Timer/counter 1	0FE2AH
18	INTTM2 (Match signal generation of 8-bit timer counter 2)	Timer/counter 2	0FE2CH
19	INTAD (A/D converter conversion end)	A/D converter	0FE2EH
20	INTTM5 (Match signal generation of 8-bit timer counter 5)	Timer/counter 5	0FE30H
21	INTTM6 (Match signal generation of 8-bit timer counter 6)	Timer/counter 6	0FE32H
22	INTWT (Watch timer overflow)	Watch timer	0FE38H

Note μ PD784225Y Subseries only

Remarks 1. The default priority is a fixed number. This indicates the priority order when macro service requests are generated simultaneously.

2. ASI: Asynchronous serial interface

CSI: Clocked serial interface

There are four kinds of macro services, as shown below.

(1) Type A

One byte or one word of data is transferred between a special function register (SFR) and memory each time an interrupt request is generated, and a vectored interrupt request is generated when the specified number of transfers have been performed.

Memory that can be used in the transfers is limited to internal RAM addresses 0FE00H to 0FEFFH when the LOCATION 0H instruction is executed, and addresses 0FFE00H to 0FFEFFH when the LOCATION 0FH instruction is executed.

The specification method is simple and is suitable for low-volume, high-speed data transfers.

(2) Type B

As with type A, one byte or one word of data is transferred between a special function register (SFR) and memory each time an interrupt request is generated, and a vectored interrupt request is generated when the specified number of transfers have been performed.

The SFR and memory to be used in the transfers is specified by the macro service channel (the entire 1 MB memory space can be used).

This is a general version of type A, suitable for large volumes of transfer data.

(3) Type C

Data is transferred from memory to two special function registers (SFR) each time an interrupt request is generated, and a vectored interrupt request is generated when the specified number of transfers have been performed.

With type C macro servicing, not only are data transfers performed to two locations in response to a single interrupt request, but it is also possible to add output data ring control and a function that automatically adds data to a compare register. The entire 1 MB memory space can be used.

Type C is mainly used with the INTTM1 and INTTM2 interrupts, and is used for stepper motor control, etc., by macro service, with RTBL or RTBH, CR10, and CR20 used as the SFRs to which data is transferred.

(4) Counter mode

This mode is used to decrement the macro service counter (MSC) when an interrupt occurs and is used to count the division operation of an interrupt and interrupt generator.

When MSC is 0, a vectored interrupt can be generated.

To restart the macro service, MSC must be set again.

MSC is fixed to 16 bits and cannot be used as an 8-bit counter.

22.8.3 Basic macro service operation

Interrupt request generation

Interrupt requests for which the macro service processing generated by the algorithm shown in Figure 22-11 can be specified are basically serviced in the sequence shown in Figure 22-18.

Interrupt requests for which macro service processing can be specified are not affected by the status of the IE flag, but are disabled by setting (1) an interrupt mask flag in the interrupt mask register (MK0). Macro service processing can be executed in the interrupt disabled state and during execution of an interrupt service program.

Figure 22-18. Macro Service Processing Sequence

Generation of interrupt request for which macro service processing can be specified

| Macro service processing execution | ; Data transfer, real-time output port control | ; Decrement macro service counter (MSC) | | No | No | No | VCIE = 1? | Yes | Interrupt service mode bit ← 0 | Interrupt request flag ← 0 | | Interrupt f

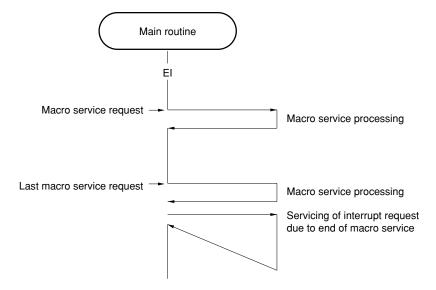
The macro service type and transfer direction are determined by the value set in the macro service control word mode register. Transfer processing is then performed using the macro service channel specified by the channel pointer according to the macro service type.

Execute next instruction

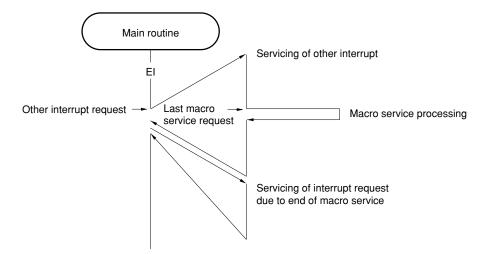
The macro service channel is memory which contains the macro service counter which records the number of transfers, the transfer destination and transfer source pointers, and data buffers, and can be located at any address in the range FE00H to FEFFH when the LOCATION 0H instruction is executed, or FFE00H to FFEFFH when the LOCATION 0FH instruction is executed.

22.8.4 Operation at end of macro service

In macro servicing, processing is performed the number of times specified during execution of another program. The macro service ends when the processing has been performed the specified number of times (when the macro service counter (MSC) reaches 0). Either of two operations may be performed at this point, as specified by the VCIE bit (bit 7) of the macro service mode register for each macro service.


(1) When VCIE bit is 0

In this mode, an interrupt is generated as soon as the macro service ends. Figure 22-18 shows an example of macro service and interrupt acknowledgment operations when the VCIE bit is 0.


This mode is used when a series of operations end with the last macro service processing performed, etc. It is mainly used in the following cases.

- Asynchronous serial interface receive data buffering (INTSR1/INTSR2)
- A/D conversion result fetch (INTAD)
- Compare register update as the result of a match between a timer register and the compare register (INTTM00, INTTM01, INTTM1, INTTM2, INTTM5, and INTTM6)

Figure 22-19. Operation at End of Macro Service When VCIE = 0

At the end of macro service (MSC = 0), an interrupt request is generated and acknowledged.

If the last macro service is performed when the interrupt due to the end of the macro service cannot be acknowledged while other interrupt servicing is being executed, etc., that interrupt is held pending until it can be acknowledged.

(2) When VCIE bit is 1

In this mode, an interrupt is not generated after macro servicing ends. Figure 22-20 shows an example of macro service and interrupt acknowledgment operations when the VCIE bit is 1.

This mode is used when the final operation is to be started by the last macro service processing performed, etc. It is mainly used in the following cases.

- Clocked serial interface receive data transfers (INTCSI0, INTCSI1/INTCSI2)
- Asynchronous serial interface data transfers (INTST1, INTST2)
- To stop a stepper motor in the case of stepping motor control by means of macro service type C using the real-time output port and timer/counter (INTTM1, INTTM2).

Macro service request

Last macro service request

Processing of last macro service

Interrupt request due to the end of the hardware operation started by the last macro service processing

Figure 22-20. Operation at End of Macro Service When VCIE = 1

22.8.5 Macro service control registers

(1) Macro service control word

The μ PD784225's macro service function is controlled by the macro service control mode register and macro service channel pointer. The macro service processing mode is set by means of the macro service mode register, and the macro service channel address is indicated by the macro service channel pointer.

The macro service mode register and macro service channel pointer are mapped onto the part of the internal RAM shown in Figure 22-21 for each macro service as the macro service control word.

When macro service processing is performed, the macro service mode register and channel pointer values corresponding to the interrupt requests for which macro service processing can be specified must be set beforehand.

Figure 22-21. Format of Macro Service Control Word

Reserved word	Address		Source
WTCHP WTMMD	0FE39H 0FE38H	Channel pointer Mode register	} INTWT
CCHP6 CMMD6	0FE33H 0FE32H	Channel pointer	} INTTM6
CCHP5	0FE31H	Mode register Channel pointer)
CMMD5	0FE30H	Mode register	NTTM5
ADCHP ADMMD	0FE2FH 0FE2EH	Channel pointer Mode register	INTAD
CCHP2 CMMD2	0FE2DH 0FE2CH	Channel pointer	INTTM2
CCHP1	0FE2BH	Mode register Channel pointer	INITTAG
CMMD1	0FE2AH	Mode register	} INTTM1
CCHP01 CMMD01	0FE29H 0FE28H	Channel pointer Mode register	NTTM01
CCHP00 CMMD00	0FE27H 0FE26H	Channel pointer Mode register	INTTM00
CCHP3 CMMD3	0FE25H 0FE24H	Channel pointer Mode register) INTTM3
STCHP2 STMMD2	0FE23H 0FE22H	Channel pointer Mode register	INTST2
SRCHP2/CSICHP2 SRMMD2/CSIMMD2	0FE21H 0FE20H	Channel pointer Mode register	INTSR2/INTCSI2
SERCHP2 SERMMD2	0FE1FH 0FE1EH	Channel pointer Mode register	INTSER2
STCHP1 STMMD1	0FE1DH 0FE1CH	Channel pointer	INTST1
SRCHP1/CSICHP1	0FE1BH	Mode register Channel pointer	INTSR1/INTCSII
SRMMD1/CSIMMD1 SERCHP1	0FE1AH 0FE19H	Mode register Channel pointer]
SERMMD1	0FE18H	Mode register	INTSER1
IICCHPNote/CSICHP0 IICMMDNote/CSIMMD0	0FE17H 0FE16H	Channel pointer Mode register	INTIIC0Note/INTCSI0
PCHP5 PMMD5	0FE13H 0FE12H	Channel pointer Mode register	INTP5
PCHP4 PMMD4	0FE11H 0FE10H	Channel pointer Mode register	INTP4
PCHP3 PMMD3	0FE0FH 0FE0EH	Channel pointer	INTP3
PCHP2	0FE0DH	Mode register Channel pointer	INTP2
PMMD2 PCHP1	0FE0CH 0FE0BH	Mode register Channel pointer	INTP1
PMMD1	0FE0AH	Mode register Channel pointer)
PCHP0 PMMD0	0FE09H 0FE08H	Mode register	NTP0
WDTCHP WDTMMD	0FE07H 0FE06H	Channel pointer Mode register	NTWDTM
WDTMMD	0FE06H	Mode register	

Note μ PD784225Y Subseries only

(2) Macro service mode register

1

The macro service mode register is an 8-bit register that specifies the macro service operation. This register is written in internal RAM as part of the macro service control word (refer to **Figure 22-21**).

The format of the macro service mode register is shown in Figure 22-22.

5 3 2 0 VCIE MOD2 MOD1 MOD0 CHT3 CHT2 CHT1 CHT0 CHT0 0 1 0 CHT1 0 0 0 CHT2 0 0 0 CHT3 0 0 1 MOD2 MOD1 MOD0 Counter Mode Type A Type B 0 Data size: Counter Data transfer Data transfer Data size: decrement direction 1 byte direction 1 byte $\mathsf{Memory} \to \mathsf{SFR}$ $\text{Memory} \to \text{SFR}$ 0 0 1 Data transfer Data transfer direction direction $\mathsf{SFR} \to \mathsf{memory}$ $\mathsf{SFR} \to \mathsf{memory}$ 0 1 0 0 1 1 1 0 Data transfer Data size: Data transfer Data size: 0 direction 2 bytes direction 2 bytes $\text{Memory} \to \text{SFR}$ $\text{Memory} \to \text{SFR}$ Data transfer Data transfer 0 1 direction direction $SFR \rightarrow memory$ $\mathsf{SFR} \to \mathsf{memory}$ 1 1 0 1 1 1 VCIE Interrupt request when MSC = 0 0 Generated

Not generated (next interrupt servicing is vectored interrupt)

Figure 22-22. Format of Macro Service Mode Register (1/2)

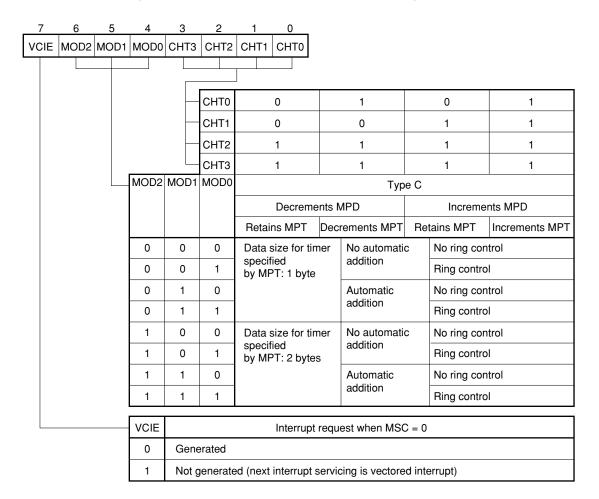


Figure 22-22. Format of Macro Service Mode Register (2/2)

(3) Macro service channel pointer

The macro service channel pointer specifies the macro service channel address. The macro service channel can be located in the 256-byte space from FE00H to FEFFH when the LOCATION 0H instruction is executed, or FFE00H to FFEFFH when the LOCATION 0FH instruction is executed, and the higher 16 bits of the address are fixed. Therefore, the lower 8 bits of the data stored to the highest address of the macro service channel are set in the macro service channel pointer.

22.8.6 Macro service type A

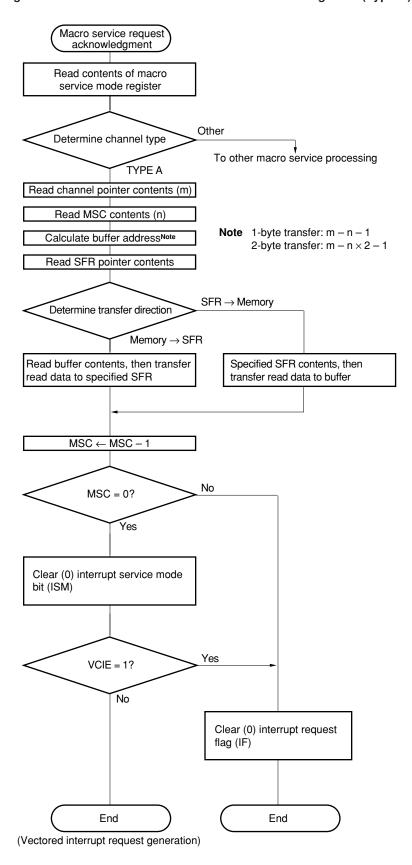
(1) Operation

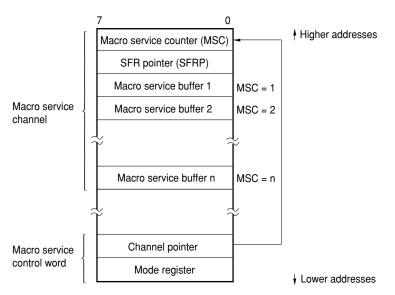
Data transfers are performed between buffer memory in the macro service channel and an SFR specified in the macro service channel.

With type A, the data transfer direction can be selected as memory-to-SFR or SFR-to-memory.

Data transfers are performed the number of times set beforehand in the macro service counter. One macro service processing transfers 8-bit or 16-bit data.

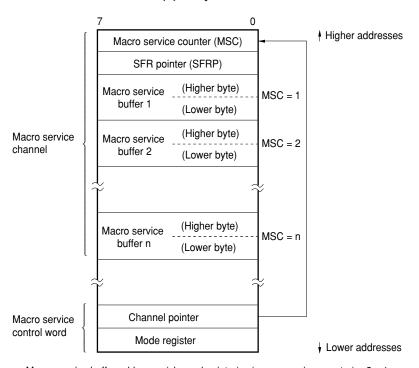
Type A macro service is useful when the amount of data to be transferred is small, as transfers can be performed at high speed.




Figure 22-23. Macro Service Data Transfer Processing Flow (Type A)

(2) Macro service channel configuration

The channel pointer and 8-bit macro service counter (MSC) indicate the buffer address in internal RAM (FE00H to FEFFH when the LOCATION 0H instruction is executed, or FFE00H to FFEFFH when the LOCATION 0FH instruction is executed) which is the transfer source or transfer destination (refer to **Figure 22-24**). In the channel pointer, the lower 8 bits of the address are written to the macro service counter in the macro service channel. The SFR involved with the access is specified by the SFR pointer (SFRP). The lower 8 bits of the SFR address are written to SFRP.


Figure 22-24. Type A Macro Service Channel

(a) 1-byte transfers

Macro service buffer address = (channel pointer) - (macro service counter) - 1

(b) 2-byte transfers

Macro service buffer address = (channel pointer) – (macro service counter) \times 2 – 1

(3) Example of use of type A

An example is shown below in which data received via the asynchronous serial interface is transferred to a buffer area in internal RAM.

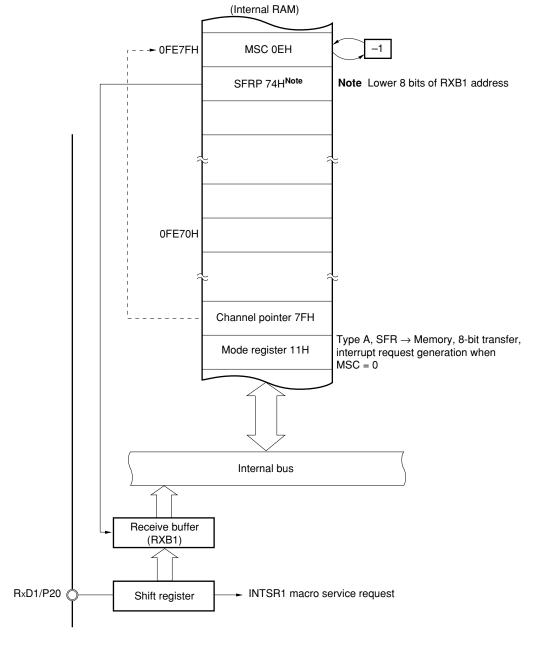


Figure 22-25. Asynchronous Serial Reception

Remark Addresses in the figure are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values in the figure.

22.8.7 Macro service type B

(1) Operation

Data transfers are performed between a data area in memory and an SFR specified by the macro service channel. With type B, the data transfer direction can be selected as memory-to-SFR or SFR-to-memory.

Data transfers are performed the number of times set beforehand in the macro service counter. One macro service processing transfers 8-bit or 16-bit data.

This type of macro service is macro service type A for general purposes and is ideal for processing a large amount of data because up to 64 KB of data buffer area when 8-bit data is transferred or 128 KB of data buffer area when 16-bit data is transferred can be set in any address space of 1 MB.

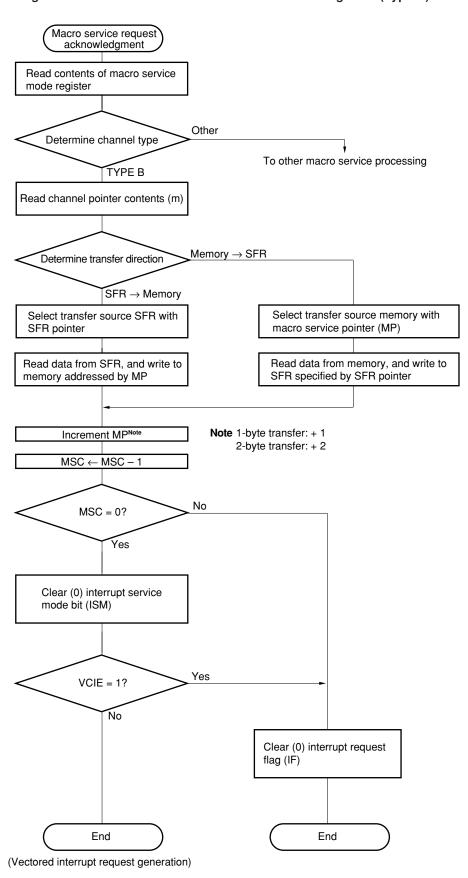


Figure 22-26. Macro Service Data Transfer Processing Flow (Type B)

(2) Macro service channel configuration

The macro service pointer (MP) indicates the data buffer area in the 1 MB memory space that is the transfer destination or transfer source.

The lower 8 bits of the SFR that is the transfer destination or transfer source is written to the SFR pointer (SFRP). The macro service counter (MSC) is a 16-bit counter that specifies the number of data transfers.

The macro service channel that stores the MP, SFRP and MSC is located in internal RAM space addresses 0FE00H to 0FEFFH when the LOCATION 0H instruction is executed, or 0FFE00H to 0FFEFFH when the LOCATION 0FH instruction is executed.

The macro service channel is indicated by the channel pointer as shown in Figure 22-27. In the channel pointer, the lower 8 bits of the address are written to the macro service counter in the macro service channel.

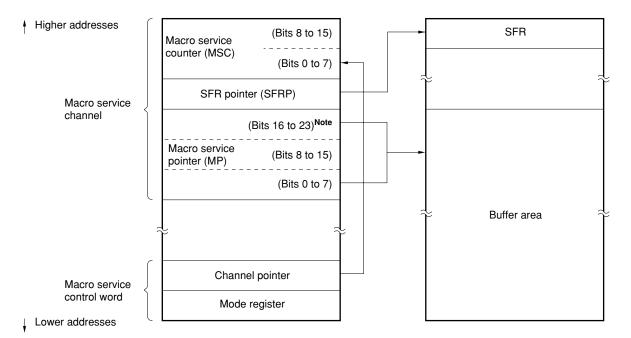


Figure 22-27. Type B Macro Service Channel

Macro service buffer address = macro service pointer

Note Bits 20 to 23 must be set to 0.

(3) Example of use of type B

An example is shown below in which parallel data is input from port 3 in synchronization with an external signal. The INTP4 external interrupt pin is used for synchronization with the external signal.

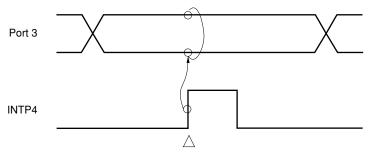

Macro service control word, macro service channel (Internal RAM) 64K memory space 00H MSC 0A01FH 0FE6EH 20H - 1 Note Lower 8 bits of port 3 address **SFRP** 03HNote Buffer area 00H MP A0H + 1 0A000H 00H Channel pointer 6EH Type B, SFR → memory, 8-bit transfer, Mode register 18H interrupt request generation when MSC = 0Internal bus Edge detection INTP4 INTP4 向 Macro service request Port 3 P37 @ P36 @ P35 © P34 (C P33 (🔾 P32 🔘 P31 © P30 (

Figure 22-28. Parallel Data Input Synchronized with External Interrupts

Remark Macro service channel addresses in the figure are the values when the LOCATION 0H instruction is executed.

When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values in the figure.

Figure 22-29. Parallel Data Input Timing

Data fetch (macro service)

22.8.8 Macro service type C

(1) Operation

For the type C macro service, data in the memory specified by the macro service channel is transferred to two SFRs, for timer use and data use, specified by the macro service channel in response to a single interrupt request (the SFRs can be freely selected). An 8-bit or 16-bit timer SFR can be selected.

In addition to the basic data transfers described above, the following functions can be added to the type C macro service to reduce the size of the buffer area and alleviate the burden on software.

These specifications are made by using the mode register of the macro service control word.

(a) Updating of timer macro service pointer

It is possible to choose whether the timer macro service pointer (MPT) is to be kept as it is or incremented/decremented. MPT is incremented or decremented in the same direction as the macro service pointer (MPD) for data.

(b) Updating of data macro service pointer

It is possible to choose whether the data macro service pointer (MPD) is to be incremented or decremented.

(c) Automatic addition

The current compare register value is added to the data addressed by the timer macro service pointer (MPT), and the result is transferred to the compare register. If automatic addition is not specified, the data addressed by MPT is simply transferred to the compare register.

(d) Ring control

An output data pattern of the length specified beforehand is automatically output repeatedly.

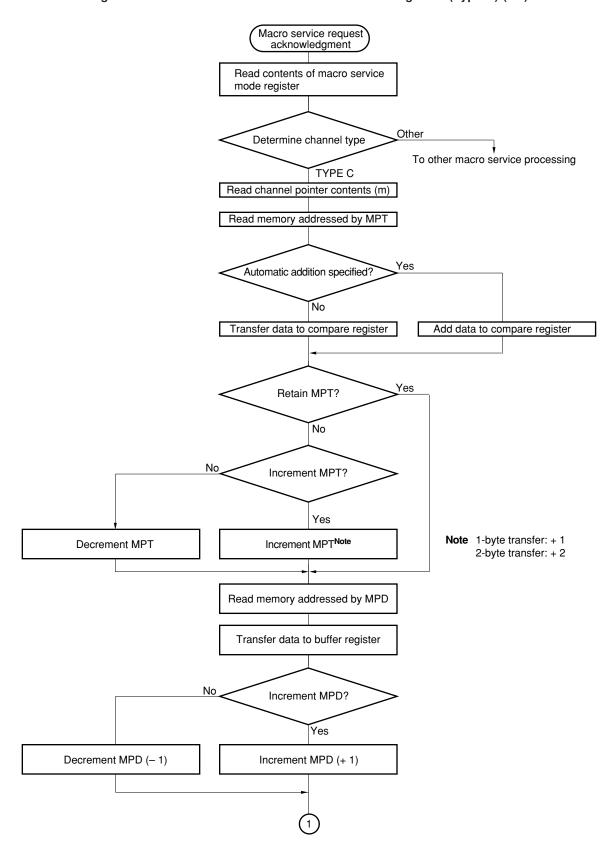


Figure 22-30. Macro Service Data Transfer Processing Flow (Type C) (1/2)

No Ring control? Yes Decrement ring counter No Ring counter = 0? Yes No Increment MPD? Yes Add modulo register contents to data macro service pointer Subtract modulo register contents from data macro service pointer (MPD), and (MPD), and return pointer to return pointer to start address start address Load modulo register contents into ring counter $MSC \leftarrow MSC - 1$ MSC = 0? Yes Clear (0) interrupt service mode bit (ISM) Yes VCIE = 1? No Clear (0) interrupt request flag (IF) End End (Vectored interrupt request generation)

Figure 22-30. Macro Service Data Transfer Processing Flow (Type C) (2/2)

(2) Macro service channel configuration

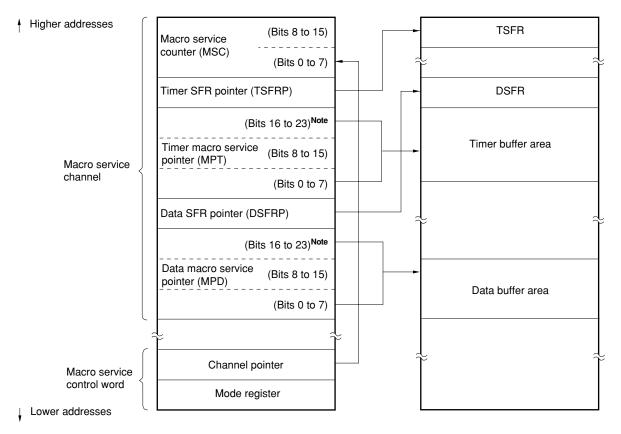
There are two kinds of type C macro service channels, as shown in Figure 22-31.

The timer macro service pointer (MPT) mainly indicates the data buffer area in the 1 MB memory space to be transferred or added to the timer/counter compare register.

The data macro service pointer (MPD) indicates the data buffer area in the 1 MB memory space to be transferred to the real-time output port.

The modulo register (MR) specifies the number of repeat patterns when ring control is used.

The ring counter (RC) holds the step in the pattern when ring control is used. When initialization is performed, the same value as in the MR is normally set in this counter.

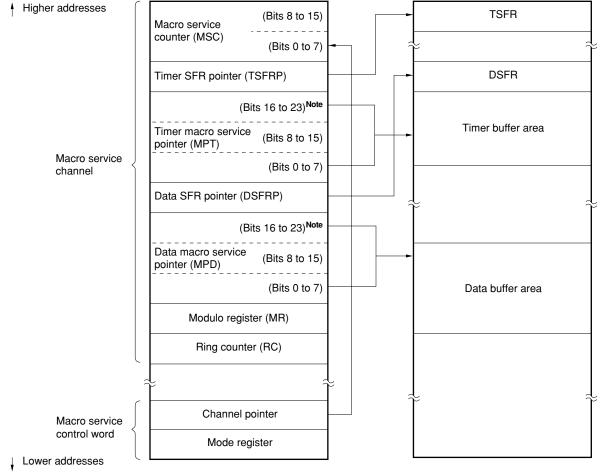

The macro service counter (MSC) is a 16-bit counter that specifies the number of data transfers.

The lower 8 bits of the SFR that is the transfer destination is written to the timer SFR pointer (TSFRP) and data SFR pointer (DSFRP).

The macro service channel that stores these pointers and counters is located in internal RAM space addresses 0FE00H to 0FEFFH when the LOCATION 0H instruction is executed, or 0FFE00H to 0FFEFFH when the LOCATION 0FH instruction is executed. The macro service channel is indicated by the channel pointer as shown in Figure 22-31. In the channel pointer, the lower 8 bits of the address are written to the macro service counter in the macro service channel.

Figure 22-31. Type C Macro Service Channel (1/2)

(a) No ring control



Macro service buffer address = macro service pointer

Note Bits 20 to 23 must be set to 0.

Figure 22-31. Type C Macro Service Channel (2/2)

(b) With ring control

Macro service buffer address = macro service pointer

Note Bits 20 to 23 must be set to 0.

(3) Examples of use of type C

(a) Basic operation

An example is shown below in which the output pattern to the real-time output port and the output interval are directly controlled.

Update data is transferred from the two data storage areas set in the 1 MB space beforehand to the real-time output function buffer register (RTBL) and the compare register (CR10).

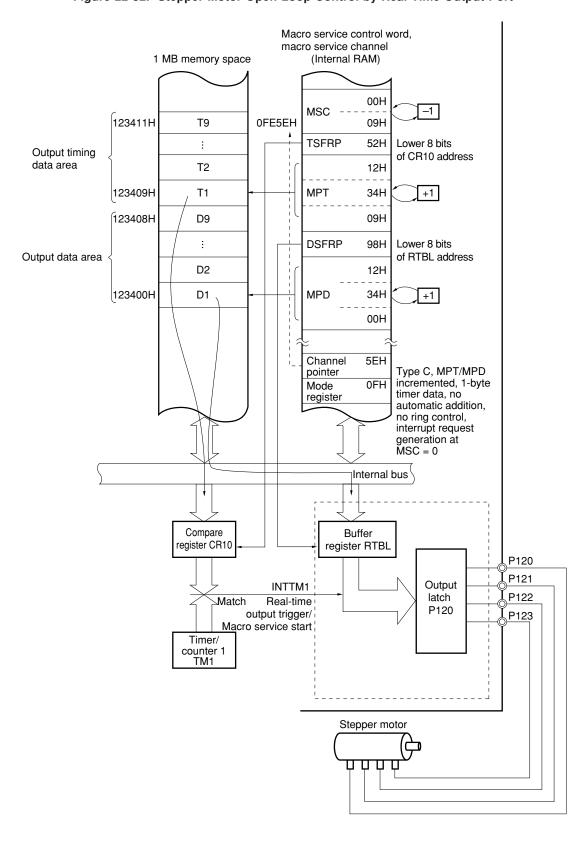


Figure 22-32. Stepper Motor Open Loop Control by Real-Time Output Port

Remark Internal RAM addresses in the figure are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values in the figure.

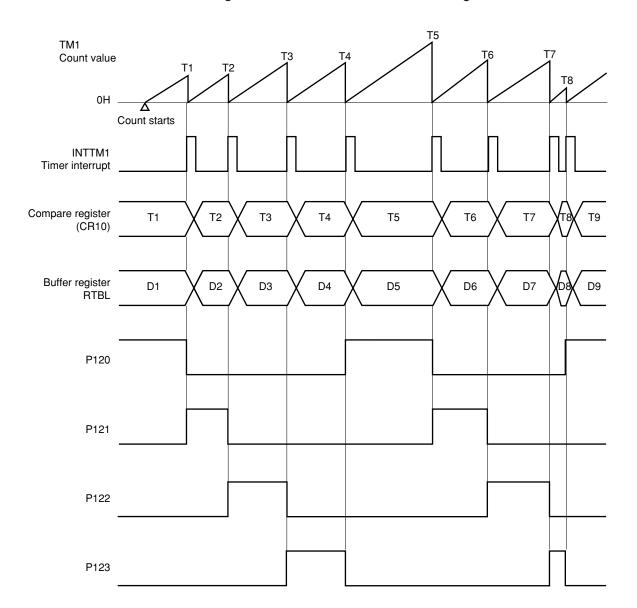


Figure 22-33. Data Transfer Control Timing

(b) Examples of use of automatic addition control and ring control

(i) Automatic addition control

The output timing data (Δt) specified by the macro service pointer (MPT) is added to the contents of the compare register, and the result is written back to the compare register.

Use of this automatic addition control eliminates the need to calculate the compare register setting value in the program each time.

(ii) Ring control

With ring control, predetermined output patterns are prepared for one cycle only, and the one-cycle data patterns are output repeatedly in order in ring form.

When ring control is used, only the output patterns for one cycle need to be prepared, allowing the size of the data ROM area to be reduced.

The macro service counter (MSC) is decremented each time a data transfer is performed.

With ring control, too, an interrupt request is generated when MSC = 0.

When controlling a stepper motor, for example, the output patterns will vary depending on the configuration of the stepper motor concerned, and the phase excitation method (single-phase excitation, two-phase excitation, etc.), but repeat patterns are used in all cases. Examples of single-phase excitation and 1-2-phase excitation of a 4-phase stepper motor are shown in Figures 22-34 and 22-35.

Figure 22-34. Single-Phase Excitation of 4-Phase Stepper Motor

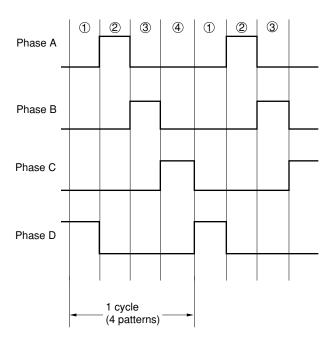
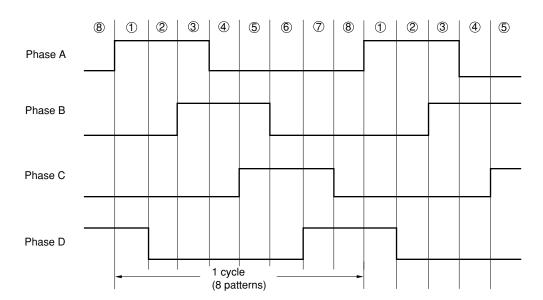



Figure 22-35. 1-2-Phase Excitation of 4-Phase Stepper Motor

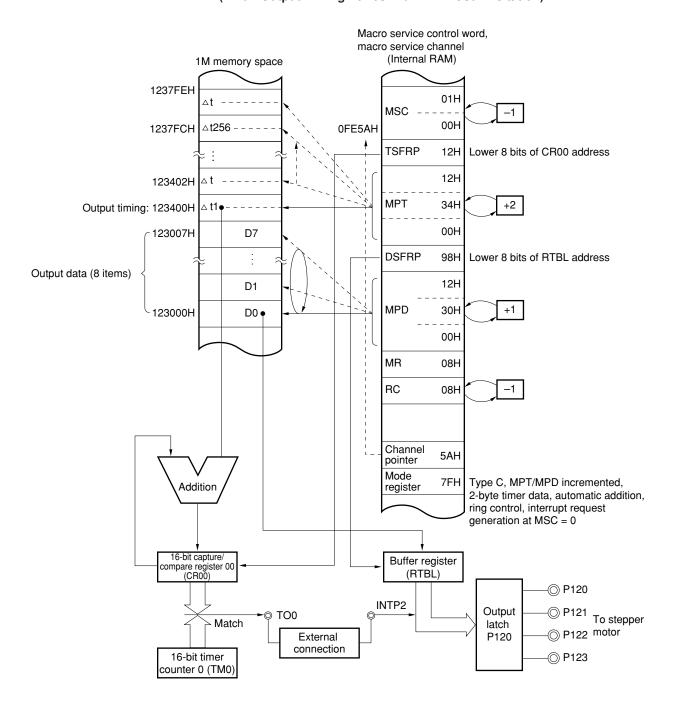


Figure 22-36. Automatic Addition Control + Ring Control Block Diagram 1 (When Output Timing Varies with 1-2-Phase Excitation)

Remark Internal RAM addresses in the figure are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values in the figure.

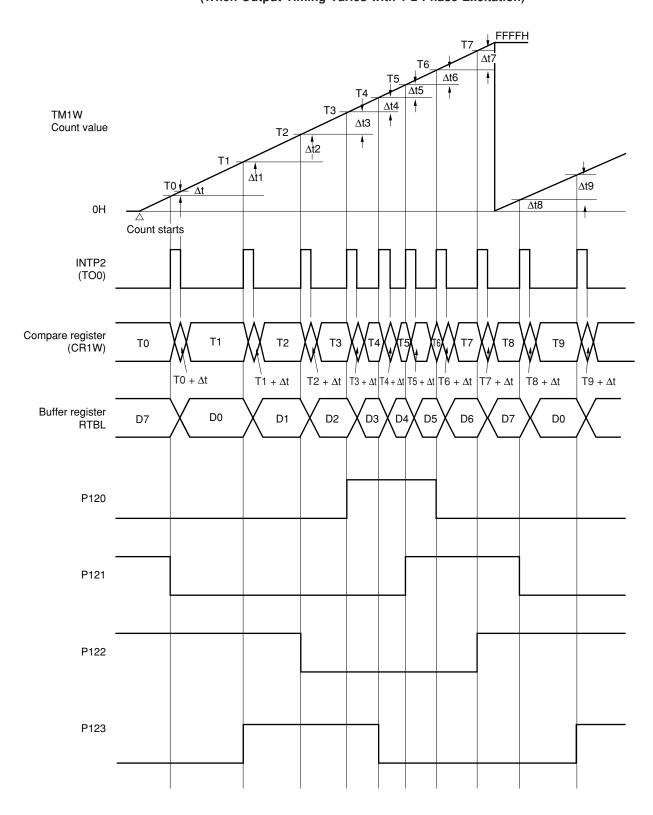


Figure 22-37. Automatic Addition Control + Ring Control Timing Diagram 1 (When Output Timing Varies with 1-2-Phase Excitation)

Note For the INTP2 high-/low-level width, refer to the data sheet.

Macro service control word, Macro service channel (Internal RAM) 1M memory space FFH MSC FFH 0FE7AH Output timing: 1233FFH \(\triangle t \) **TSFRP** 12H Lower 8 bits of CR00 address 12H MPT 33H 123007H D7 FFH D6 Output data (8 Items) DSFRP 98H Lower 8 bits of RTBL address 12H 123000H D0 MPD 30H 07H MR 08H RC 08H Channel 7AH pointer Mode 3СН Type C, MPT retained, MPD Addition register decremented, 1-byte timer data, automatic addition, ring control, interrupt request generation at MSC = 0 16-bit capture/ compare register 00 (CR00) Buffer Register (RTBL) P120 INTP2 → P121 To stepper Output © TO0 Match latch - P122 motor External P120 connection 16-bit timer P123 counter 0 (TM0)

Figure 22-38. Automatic Addition Control + Ring Control Block Diagram 2 (1-2-Phase Excitation Constant-Velocity Operation)

Remark Internal RAM addresses in the figure are the values when the LOCATION 0H instruction is executed. When the LOCATION 0FH instruction is executed, 0F0000H should be added to the values in the figure.

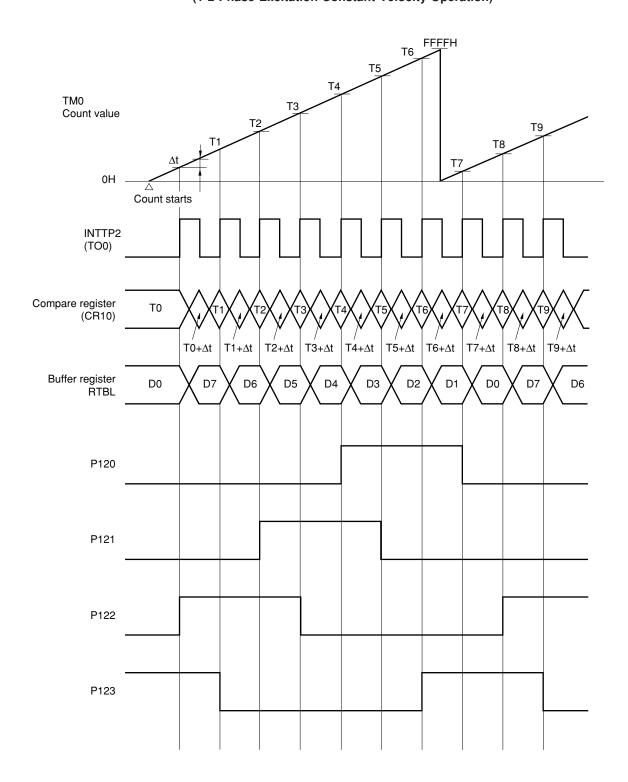
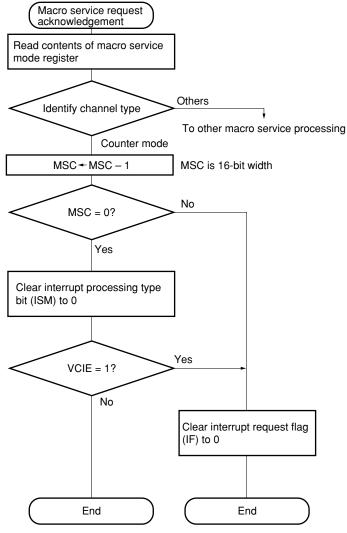


Figure 22-39. Automatic Addition Control + Ring Control Timing Diagram 2 (1-2-Phase Excitation Constant-Velocity Operation)

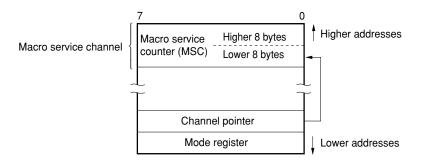

Note For the INTP2 high-/low-level width, refer to the data sheet.

22.8.9 Counter mode

(1) Operation

MSC is decremented the number of times set in advance to the macro service counter (MSC). Because the number of times an interrupt occurs can be counted, this function can be used as an event counter where the interrupt generation cycle is long.

Figure 22-40. Macro Service Data Transfer Processing Flow (Counter Mode)



(Vectored interrupt request is generated)

(2) Configuration of macro service channel

The macro service channel consists of only a 16-bit macro service counter (MSC). The lower 8 bits of the address of the MSC are written to the channel pointer.

Figure 22-41. Counter Mode

(3) Example of using counter mode

Here is an example of counting the number of edges input to external interrupt pin INTP5.

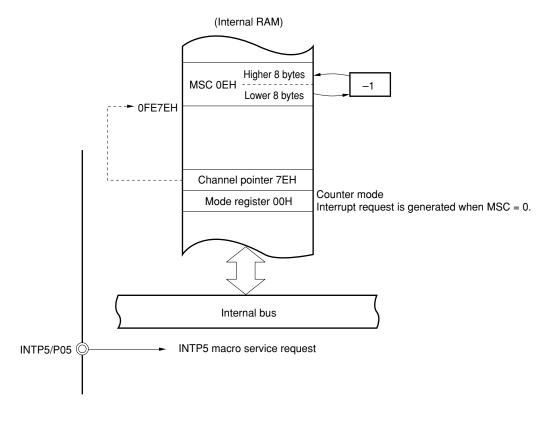


Figure 22-42. Counting Number of Edges

Remark The internal RAM address in the figure above is the value when the LOCATION 0H instruction is executed.

When the LOCATION 0FH instruction is executed, add 0F0000H to this value.

22.9 When Interrupt Requests and Macro Service Are Temporarily Held Pending

When the following instructions are executed, interrupt acknowledgment and macro service processing are held pending for 8 system clock cycles. However, software interrupts are not held pending.

ΕI

DΙ

BRK

BRKCS

RETCS

RETCSB !addr16

RETI

RETB

LOCATION 0H or LOCATION 0FH

POP PSW

POPU post

MOV PSWL, A

MOV PSWL, #byte

MOVG SP, # imm 24

Write instruction and bit manipulation instruction (excluding BT and BF) to interrupt control registers^{Note}, MK0, MK1 IMC, ISPR, and SNMI.

PSW bit manipulation instruction

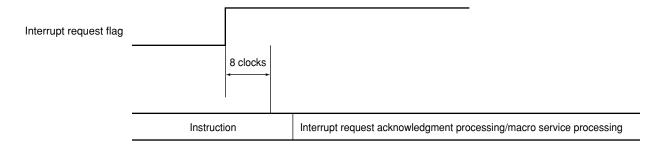
(Excluding the BT PSWL.bit, \$addr20 instruction, BF PSWL.bit, \$addr20 instruction, BT PSWH.bit, \$addr20 instruction, BF PSWH.bit, \$addr20 instruction, SET1 CY instruction, NOT1 CY instruction, and CLR1 CY instruction)

Note Interrupt control registers: WDTIC, PIC0, PIC1, PIC2, PIC3, PIC4, PIC5, CSIIC0, SERIC1, SRIC1, STIC1, SERIC2, SRIC2, STIC2, TMIC3, TMIC00, TMIC01, TMIC1, TMIC2, ADIC, TMIC5, TMIC6, WTIC

Caution If problems are caused by a long pending period for interrupts and macro servicing when the corresponding instructions are used in succession, a time at which interrupts and macro service requests can be acknowledged should be provided by inserting an NOP instruction, etc., in the series of instructions.

22.10 Instructions Whose Execution Is Temporarily Suspended by Interrupt or Macro Service

Execution of the following instructions is temporarily suspended by an acknowledgeable interrupt request or macro service request, and the interrupt or macro service request is acknowledged. The suspended instruction is resumed after completion of the interrupt service program or macro service processing.


Temporarily suspended instructions:
MOVM, XCHM, MOVBK, XCHBK
CMPME, CMPMNE, CMPMC, CMPMNC
CMPBKE, CMPBKNE, CMPBKC, CMPBKNC
SACW

22.11 Interrupt and Macro Service Operation Timing

Interrupt requests are generated by hardware. The generated interrupt request sets (1) an interrupt request flag. When the interrupt request flag is set (1), it takes of 8 clocks (0.64 μ s: fxx = 12.5 MHz) to determine the priority, etc.

Following this, if acknowledgment of that interrupt or macro service is enabled, interrupt request acknowledgment processing is performed when the instruction being executed ends. If the instruction being executed is one which temporarily holds interrupts and macro servicing pending, the interrupt request is acknowledged after the following instruction (refer to 22.9 When Interrupt Requests and Macro Service Are Temporarily Held Pending for these instructions).

Figure 22-43. Interrupt Request Generation and Acknowledgment (Unit: Clock = 1/fclk)

22.11.1 Interrupt acknowledge processing time

The time shown in Table 22-7 is required to acknowledge an interrupt request. After the time shown in this table has elapsed, execution of the interrupt processing program is started.

Table 22-7. Interrupt Acknowledge Processing Time

(Unit: Clock = 1/fclk)

Vector Table		IROM							EM	EMEM				
Branch destination	IROM, PRAM				EMEM PRAM			ЕМЕМ						
Stack	IRAM	PRAM	EMEM	IRAM	PRAM	EMEM	IRAM	PRAM	EMEM	IRAM	PRAM	EMEM		
Vectored interrupts	26	29	37 + 4n	27	30	38 + 4n	30	33	41 + 4n	31	34	42 + 4n		
Context switching	22	_	_	23	_	_	22	_	_	23	_	_		

Remarks 1. IROM: Internal ROM (with high-speed fetch specified)

PRAM: Peripheral RAM of internal RAM (only when LOCATION 0H instruction is executed in the case of branch destination)

IRAM: Internal high-speed RAM

EMEM: Internal ROM when external memory and high-speed fetch are not specified

- 2. n is the number of wait states per byte necessary for writing data to the stack (the number of wait states is the sum of the number of address wait states and the number of access wait states).
- 3. If the vector table is EMEM, and if wait states are inserted in reading the vector table, add 2 m to the value of the vectored interrupt in the above table, and add m to the value of context switching, where m is the number of wait states per byte necessary for reading the vector table.
- **4.** If the branch destination is EMEM and if wait states are inserted in reading the instruction at the branch destination, add that number of wait states.
- 5. If the stack is occupied by PRAM and if the value of the stack pointer (SP) is odd, add 4 to the value in the above table.
- **6.** The number of wait states is the sum of the number of address wait states and the number of access wait states.

22.11.2 Processing time of macro service

The macro service processing time differs depending on the type of the macro service, as shown in Table 22-8.

Table 22-8. Macro Service Processing Time

(Units: Clock = 1/fclk)

Dunanain	Torre of Marris Com	1	Data Area			
Processin	g Type of Macro Serv	ice	IRAM	Other		
Type A	$SFR \to memory$	24	_			
	2 bytes Memory → SFR 1 byte		25	-		
			24	-		
		2 bytes	26	-		
Туре В	$SFR \to memory$		33	35		
	Memory → SFR		34	36		
Type C			49	53		
Counter mode	MSC ≠ 0	17	-			
	USC = 0		25	_		

Remarks 1. IRAM: Internal high-speed RAM

- 2. In the following cases in the other data areas, add the number of clocks specified below.
 - If the data size is 2 bytes with IROM or PRAM, and the data is located at an odd address: 4 clocks
 - If the data size is 1 byte with EMEM: The number of wait states for data access
 - If the data size is 2 bytes with EMEM: 4 + 2n (where n is the number of wait states per byte)
- 3. If MSC = 0 with type A, B, or C, add 1 clock.
- **4.** With type C, add the following value depending on the function to be used and the status at that time.
 - Ring control: 4 clocks. Add 7 more clocks if the ring counter is 0 during ring control.

22.12 Restoring Interrupt Function to Initial State

If an inadvertent program loop or system error is detected by means of an operand error interrupt, the watchdog timer, NMI pin input, etc., the entire system must be restored to its initial state. In the μ PD784225, interrupt acknowledgment-related priority control is performed by hardware. This interrupt acknowledgment-related hardware must also be restored to its initial state, otherwise subsequent interrupt acknowledgment control may not be performed normally.

A method of initializing interrupt acknowledgment-related hardware in the program is shown below. The only way of performing initialization by hardware is by RESET input.

Example MOVW MK0, #0FFFFH ; Mask all maskable interrupts

MOV MK1L, #0FFH

IRESL

CMP ISPR, #0 ; No interrupt service programs running?

BZ \$NEXT

MOVG SP, #RETVAL ; Forcibly change SP location

RETI ; Forcibly terminate running interrupt service program, return

address = IRESL

RETVAL:

DW LOWW (IRESL) ; Stack data to return to IRESL with RETI instruction

DB 0

DB HIGHW (IRESL) ; LOWW & HIGHW are assembler operators for calculating low-

order 16 bits & high-order 16 bits respectively of symbol NEXT

NEXT

 It is necessary to ensure that a non-maskable interrupt request is not generated via the NMI pin during execution of this program.

- After this, on-chip peripheral hardware initialization and interrupt control register initialization are performed.
- When interrupt control register initialization is performed, the interrupt request flags must be cleared (0).

22.13 Cautions

- (1) The in-service priority register (ISPR) is read-only. Writing to this register may result in a malfunction.
- (2) The watchdog timer mode register (WDM) can only be written to with a dedicated instruction (MOV WDM/#byte).
- (3) The RETI instruction must not be used to return from a software interrupt caused by the BRK instruction. Use the RETB instruction.
- (4) The RETCS instruction must not be used to return from a software interrupt caused by the BRKCS instruction.

 Use the RETCSB instruction.
- (5) When a maskable interrupt is acknowledged by vectored interruption, the RETI instruction must be used to return from the interrupt. Subsequent interrupt-related operations will not be performed normally if a different instruction is used.
- (6) The RETCS instruction must be used to return from a context switching interrupt. Subsequent interrupt-related operations will not be performed normally if a different instruction is used.
- (7) Macro service requests are acknowledged and serviced even during execution of a non-maskable interrupt service program. To avoid macro service processing being performed during a non-maskable interrupt service program, manipulate the interrupt mask register in the non-maskable interrupt service program to prevent macro service generation.
- (8) The RETI instruction must be used to return from a non-maskable interrupt. Subsequent interrupt acknowledgement will not be performed normally if a different instruction is used. Refer to 22.12 Restoring Interrupt Function to Initial State when a program is to be restarted from the initial status after a non-maskable interrupt acknowledgement.
- (9) Non-maskable interrupts are always acknowledged, except during non-maskable interrupt service program execution (except when a high-priority non-maskable interrupt request is generated during execution of a low-priority non-maskable interrupt service program) and for a certain period after execution of the special instructions shown in 22.9. Therefore, a non-maskable interrupt will be acknowledged even when the stack pointer (SP) value is undefined, in particular after reset release, etc. In this case, depending on the value of the SP, it may happen that the program counter (PC) and program status word (PSW) are written to the address of a write-inhibited special function register (SFR) (refer to Table 3-6 in 3.9 Special Function Registers (SFRs)), and the CPU becomes deadlocked, or an unexpected signal output from a pin, or PC and PSW are written to an address is which RAM is not incorporated, with the result that the return from the non-maskable interrupt service program is not performed normally and a software malfunction occurs.

Therefore, the program following RESET release must be as follows.

CSEG AT 0 DW STRT

CSEG BASE

STRT:

LOCATION 0FH; or LOCATION 0

MOVG SP, #imm24

(10) When the following instructions are executed, interrupt acknowledgement and macro service processing are held pending for 8 system clocks. However, software interrupts are not held pending.

ΕI

DΙ

BRK

BRKCS

RETCS

RETCSB !addr16

RETI

RETB

LOCATION 0H or LOCATION 0FH

POP PSW

POPU post

MOV PSWL, A

MOV PSWL, #byte

MOVG SP, #imm24

Write instruction and bit manipulation instruction to interrupt control registers^{Note}, MK0, MK1, IMC, ISPR, or SNM1 register (excluding BT, BF instructions)

PSW bit manipulation instructions (excluding BT PSWL.bit, \$addr20 instruction, BF PSWL.bit, \$addr20 instruction, BT PSWH.bit, \$addr20 instruction, BF PSWH.bit, \$addr20 instruction, SET1 CY instruction, NOT1 CY instruction, CLR1 CY instruction)

Note Interrupt control registers: WDTIC, PIC0, PIC1, PIC2, PIC3, PIC4, PIC5, PIC6, CSIIC0, SERIC1, SRIC1, STIC1, SERIC2, STIC2, TMIC3, TMIC00, TMIC01, TMIC1, TMIC2, ADIC, TMIC5, TMIC6, TMIC7, TMIC8, WTIC, KRIC

Caution If problems are caused by a long pending period for interrupts and macro servicing when the corresponding instructions are used in succession, a time at which interrupts and macro service requests can be acknowledged should be provided by inserting an NOP instruction, etc., in the series of instructions.

CHAPTER 23 LOCAL BUS INTERFACE FUNCTIONS

23.1 External Memory Expansion Function

The external memory expansion function connects external memory to areas other than the internal ROM, RAM, and SFR.

A time-divided address/data bus is used to connect external memory. A 256-byte expansion mode and a 1 MB expansion mode are supported for the external memory expansion function.

When external memory is connected, ports 4 to 6 are used. Ports 4 to 6 control address/data and read/write strobes, and wait and address strobes, etc.

Table 23-1. Pin Functions in External Memory Expansion Mode

Pin Fund	ctions When External Device Connected	Alternate Functions			
Name	Name Function				
AD0 to AD7	Multiplexed address/data bus	P40 to P47			
A8 to A15	Middle address bus	P50 to P57			
A16 to A19	High address bus	P60 to P63			
RD	Read strobe	P64			
WR	Write strobe	P65			
WAIT	Wait signal	P66			
ASTB	Address strobe	P67			

Table 23-2. Pin States in Ports 4 to 6 in External Memory Expansion Mode

Port	Port 4				Ро	rt 5							Ро	rt 6			
External Expansion Mode	0 to 7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
Single-chip mode	Port	Poi	rt							Poi	t						
256 KB expansion mode	Address/data	Address		Add	dress	ss Port		RD, WR, WAIT, ASTB									
1 MB expansion mode	Address/data	Add	Address			Address RD, WR, WAIT, A			AIT, A	STB							

Caution When the external wait function is not used, the $\overline{\text{WAIT}}$ pin can be used as the port in all of the modes.

23.2 Control Registers

(1) Memory expansion mode register (MM)

MM is an 8-bit register that controls the external expanded memory, sets the number of address waits, and controls the internal fetch cycle.

 $\overline{\text{MM can}}$ be read or written by a 1-bit or 8-bit memory manipulation instruction. Figure 23-1 shows the MM format. $\overline{\text{RESET}}$ input sets MM to 20H.

Figure 23-1. Format of Memory Expansion Mode Register (MM)

Address: 0	FFC4H After	r reset: 20H	R/W					
Symbol	7	6	5	4	3	2	1	0
MM	IFCH	0	AW	0	MM3	MM2	MM1	MM0

IFCH	Internal ROM fetch
0	Fetch at the same speed as from external memory. All of the wait control settings are valid.
1	High-speed fetch The wait control settings are invalid.

AW	Address wait setting						
0	An address wait is not inserted.						
1	A one-clock address wait is inserted at the address output timing.						

ММЗ	MM2	MM1	MM0	Mode	Port 4 (P40 to P47)	Port 5 (P50 to P57)	P60 to	P63	P64	P65	P66	P67
0	0	0	0	Single-chip mode	e Port							
1	0	0	0	256 KB expansion mode	AD0 to AD7	A8 to A15	A16, A17	Port	RD	WR	WAIT Note	ASTB
1	0	0	1	1 MB expansion mode			A16 to	o A19				
Othe	Other than above Setting prohibited											

Note When the external wait function is not used, the $\overline{\text{WAIT}}$ pin can be used as a port.

(2) Programmable wait control register 1 (PWC1)

PWC1 is an 8-bit register that sets the number of waits.

The insertion of wait cycles is controlled by PWC1 over the entire space.

PWC1 can be read and written by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PWC1 to AAH.

Figure 23-2. Format of Programmable Wait Control Register 1 (PWC1)

Address: 0FFC7H After reset: AAH R/W Symbol 7 6 5 4 3 2 1 0 PWC1 PW01 PW00 X × × × × ×

PW01	PW00	Insertion wait cycles	Data access cycles, fetch cycles
0	0	0	3
0	1	1	4
1	0	2	5
1	1	Low-level period that is input at the WAIT pin	_

Remarks 1. The insertion of wait cycles is controlled by the entire address space (except for the peripheral RAM area).

2. x: Don't care

(3) Programmable wait control register 2 (PWC2)

In the μ PD784225 Subseries, wait cycle insertion control can be performed for the entire address space in one operation using programmable wait control register 1 (PWC1). However, in the in-circuit emulator, the address space is partitioned, and wait control is performed for each area separately (using both the PWC1 and PWC2 registers).

Consequently, when performing programmable debugging using the in-circuit emulator, wait control must be performed by setting both the PWC1 register and programmable wait control register 2 (PWC2). Set as shown in Table 23-3 below. Note that the settings in PWC2 and PWC1 (except bits 1 and 0) are invalid in the μ PD784225 Subseries, and therefore have no negative effect.

Table 23-3. Settings of Program Wait Control Register 2 (PWC2)

*	Inserted Wait Cycle	μ PD784225 Subseries	In-Circuit I	Emulator
		PWC1	PWC1	PWC2
	0	xxxx xx00B	00H	0000H
	1	xxxx xx01B	55H	5555H
	2	xxxx xx10B	AAH	AAAAH
	Low-level time input to WAIT pin	xxxx xx11B	FFH	FFFFH

23.3 Memory Map for External Memory Expansion

Figures 23-4 and 23-5 show the memory map during memory expansion. Even during memory expansion, an external device at the same address as the internal ROM area, internal RAM area, or SFR area (except for the external SFR area (0FFD0H to 0FFDFH)) cannot be accessed. If these areas are accessed, the memory and SFR in μ PD784225 are accessed by priority, and the ASTB, $\overline{\text{RD}}$, and $\overline{\text{WD}}$ signals are not output (remaining at the inactive level). The output level of the address bus remains at the previous output level. The output of the address/data bus has a high impedance.

Except in the 1 MB expansion mode, an address for external output is output in the state that masked the higher side of the address set by the program.

<Example 1>

When address 54321H is accessed in the program in the 256 KB expansion mode, the address that is output becomes 14321H.

<Example 2>

When address 67821H is accessed in the program in the 256 KB expansion mode, the address that is output becomes 27821H.

Figure 23-3. μ PD784224 Memory Map (1/2)

(a) When executing the LOCATION 0H instruction

FFFFFH			
		External memory ^{Note 1}	External memory
17FFFH			
10000H	Internal ROM	Internal ROM	Internal ROM
0FFFFH	SFR	SFR	SFR
OFFEOH '		Note 2	External memory ^{Note 2}
0FFCFH	SFR	SFR	SFR
0F100H	Internal RAM	Internal RAM	Internal RAM
	Internal ROM	Internal ROM	Internal ROM
00000H			

Notes 1. Area having any expanded size in the unshaded parts

Figure 23-3. μ PD784224 Memory Map (2/2)

(b) When executing the LOCATION 0FH instruction

FFFFFH FFFEOH	SFR		SFR		SFR
			Note 2		External memory ^{Note 2}
FFFCFH	SFR		SFR		SFR
FF100H	Internal RAM		Internal RAM		Internal RAM
			External memory ^{Note 1}		External memory
17FFFH	Internal ROM		Internal ROM		Internal ROM
	Single-chip mode	2	56 KB expansion mode	•	1 MB expansion mode

Notes 1. Area having any expanded size in the unshaded parts

Figure 23-4. μ PD784225 Memory Map (1/2)

(a) When executing the LOCATION 0H instruction

FFFFFH		External me	emory ^{Note 1}	External memory
1FFFFH 10000H	Internal ROM	Interna	il ROM	Internal ROM
0FFFFH 0FFE0H	SFR	SF	R	SFR
		Not	e 2	External memory ^{Note 2}
0FFCFH	SFR	SF	FR	SFR
0EE00H	Internal RAM	Interna	il RAM	Internal RAM
00000H	Internal ROM	Interna	ıl ROM	Internal ROM
	Single-chip mode	256 KB expa	nsion mode	1 MB expansion mode

Notes 1. Area having any expanded size in the unshaded parts

Figure 23-4. μ PD784225 Memory Map (2/2)

(b) When executing the LOCATION 0FH instruction

FFFFFH F			
FFFE0H	SFR	SFR	SFR
111 LOII L		Note 2	External memory ^{Note 2}
FFFCFH	SFR	SFR	SFR
0EE00H	Internal RAM	Internal RAM	Internal RAM
		External memory ^{Note 1}	External memory
1FFFFH 00000H	Internal ROM	Internal ROM	Internal ROM
	Single-chip mode	256 KB expansion mode	1 MB expansion mode

Notes 1. Area having any expanded size in the unshaded parts

23.4 Timing of External Memory Expansion Functions

The timing control signal output pins in the external memory expansion mode are described below.

(1) RD pin (shared by: P64)

This pin outputs the read strobe during an instruction fetch or a data access from external memory. During an internal memory access, the read strobe is not output (held at the high level).

(2) WR pin (shared by: P65)

This pin outputs the write strobe during a data access to external memory.

During an internal memory access, the write strobe is not output (held at the high level).

(3) WAIT pin (shared by: P66)

This pin inputs the external wait signal.

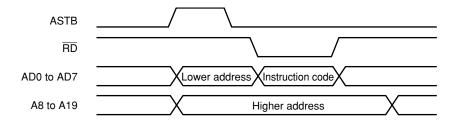
When the external wait is not used, the \overline{WAIT} pin can be used as an I/O port.

During an internal memory access, the external wait signal is ignored.

(4) ASTB pin (shared by: P67)

This pin always outputs the address strobe in any instruction fetch or data access from external memory. During an internal memory access, the address strobe is not output (held at the low level).

(5) AD0 to AD7, A8 to A15, A16 to A19 pins (shared by: P40 to P47, P50 to P57, P60 to P63)


These pins output the address and data signals. When an instruction is fetched or data is accessed from external memory, valid signals are output or input.

During an internal memory access, the signals do not change.

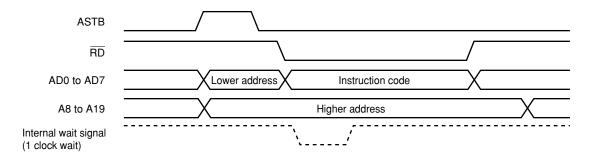

Figures 23-5 to 23-8 are the timing charts.

Figure 23-5. Instruction Fetch from External Memory in External Memory Expansion Mode

(a) Setting 0 wait cycles (PW01, PW00 = 0, 0)

(b) Setting 1 wait cycle (PW01, PW00 = 0, 1)

(c) Setting an external wait (PW01, PW00 = 1, 1)

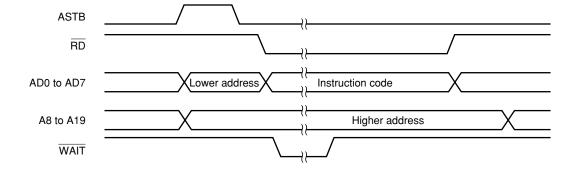
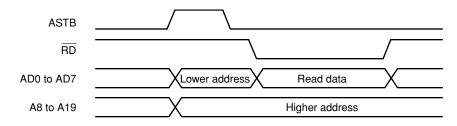
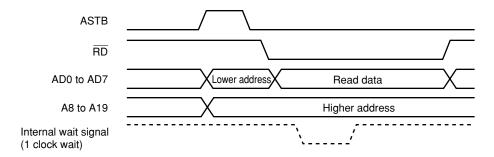




Figure 23-6. Read Timing for External Memory in External Memory Expansion Mode

(a) Setting 0 wait cycles (PW01, PW00 = 0, 0)

(b) Setting 1 wait cycle (PW01, PW00 = 0, 1)

(c) Setting an external wait (PW01, PW00 = 1, 1)

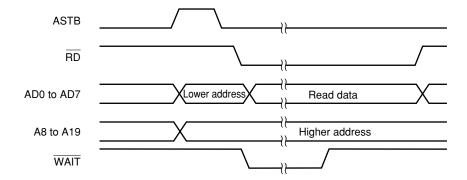


Figure 23-7. External Write Timing for External Memory in External Memory Expansion Mode

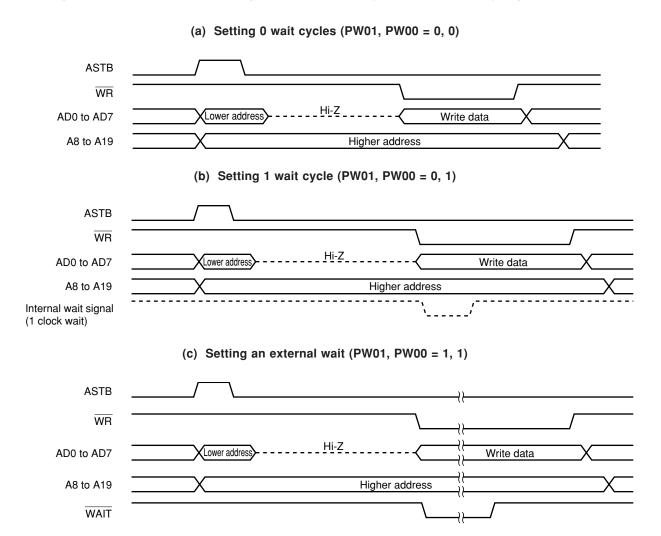
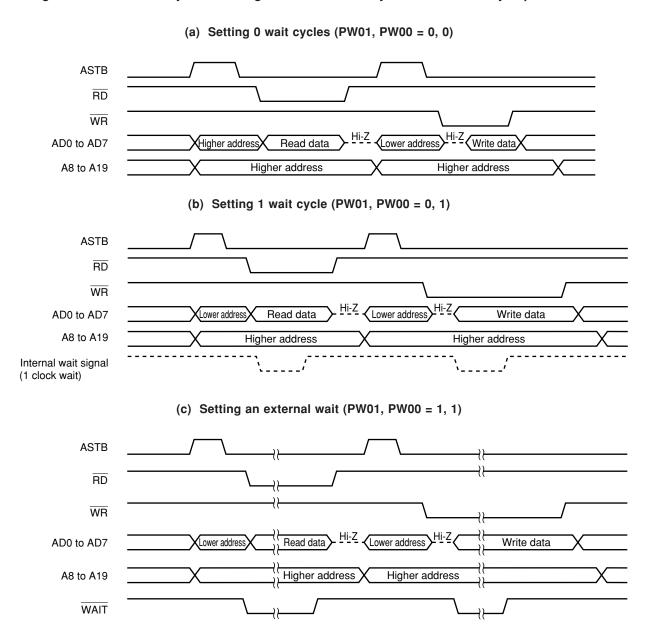
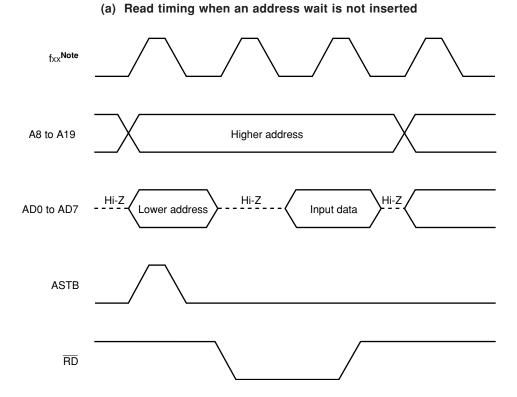



Figure 23-8. Read Modify Write Timing for External Memory in External Memory Expansion Mode

23.5 Wait Functions

If slow memory and I/O are connected externally to the μ PD784225, waits can be inserted in the external memory access cycle.


The wait cycle includes an address wait to guarantee the address decoding time and an access wait to guarantee the access time.

23.5.1 Address wait

The address wait guarantees the address decoding time. By setting the AW bit in the memory expansion mode register (MM) to 1, an address wait is inserted into the entire memory access time Note. When the address wait is inserted, the high level period of the ASTB signal is lengthened by one system clock (when 80 ns, fxx = 12.5 MHz).

Note This excludes the internal RAM, internal SFR, and internal ROM during a high-speed fetch. When the internal ROM access is set to have the same cycle as an external ROM access, an address wait is inserted during an internal ROM access.

Figure 23-9. Read/Write Timing by Address Wait Function (1/3)

Note fxx: Main system clock frequency. This signal is only in the μ PD784225.

Figure 23-9. Read/Write Timing by Address Wait Function (2/3)

(b) Read timing when an address wait is inserted

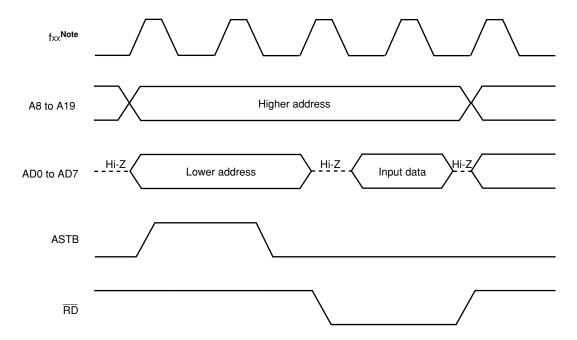
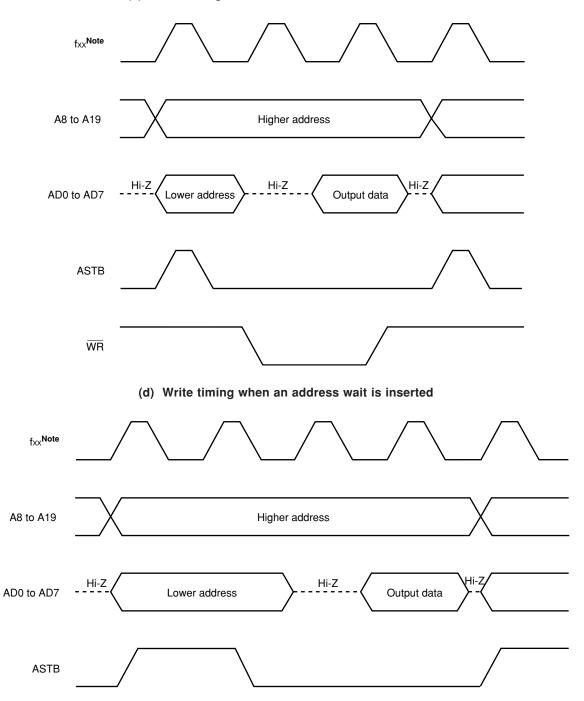



Figure 23-9. Read/Write Timing by Address Wait Function (3/3)

(c) Write timing when an address wait is not inserted

Note fxx: Main system clock frequency. This signal is only in the μ PD784225.

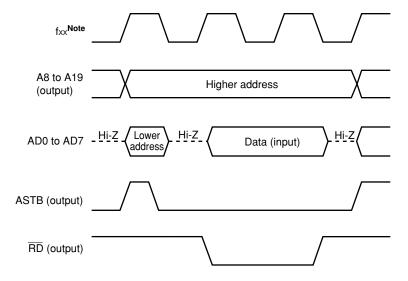
WR

23.5.2 Access wait

An access wait is inserted during low \overline{RD} and \overline{WR} signals. The low level is lengthened by 1/fxx (80 ns, fxx = 12.5 MHz) per cycle.

The wait insertion methods are the programmable wait function that automatically inserts a preset number of cycles and the external wait function that is controlled from the outside by the wait signal.

Wait cycle insertion control is set by the programmable wait control register (PWC1) for the 1 MB memory space. If an internal ROM or internal RAM is accessed during a high-speed fetch, a wait is not inserted. If accessing an internal SFR, a wait is inserted based on the required timing unrelated to this setting.


If set so that an access has the same number of cycles as for an external ROM, a wait is also inserted in an internal ROM access in accordance with the PWC1 setting.

If there is space that was externally selected to be controlled by the wait signal by PWC1, pin P66 acts as the WAIT signal input pin. RESET input makes pin P66 act as an ordinary I/O port.

Figures 23-10 to 23-12 show the bus timing when an access wait is inserted.

Figure 23-10. Read Timing by Access Wait Function (1/2)

(a) Setting 0 wait cycles (PW01, PW00 = 0, 0)

(b) Setting 1 wait cycle (PW01, PW00 = 0, 1)

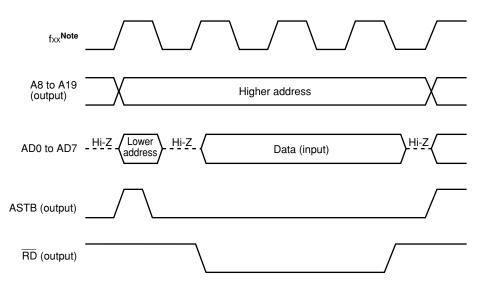


Figure 23-10. Read Timing by Access Wait Function (2/2)

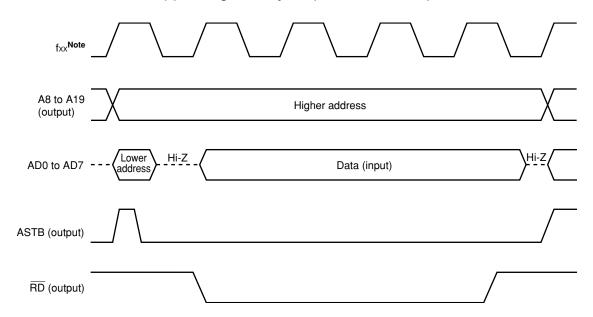
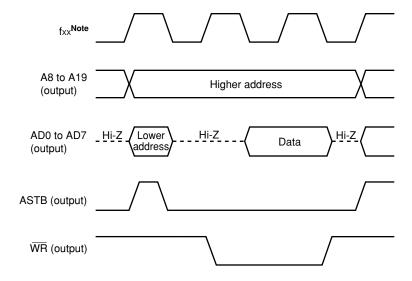



Figure 23-11. Write Timing by Access Wait Function (1/2)

(b) Setting 1 wait cycle (PW01, PW00 = 0, 1)

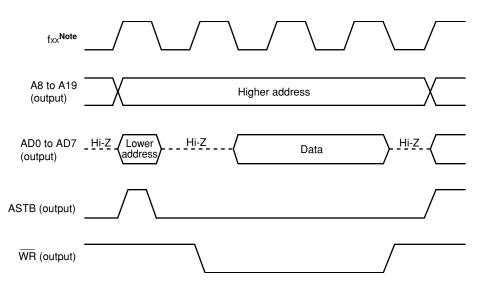


Figure 23-11. Write Timing by Access Wait Function (2/2)

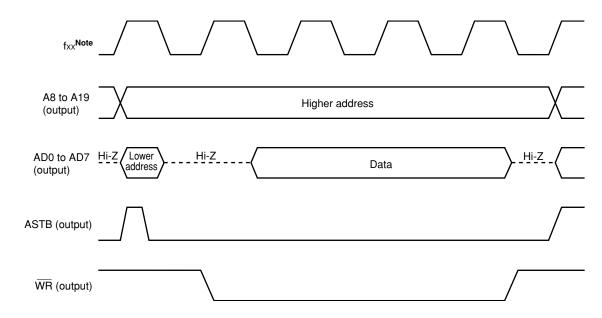
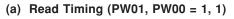
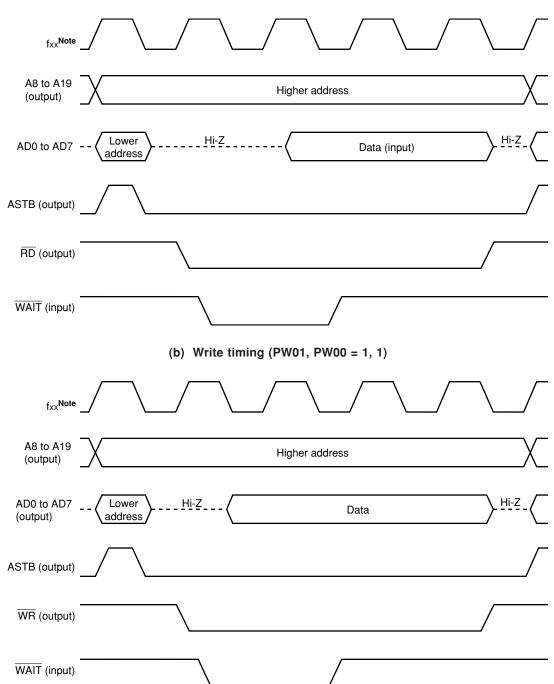




Figure 23-12. Timing by External Wait Signal

23.6 External Access Status Output Function

23.6.1 Summary

The external access status signal is output from the P37/EXA pin. This signal is output at the moment of external access when use of the external bus interface function has been enabled. This signal detects the external access status of other devices connected to the external bus, prohibits other devices from outputting data to the external bus, and enables reception.

23.6.2 Configuration of external access status output function

External access control signal

EXA signal generator

EXA signal generator

STOP and IDLE status signals

EXAE register (EXAE)

External access status output circuit (EXA)

P37 port

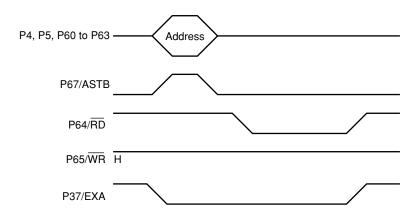
Figure 23-13. Configuration of External Access Status Output Function

23.6.3 External access status enable register

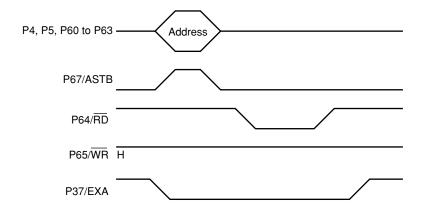
The external access status enable register (EXAE) controls the EXA signal output indicated during external access. EXAE is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets EXAE to 00H.

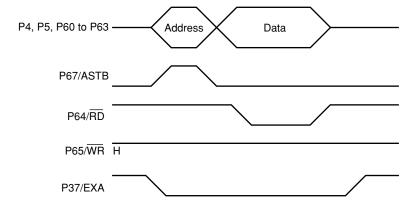
Figure 23-14. Format of External Access Status Enable Register (EXAE)


Address: 0	Address: 0FF8DH After reset: 00H							
Symbol	7	6	5	4	3	2	1	0
EXAE	0	0	0	0	0	0	0	EXAE0

EXAE	P37 function	
0	Port function	
1	External access status function	


23.6.4 External access status signal timing

A timing chart for the P37/EXA and external bus interface pin is shown below. The EXA signal is active-low, and indicates the external access status when "0".


(a) Data fetch timing

(b) Data read timing

(c) Data write timing

23.6.5 EXA pin status in each mode

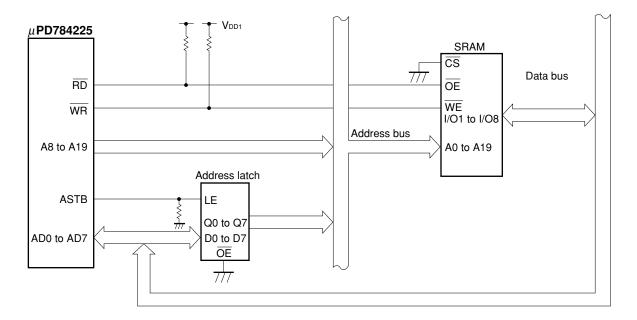

P37/EXA pin status in each mode is shown in Table 23-4.

Table 23-4. P37/EXA Pin Status in Each Mode

Mode	P37/EXA Functions
After reset	Hi-Z
Normal operation	Hi-Z immediately after the reset is canceled (input mode, PM37 = 1) Port operations when EXAE = 00H with PM37 and P37 = 0 EXA signal output enabled when EXAE = 01H with PM37 and P37 = 0
HALT modeStandby	
IDLE modeHi-Z	
STOP modeHi-Z	

23.7 External Memory Connection Example

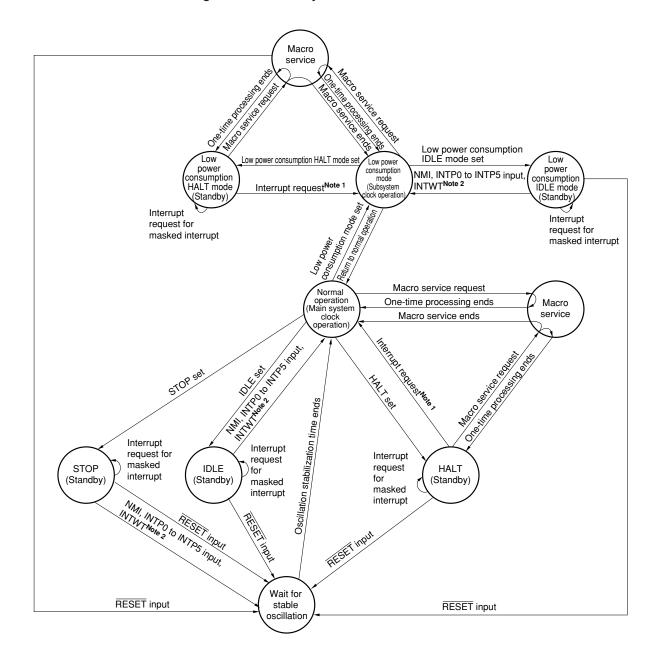
Figure 23-15. Example of Local Bus Interface (Multiplexed Bus)

CHAPTER 24 STANDBY FUNCTION

24.1 Configuration and Function

The μ PD784225 has a standby function that can decrease the system's power consumption. The standby function has the following six modes.

Table 24-1. Standby Function Modes


HALT mode	Stops the CPU operating clock. The average power consumption can be reduced by intermittent operation during normal operation chips internal.
STOP mode	Stops the main system clock. All of the chip's internal operations are stopped, and an extremely low power consumption state of only leakage current is entered.
IDLE mode	In this mode, the oscillator continues operating while the rest of the system stops. Power consumption in the IDLE mode is close to that in the STOP mode, but normal program operation can be restored in about the same time as it takes from the HALT mode.
Low power consumption mode	The subsystem clock is used as the system clock, and the main system clock is stopped. The CPU can operate with the subsystem clock to reduce power consumption.
Low power consumption HALT mode	This is a standby function in the low power consumption mode. In this mode the CPU operating clock is stopped to decrease power consumption for the entire system.
Low power consumption IDLE mode	This is a standby function in the low power consumption mode. In this mode the oscillator continues operating while the rest of the system is stopped, decreasing power consumption for the entire system.

These modes are programmable.

Macro servicing can be started from the HALT mode and the low power consumption HALT mode. After macro service execution, the device is returned to the HALT mode.

Figure 24-1 shows the standby function state transitions.

Figure 24-1. Standby Function State Transition

- Notes 1. Only unmasked interrupt requests
 - 2. When INTP0 to INTP5 and the watch timer interrupt (INTWT) are not masked

Remark NMI is only valid with external input. The watchdog timer cannot be used for the release of standby (HALT mode/STOP mode/IDLE mode.)

24.2 Control Registers

(1) Standby control register (STBC)

The STBC register sets the STOP mode and selects the internal system clock.

To prevent the standby mode from accidentally being entered due to an inadvertent program loop, this register can only be written by a special instruction. This special instruction is MOV STBC, #byte which has a special code structure (4 bytes). This register can only be written when the third and fourth byte opcodes are mutual 1's complements.

If the third and fourth byte opcodes are not mutual 1's complements, the register is not written and an operand error interrupt is generated. In this case, the return address that is saved on the stack is the address of the instruction that caused the error. Therefore, the address that caused the error can be determined from the return address saved on the stack.

If the RETB instruction is used to simply return from an operand error, an infinite loop occurs.

Since an operand error interrupt is generated only when the program inadvertently loops (only the correct instruction is generated when MOV STBC, #byte is specified in the RA78K4 NEC assembler), make the program initialize the system.

Other write instructions (i.e., MOV STBC, A; STBC, #byte; SET1 STBC.7) are ignored and nothing happens. In other words, STBC is not written, and an interrupt, such as an operand error interrupt, is not generated. STBC can always be read by a data transfer instruction.

RESET input sets STBC to 30H.

Figure 24-2 shows the STBC format.

Figure 24-2. Format of Standby Control Register (STBC)

Address: 0FFC0H After reset: 30H R/W Symbol 7 6 5 4 2 0 3 1 STBC SBK CK2 CK1 CK0 0 MCK STP HLT

SBK	Subsystem clock oscillation control
0	Oscillator operating (internal feedback resistors used)
1	Oscillator stopped (internal feedback resistors not used)

CK2	CK1	CK0	CPU clock selection
0	0	0	fxx
0	0	1	fxx/2
0	1	0	fxx/4
0	1	1	fxx/8
1	1	1	fxt (recommended)
1	-	-	fхт

MCK	Main system clock oscillation control	
0	Oscillator operating (internal feedback resistors used)	
1	Oscillator stopped (internal feedback resistors not used)	

STP	HLT	Operation setting flag
0	0	Normal operation mode
0	1	HALT mode (automatically cleared when the HALT mode is released)
1	0	STOP mode (automatically cleared when the STOP mode is released)
1	1	IDLE mode (automatically cleared when the IDLE mode is released)

- Cautions 1. If the STOP mode is used when an external clock is input, set the STOP mode after setting bit EXTC in the oscillation stabilization time specification register (OSTS) to 1. Using the STOP mode in the state where bit EXTC of OSTS is cleared (0) while the external clock is input may destroy the μPD784225 or reduce reliability. When the EXTC bit of OSTS is set to 1, always input to pin X2 the clock that has the inverse phase of the clock input at pin X1.
 - 2. Execute three NOP instructions after the standby instruction (after releasing standby). If this is not done, when the execution of a standby instruction conflicts with an interrupt request, the standby instruction is not executed, and interrupts are acknowledged after executing multiple instructions that follow a standby instruction. The instruction that is executed before acknowledging the interrupt starts being executed within a maximum of six clocks after the standby instruction is executed.

Example MOV STBC, #byte

NOP

NOP

NOP

:

Cautions 3. When CK2 = 0, even if MCK = 1, the oscillation of the main system clock does not stop (refer to 4.5.1 Main system clock operations).

Remarks 1. fxx: Main system clock oscillation frequency (fx or fx/2)

fx: Main system clock oscillation frequency

fxt: Subsystem clock oscillation frequency

2. x: Don't care

(2) Clock status register (PCS)

PCS is an 8-bit read-only register that shows the operating state of the CPU clock. When bits 2 and 4 to 7 in PCS are read, the corresponding bits in the standby control register (STBC) can be read.

PCS is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets PCS to 32H.

Figure 24-3. Format of Clock Status Register (PCS)

Address: 0FFCEH After reset: 32H R

Symbol	7	6	5	4	3	2	1	0
PCS	SBK	CK2	CK1	CK0	0	MCK	1	CST

L	SBK	Feedback resistor state for subsystem clock				
Γ	0	Internal feedback resistors used				
	1	Internal feedback resistors not used				

CK2	CK1	CK0	CPU clock operating frequency
0	0	0	fxx
0	0	1	fxx/2
0	1	0	fxx/4
0	1	1	fxx/8
1	1	1	fxt (recommended)
1	-	-	fхт

MCK	Main system clock oscillation control					
0	Oscillator operating					
1	Oscillator stopped					

CST	CPU clock state					
0	Main system clock operation					
1	Subsystem clock operation					

Remark ×: Don't care

(3) Oscillation stabilization time specification register (OSTS)

The OSTS register sets the oscillator operation and the oscillation stabilization time when the STOP mode is released. Whether a crystal/ceramic oscillator or an external clock will be used is set by the EXTC bit of OSTS. If only the EXTC bit is set to 1, the STOP mode can also be set when the external clock is input.

Bits OSTS0 to OSTS2 in OSTS select the oscillation stabilization time when the STOP mode is released. Generally, select an oscillation stabilization time of at least 40 ms when using a crystal oscillator and at least 4 ms when using a ceramic oscillator.

The time until the oscillation stabilizes is affected by the crystal/ceramic oscillator that is used and the capacitance of the connected capacitor. Therefore, if you want a short oscillation stabilization time, consult the manufacturer of the crystal/ceramic oscillator.

OSTS can be set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets OSTS to 00H.

Figure 24-4 shows the OSTS format.

Figure 24-4. Format of Oscillation Stabilization Time Specification Register (OSTS)

Address: 0FFCFH After reset: 00H			R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	EXTC	0	0	0	0	OSTS2	OSTS1	OSTS0

EXTC	External clock selection					
0	Crystal/ceramic oscillation used					
1	External clock used					

EXTC	OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection
0	0	0	0	2 ¹⁹ /fxx (42.0 ms)
0	0	0	1	2 ¹⁸ /fxx (21.0 ms)
0	0	1	0	2 ¹⁷ /fxx (10.5 ms)
0	0	1	1	2 ¹⁶ /fxx (5.3 ms)
0	1	0	0	2 ¹⁵ /fxx (2.6 ms)
0	1	0	1	2 ¹⁴ /fxx (1.3 ms)
0	1	1	0	2 ¹³ /fxx (0.7 ms)
0	1	1	1	2 ¹² /fxx (0.4 ms)
1	×	×	×	512/fxx (41.0 μs)

- Cautions 1. When using crystal/ceramic oscillation, always clear the EXTC bit to 0. When the EXTC bit is set to 1, oscillation stops.
 - 2. If the STOP mode is used when an external clock is input, always set the EXTC bit to 1 and then set the STOP mode. Using the STOP mode in the state where the EXTC bit is cleared (0) while the external clock is input may destroy μ PD784225 or reduce reliability.
 - 3. When the EXTC bit is set to 1 when an external clock is input, input to pin X2 a clock that has the inverse phase of the clock input to pin X1. If the EXTC bit is set to 1, μ PD784225 only operates with the clock that is input to the X2 pin.

Remarks 1. Figures in parentheses apply to operation at fxx = 12.5 MHz.

2. ×: Don't care

24.3 HALT Mode

24.3.1 Settings and operating states of HALT mode

The HALT mode is set by setting the HLT bit in the standby control register (STBC) to 1.

STBC can be written in with 8-bit data by a special instruction. Therefore, the HALT mode is specified by the MOV STBC, #byte instruction.

When interrupts are enabled (IE flag in PSW is set to 1), specify three NOP instructions after the HALT mode setting instruction (after the HALT mode is released). If this is not done, after the HALT mode is released, multiple instructions may execute before interrupts are acknowledged. Inserting NOP instructions may change, the order relationship between the interrupt servicing and instruction execution, so to prevent problems caused by changes in the execution order, be sure to take the measures described earlier.

The system clock when setting the HALT mode can be set to either the main system clock or the subsystem clock. The operating states in the HALT mode are described next.

Table 24-2. Operating States in HALT Mode

HALT Mode Setting		HALT Mode Setting Clock Operation	During Main System	HALT Mode Setting Clock Operation	During Subsystem		
Item		No subsystem clock Note 1	Subsystem clock Note 2	When the main system clock continues oscillating	When the main system clock stops oscillating		
Clock generator		•	Both the main system clock and subsystem clock can oscillate. The clock supply to the CPU stops.				
CPU		Operation disabled					
Port (output latch)		Holds the state before	e the HALT mode was	set.			
16-bit timer/counter		Operation enabled			Operational when the watch timer output is selected as the count clock. (Select fxT as the count clock of the watch timer.)		
8-bit timer/counters	1, 2	Operation enabled			Operational when TI1 and TI2 are selected as the count clocks		
8-bit timer/counters	5, 6	Operation enabled			Operational when TI5 and TI6 are selected as the count clocks		
Watch timer		Operational when fxx/2 ⁷ is selected as the count clock	Operation enabled		Operational when fxT is selected as the count clock		
Watchdog timer		Operation disabled (initializing counter)					
A/D converter		Operation enabled Operation di			Operation disabled		
D/A converter		Operation enabled					
Real-time output po	rt	Operation enabled					
Serial interface	Serial interface		Operation enabled				
External interrupt	INTP0 to INTP5	Operation enabled					
Bus lines during	AD0 to AD7	High impedance					
external expansion	A8 to A19	Holds the state before	the HALT mode was	set.			
	ASTB	Low level					
	WR, RD	High level					
	WAIT	Holds input status					

Notes 1. Including when an external clock is not supplied.

2. Including when an external clock is supplied.

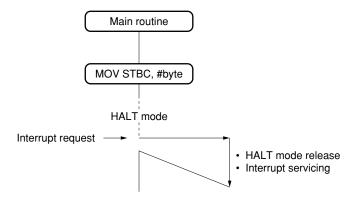
24.3.2 Releasing HALT mode

The HALT mode can be released by the following three sources.

- Non-maskable interrupt request (only possible for NMI pin input)
- Maskable interrupt request (vectored interrupt, context switching, macro service)
- RESET input

Table 24-3 lists the release sources and describes the operation after release. Operations following the release of the HALT mode are also shown in Figure 24-5.

Table 24-3. Releasing HALT Mode and Operation After Release


Release Source	MK ^{Note 1}	IENote 2	State During Release	Operation After Release
RESET input	×	×	-	Normal reset operation
NMI pin input	×	Acknowledges interrupt requests		
			Executing the service program for the same request Executing a high-priority non-maskable interrupt service program	The instruction following the MOV STBC, #byte instruction is executed. (The interrupt request that released the HALT mode is held pending Note 3.)
Maskable interrupt request (except macro service request)	0	1	 Not executing an interrupt service program Executing a low-priority maskable interrupt service program The PRSL bit Note 4 is cleared to 0 while executing an interrupt service program at priority level 3. 	Acknowledges interrupt requests
			Executing a maskable interrupt service program with the same priority (This excludes executing an interrupt service program in priority level 3 when the PRSL bit Note 4 is cleared to 0.) Executing a high-priority interrupt service program	The instruction following MOV STBC, #byte is executed. (The interrupt request that released the HALT mode is held pending Note 3.)
	0	0	-	
	1	×	-	Holds the HALT mode
Macro service request	0	×	_	Macro service processing execution End condition is not satisfied → End HALT mode condition is satisfied again → When VCIENote 5 = 1: HALT mode again When VCIENote 5 = 0: Same as release by maskable interrupt request
	1	×	-	Holds the HALT mode

Notes 1. Interrupt mask bit in each interrupt request source

- 2. Interrupt enable flag in the program status word (PSW)
- 3. The pending interrupt request is acknowledged when acknowledgement is enabled.
- **4.** Bit in the interrupt mode control register (IMC)
- **5.** Bit in the macro service mode register of the macro service control word that is in each macro service request source

Figure 24-5. Operations After Releasing HALT Mode (1/4)

(1) Interrupt after HALT mode

(2) Reset after HALT mode

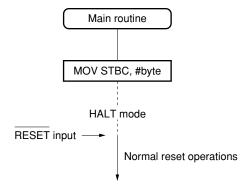
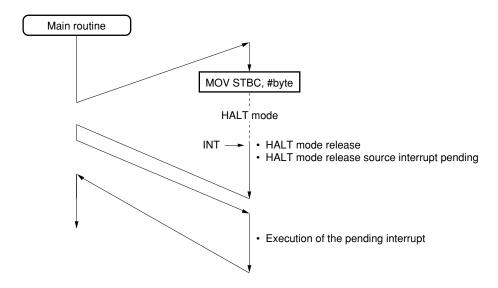



Figure 24-5. Operations After Releasing HALT Mode (2/4)

(3) HALT mode during interrupt servicing routine whose priority is higher than or equal to release source interrupt

(4) HALT mode during interrupt servicing routine whose priority is lower than release source interrupt

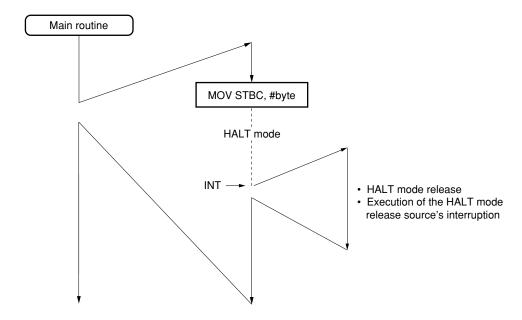
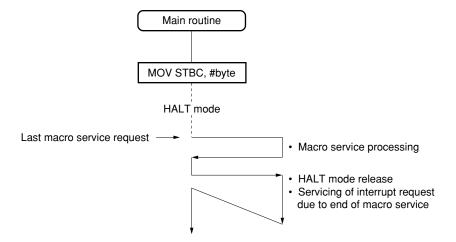



Figure 24-5. Operations After Releasing HALT Mode (3/4)

- (5) Macro service request in HALT mode
 - (a) Interrupt request is issued (VCIE = 0) immediately after macro service end condition is satisfied.

(b) Macro service end condition is not satisfied, or interrupt request is not issued (VCIE = 1) after macro service end condition is satisfied.

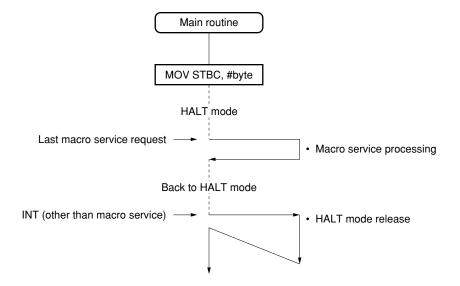
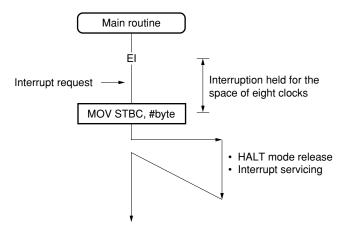
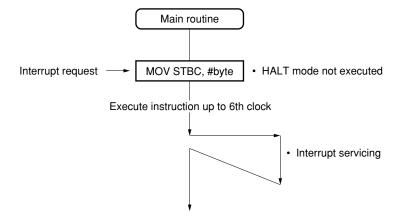




Figure 24-5. Operations After Releasing HALT Mode (4/4)

(6) HALT mode which the interrupt is held, which is enabled in an instruction that interrupt requests are temporarily held

(7) Conflict between HALT mode setting instruction and interrupt

(1) Releasing HALT mode by a non-maskable interrupt

When a non-maskable interrupt is generated, the halt mode is released regardless of the enable state (EI) and disable state (DI) for interrupt acknowledgement.

If the non-maskable interrupt that released the HALT mode can be acknowledged when the HALT mode is released, that non-maskable interrupt is acknowledged, and execution branches to the service program. If it cannot be acknowledged, the instruction following the instruction that set the HALT mode (MOV STBC, #byte instruction) is executed. The non-maskable interrupt that released the HALT mode is acknowledged when acknowledgement is possible. For details about non-maskable interrupt acknowledgement, refer to 22.6 Non-Maskable Interrupt Acknowledgment Operation.

Caution The HALT mode cannot be released by the watchdog timer.

(2) Releasing HALT mode by a maskable interrupt request

The HALT mode can only be released by a maskable interrupt request when that interrupt's mask flag is 0. If an interrupt can be acknowledged when the HALT mode is released and the interrupt request enable flag (IE) is set to 1, execution branches to the interrupt service program. If the IE flag is cleared to 0 when acknowledgement is not possible, execution restarts from the next instruction that sets the HALT mode. For details about interrupt acknowledgement, refer to 22.7 Maskable Interrupt Acknowledgment Operation.

A macro service temporarily releases the HALT mode, performs one-time processing, and returns again to the HALT mode. If the macro service is only specified a few times, the HALT mode is released when the VCIE bit in the macro service mode register in the macro service control word is cleared to 0.

The operation after this release is identical to the release by the maskable interrupt described earlier. Also when the VCIE bit is set to 1, the HALT mode is entered again, and the HALT mode is released by the next interrupt request.

Table 24-4. Releasing HALT Mode by Maskable Interrupt Request

Release Source	MKNote 1	IENote 2	State During Release	Operation After Release
Maskable interrupt request (except for a macro service request)	0	1	 Not executing an interrupt service program Executing a low-priority maskable interrupt service program The PRSL bit Note 4 is cleared to 0 while executing an interrupt service program at priority level 3. 	Acknowledges interrupt requests
			Executing a maskable interrupt service program with the same priority. (This excludes executing an interrupt service program in priority level 3 when the PRSL bit Note 4 is cleared to 0.) Executing a high-priority interrupt service program	The instruction following the MOV STBC, #byte instruction is executed. (The interrupt request that released the HALT mode is held pending Note 3.)
	0	0	-	
	1	×	_	Holds the HALT mode
Macro service request	0	×	_	Macro service processing execution End condition is not satisfied → End HALT mode condition is satisfied again → When VCIENote 5 = 1: HALT mode again When VCIENote 5 = 0: Same as a release by a maskable interrupt request
	1	×	-	Holds the HALT mode

Notes 1. Interrupt mask bit in each interrupt request source

- 2. Interrupt enable flag in the program status word (PSW)
- 3. The pending interrupt request is acknowledged when acknowledgement is possible.
- **4.** Bit in the interrupt mode control register (IMC)
- **5.** Bit in the macro service mode register of the macro service control word that is in each macro service request source

(3) Releasing HALT mode by RESET input

After branching to the reset vector address as in a normal reset, the program is executed. However, the contents of the internal RAM are held at the value before the HALT mode was set.

24.4 STOP Mode

24.4.1 Settings and operating states of STOP mode

The STOP mode is set by setting the STP bit in the standby control register (STBC) to 1.

STBC can be written with 8-bit data by a special instruction. Therefore, the STOP mode is set by the MOV STBC, #byte instruction.

When interrupts are enabled (IE flag in PSW is set to 1), specify three NOP instructions after the STOP mode setting instruction (after the STOP mode is released). If this is not done, after the STOP mode is released, multiple instructions can be executed before interrupts are acknowledged. Inserting NOP instructions may change the order relationship between the interrupt servicing and instruction execution, so to prevent problems caused by changes in the execution order, be sure to take the measures described earlier.

The system clock when setting the STOP mode can only be set to the main system clock.

Caution Since an interrupt request signal is used when releasing the standby mode, when an interrupt source that sets the interrupt request flag or resets the interrupt mask flag is generated, even though the standby mode is entered, it is immediately released. When the STOP mode setting instruction conflicts with the setting of an unmasked interrupt request flag or a non-maskable interrupt request, either of following two statuses are entered.

- (1) Status in which STOP mode is set once, and then released
- (2) Status in which STOP mode is not set

The oscillation stabilization time after releasing STOP mode is inserted only for the status in which STOP mode is set once and then released.

The operating states in the STOP mode are described next.

Table 24-5. Operating States in STOP Mode

	Mode Setting	With Subsystem Clock	Without Subsystem Clock		
Item					
Clock generator		Only main system clock stops oscillating			
CPU		Operation disabled			
Port (output latch)		Holds the state before the STOP mode was	set		
16-bit timer/counter		Operational when the watch timer output is selected as the count clock (select f_{XT} as the count clock of the watch timer)	Operation disabled		
8-bit timer/counters	1, 2	Operational only when TI1 and TI2 are select	cted as the count clocks		
8-bit timer/counters	5, 6	Operational only when TI5 and TI6 are select	cted as the count clocks		
Watch timer		Operational only when fxT is selected as the count clock	Operation disabled		
Watchdog timer		Operation disabled (initializing counter)			
A/D converter		Operation disabled			
D/A converter		Operation enabled			
Real-time output po	ort	Operational when an external trigger is used or TI1 and TI2 are selected as the count clocks of 8-bit timer counters 1 and 2			
Serial interface	Except I ² C bus mode	Operational only when an external input clock is selected as the serial clock			
	I ² C bus mode	Operation disabled			
External interrupt	INTP0 to INTP5	Operation enabled			
Bus lines during AD0 to AD7		High impedance			
external expansion A8 to A19 ASTB		High impedance			
		High impedance			
	WR, RD	High impedance			
	WAIT	Holds input status			

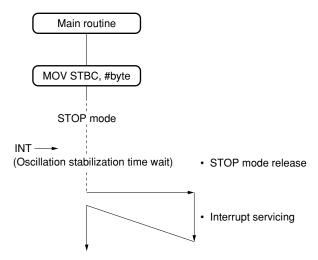
Caution In the STOP mode, only external interrupts (INTP0 to INTP5) and the watch timer interrupt (INTWT) can release the STOP mode and be acknowledged. All other interrupt requests are held pending, and acknowledged after the STOP mode has been released through NMI input, INTP0 to INTP5 input or INTWT.

24.4.2 Releasing STOP mode

The STOP mode is released by NMI input, INTP0 to INTP5 input, the watch timer interrupt (INTWT), or RESET input.

An outline of the release sources and operations following release are shown in Table 24-6. Operations following release of the STOP mode are also shown in Figure 24-6.

Table 24-6. Releasing STOP Mode and Operation After Release


Release Source	MKNote 1	ISMNote 2	IENote 3	State During Release	Operation After Release
RESET input	×	×	×	_	Normal reset operation
NMI pin input	×	×	×	Not executing a non-maskable interrupt service program Executing a low-priority non-maskable interrupt service program	Acknowledges interrupt requests
				 Executing the service program for the NMI pin input Executing a high-priority non-maskable interrupt service program 	The instruction following the MOV STBC, #byte instruction is executed. (The interrupt request that released the STOP mode is held pending Note 4.)
INTP0 to INTP5 pin input, watch timer interrupt	0	0 0	1	 Not executing an interrupt service program Executing a low-priority maskable interrupt service program The PRSL bit Note 5 is cleared to 0 while an interrupt service program at priority level 3 is being executed. 	Acknowledges interrupt requests
				Executing a maskable interrupt service program with the same priority (This excludes executing an interrupt service program in priority level 3 when the PRSL bit Note 5 is cleared to 0.) Executing a high-priority interrupt service program	The instruction following MOV STBC, #byte instruction is executed. (The interrupt request that released the STOP mode is held pending Note 4.)
	0	0	0	-	
	1	0	×	-	Holds the STOP mode
	×	1	×		

Notes 1. Interrupt mask bit in each interrupt request source

- 2. Macro service enable flag that is in each interrupt request source
- 3. Interrupt enable flag in the program status word (PSW)
- 4. The pending interrupt request is acknowledged when acknowledgement is possible.
- 5. Bit in the interrupt mode control register (IMC)

Figure 24-6. Operations After Releasing STOP Mode (1/3)

(1) Interrupt after STOP mode

(2) Reset after STOP mode

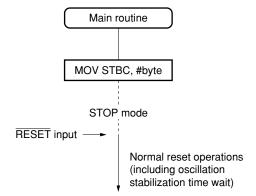
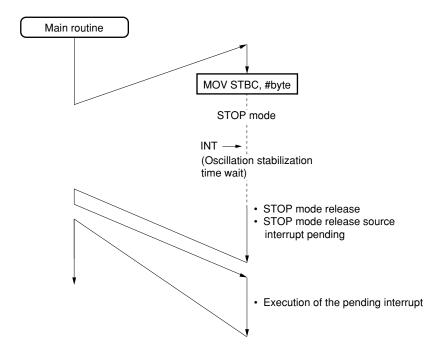



Figure 24-6. Operations After Releasing STOP Mode (2/3)

(3) STOP mode during servicing routine of interrupt whose priority is higher than or equal to release source interrupt

(4) STOP mode during servicing routine of interrupt whose priority is lower than release source interrupt

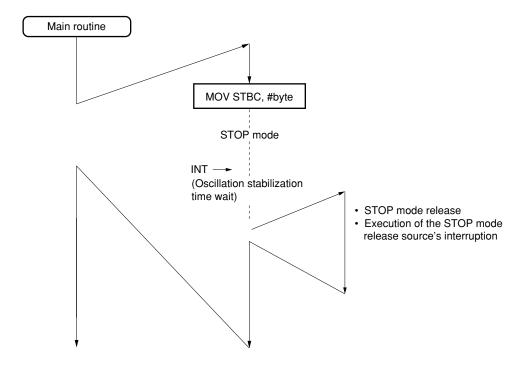
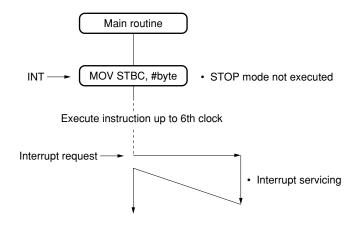



Figure 24-6. Operations After Releasing STOP Mode (3/3)

(5) Conflict between STOP mode setting instruction and interrupt

(1) Releasing STOP mode by NMI input

When the valid edge specified by external interrupt edge enable register 0 (EGP0, EGN0) is input by NMI input, the oscillator starts oscillating again. The STOP mode is then released after the oscillation stabilization time set by the oscillation stabilization time specification register (OSTS) has elapsed.

When the STOP mode is released and non-maskable interrupts from the NMI pin input can be acknowledged, execution branches to the NMI interrupt service program. If acknowledgement is not possible (such as when the STOP mode has been set in the NMI interrupt service program), execution starts again from the instruction following the instruction that set the STOP mode. When acknowledgement is enabled, execution branches to the NMI interrupt service program (by executing the RETI instruction).

For details of NMI interrupt acknowledgment, refer to 22.6 Non-Maskable Interrupt Acknowledgment Operation.

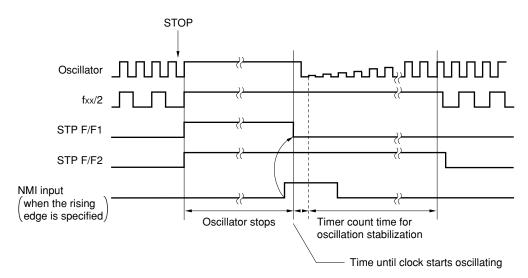


Figure 24-7. Releasing STOP Mode by NMI Input

(2) Releasing STOP mode by INTP0 to INTP5 input and watch timer interrupt

If interrupt masking is released through INTP0 to INTP5 input and macro servicing is disabled, the oscillator restarts oscillating when the valid edge specified by external interrupt edge enable register 0 (EGP0, EGN0) is input to INTP0 to INTP5. At the same time, a watch timer overflow will occur and the STOP mode will be released when the watch timer interrupt mask is released and macro services are disabled.

If interrupts can be acknowledged when the STOP mode is released and the interrupt enable flag (IE) is set to 1, execution branches to the interrupt service program. If the IE flag is cleared to 0 when acknowledgement is not possible, execution starts again from the instruction following the instruction that set the STOP mode.

For details of interrupt acknowledgement, refer to 22.7 Maskable Interrupt Acknowledgment Operation.

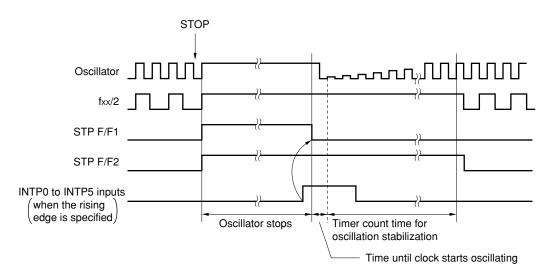


Figure 24-8. Example of Releasing STOP Mode by INTP0 to INTP5 Input

(3) Releasing STOP mode by RESET input

When the RESET input rises from low to high and the reset is released, the oscillator starts oscillating. Oscillation stops for the RESET active period. After the oscillation stabilization time elapses, normal operation starts. The difference from the normal reset operation is that the data memory saves the contents before setting the STOP mode.

24.5 IDLE Mode

24.5.1 Settings and operating states of IDLE mode

The IDLE mode is set by setting both the STP and HLT bits in the standby control register (STBC) to 1.

STBC can only be written with 8-bit data by using a special instruction. Therefore, the IDLE mode is set by the MOV STBC, #byte instruction.

When interrupts are enabled (the IE flag in PSW is set to 1), specify three NOP instructions after the IDLE mode setting instruction (after the IDLE mode is released). If this is not done, after the IDLE mode is released, multiple instructions can be executed before interrupts are acknowledged. Inserting NOP instructions may change the order relationship between the interrupt servicing and the instruction execution, so to prevent problems caused by changes in the execution order, be sure to take the measures described earlier.

The system clock when setting the IDLE mode can be set to either the main system clock or the subsystem clock. The operating states in the IDLE mode are described next.

Table 24-7. Operating States in IDLE Mode

IDLE Mode Setting		With Subsystem Clock	Without Subsystem Clock		
Clock generator		The oscillators for both the main system clock and subsystem clock continue operating. The clock supply to both the CPU and peripherals is stopped.			
CPU		Operation disabled			
Port (output latch)		Holds the state before the IDLE mode was set			
16-bit timer/event counter		Operational when the watch timer output is selected as the count clock (select fxr as the count clock of the watch timer.)	Operation disabled		
8-bit timer/event co	unters 1, 2	Operational only when TI1 and TI2 are selected as the count clocks			
8-bit timers 5 and 6	3	Operational only when TI5 and TI6 are selected as the count clocks			
Watch timer		Operational only when f_{XT} is selected as the count clock	Operation disabled		
Watchdog timer		Operation disabled			
A/D converter		Operation disabled			
D/A converter		Operation enabled			
Real-time output port		Operational when an external trigger is used or TI1 and TI2 are selected as the count clocks of 8-bit timer/event counters 1 and 2			
Serial interface	Except I ² C bus mode	Operational only when an external input clock is selected as the serial clock			
	I ² C bus mode	Operation disabled			
External interrupt	INTP0 to INTP5	Operation enabled			
Bus lines during	AD0 to AD7	High impedance			
external expansion	A8 to A19	High impedance			
	ASTB	High impedance			
	WR, RD	High impedance			
	WAIT	Holds input status			

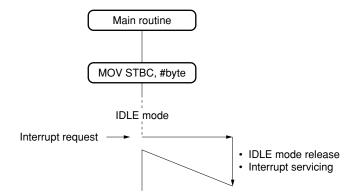
Caution In the IDLE mode, only external interrupts (INTP0 to INTP5) and the watch timer interrupt (INTWT) can release the IDLE mode and be acknowledged as interrupt requests. All other interrupt requests are held pending, and acknowledged after the IDLE mode has been released through NMI input, INTP0 to INTP5 input or INTWT.

24.5.2 Releasing IDLE mode

The IDLE mode is released by NMI input, INTP0 to INTP5 input, the watch timer interrupt (INTWT), or RESET input.

An outlines of the release sources and operations following release are shown in Table 24-8. Operations following release of the IDLE mode are also shown in Figure 24-9.

Table 24-8. Releasing IDLE Mode and Operation After Release


Release Source	MK ^{Note 1}	ISM ^{Note 2}	IENote 3	State During Release	Operation After Release
RESET input	×	×	×	_	Normal reset operation
NMI pin input	×	×	×	Not executing a non-maskable interrupt service program Executing a low-priority non-maskable interrupt service program	Acknowledges interrupt requests
				Executing the service program for the NMI pin input Executing a high-priority non-maskable interrupt service program	Executes the instruction following the MOV STBC, #byte instruction (The interrupt request that released the IDLE mode is held pending Note 4.)
INTP0 to INTP5 pin input, watch timer interrupt	0	0	1	Not executing an interrupt service program Executing a low-priority maskable interrupt service program The PRSL bit Note 5 is cleared to 0 while executing an interrupt service program at priority level 3.	Acknowledges interrupt requests
				Executing a maskable interrupt service program with the same priority (This excludes executing an interrupt service program in priority level 3 when the PRSL bit Note 5 is cleared to 0.) Executing a high-priority interrupt service program	Execute the instruction following the MOV STBC, #byte instruction. (The interrupt request that released the IDLE mode is held pending Note 4.)
	0	0	0	-	
	1	0	×	-	Holds the IDLE mode
	×	1	×		

Notes 1. Interrupt mask bit in each interrupt request source

- 2. Macro service enable flag that is in each interrupt request source
- **3.** Interrupt enable flag in the program status word (PSW)
- **4.** The pending interrupt request is acknowledged when acknowledgement is possible.
- **5.** Bit in the interrupt mode control register (IMC)

Figure 24-9. Operations After Releasing IDLE Mode (1/2)

(1) Interrupt after IDLE mode

(2) Reset after IDLE mode

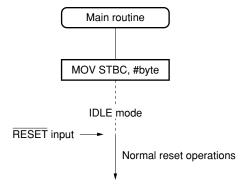
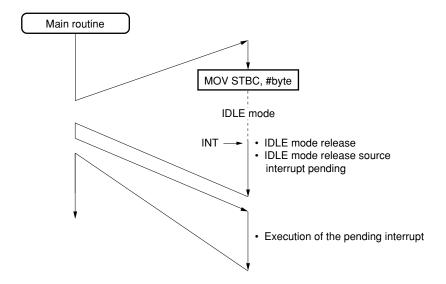



Figure 24-9. Operations After Releasing IDLE Mode (2/2)

(3) IDLE mode during interrupt servicing routine whose priority is higher than or equal to release source interrupt

(4) IDLE mode during interrupt servicing routine whose priority is lower than release source interrupt

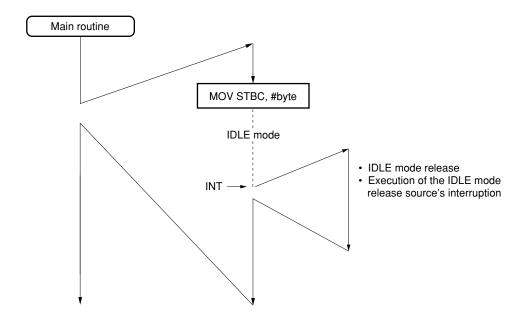
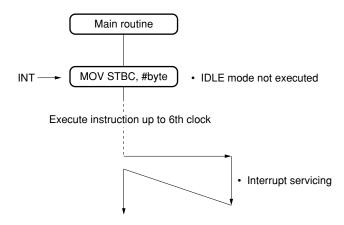



Figure 24-9. Operations After Releasing IDLE Mode (3/3)

(5) Conflict between IDLE mode setting instruction and interrupt

(1) Releasing IDLE mode by NMI input

When the valid edge specified by external interrupt edge enable register 0 (EGP0, EGN0) is input by NMI input, the IDLE mode is released.

When the IDLE mode is released and non-maskable interrupts from the NMI pin input can be acknowledged, execution branches to the NMI interrupt service program. If acknowledgement is not possible (such as when the IDLE mode has been set in the NMI interrupt service program), execution starts again from the instruction following the instruction that set the IDLE mode. When acknowledgement is enabled, execution branches to the NMI interrupt service program (by executing the RETI instruction).

For details of NMI interrupt acknowledgement, refer to 22.6 Non-Maskable Interrupt Acknowledgment Operation.

(2) Releasing IDLE mode by INTP0 to INTP5 input and watch timer interrupt

If interrupt masking by INTP0 to INTP5 input is released and macro servicing is disabled and the valid edge specified by external interrupt edge enable register 0 (EGP0, EGN0) is input to INTP0 to INTP5, the IDLE mode is released. At the same time, a watch timer overflow will occur and the IDLE mode will be released when the watch timer interrupt mask is released and macro services are disabled.

If interrupts can be acknowledged when the IDLE mode is released and the interrupt enable flag (IE) is set to 1, execution branches to the interrupt service program. If the IE flag is cleared to 0 when acknowledgement is not possible, execution starts again from the instruction following the instruction that set the IDLE mode.

For details of interrupt acknowledgement, refer to 22.7 Maskable Interrupt Acknowledgment Operation.

(3) Releasing of IDLE mode by RESET input

When the RESET input rises from low to high and the reset condition is released, the oscillator starts oscillating. Oscillation stops for the RESET active period. After the oscillation stabilization time elapses, normal operation starts

The difference from the normal reset operation is the data memory saves the contents before setting the IDLE mode.

24.6 Check Items When Using STOP or IDLE Mode

The following points must be checked to decrease the current consumption when using the STOP mode or IDLE mode.

(1) Is the output level of each output pin appropriate?

The appropriate output level of each pin differs depending on the circuit in the next stage. Select the output level so that the current consumption is minimized.

- If a high level is output when the input impedance of the circuit in the next stage is low, current flows from
 the power source to the port, and the current consumption increases. This occurs when the circuit in the next
 stage is, for example, a CMOS IC. When the power supply is turned off, the input impedance of a CMOS
 IC becomes low. To suppress the current consumption and not negatively affect the reliability of the CMOS
 IC, output a low level. If a high level is output, latch-up results when the power supply is applied again.
- Depending on the circuit in the next stage, the current consumption sometimes increases when a low level is input. In this case, output a high level or high impedance to reduce the current consumption.
- When the circuit in the next stage is a CMOS IC, if the output is high impedance when power is supplied to
 the CMOS IC, the current consumption of the CMOS IC sometimes increases (in this case, the CMOS IC
 overheats and is sometimes destroyed). In this case, output a suitable level or use pull-up or pull-down
 resistors.

The setting method for the output level differs depending on the port mode.

- Since the output level is determined by the state of the internal hardware when the port is in the control mode, the output level must be set considering the state of the internal hardware.
- The output level can be set by writing to the output latch of the port and the port mode register by software when in the port mode.

When the port enters the control mode, the port mode is changed by simply setting the output level.

(2) Is the input level to each input pin appropriate?

Set the voltage level input to each pin within a range from the Vss voltage to the VDD voltage. If a voltage outside of this range is applied, not only does the current consumption increase, but the reliability of the μ PD784225 is negatively affected.

In addition, do not increase the middle voltage.

(3) Are internal pull-up resistors needed?

Unnecessary pull-up resistors increase the current consumption and are another cause of device latch-up. Set the pull-up resistors to the mode in which they are used only for the required parts.

When the parts needing pull-up resistors and the parts not needing them are mixed together, externally connect the pull-up resistors where they are needed and set the mode in which the internal pull-up resistors are not used.

(4) Are the address bus, the address/data bus, etc. handled appropriately?

The address bus, address/data bus, and $\overline{\text{RD}}$ and $\overline{\text{WR}}$ pins have a high impedance in the STOP and IDLE modes. Normally, these pins are pulled up by pull-up resistors. If the pull-up resistors are connected to the power supply that is backed up, the current flows through the pull-up resistors when the low input impedance of the circuit connected to the power supply that is not backed up, and the current consumption increases. Therefore, connect the pull-up resistors on the power supply side that is not backed up as shown in Figure 24-10.

The ASTB pin has a high impedance in both the STOP and IDLE modes. Handle in the manner described in (1) above.

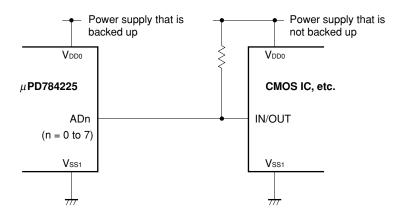


Figure 24-10. Example of Handling Address/Data Bus

Set the input voltage level applied to the $\overline{\text{WAIT}}$ pin in a range from the Vss1 voltage to the VDD0 voltage. If a voltage outside of this range is applied, not only does the current consumption increase, but the reliability of the μ PD784225 is negatively affected.

(5) A/D converter

The current flowing through the AVDD pin can be reduced by clearing the ADCS bit, that is bit 7 in the A/D converter mode register (ADM), to 0.

The AV_{DD} pin must always have the same voltage as the V_{DD} pin. If current is not supplied to the AV_{DD} pin in the STOP mode, not only does the current consumption increase, but the reliability of the μ PD784225 is negatively affected.

(6) D/A converter

The D/A converter consumes a constant current in the STOP and IDLE modes. By clearing the DACEn (n = 0, 1) bits in the D/A converter mode registers (DAM0, DAM1) to 0, the output of ANOn (n = 0, 1) has a high impedance, and the current consumption can be decreased.

Do not apply an external voltage to the ANOn pins. If an external voltage is applied, not only is the current consumption increased, but the μ PD784225 may be destroyed or the reliability decreased.

24.7 Low Power Consumption Mode

24.7.1 Setting low power consumption mode Note

When the low power consumption mode is entered, set 70H in the standby control register (STBC). This setting switches the system clock from the main system clock to the subsystem clock.

Whether the system clock switched to the subsystem clock can be verified from the data read from the CST bit in the clock status register (PCS) (refer to **Figure 24-3**).

To check whether switching has ended, set 74H in STBC to stop the oscillation of the main system clock. Then switch to the backup power supply from the main power supply.

Note The low power consumption mode is a state in which the subsystem clock is used as the system clock, and the main system clock is stopped.

Figure 24-11 shows the flow for setting subsystem clock operation. Figure 24-12 shows the setting timing diagram.

Normal operation using the main system clock

Write STBC = 70H.

Execute the instruction to switch to the subsystem clock.

Verify the switch to the subsystem clock.

Yes

Write STBC = 74H.

Stop the oscillation of the main system clock.

Switch to the backup power supply.

Figure 24-11. Flow for Setting Subsystem Clock Operation

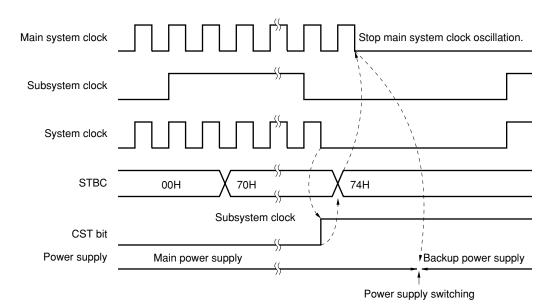


Figure 24-12. Setting Timing for Subsystem Clock Operation

24.7.2 Returning to main system clock operation

When returning to main system clock operation from subsystem clock operation, the system power supply first switches to the main power supply and enables the oscillation of the main system clock (set STBC = 70H). Then the software waits for the oscillation stabilization time of the main system clock, and the system clock switches to the main system clock (set STBC to 00H).

- Cautions 1. When returning from subsystem clock operation (stopped oscillation of the main system clock) to main system clock operation, do not simultaneously specify MCK = 0 and CK2 = 0 by write instructions to STBC.
 - 2. The oscillation stabilization time specification register (OSTS) specifies the oscillation stabilization time after the STOP mode is released, except when released by RESET, when the system clock is the main system clock. This cannot be used when the system clock is restored from the subsystem clock to the main system clock.

Figure 24-13 is the flow for restoring main system clock operation, and Figure 24-14 is the restore timing diagram.

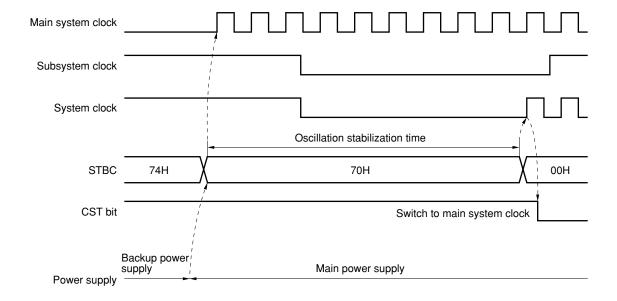
Normal operation using the subsystem clock

Switch to the main power supply.

Write STBC = 70H

Execute the instruction that starts the main system clock.

Software wait


YES

Write STBC = 00H

Execute the instruction that switches to the main system clock.

Figure 24-13. Flow to Restore Main System Clock Operation

24.7.3 Standby function in low power consumption mode

The standby function in the low power consumption mode has a HALT mode and an IDLE mode.

(1) HALT mode

(a) Settings and operating states of HALT mode

When the HALT mode is set in the low power consumption mode, set 75H in STBC. Table 24-9 shows the operating states in the HALT mode.

Table 24-9. Operating States in HALT Mode

Item		Operating State		
Clock generator		The clock supplied to the CPU stops, and only the main system clock stops oscillating.		
CPU		Operation disabled		
Port (output latch)		Holds the state before the HALT mode was set.		
16-bit timer/event counter		Operational when the watch timer output is selected as the count clock (select fxT as the count clock of the watch timer)		
8-bit timer/event counters 1, 2		Operational when TI1 and TI2 are selected as the count clocks		
8-bit timers 5 and 6		Operational when TI5 and TI6 are selected as the count clocks		
Watch timer		Operational only when fxT is selected as the count clock		
Watchdog timer		Operation disabled (counter is initialized)		
A/D converter		Operation disabled		
D/A converter		Operation enabled		
Real-time output port		Operational when an external trigger is used or TI1 and TI2 are selected as the count clocks of 8-bit timer counters 1 and 2		
Serial interface	Except I ² C bus mode	Operational only when an external input clock is selected as the serial clock		
	I ² C bus mode	Operation disabled		
External interrupt	INTP0 to INTP5	Operation enabled		
Bus lines during	AD0 to AD7	High impedance		
external expansion A8 to A19 ASTM		Holds the state before the HALT mode was set		
		Low level		
	WR, RD	High level		
	WAIT	Input state is retained		

(b) Releasing the HALT mode

(i) Releasing HALT mode by NMI input

When the valid edge specified by external interrupt edge enable register 0 (EGP0, EGN0) is input to the NMI input, the HALT mode is released.

When the HALT mode is released, if non-maskable interrupts by NMI pin input can be acknowledged, execution branches to the NMI interrupt service program. If interrupts cannot be acknowledged (when the HALT mode has been set in the NMI interrupt service program), execution starts again from the instruction following the instruction that set the HALT mode. When interrupts can be acknowledged (by executing the RETI instruction), execution branches to the NMI interrupt service program.

For details of NMI interrupt acknowledgement, refer to **22.6 Non-Maskable Interrupt Acknowledgment Operation**.

(ii) Releasing HALT mode by a maskable interrupt request

An unmasked maskable interrupt request is generated to release the HALT mode.

When the HALT mode is released and the interrupt enable flag (IE) is set to 1, if interrupts can be acknowledged, execution branches to interrupt service program. When interrupts cannot be acknowledged and when the IE flag is cleared to 0, execution restarts from the instruction following the instruction that set the HALT mode.

For details of interrupt acknowledgement, refer to 22.7 Maskable Interrupt Acknowledgment Operation.

(iii) Releasing HALT mode by RESET input

When the RESET input rises from low to high and the reset condition is released, the oscillator starts oscillating. Oscillation stops for the RESET active period. After the oscillation stabilization time elapses, normal operation starts.

The difference from the normal reset operation is the data memory saves the contents before setting the HALT mode.

(2) IDLE mode

(a) Settings and operating states of IDLE mode

When the low power consumption mode is set in the IDLE mode, set 77H in STBC. Table 24-10 shows the operating states in the IDLE mode.

Table 24-10. Operating States in IDLE Mode

Item		Operating State		
Clock generator		The main system clock stops oscillating. The oscillator of the subsystem clock continues operating. The clock supplied to the CPU and the peripherals stops.		
CPU		Operation disabled		
Port (output latch)		Holds the state before the IDLE mode was set		
16-bit timer/event counter		Operational when the watch timer output is selected as the count clock (select fxT as the count clock of the watch timer)		
8-bit timer/event counters 1, 2		Operational when TI1 and TI2 are selected as the count clocks		
8-bit timers 5 and 6		Operational when TI5 and TI6 are selected as the count clocks		
Watch timer		Operational only when fxT is selected as the count clock		
Watchdog timer		Operation disabled		
A/D converter		Operation disabled		
D/A converter		Operation enabled		
Real-time output port		Operational when an external trigger is used or TI1 and TI2 are selected as the count clocks of 8-bit timer counters 1 and 2		
Serial interface	Except I ² C bus mode	Operational only when an external input clock is selected as the serial clock		
	I ² C bus mode	Operation disabled		
External interrupt	INTP0 to INTP5	Operation enabled		
Bus lines during	AD0 to AD7	High impedance		
external expansion	A8 to A19	High impedance		
	ASTB	High impedance		
	WR, RD	High impedance		
	WAIT	Input state is retained		

Caution In the IDLE mode, only external interrupts (INTP0 to INTP5) and the watch timer interrupt (INTWT) can release the IDLE mode and be acknowledged as interrupt requests. All other interrupt requests are held pending, and acknowledged after the IDLE mode has been released through NMI input, INTP0 to INTP5 input, and INTWT.

(b) Releasing the IDLE mode

(i) Releasing IDLE mode by NMI input

When the valid edge set by external interrupt edge enable register 0 (EGP0, EGN0) is input by NMI input, the IDLE mode is released.

When the IDLE mode is released and non-maskable interrupts by NMI pin input can be acknowledged, execution branches to the NMI interrupt service program. When interrupts cannot be acknowledged (when the IDLE mode has been set in the NMI interrupt service program), execution restarts from the instruction following the instruction that set the IDLE mode. When interrupts can be acknowledged (by executing the RETI instruction), execution branches to the NMI interrupt service program.

For details of NMI interrupt acknowledgement, refer to **22.6 Non-Maskable Interrupt Acknowledgment Operation**.

(ii) Releasing IDLE mode by INTP0 to INTP5 input and watch timer interrupt

If interrupt masking is released through INTP0 to INTP5 input and macro servicing is disabled, the oscillator restarts oscillating when the valid edge specified by external interrupt edge enable register 0 (EGP0, EGN0) is input to INTP0 to INTP5. At the same time, a watch timer overflow will occur and the IDLE mode will be released when the watch timer interrupt mask is released and macro services are disabled.

When the IDLE mode is released and the interrupt enable flag (IE) is set to 1, if interrupts can be acknowledged, execution branches to the interrupt service program. When interrupts cannot be acknowledged and when the IE flag is cleared to 0, execution restarts from the instruction following the instruction that set the IDLE mode.

For details of interrupt acknowledgement, refer to 22.7 Maskable Interrupt Acknowledgment Operation.

(iii) Releasing IDLE mode by RESET input

When the RESET input rises from low to high and the reset condition is released, the oscillator starts oscillating. Oscillation stops for the RESET active period. After the oscillation stabilization time elapses, normal operation starts.

The difference from the normal reset operation is the data memory saves the contents before setting the IDLE mode.

CHAPTER 25 RESET FUNCTION

When a low level is input to the RESET input pin, a system reset is performed. The hardware enters the states listed in Table 25-1. Since the oscillation of the main system clock unconditionally stops during the reset period, the current consumption of the entire system can be reduced.

When the RESET input goes from low to high, the reset state is released. After the count time of the timer for oscillation stabilization (41.9 ms: at 12.5 MHz operation), the contents of the reset vector table are set in the program counter (PC). Execution branches to the address set in the PC, and program execution starts from the branch destination address. Therefore, a reset can be started from any address.

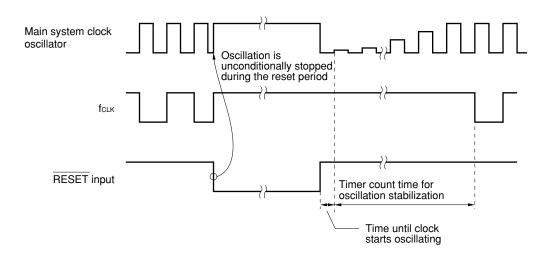


Figure 25-1. Oscillation of Main System Clock in Reset Period

To prevent erroneous operation caused by noise, a noise eliminator based on analog delay is incorporated at the RESET input pin.

Figure 25-2. Receiving Reset Signal

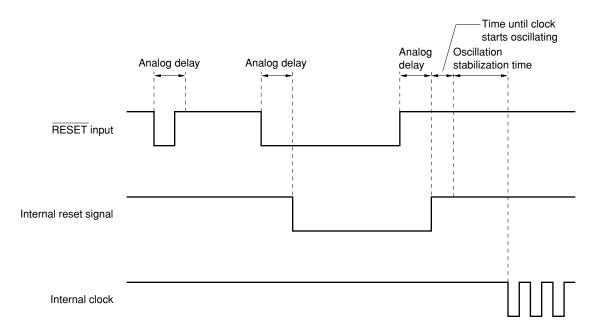


Table 25-1. State of Hardware During and After Reset

Hardware	State During Reset (RESET = L)	State After Reset (RESET = H)		
Main system clock oscillator	Oscillation stops	Oscillation starts		
Subsystem clock oscillator	Not affected by reset			
Program counter (PC)	Undefined	Value in reset vector table set.		
Stack pointer (SP)	Undefined			
Program status word (PSW)	Initialized to 0000H.			
Internal RAM	Undefined. However, when the standby state is released by a reset, the value is saved before setting standby.			
I/O lines	Input and output buffers off. High impedance			
Other hardware	Initialized to the fixed state Note.			

Note See Table 3-6 Special Function Register (SFR) List when resetting.

CHAPTER 26 ROM CORRECTION

26.1 ROM Correction Functions

In the μ PD784224, 784225, 784224Y and 784225Y, part of the program in the mask ROM can be replaced by the program in the internal expansion RAM.

The use of ROM correction enables command bugs discovered in the mask ROM to be repaired, and the flow of the program to be changed.

ROM correction can be used in a maximum of four located within the internal ROM (program).

Caution Note that ROM correction cannot be emulated by the in-circuit emulator (IE-784000-R, IE-784000-R-EM).

Specifically, the command addresses that require repair from the inactive memory externally connected to a microcontroller by a user program and the repair command codes are loaded into the peripheral RAM.

The above addresses and the internal ROM access addresses are compared by the comparator built into the microcontroller during execution of internal ROM programs (during command fetch), and the internal ROM's output data is then converted to call command (CALLT) codes and output when a match is determined.

When the CALLT command codes are changed to valid commands by the CPU and executed, the CALLT table is referenced, and the process routine and other peripheral RAM are branched. At this point, a CALLT table is prepared for each repair address for referencing purposes. Four repair address can be set for the μ PD784225.

Match with address pointer 0: CALLT table (0078H)

Conversion command code: FCH

Match with address pointer 1: CALLT table (007AH)

Conversion command code: FDH

Match with address pointer 2: CALLT table (007CH)

Conversion command code: FEH

Match with address pointer 3: CALLT table (007EH)

Conversion command code: FFH

Caution As it is necessary to reserve four locations for the CALLT tables when the ROM correction function is used (0078H, 007AH, 007CH, 007EH), ensure that these are not used for other applications. However, the CALLT tables can be used if the ROM correction function is not being used.

The differences between 78K/IV ROM correction and 78K/0 ROM correction are shown in Table 26-1.

Table 26-1. Differences Between 78K/IV ROM Correction and 78K/0 ROM Correction

Difference	78K/IV	78K/0
Generated command codes	CALLT instruction (1-byte instruction: FCH, FDH, FEH, FFH)	Branch instruction for peripheral RAM (3-byte instruction)
Change of stack pointer	Yes (3-byte save)	None
Address comparison conditions	Instruction fetch only	Instruction fetch only
Correction status flag	None As there is a possibility that the addresses match owing to an invalid fetch, the status is not necessary	Yes
Jump destination address during correction	CALLT table 0078H, 007AH, 007CH, 007EH	Fixed address on peripheral RAM

26.2 ROM Correction Configuration

ROM correction includes the following hardware.

Table 26-2. ROM Correction Configuration

Item	Configuration		
Register	ROM correction address register H, L (CORAH, CORAL)		
Control register	ROM correction control register (CORC)		

A ROM correction block diagram is shown in Figure 26-1, and Figure 26-2 shows an example of memory mapping.

Instruction fetch address

Match

Comparator

Correction branch process request signal (CALLT command)

Correction address pointer n

ROM correction address register (CORAH, CORAL)

ROM correction control register (CORC)

Internal bus

Figure 26-1. ROM Correction Block Diagram

Remark n = 0 to 3, m = 0, 1




Figure 26-2. Memory Mapping Example (µPD784225)

(1) ROM correction address register (CORAH, CORAL)

This register sets the header address (correction address) of the command in the mask ROM that needs to be repaired. A maximum of four program locations can be repaired with ROM correction. First of all, the channel is selected with bit 0 (CORCH0) and bit 1 (CORCH1) of the ROM correction control register (CORC), and the address is then set in the specified channel's address pointer when the address is written in CORAH and CORAL.

Figure 26-3. Format of ROM Correction Address Register (CORAH, CORAL)

(2) Comparator

ROM correction address registers H and L (CORAH, CORAL) normally compare the corrected address value with the fetch register value. If any of the ROM correction control register (CORC) bits between bit 4 and bit 7 (COREN0 to 3) are 1 and the correct address matches the fetch address value, a table reference instruction (CALLT) is issued from the ROM correction circuit.

26.3 Control Register for ROM Correction

ROM correction is controlled by the ROM correction control register (CORC).

(1) ROM correction control register (CORC)

The register that controls the issuance of the table reference instruction (CALLT) when the correct address set in ROM correction address registers H and L (CORAH, CORAL) match the value of the fetch address.

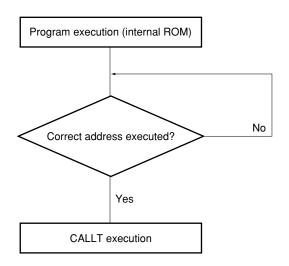
This register is composed of a correction enable flag (COREN0 to 3) that enables or disables match detection with the comparator, and four channel correction pointers.

CORC is set by a 1-bit or 8-bit memory manipulation instruction.

RESET input sets CORC to 00H.

Figure 26-4. Format of ROM Correction Control Register (CORC)

Address	0FF88H	After re	eset: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
CORC	COREN3	COREN2	COREN1	COREN0	0	0	CORCH1	CORCH0


CORENn	Controls the match detection for the ROM correction address register and the fetch address.
0	Disabled
1	Enabled

CORCH1	CORCH0	Channel selection
0	0	Address pointer channel 0
0	1	Address pointer channel 1
1	0	Address pointer channel 2
1	1	Address pointer channel 3

Remark n = 0 to 3

26.4 Usage of ROM Correction

- <1> The correct address and post-correction instruction (correction program) are stored in the microcontroller external inactive memory (EEPROM™).
- <2> A substitute instruction is read from the inactive memory using a serial interface (etc.) when the initialization program is running after being reset, and this is stored in the peripheral RAM and external memory. The correction channel is then selected, the address for the command that requires correction is read and set in ROM correction address registers H, L (CORAH, CORAL), and the correction enable flag (COREN0 to 3) is set to 1. A maximum of four locations can be set.
- <3> The CALLT instruction is then executed during execution of the corrected address.

<4> CALLT routine branch

When matched with address pointer 0: CALLT table (0078H) When matched with address pointer 1: CALLT table (007AH) When matched with address pointer 2: CALLT table (007CH) When matched with address pointer 3: CALLT table (007EH)

- <5> Substitute instruction execution
- <6> Addition of +3 to the stack pointer (SP)
- <7> Restoration to any addresses with the branch instruction (BR)

26.5 Conditions for Executing ROM Correction

In order to use the ROM correction function, it is necessary for the external environment and program to satisfy the following conditions.

(1) External environment

Must be connected externally to an inactive memory, and be configured to read that data.

(2) Target program

The data setting instruction for CORC, CORAH and CORAL must be previously annotated in the target program (program stored in the ROM).

The setting data (the items written in lower case in the setting example below) must be read from the external inactive memory, and the correct number of required correction pointers must be set.

Example of four pointer settings

	MOV	CORC, #00H	; Specified channel 0
	MOVW	CORAL, #ch0_datal	; Sets the channel 0 match address
	MOV	CORAH, #ch0_datah	; Sets the channel 0 match address
	MOV	CORC, #01H	; Specified channel 1
	MOVW	CORAL, #ch1_datal	; Sets the channel 1 match address
	MOV	CORAH, #ch1_datah	; Sets the channel 1 match address
	MOV	CORC, #02H	; Specified channel 2
	MOVW	CORAL, #ch2_datal	; Sets the channel 2 match address
	MOV	CORAH, #ch2_datah	; Sets the channel 2 match address
	MOV	CORC, #03H	; Specified channel 3
	MOVW	CORAL, #ch3_datah	; Sets the channel 3 match address
	MOV	CORAH, #ch3_datal	; Sets the channel 3 match address
	MOV	CORC, #romcor en	
			; Sets 00H when correction is disabled
			; Sets F0H when correction is operated
	BR	\$NORMAL	
	BR	!!COR_ADDR0	; Specifies the address of the correction program (channel 0)
	BR	!!COR_ADDR1	; Specifies the address of the correction program (channel 1)
	BR	!! COR_ADDR2	; Specifies the address of the correction program (channel 2)
	BR	!!COR_ADDR3	; Specifies the address of the correction program (channel 3)
	;		(two-level branch)
NOMAL instruction	n		; Next instruction

(3) Setting branch instructions in the CALLT table

For the CALLT table that corresponds to each channel, in the case of the above program, the header addresses for the BR!!COR_ADDR0, BR!!COR_ADDR1, BR!!COR_ADDR2, and BR!!COR_ADDR3 instructions are specified (COR_ADDR0 to COR_ADDR3 indicate the address where the correction program is located).

These instructions are branched by the CALLT instruction and BR instruction into two levels because only the base area can be branched to with CALLT. There is no need to branch these instructions into two levels when they are to be attached to the RAM base area with the LOCATION instruction.

CHAPTER 27 μ PD78F4225 AND μ PD78F4225Y PROGRAMMING

The flash memory versions in the μ PD784225 and 784225Y Subseries are the μ PD78F4225 and 78F4225Y. The μ PD78F4225 and μ PD78F4225Y are described in this chapter using the μ PD78F4225 as the representative product.

The μ PD78F4225 and 78F4225Y are versions with on-chip flash memories that enable programs to be written, deleted and overwritten while mounted on the substrate. The differences between the flash memory versions (μ PD78F4225 and 78F4225Y) and mask ROM versions (μ PD784224, 784225, 784224Y and 784225Y) are shown in Table 27-1.

Table 27-1. Differences Between μ PD78F4225/78F4225Y and Mask ROM Versions

Item	μPD78F4225, 78F4225Y	Mask ROM Versions
Internal ROM structure	Flash memory	Mask ROM
Internal ROM capacity	128 KB	μPD784224, 784224Y: 96 KB μPD784225, 784225Y: 128 KB
Internal RAM capacity	4,352 bytes	μPD784224, 784224Y: 3,584 bytes μPD784225, 784225Y: 4,352 bytes
Changing internal ROM capacity using the internal memory size switching register (IMS)	Possible ^{Note}	Not possible
TEST pin	None	Provided
V _{PP} pin	Provided	None

Note The capacity of the flash memory will become 128 KB and the internal RAM capacity will become 4,352 bytes by RESET input.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

27.1 Internal Memory Size Switching Register (IMS)

IMS is a register used to prevent a certain part of the internal memory from being used by software. By setting IMS, it is possible to establish a memory map that is the same as the mask ROM product's memory map for an internal memory (ROM, RAM) of a different capacity.

IMS is set by an 8-bit memory manipulation instruction.

RESET input sets IMS to FFH.

Figure 27-1. Format of Internal Memory Size Switching Register (IMS)

Address:	0FFFCH	After rese	et: FFH	W				
Symbol	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM capacity selection
1	0	96 KB
1	1	128 KB
Other than above Se		Setting prohibited

RAM1	RAM0	Internal high-speed RAM capacity selection	
1	0	3,072 bytes	
1	1	3,840 bytes	
Other than above		Setting prohibited	

Caution IMS is not available in the mask ROM versions (μ PD784224, 784225, 784224Y, and 784225Y).

The IMS settings to create the same memory map as mask ROM versions are shown in Table 27-2.

Table 27-2. Internal Memory Size Switching Register (IMS) Settings

Relevant Mask ROM Version	IMS Setting
μPD784224, 784224Y	EEH
μPD784225, 784225Y	FFH

27.2 Flash Memory Overwriting

The μ PD78F4225 is equipped with an on-chip 128 KB flash memory. The following method is available for overwriting the on-chip flash memory.

• On-board overwrite mode: Overwriting performed using a flash programmer.

Flash memory overwriting can be performed 20 times.

A voltage of +10 V is required for deleting and writing the flash memory.

27.3 On-Board Overwrite Mode

The on-board overwrite mode is used with the target system mounted (on-board). Overwriting is performed by connecting a special flash programmer (Flashpro III (part No.: FL-PR3, PG-FP3)) to the host machine or target system. Overwriting is controlled via the serial interface.

Writing to the flash memory can be performed using the flash memory write adapter connected to Flashpro III.

Remark Flashpro III is a product of Naito Densei Machida Mfg. Co., Ltd.

On-board overwrite mode settings are performed by controlling the TEST/V_{PP} pin and $\overline{\text{RESET}}$ pin. The serial interface is selected according to the number of pulses applied to the TEST/V_{PP} pin.

27.3.1 Selecting communication mode

Flashpro III writes to the flash memory by serial communication. The communication mode is selected from the modes shown in Table 27-3, then writing is performed. The selection of the communication mode has the format shown in Figure 27-2. Each communication mode is selected according to the number of VPP pulses shown in Table 27-3.

Communication Mode No. of Channels Pins UsedNote 1 No. of VPP Pulses 3-wire serial I/O SCK0/P27/SCL0Note 2 SO0/P26 SI0/P25/SDA0Note 2 SCK1/ASCK1/P22 SO1/TxD1/P21 SI1/RxD1/P20 SCK2/ASCK2/P72 2 SO2/TxD2/P71 SI2/RxD2/P70 3-wire serial I/O SCK0/P27/SCL0Note 2 (handshakeNote 3) SO0/P26 SI0/P25/SDA0Note 2 P24/BUZ **UART** 2 TxD1/SO1/P21 8 RxD1/SI1/P20 TxD2/SO2/P71 RxD2/SI2/P70

Table 27-3. Communication Modes

- **Notes** 1. Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, if the external devices do not acknowledge the port state immediately after reset, handling such as connecting to VDD via a resistor or connecting to Vss via a resistor is required.
 - 2. μPD78F4225Y only
 - 3. Other than K standard

Caution Select the communication mode by using the number of VPP pulses given in Table 27-3.

- **Remarks 1.** The fifth digit from the left in the lot number indicates the standard.
 - 2. Handshake mode is the CSI writing mode using P24. This mode is available for PG-FR3 and FL-PR3.
 - **3.** The I standard is applicable only for ES (engineering sample) products, so the operation cannot be guaranteed.

VPP pulse

VPP VDD

VSS

VPP pulse

Figure 27-2. Format of Communication Mode Selection

27.3.2 On-board overwrite mode functions

RESET

 V_{DD}

By transmitting and receiving various commands and data by the selected communication protocol, operations such as writing to the flash memory are performed. Table 27-4 shows the major functions.

Flash writing mode

Table 27-4. Major Functions of On-Board Overwrite Mode

Function	Description
Area erase	Erase the contents of the specified memory area.
Area blank check	Checks the erase state of the specified area.
Data write	Writes to the flash memory based on the start write address and the number of data written (the number of bytes).
Area verify	Compares the data input to the contents of the specified memory area.

Flash memory verification entails supplying the data to be verified from an external source via a serial interface, and then outputting the existence of unmatched data to the external source after referencing the relevant area or all of the data. Consequently, the flash memory is not equipped with a read function, and it is not possible for third parties to read the contents of the flash memory using the verification function.

27.3.3 Connecting Flashpro III

The connection between Flashpro III and the μ PD78F4225 differs depending on the communication mode (3-wire serial I/O or UART). Figures 27-3 to 27-5 show the connection diagrams in each case.

Figure 27-3. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using 3-Wire Serial I/O 0)

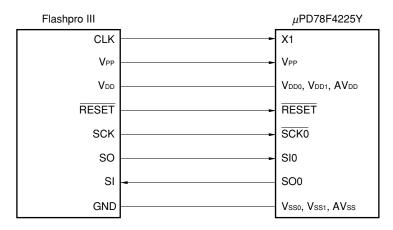
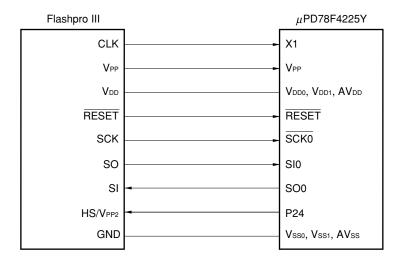
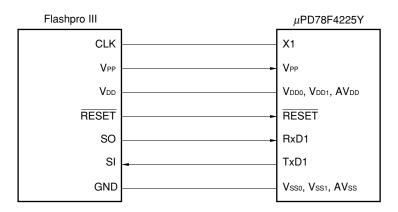




Figure 27-4. Connection of Flashpro III in 3-Wire Serial I/O Mode (When Using Handshake)

Note n = 1, 2

Figure 27-5. Connection of Flashpro III in UART Mode (When Using UART1)

Note n = 1, 2

Caution Connect the VPP pin directly to Vss or pull down. For the pull-down connection, use of resistors with a resistance between 470 Ω and 10 k Ω is recommended.

28.1 Conventions

(1) Operand format and descriptions (1/2)

Format	Description
r, r'Note 1	X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7, R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15)
_{r1} Note 1	X(R0), A(R1), C(R2), B(R3), R4, R5, R6, R7
r2	R8, R9, R10, R11, E(R12), D(R13), L(R14), H(R15)
r3	V, U, T, W
rp, rp [,] Note 2	AX(RP0), BC(RP1), RP2, RP3, VP(RP4),UP(RP5), DE(RP6), HL(RP7)
rp1 Note 2	AX(RP0), BC(RP1), RP2, RP3
rp2	VP(RP4), UP(RP5), DE(RP6), HL(RP7)
rg, rg'	VVP(RG4), UUP(RG5), TDE(RG6), WHL(RG7)
sfr	Special function register symbol (see the special function register table)
sfrp	Special function register symbol (16-bit manipulation register: see the special function register table)
post ^{Note 2}	AX(RP0), BC(RP1), RP2, RP3, VP(RP4), UP(RP5)/PSW, DE(RP6), HL(RP7) Multiple descriptions are possible. However, UP is restricted to the PUSH/POP instruction, and PSW is restricted to the PUSHU/POPU instruction.
mem	[TDE], [WHL], [TDE+], [WHL+], [TDE-], [WHL-], [VVP], [UUP]: register indirect addressing [TDE+byte], [WHL+byte], [SP+byte], [UUP+byte]; based addressing imm24[A], imm24[B], imm24[DE], imm24[HL]: indexed addressing [TDE+A], [TDE+B], [TDE+C], [WHL+A], [WHL+B], [WHL+C], [VVP+DE], [VVP+HL]: based indexed addressing
mem1	Everything under mem except [WHL+] and [WHL-]
mem2	[TDE], [WHL]
mem3	[AX], [BC], [RP2], [RP3], [VVP], [UUP], [TDE], [WHL]

- **Notes 1.** By setting the RSS bit to 1, R4 to R7 can be used as X, A, C, and B. Use this function only when 78K/ III Series programs are also used.
 - 2. By setting the RSS bit to 1, RP2 and RP3 can be used as AX and BC. Use this function only when 78K/III Series programs are also used.

(1) Operand format and descriptions (2/2)

Format	Description
Note	
saddr, saddr'	FD20H to FF1FH Immediate data or label
saddr1	FE00H to FEFFH Immediate data or label
saddr2	FD20H to FDFFH, FF00H to FF1FH Immediate data or label
saddrp	FD20H to FF1EH Immediate data or label (when manipulating 16 bits)
saddrp1	FE00H to FEFFH Immediate data or label (when manipulating 16 bits)
saddrp2	FD20H to FDFFH, FF00H to FF1EH Immediate data or label (when manipulating 16 bits)
saddrg	FD20H to FEFDH Immediate data or label (when manipulating 24 bits)
saddrg1	FE00H to FEFDH Immediate data or label (when manipulating 24 bits)
saddrg2	FD20H to FDFFH Immediate data or label (when manipulating 24 bits)
addr24	0H to FFFFFH Immediate data or label
addr20	0H to FFFFFH Immediate data or label
addr16	0H to FFFFH Immediate data or label
addr11	800H to FFFH Immediate data or label
addr8	0FE00H to 0FEFFH ^{Note} Immediate data or label
addr5	40H to 7EH Immediate data or label
imm24	24-bit immediate data or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
n	3-bit immediate data
locaddr	0H or 0FH

Note When 0H is set by the LOCATION instruction, these addresses become the addresses shown here. When 0FH is set by the LOCATION instruction, the values of the addresses shown here with F0000H added become the addresses.

(2) Operand column symbols

Symbol	Description
+	Auto increment
_	Auto decrement
#	Immediate data
!	16-bit absolute address
!!	24-bit/20-bit absolute address
\$	8-bit relative address
\$!	16-bit relative address
/	Bit reversal
[]	Indirect addressing
[%]	24-bit indirect addressing

(3) Flag column symbols

Symbol	Description
(Blank)	Not changed
0	Clear to 0.
1	Set to 1.
×	Set or clear based on the result.
Р	Operate with the P/V flag as the parity flag.
V	Operate with the P/V flag as the overflow flag.
R	RESTORE THE PREVIOUSLY SAVED VALUE.

(4) Operation column symbols

Symbol	Description
jdisp8	Two's complement data (8 bits) of the relative address distance between the head address of the next instruction and the branch address
jdisp16	Two's complement data (16 bits) of the relative address distance between the head address of the next instruction and the branch address
РСнw	PC bits 16 to 19
PCLw	PC bits 0 to 15

(5) Number of bytes in instruction that has mem in operand

mem Mode	Register Indire	ect Addressing	Based Addressing	Indexed Addressing	Based Indexed Addressing
No. of bytes	1	2Note	3	5	2

Note This becomes a 1-byte instruction only when [TDE], [WHL], [TDE+], [TDE-], [WHL+], or [WHL-] is described in mem in the MOV instruction.

(6) Number of bytes in instruction that has saddr, saddrp, r, or rp in operand

The number of bytes in an instruction that has saddr, saddrp, r, or rp in the operand is described in two parts divided by a slash (/). The following table shows the number of bytes in each part.

Description	No. of Bytes on Left Side	No. of Bytes on Right Side
saddr	saddr2	saddr1
saddrp	saddrp2	saddrp1
r	r1	r2
rp	rp1	rp2

(7) Descriptions of instructions with mem in operand and string instructions

The TDE, WHL, VVP, and UUP (24-bit registers) operands can be described by DE, HL, VP, and UP. However, when DE, HL, VP, and UP are described, they are handled as TDE, WHL, VVP, and UUP (24-bit registers).

28.2 List of Operations

(1) 8-bit data transfer instruction: MOV

Mnemonic	Operand	Bytes	Operation	Flag					
	- 1	,,,,,		S	Z	AC	P/V	C,	
MOV	r, #byte	2/3	r ← byte						
	saddr, #byte	3/4	(saddr) ← byte						
	sfr, #byte	3	sfr ← byte						
	!addr16,, #byte	5	(saddr16) ← byte						
	!!addr24, #byte	6	(addr24) ← byte						
	r, r'	2/3	$r \leftarrow r'$						
	A, r	1/2	$A \leftarrow r$						
	A, saddr2	2	A ← (saddr2)						
	r, saddr	3	$r \leftarrow (saddr)$						
	saddr2, A	2	(saddr2) ← A						
	saddr, r	3	(saddr) ← r						
	A, sfr	2	A ← sfr						
	r, sfr	3	$r \leftarrow sfr$						
	sfr, A	2	sfr ← A						
	sfr, r	3	sfr ← r						
	saddr, saddr'	4	(saddr) ← (saddr')						
	r, !addr16	4	r ← (addr16)						
	!addr16, r	4	(addr16) ← r						
	r, !!addr24	5	r ← (addr24)						
	!!addr24, r	5	(addr24) ← r						
	A, [saddrp]	2/3	$A \leftarrow ((saddrp))$						
	A, [%saddrg]	3/4	$A \leftarrow ((saddrg))$						
	A, mem	1-5	$A \leftarrow (mem)$						
	[saddrp], A	2/3	((saddrp)) ← A						
	[%saddrg], A	3/4	((saddrg)) ← A						
	mem, A	1-5	(mem) ← A						
	PSWL #byte	3	PSW∟ ← byte	×	×	×	×	>	
	PSWH #byte	3	PSW _H ← byte					_	
	PSWL, A	2	PSWL ← A	×	×	×	×	>	
	PSWH, A	2	PSW _H ← A						
	A, PSWL	2	A ← PSWL						
	A, PSWH	2	A ← PSW _H	_					
	r3, #byte	3	r3 ← byte	+				_	
	A, r3	2	A ← r3	+					
	r3, A	2	r3 ← A						

(2) 16-bit data transfer instruction: MOVW

Mnemonic	Operand	Bytes	Operation			Flag		
winemonic	Operand	Dytes	Operation	S	Z	AC	P/V	CY
MOVW	rp, #word	3	$rp \leftarrow word$					
	saddrp, #word	4/5	(saddrp) ← word					
	sfrp, #word	4	sfrp ← word					
	!addr16, #word	6	(addr16) ← word					
	!!addr24, #word	7	(addr24) ← word					
	rp, rp'	2	rp ← rp'					
	AX, saddrp2	2	AX ← (saddrp2)					
	rp, saddrp	3	$rp \leftarrow (saddrp)$					
	saddrp2, AX	2	(saddrp2) ← AX					
	saddrp, rp	3	(saddrp) ← rp					
	AX, sfrp	2	$AX \leftarrow sfrp$					
	rp, sfrp	3	rp ← sfrp					
	sfrp, AX	2	sfrp ← AX					
	sfrp, rp	3	sfrp ← rp					
	saddrp, saddrp'	4	(saddrp) ← (saddrp')					
	rp, !addr16	4	rp ← (addr16)					
	!addr16, rp	4	(addr16) ← rp					
	rp, !!addr24	5	rp ← (addr24)					
	!!addr24, rp	5	(addr24) ← rp					
	AX, [saddrp]	3/4	$AX \leftarrow ((saddrp))$					
	AX, [%saddrg]	3/4	$AX \leftarrow ((saddrg))$					
	AX, mem	2-5	AX ← (mem)					
	[saddrp], AX	3/4	((saddrp)) ← AX					
	[%saddrg], AX	3/4	((saddrg)) ← AX					
	mem, AX	2-5	(mem) ← AX					

(3) 24-bit data transfer instruction: MOVG

Mnemonic	Operand	Putoo	Operation	Flag						
Millemonic	Operand	Bytes		S	Z	AC	P/V	CY		
MOVG	rg, #imm24	5	rg ← imm24							
	rg, rg'	2	rg ← rg'							
	rg, !!addr24	5	rg ← (addr24)							
	!!addr24, rg	5	$(addr24) \leftarrow rg$							
	rg, saddrg	3	$rg \leftarrow (saddrg)$							
	saddrg, rg	3	$(saddrg) \leftarrow rg$							
	WHL, [%saddrg]	3/4	$WHL \leftarrow ((saddrg))$							
	[%saddrg], WHL	3/4	$((saddrg)) \leftarrow WHL$							
	WHL, mem1	2-5	$WHL \leftarrow (mem1)$							
	mem1, WHL	2-5	$(mem1) \leftarrow WHL$							

(4) 8-bit data exchange instruction: XCH

Mnemonic	Operand	Bytes	Operation					
Willemonic	Operand	Dytes		S	Z	AC	P/V	CY
XCH	r, r'	2/3	$r \leftrightarrow r'$					
	A, r	1/2	$A \leftrightarrow r'$					
	A, saddr2	2	$A \leftrightarrow (saddr2)$					
	r, saddr	3	$r \leftrightarrow (\text{saddr})$					
	r, sfr	3	$r \leftrightarrow s f r$					
	saddr, saddr'	4	$(saddr) \leftrightarrow (saddr')$					
	r, !addr16	4	$r \leftrightarrow (addr16)$					
	r, !!addr24	5	$r \leftrightarrow (addr24)$					
	A, [saddrp]	2/3	$A \leftrightarrow ((saddrp))$					
	A, [%saddrg]	3/4	$A \leftrightarrow ((saddrg))$					
	A, mem	2-5	$A \leftrightarrow (mem)$					

(5) 16-bit data exchange instruction: XCHW

Mnemonic	Operand	Dutos	Operation			Flag		
winemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
XCHW	rp, rp'	2	$rp \leftrightarrow rp'$					
	AX, saddrp2	2	$AX \leftrightarrow (saddrp2)$					
	rp, saddrp	3	$rp \leftrightarrow (saddrp)$					
	rp, sfrp	3	$rp \leftrightarrow sfrp$					
	AX, [saddrp]	3/4	$AX \leftrightarrow ((saddrp))$					
	AX, [%saddrg]	3/4	$AX \leftrightarrow ((saddrg))$					
	AX, !addr16	4	AX ↔ (addr16)					
	AX, !!addr24	5	AX ↔ (addr24)					
	saddrp, saddrp'	4	$(saddrp) \leftrightarrow (saddrp')$					
	AX, mem	2-5	$AX \leftrightarrow (mem)$					

(6) 8-bit arithmetic instructions: ADD, ADDC, SUB, SUBC, CMP, AND, OR, XOR

Maamania	Onerend	Dutos	Operation			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
ADD	A, #byte	2	A, CY ← A + byte	×	×	×	٧	×
	r, #byte	3	$r, CY \leftarrow r + byte$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), $CY \leftarrow (saddr) + byte$	×	×	×	V	×
	sfr, #byte	4	sfr, CY ← sfr + byte	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r + r'$	×	×	×	V	×
	A, saddr2	2	$A, CY \leftarrow A + (saddr2)$	×	×	×	V	×
	r, saddr	3	$r, CY \leftarrow r + (saddr)$	×	×	×	V	×
	saddr, r	3	(saddr), $CY \leftarrow (saddr) + r$	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r + sfr$	×	×	×	V	×
	sfr, r	3	sfr, CY ← sfr + r	×	×	×	V	×
	saddr, saddr'	4	(saddr), $CY \leftarrow (saddr) + (saddr')$	×	×	×	V	×
	A, [saddrp]	3/4	$A, CY \leftarrow A + ((saddrp))$	×	×	×	V	×
	A, [%saddrg]	3/4	$A, CY \leftarrow A + ((saddrg))$	×	×	×	V	×
	[saddrp], A	3/4	$((saddrp)), CY \leftarrow ((saddrp)) + A$	×	×	×	V	×
	[%saddrg], A	3/4	$((saddrg)), CY \leftarrow ((saddrg)) + A$	×	×	×	V	×
	A, !addr16	4	$A, CY \leftarrow A + (addr16)$	×	×	×	V	×
	A, !!addr24	5	A, CY ← A + (addr24)	×	×	×	V	×
	!addr16, A	4	(addr16), CY ← (addr16) + A	×	×	×	٧	×
	!!addr24, A	5	(addr24), CY ← (addr24) + A	×	×	×	V	×
	A, mem	2-5	A, CY ← A + (mem)	×	×	×	V	×
	mem, A	2-5	(mem), $CY \leftarrow (mem) + A$	×	×	×	V	×

Manania	Onevend	Durton	On susting			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
ADDC	A, #byte	2	A, CY ← A + byte + CY	×	×	×	٧	×
	r, #byte	3	$r, CY \leftarrow r + byte + CY$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), CY ← (saddr) + byte + CY	×	×	×	V	×
	sfr, #byte	4	$sfr, CY \leftarrow sfr + byte + CY$	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r + r' + CY$	×	×	×	V	×
	A, saddr2	2	$A, CY \leftarrow A + (saddr2) + CY$	×	×	×	V	×
	r, saddr	3	$r, CY \leftarrow r + (saddr) + CY$	×	×	×	V	×
	saddr, r	3	(saddr), $CY \leftarrow (saddr) + r + CY$	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r + sfr + CY$	×	×	×	V	×
	sfr, r	3	$sfr, CY \leftarrow sfr + r + CY$	×	×	×	V	×
	saddr, saddr'	4	$(saddr), CY \leftarrow (saddr) + (saddr') + CY$	×	×	×	V	×
	A, [saddrp]	3/4	$A, CY \leftarrow A + ((saddrp)) + CY$	×	×	×	V	×
	A, [%saddrg]	3/4	$A, CY \leftarrow A + ((saddrg)) + CY$	×	×	×	V	×
	[saddrp], A	3/4	((saddrp)), CY ← ((saddrp)) + A + CY	×	×	×	٧	×
	[%saddrg], A	3/4	$((saddrg)), CY \leftarrow ((saddrp)) + A + CY$	×	×	×	V	×
	A, !addr16	4	$A, CY \leftarrow A + (addr16) + CY$	×	×	×	V	×
	A, !!addr24	5	A, CY ← A + (addr24) +CY	×	×	×	٧	×
	!addr16, A	4	(addr16), CY ← (addr16) + A + CY	×	×	×	V	×
	!!addr24, A	5	(addr24), CY ← (addr24) + A + CY	×	×	×	V	×
	A, mem	2-5	$A, CY \leftarrow A + (mem) + CY$	×	×	×	V	×
	mem, A	2-5	(mem), CY ← (mem) + A + CY	×	×	×	V	×

Maamania	Onerend	Duton	Operation			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
SUB	A, #byte	2	A, CY ← A − byte	×	×	×	٧	×
	r, #byte	3	$r, CY \leftarrow r - byte$	×	×	×	V	×
	saddr, #byte	3/4	(saddr), $CY \leftarrow (saddr) - byte$	×	×	×	V	×
	sfr, #byte	4	sfr, CY ← sfr – byte	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r - r'$	×	×	×	٧	×
	A, saddr2	2	A, CY ← A − (saddr2)	×	×	×	V	×
	r, saddr	3	$r, CY \leftarrow r - (saddr)$	×	×	×	V	×
	saddr, r	3	$(saddr),CY \leftarrow (saddr) - r$	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r - sfr$	×	×	×	V	×
	sfr, r	3	$sfr, CY \leftarrow sfr - r$	×	×	×	٧	×
	saddr, saddr'	4	$(saddr),CY \leftarrow (saddr) - (saddr')$	×	×	×	V	×
	A, [saddrp]	3/4	$A, CY \leftarrow A - ((saddrp))$	×	×	×	V	×
	A, [%saddrg]	3/4	$A, CY \leftarrow A - ((saddrg))$	×	×	×	V	×
	[saddrp], A	3/4	$((saddrp)), CY \leftarrow ((saddrp)) - A$	×	×	×	V	×
	[%saddrg], A	3/4	$((saddrg)), CY \leftarrow ((saddrg)) - A$	×	×	×	V	×
	A, !addr16	4	$A, CY \leftarrow A - (addr16)$	×	×	×	V	×
	A, !!addr24	5	$A, CY \leftarrow A - (addr24)$	×	×	×	V	×
	!addr16, A	4	(addr16), CY ← (addr16) - A	×	×	×	V	×
	!!addr24, A	5	(addr24), CY ← (addr24) – A	×	×	×	V	×
	A, mem	2-5	A, CY ← A − (mem)	×	×	×	V	×
	mem, A	2-5	(mem), $CY \leftarrow (mem) - A$	×	×	×	٧	×

Masassis	Onevend	Dutas	Operation			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
SUBC	A, #byte	2	$A,CY \leftarrow A - byte - CY$	×	×	×	V	×
	r, #byte	3	$r,CY \leftarrow r - byte - CY$	×	×	×	٧	×
	saddr, #byte	3/4	$(saddr),CY \leftarrow (saddr) - byte - CY$	×	×	×	V	×
	sfr, #byte	4	$sfr, CY \leftarrow sfr - byte - CY$	×	×	×	V	×
	r, r'	2/3	$r, CY \leftarrow r - r' - CY$	×	×	×	V	×
	A, saddr2	2	A, CY ← A − (saddr2) − CY	×	×	×	V	×
	r, saddr	3	$r, CY \leftarrow r - (saddr) - CY$	×	×	×	V	×
	saddr, r	3	$(saddr),CY \leftarrow (saddr) - r - CY$	×	×	×	V	×
	r, sfr	3	$r, CY \leftarrow r - sfr - CY$	×	×	×	V	×
	sfr, r	3	$sfr, CY \leftarrow sfr - r - CY$	×	×	×	V	×
	saddr, saddr'	4	$(saddr),CY \leftarrow (saddr) - (saddr') - CY$	×	×	×	V	×
	A, [saddrp]	3/4	$A, CY \leftarrow A - ((saddrp)) - CY$	×	×	×	٧	×
	A, [%saddrg]	3/4	$A, CY \leftarrow A - ((saddrg)) - CY$	×	×	×	V	×
	[saddrp], A	3/4	$((saddrp)), CY \leftarrow ((saddrp)) - A - CY$	×	×	×	٧	×
	[%saddrg], A	3/4	$((saddrg)), CY \leftarrow ((saddrg)) - A - CY$	×	×	×	V	×
	A, !addr16	4	$A, CY \leftarrow A - (addr16) - CY$	×	×	×	V	×
	A, !!addr24	5	$A, CY \leftarrow A - (addr24) - CY$	×	×	×	٧	×
	!addr16, A	4	(addr16), CY ← (addr16) - A - CY	×	×	×	V	×
	!!addr24, A	5	(addr24), CY ← (addr24) − A − CY	×	×	×	V	×
	A, mem	2-5	$A, CY \leftarrow A - (mem) - CY$	×	×	×	V	×
	mem, A	2-5	(mem), $CY \leftarrow (mem) - A - CY$	×	×	×	V	×

Maamania	Operand	Dutos	Operation			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
CMP	A, #byte	2	A – byte	×	×	×	V	×
	r, #byte	3	r – byte	×	×	×	V	×
	saddr, #byte	3/4	(saddr) - byte	×	×	×	V	×
	sfr, #byte	4	sfr – byte	×	×	×	V	×
	r, r'	2/3	r-r'	×	×	×	V	×
	A, saddr2	2	A – (saddr2)	×	×	×	V	×
	r, saddr	3	r - (saddr)	×	×	×	V	×
	saddr, r	3	(saddr) - r	×	×	×	V	×
	r, sfr	3	r – sfr	×	×	×	V	×
	sfr, r	3	sfr – r	×	×	×	V	×
	saddr, saddr'	4	(saddr) - (saddr')	×	×	×	V	×
	A, [saddrp]	3/4	A - ((saddrp))	×	×	×	V	×
	A, [%saddrg]	3/4	A - ((saddrg))	×	×	×	V	×
	[saddrp], A	3/4	((saddrp)) - A	×	×	×	V	×
	[%saddrg], A	3/4	((saddrg)) – A	×	×	×	V	×
	A, !addr16	4	A – (addr16)	×	×	×	V	×
	A, !!addr24	5	A – (addr24)	×	×	×	V	×
	!addr16, A	4	(addr16) - A	×	×	×	V	×
	!!addr24, A	5	(addr24) - A	×	×	×	V	×
	A, mem	2-5	A – (mem)	×	×	×	V	×
	mem, A	2-5	(mem) – A	×	×	×	٧	×

Marana	0	District	On analian			Flag
Mnemonic	Operand	Bytes	Operation	S	Z	AC P/V CY
AND	A, #byte	2	$A \leftarrow A \land byte$	×	×	Р
	r, #byte	3	$r \leftarrow r \land byte$	×	×	Р
	saddr, #byte	3/4	$(saddr) \leftarrow (saddr) \ \land byte$	×	×	Р
	sfr, #byte	4	$sfr \leftarrow sfr \land byte$	×	×	Р
	r, r'	2/3	$r \leftarrow r \wedge r'$	×	×	Р
	A, saddr2	2	$A \leftarrow A \land (saddr2)$	×	×	Р
	r, saddr	3	$r \leftarrow r \land \ (\text{saddr})$	×	×	Р
	saddr, r	3	$(saddr) \leftarrow (saddr) \ \land r$	×	×	Р
	r, sfr	3	$r \leftarrow r \land sfr$	×	×	Р
	sfr, r	3	$sfr \leftarrow sfr \land r$	×	×	Р
	saddr, saddr'	4	$(saddr) \leftarrow (saddr) \ \land \ (saddr')$	×	×	Р
	A, [saddrp]	3/4	$A \leftarrow A \land \ ((saddrp))$	×	×	Р
	A, [%saddrg]	3/4	$A \leftarrow A \land \ ((saddrg))$	×	×	Р
	[saddrp], A	3/4	$((saddrp)) \leftarrow ((saddrp)) \ \land A$	×	×	Р
	[%saddrg], A	3/4	$((saddrg)) \leftarrow ((saddrg)) \ \land A$	×	×	Р
	A, !addr16	4	$A \leftarrow A \land (addr16)$	×	×	Р
	A, !!addr24	5	$A \leftarrow A \land (addr24)$	×	×	Р
	!addr16, A	4	$(addr16) \leftarrow (addr16) \land A$	×	×	Р
	!!addr24, A	5	$(addr24) \leftarrow (addr24) \wedge A$	×	×	Р
	A, mem	2-5	$A \leftarrow A \land (mem)$	×	×	Р
	mem, A	2-5	$(mem) \leftarrow (mem) \ \land A$	×	×	Р

Maamania	Onorond	Dutos	Operation			Flag	
Mnemonic	Operand	Bytes	Operation	S	Z	AC P/V	CY
OR	A, #byte	2	$A \leftarrow A \lor byte$	×	×	Р	
	r, #byte	3	$r \leftarrow r \lor byte$	×	×	Р	
	saddr, #byte	3/4	$(saddr) \leftarrow (saddr) \lor byte$	×	×	Р	
	sfr, #byte	4	sfr ← sfr∨byte	×	×	Р	
	r, r'	2/3	$r \leftarrow r \lor r'$	×	×	Р	
	A, saddr2	2	$A \leftarrow A \lor (saddr2)$	×	×	Р	
	r, saddr	3	$r \leftarrow r \lor (saddr)$	×	×	Р	
	saddr, r	3	$(saddr) \leftarrow (saddr) \ \lor r$	×	×	Р	
	r, sfr	3	r ← r∨sfr	×	×	Р	
	sfr, r	3	sfr ← sfr∨r	×	×	Р	
	saddr, saddr'	4	$(saddr) \leftarrow (saddr) \lor (saddr')$	×	×	Р	
	A, [saddrp]	3/4	$A \leftarrow A \lor ((saddrp))$	×	×	Р	
	A, [%saddrg]	3/4	$A \leftarrow A \lor ((saddrg))$	×	×	Р	
	[saddrp], A	3/4	$((saddrp)) \leftarrow ((saddrp)) \ \lor A$	×	×	Р	
	[%saddrg], A	3/4	$((saddrg)) \leftarrow ((saddrg)) \ \lor A$	×	×	Р	
	A, !addr16	4	$A \leftarrow A \lor (saddr16)$	×	×	Р	
	A, !!addr24	5	$A \leftarrow A \lor (saddr24)$	×	×	Р	
	!addr16, A	4	(addr16) ← (addr16) ∨A	×	×	Р	
	!!addr24, A	5	(addr24) ← (addr24) ∨A	×	×	Р	
	A, mem	2-5	$A \leftarrow A \lor (mem)$	×	×	Р	
	mem, A	2-5	$(mem) \leftarrow (mem) \ \lor A$	×	×	Р	

Masassis	Onevend	Dutaa	On susting			Flag
Mnemonic	Operand	Bytes	Operation	S	Z	AC P/V CY
XOR	A, #byte	2	$A \leftarrow A \ \forall $ byte	×	×	Р
	r, #byte	3	$r \leftarrow r \ \forall \ \text{byte}$	×	×	Р
	saddr, #byte	3/4	$(saddr) \leftarrow (saddr) \ \forall \ byte$	×	×	Р
	sfr, #byte	4	$sfr \leftarrow sfr \ \forall \ byte$	×	×	Р
	r, r'	2/3	$r \leftarrow r \ \forall \ r'$	×	×	Р
	A, saddr2	2	$A \leftarrow A \forall (saddr2)$	×	×	Р
	r, saddr	3	$r \leftarrow r$ (saddr)	×	×	Р
	saddr, r	3	$(saddr) \leftarrow (saddr) \ \forall \ r$	×	×	Р
	r, sfr	3	$r \leftarrow r \ \forall \ sfr$	×	×	Р
	sfr, r	3	$sfr \leftarrow sfr \ \forall \ r$	×	×	Р
	saddr, saddr'	4	$(saddr) \leftarrow (saddr) \ \forall \ (saddr')$	×	×	Р
	A, [saddrp]	3/4	$A \leftarrow A \ \forall \ ((saddrp))$	×	×	Р
	A, [%saddrg]	3/4	$A \leftarrow A \ \forall \ ((saddrg))$	×	×	Р
	[saddrp], A	3/4	$((saddrp)) \leftarrow ((saddrp)) \ \forall \ A$	×	×	Р
	[%saddrg], A	3/4	$((saddrg)) \leftarrow ((saddrg)) \ \forall A$	×	×	Р
	A, !addr16	4	$A \leftarrow A \forall (addr16)$	×	×	Р
	A, !!addr24	5	$A \leftarrow A \forall (addr24)$	×	×	Р
	!addr16, A	4	$(addr16) \leftarrow (addr16) \ \forall A$	×	×	Р
	!!addr24, A	5	$(addr24) \leftarrow (addr24) \ \forall A$	×	×	Р
	A, mem	2-5	$A \leftarrow A \forall (mem)$	×	×	Р
	mem, A	2-5	$(mem) \leftarrow (mem) \ \forall \ A$	×	×	Р

(7) 16-bit arithmetic instructions: ADDW, SUBW, CMPW

Mnemonic	Operand	Putoo	Operation			Flag		
Millemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
ADDW	AX, #word	3	$AX, CY \leftarrow AX + word$	×	×	×	V	×
	rp, #word	4	$rp, CY \leftarrow rp + word$	×	×	×	V	×
	rp, rp'	2	$rp, CY \leftarrow rp + rp'$	×	×	×	V	×
	AX, saddrp2	2	AX, CY ← AX + (saddrp2)	×	×	×	V	×
	rp, saddrp	3	$rp, CY \leftarrow rp + (saddrp)$	×	×	×	V	×
	saddrp, rp	3	$(saddrp), CY \leftarrow (saddrp) + rp$	×	×	×	V	×
	rp, sfrp	3	$rp, CY \leftarrow rp + sfrp$	×	×	×	V	×
	sfrp, rp	3	sfrp, CY ← sfrp + rp	×	×	×	V	×
	saddrp, #word	4/5	$(saddrp),CY \leftarrow (saddrp) + word$	×	×	×	V	×
	sfrp, #word	5	sfrp, CY ← sfrp + word	×	×	×	V	×
	saddrp, saddrp'	4	$(saddrp),CY \leftarrow (saddrp) + (saddrp')$	×	×	×	V	×
SUBW	AX, #word	3	$AX, CY \leftarrow AX - word$	×	×	×	V	×
	rp, #word	4	$rp, CY \leftarrow rp - word$	×	×	×	V	×
	rp, rp'	2	$rp, CY \leftarrow rp - rp'$	×	×	×	V	×
	AX, saddrp2	2	AX, CY ← AX − (saddrp2)	×	×	×	V	×
	rp, saddrp	3	$rp, CY \leftarrow rp - (saddrp)$	×	×	×	V	×
	saddrp, rp	3	$(saddrp), CY \leftarrow (saddrp) - rp$	×	×	×	V	×
	rp, sfrp	3	$rp, CY \leftarrow rp - sfrp$	×	×	×	V	×
	sfrp, rp	3	$sfrp, CY \leftarrow sfrp - rp$	×	×	×	V	×
	saddrp, #word	4/5	$(saddrp),CY \leftarrow (saddrp) - word$	×	×	×	V	×
	sfrp, #word	5	$sfrp, CY \leftarrow sfrp - word$	×	×	×	V	×
	saddrp, saddrp'	4	$(saddrp),CY \leftarrow (saddrp) - (saddrp')$	×	×	×	٧	×
CMPW	AX, #word	3	AX – word	×	×	×	V	×
	rp, #word	4	rp – word	×	×	×	V	×
	rp, rp'	2	rp – rp'	×	×	×	V	×
	AX, saddrp2	2	AX – (saddrp2)	×	×	×	V	×
	rp, saddrp	3	rp – (saddrp)	×	×	×	٧	×
	saddrp, rp	3	(saddrp) - rp	×	×	×	V	×
	rp, sfrp	3	rp – sfrp	×	×	×	V	×
	sfrp, rp	3	sfrp – rp	×	×	×	V	×
	saddrp, #word	4/5	(saddrp) - word	×	×	×	V	×
	sfrp, #word	5	sfrp – word	×	×	×	V	×
	saddrp, saddrp'	4	(saddrp) – (saddrp')	×	×	×	V	×

(8) 24-bit arithmetic instructions: ADDG, SUBG

Maamania	Operand	Dutos	Operation			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
ADDG	rg, rg'	2	$rg, CY \leftarrow rg + rg'$	×	×	×	V	×
	rg, #imm24	5	rg, CY ← rg + imm24	×	×	×	V	×
	WHL, saddrg	3	WHL, CY \leftarrow WHL + (saddrg)	×	×	×	V	×
SUBG	rg, rg'	2	$rg, CY \leftarrow rg - rg'$	×	×	×	V	×
	rg, #imm24	5	rg, CY ← rg − imm24	×	×	×	V	×
	WHL, saddrg	3	WHL, CY \leftarrow WHL – (saddrg)	×	×	×	V	×

(9) Multiplication/division instructions: MULU, MULUW, MULW, DIVUW, DIVUX

Mnemonic	Operand	Bytes	Operation			Flag		
Willemonic	Operand	Dytes	Operation	S	Z	AC	P/V	CY
MULU	r	2/3	$AX \leftarrow AXr$					
MULUW	rp	2	AX (high order), rp (low order) \leftarrow AXXrp					
MULW	rp	2	AX (high order), rp (low order) \leftarrow AXXrp					
DIVUW	r	2/3	AX (quotient), r (remainder) \leftarrow AX \div r ^{Note 1}					
DIVUX	rp	2	$\textbf{AXDE (quotient), rp (remainder)} \leftarrow \textbf{AXDE} \div \textbf{rp}^{\textbf{Note 2}}$					

Notes 1. When r = 0, $r \leftarrow X$, $AX \leftarrow FFFFH$

2. When rp = 0, $rp \leftarrow DE$, $AXDE \leftarrow FFFFFFFH$

(10) Special arithmetic instructions: MACW, MACSW, SACW

Mnemonic	Operand	Putos	Operation			Flag		
Millemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
MACW	byte	3	$\begin{aligned} AXDE &\leftarrow (B) \; X \; (C) \; + \; AXDE, \; B \leftarrow B \; + \; 2, \\ C &\leftarrow C \; + \; 2, \; byte \; \leftarrow \; byte \; - \; 1 \\ End \; if \; (byte \; = \; 0 \; or \; P/V \; = \; 1) \end{aligned}$	×	×	×	V	×
MACSW	byte	3	$\begin{array}{l} AXDE \leftarrow (B) \; X \; (C) \; + \; AXDE, \; B \leftarrow B \; + \; 2, \\ C \leftarrow C \; + \; 2, \; byte \leftarrow byte \; - \; 1 \\ if \; byte \; = \; 0 \; then \; End \\ if \; P/V \; = \; 1 \; then \; if \; overflow \; AXDE \leftarrow 7FFFFFFFH, \; End \\ if \; underflow \; AXDE \leftarrow \; 800000000H, \; End \end{array}$	×	×	×	V	×
SACW	[TDE+], [WHL+]	4	$AX \leftarrow (TDE) - (WHL) + AX,$ $TDE \leftarrow TDE + 2, WHL \leftarrow WHL + 2$ $C \leftarrow C - 1 \text{ End if } (C = 0 \text{ or } CY = 1)$	×	×	×	V	×

(11) Increment and decrement instructions: INC, DEC, INCW, DECW, INCG, DECG

Mnemonic	Operand	Bytes	Operation		Flag						
				S	Z	AC	P/V	CY			
INC	r	1/2	r ← r + 1	×	×	×	٧				
	saddr	2/3	(saddr) ← (saddr) + 1	×	×	×	V				
DEC	r	1/2	r ← r − 1	×	×	×	V				
	saddr	2/3	(saddr) ← (saddr) − 1	×	×	×	V				
INCW	rp	2/1	rp ← rp + 1								
	saddrp	3/4	(saddrp) ← (saddrp) + 1								
DECW	rp	2/1	rp ← rp − 1								
	saddrp	3/4	(saddrp) ← (saddrp) − 1								
INCG	rg	2	rg ← rg + 1								
DECG	rg	2	rg ← rg −1								

(12) Decimal adjust instructions: ADJBA, ADJBS, CVTBW

Mnemonic	Operand	Dutos	Operation			Flag			
	Operand	Bytes	Operation	S	Z	AC	P/V	CY	
ADJBA		2	Decimal Adjust Accumulator after Addition	×	×	×	Р	×	
ADJBS		2	Decimal Adjust Accumulator after Subtract	×	×	×	Р	×	
CVTBW		1	$X \leftarrow A, A \leftarrow 00H \text{ if } A_7 = 0$ $X \leftarrow A, A \leftarrow FFH \text{ if } A_7 = 1$						

(13) Shift and rotate instructions: ROR, ROL, RORC, ROLC, SHR, SHL, SHRW, SHLW, ROR4, ROL4

Mnemonic	Operand	Dutos	Operation				Flag		
Minemonic	Operand	Bytes	Operation		S	Z	AC	P/V	CY
ROR	r, n	2/3	$(CY,r_7\leftarrow r_0,r_{m-1}\leftarrow r_m)\times n$	n = 0 to 7				Р	×
ROL	r, n	2/3	$(CY,r_0\leftarrow r_7,r_{m+1}\leftarrow r_m)\times n$	n = 0 to 7				Р	×
RORC	r, n	2/3	$(CY \leftarrow r_0, r_7 \leftarrow CY, r_{m-1} \leftarrow r_m) \times n$	n = 0 to 7				Р	×
ROLC	r, n	2/3	$(CY \leftarrow r_7, r_0 \leftarrow CY, r_{m+1} \leftarrow r_m) \times n$	n = 0 to 7				Р	×
SHR	r, n	2/3	$(CY \leftarrow r_0, r_7 \leftarrow 0, r_{m-1} \leftarrow r_m) \times n$	n = 0 to 7	×	×	0	Р	×
SHL	r, n	2/3	$(CY \leftarrow r_7, r_0 \leftarrow 0, r_{m+1} \leftarrow r_m) \times n$	n = 0 to 7	×	×	0	Р	×
SHRW	rp, n	2	$(CY \leftarrow rp_0, rp_{15} \leftarrow 0, rp_{m-1} \leftarrow rp_m) \times n$	n = 0 to 7	×	×	0	Р	×
SHLW	rp, n	2	$(CY \leftarrow rp_{15}, rp_0 \leftarrow 0, rp_{m+1} \leftarrow rp_m) \times n$	n = 0 to 7	×	×	0	Р	×
ROR4	mem3	2	$A_{3-0} \leftarrow (mem3)_{3-0}, (mem3)_{7-4} \leftarrow A_{3-0}, \\ (mem3)_{3-0} \leftarrow (mem3)_{7-4}$						
ROL4	mem3	2	$A_{3-0} \leftarrow (mem3)_{7-4}, (mem3)_{3-0} \leftarrow A_{3-0}, \\ (mem3)_{7-4} \leftarrow (mem3)_{3-0}$						

(14) Bit manipulation instructions: MOV1, AND1, OR1, XOR1, NOT1, SET1, CLR1

Managis	Operand	Date	Operation		Flag						
Mnemonic		Bytes		S	Z	Α	СР	/V	CY		
MOV1	CY, saddr.bit	3/4	CY ← (saddr.bit)						×		
	CY, sfr.bit	3	CY ← sfr.bit						×		
	CY, X.bit	2	CY ← X.bit						×		
	CY, A.bit	2	CY ← A.bit						×		
	CY, PSWL.bit	2	CY ← PSWL.bit						×		
	CY, PSWH.bit	2	CY ← PSW _H .bit						×		
	CY, !addr16.bit	5	CY ← !addr16.bit						×		
	CY, !!addr24.bit	2	CY ← !!addr24.bit						×		
	CY, mem2.bit	2	CY ← mem2.bit						×		
	saddr.bit, CY	3/4	(saddr.bit) ← CY								
	sfr.bit, CY	3	sfr.bit ← CY								
	X.bit, CY	2	X.bit ← CY								
	A.bit, CY	2	A.bit ← CY								
	PSWL.bit, CY	2	PSW∟.bit ← CY	×	×	×	(×	×		
	PSWH.bit, CY	2	PSW _H .bit ← CY								
	!addr16.bit, CY	5	!addr16.bit ← CY								
	!!addr24.bit, CY	6	!!addr24.bit ← CY								
	mem2.bit, CY	2	mem2.bit ← CY								

CHAPTER 28 INSTRUCTION OPERATION

Mnemonic	Operand	Bytes	Operation			Flag)	
	Oporana	2,100	Sportation	S	Z	AC	P/V	CY
AND1	CY, saddr.bit	3/4	$CY \leftarrow CY \land (saddr.bit)$					×
	CY, /saddr.bit	3/4	$CY \leftarrow CY \land (\overline{saddr.bit})$					×
	CY, sfr.bit	3	$CY \leftarrow CY \land sfr.bit$					×
	CY, /sfr.bit	3	$CY \leftarrow CY \land \overline{sfr.bit}$					×
	CY, X.bit	2	$CY \leftarrow CY \land X.bit$					×
	CY, /X.bit	2	$CY \leftarrow CY \land \overline{X.bit}$					×
	CY, A.bit	2	$CY \leftarrow CY \land A.bit$					×
	CY, /A.bit	2	$CY \leftarrow CY \land \overline{A.bit}$					×
	CY, PSWL.bit	2	$CY \leftarrow CY \land PSW$ L.bit					×
	CY, /PSWL.bit	2	$CY \leftarrow CY \land \overline{PSWL.bit}$					×
	CY, PSWH.bit	2	CY ← CY ∧ PSW _H .bit					×
	CY, /PSWH.bit	2	$CY \leftarrow CY \land \overline{PSW_{H.bit}}$					×
	CY, !addr16.bit	5	CY ← CY ∧ !addr16.bit					×
	CY, /!addr16.bit	5	CY ← CY ∧ <u>laddr16.bit</u>					×
	CY, !!addr24.bit	2	CY ← CY ∧ !!addr24.bit					×
	CY, /!!addr24.bit	6	CY ← CY ∧ !!addr24.bit					×
	CY, mem2.bit	2	$CY \leftarrow CY \land mem2.bit$					×
	CY, /mem2.bit	2	CY ← CY ∧ mem2.bit					×
OR1	CY, saddr.bit	3/4	$CY \leftarrow CY \lor (saddr.bit)$					×
	CY, /saddr.bit	3/4	$CY \leftarrow CY \lor (\overline{saddr.bit})$					×
	CY, sfr.bit	3	$CY \leftarrow CY \lor sfr.bit$					×
	CY, /sfr.bit	3	$CY \leftarrow CY \lor \overline{sfr.bit}$					×
	CY, X.bit	2	$CY \leftarrow CY \lor X.bit$					×
	CY, /X.bit	2	$CY \leftarrow CY \lor \overline{X.bit}$					×
	CY, A.bit	2	$CY \leftarrow CY \lor A.bit$					×
	CY, /A.bit	2	$CY \leftarrow CY \lor \overline{A.bit}$					×
	CY, PSWL.bit	2	$CY \leftarrow CY \lor PSW$ L.bit					×
	CY, /PSWL.bit	2	$CY \leftarrow CY \lor \overline{PSW_L.bit}$					×
	CY, PSWH.bit	2	$CY \leftarrow CY \lor PSW_H.bit$					×
	CY, /PSWH.bit	2	$CY \leftarrow CY \lor \overline{PSW_{H}.bit}$					×
	CY, !addr16.bit	5	CY ← CY ∨ !addr16.bit					×
	CY, /!addr16.bit	5	CY ← CY ∨ laddr16.bit					×
	CY, !!addr24.bit	2	CY ← CY ∨ !!addr24.bit					×
	CY, /!!addr24.bit	6	CY ← CY ∨ !!addr24.bit					×
	CY, mem2.bit	2	CY ← CY∨ mem2.bit					×
	CY, /mem2.bit	2	CY ← CY ∨ mem2.bit	+				×

Mnemonic	Operand	Bytes	Operation			Flag		
WITCHTOTHC	Орегана	Dytes	Ореганоп	S	Z	AC	P/V	CY
XOR1	CY, saddr.bit	3/4	$CY \leftarrow CY \forall $ (saddr.bit)					×
	CY, sfr.bit	3	$CY \leftarrow CY \forall sfr.bit$					×
	CY, X.bit	2	$CY \leftarrow CY \forall X.bit$					×
	CY, A.bit	2	$CY \leftarrow CY \forall A.bit$					×
	CY, PSWL.bit	2	$CY \leftarrow CY \forall PSW_L.bit$					×
	CY, PSWH.bit	2	CY ← CY ∀ PSW _H .bit					×
	CY, !addr16.bit	5	CY ← CY ∀ !addr16.bit					×
	CY, !!addr24.bit	2	CY ← CY ★ !!addr24.bit					×
	CY, mem2.bit	2	CY ← CY ∀ mem2.bit					×
NOT1	saddr.bit	3/4	$(\text{saddr.bit}) \leftarrow (\overline{\text{saddr.bit}})$					
	sfr.bit	3	sfr.bit ← sfr.bit					
	X.bit	2	$X.bit \leftarrow \overline{X.bit}$					
	A.bit	2	$A.bit \leftarrow \overline{A.bit}$					
	PSWL.bit	2	$PSWL.bit \leftarrow \overline{PSWL.bit}$	×	×	×	×	×
	PSWH.bit	2	PSWH.bit ← PSW _H .bit					
	!addr16.bit	5	!addr16.bit ← !addr16.bit					
	!!addr24.bit	2	!!addr24.bit ← !!addr24.bit					
	mem2.bit	2	mem2.bit ← mem2.bit					
	CY	1	$CY \leftarrow \overline{CY}$					×
SET1	saddr.bit	2/3	(saddr.bit) ← 1					
	sfr.bit	3	sfr.bit ← 1					
	X.bit	2	X.bit ← 1					
	A.bit	2	A.bit ← 1					
	PSWL.bit	2	PSW∟.bit ← 1	×	×	×	×	×
	PSWH.bit	2	PSW _H .bit ← 1					
	!addr16.bit	5	!addr16.bit ← 1					
	!!addr24.bit	2	!!addr24.bit ← 1					
	mem2.bit	2	mem2.bit ←1					
	CY	1	CY ← 1					1
CLR1	saddr.bit	2/3	(saddr.bit) ← 0					
	sfr.bit	3	sfr.bit ← 0					
	X.bit	2	X.bit ← 0					
	A.bit	2	A.bit ← 0					
	PSWL.bit	2	PSW∟.bit ← 0	×	×	×	×	×
	PSWH.bit	2	PSW _H .bit ← 0					
	!addr16.bit	5	!addr16.bit ← 0					
	!!addr24.bit	2	!!addr24.bit ← 0					
	mem2.bit	2	mem2.bit ←0					
	CY	1	CY ← 0					0

(15) Stack manipulation instructions: PUSH, PUSHU, POP, POPU, MOVG, ADDWG, SUBWG, INCG, DECG

Maamania	Onerend	Dutos	Operation			Flag		
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
PUSH	PSW	1	$(SP - 2) \leftarrow PSW, SP \leftarrow SP - 2$					
	sfrp	3	$(SP - 2) \leftarrow sfrp, SP \leftarrow SP - 2$					
	sfr	3	$(SP - 1) \leftarrow sfr, SP \leftarrow SP - 1$					
	post	2	$\{(SP-2) \leftarrow post, SP \leftarrow SP-2\} \times m^{\textbf{Note}}$					
	rg	2	$(SP - 3) \leftarrow rg, SP \leftarrow SP - 3$					
PUSHU	post	2	$\{(UUP-2) \leftarrow post, \ UUP \leftarrow UUP-2\} \times m^{Note}$					
POP	PSW	1	$PSW \leftarrow (SP),SP \leftarrow SP + 2$	R	R	R	R	R
	sfrp	3	$sfrp \leftarrow (SP), SP \leftarrow SP + 2$					
	sfr	3	$sfr \leftarrow (SP), SP \leftarrow SP + 1$					
	post	2	$\{post \leftarrow (SP), SP \leftarrow SP + 2\} \times m^{Note}$					
	rg	2	$rg \leftarrow (SP), SP \leftarrow SP + 3$					
POPU	post	2	$\{ post \leftarrow (UUP), \ UUP \leftarrow UUP + 2 \} \times m^{Note}$					
MOVG	SP, #imm24	5	SP ← imm24					
	SP, WHL	2	SP ← WHL					
	WHL, SP	2	WHL ← SP					
ADDWG	SP, #word	4	$SP \leftarrow SP + word$					
SUBWG	SP, #word	4	$SP \leftarrow SP - word$					
INCG	SP	2	SP ← SP + 1					
DECG	SP	2	SP ← SP – 1					

Note m is the number of registers specified by post.

(16) Call return instructions: CALL, CALLF, CALLT, BRK, BRKCS, RET, RETI, RETB, RETCS, RETCSB

Mnemonic	Operand	Bytes	Operation	Flag						
WITTETHOTHC	Operand	Dytes	Operation	S	Z	AC	P/V	CY		
CALL	!addr16	3	$(SP-3) \leftarrow (PC+3), SP \leftarrow SP-3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow addr16$							
	!!addr20	4	$(SP - 3) \leftarrow (PC + 4), SP \leftarrow SP - 3,$ PC \leftarrow addr20							
	rp	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow rp$							
	rg	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC \leftarrow rg$							
	[rp]	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (rp)$							
	[rg]	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3,$ $PC \leftarrow (rg)$								
	\$!addr20	3	$(SP - 3) \leftarrow (PC + 3), SP \leftarrow SP - 3,$ $PC \leftarrow PC + 3 + jdisp16$							
CALLF	!addr11	2	$(SP - 3) \leftarrow (PC + 2), SP \leftarrow SP - 3$ $PC_{19-12} \leftarrow 0, PC_{11} \leftarrow 1, PC_{10-0} \leftarrow addr11$							
CALLT	[addr5]	1	$(SP - 3) \leftarrow (PC + 1), SP \leftarrow SP - 3$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (addr5)$							
BRK		1	$(SP-2) \leftarrow PSW, (SP-1)_{0-3} \leftarrow, (PC+1)_{HW},$ $(SP-4) \leftarrow (PC+1)_{LW},$ $SP \leftarrow SP-4$ $PC_{HW} \leftarrow 0, PC_{LW} \leftarrow (003EH)$							
BRKCS	RBn	2	$\begin{aligned} & PCLw \leftarrow RP2, RP3 \leftarrow PSW, RBS2 - 0 \leftarrow n, \\ & RSS \leftarrow 0, IE \leftarrow 0, RP3_{8-11} \leftarrow PCHw, PCHw \leftarrow 0 \end{aligned}$							
RET		1	$PC \leftarrow (SP), SP \leftarrow SP + 3$							
RETI		1	$\begin{array}{l} PC_{LW} \leftarrow (SP), PC_{HW} \leftarrow (SP + 3)_{0 - 3}, \\ PSW \leftarrow (SP + 2), SP \leftarrow SP + 4 \\ The flag with the highest priority that is set to 1 \\ in the ISPR \; is cleared to 0. \end{array}$	R	R	R	R	R		
RETB		1	$PCLW \leftarrow (SP), PCHW \leftarrow (SP + 3)_{0-3},$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 4$	R	R	R	R	R		
RETCS	!addr16	3	$\begin{split} \text{PSW} \leftarrow \text{RP3, PCLw} \leftarrow \text{RP2, RP2} \leftarrow \text{addr16,} \\ \text{PCHw} \leftarrow \text{RP38-11} \\ \text{The flag with the highest priority that is set to 1} \\ \text{in the ISPR is cleared to 0.} \end{split}$	R	R	R	R	R		
RETCSB	!addr16	4	$ \begin{array}{l} PSW \leftarrow RP3, PC_LW \leftarrow RP2, RP2 \leftarrow addr16, \\ PC_HW \leftarrow RP3_8-11 \end{array} $	R	R	R	R	R		

(17) Unconditional branch instruction: BR

Mnomonio	Operand	Dutos	Operation	Flag							
Mnemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY			
BR	!addr16	3	PC _{HW} ← 0, PC _{LW} ← addr16								
	!!addr20	4	PC ← addr20								
	rp	2	$PCHW \leftarrow 0, PCLW \leftarrow rp$								
	rg	2	PC ← rg								
	[rp]	2	$PC_{HW} \leftarrow 0, \ PC_{LW} \leftarrow (rp)$								
	[rg]	2	$PC \leftarrow (rg)$								
	\$addr20	2	PC ← PC + 2 + jdisp8								
	\$!addr20	3	PC ← PC + 3 + jdisp16								

(18) Conditional branch instructions: BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Mnemonic	Operand	Bytes	Operation	Flag						
Millemonic	Operand	bytes	Operation	S	Z	AC	P/V	CY		
BNZ	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$							
BNE										
BZ	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$							
BE										
BNC	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$							
BNL										
ВС	\$addr20	2	PC ← PC + 2 + jdisp8 if CY = 1							
BL										
BNV	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 0$							
ВРО										
BV	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } P/V = 1$							
BPE										
BP	\$addr20	2	$PC \leftarrow PC + 2 + jdisp8 \text{ if } S = 0$							
BN	\$addr20	2	PC ← PC + 2 + jdisp8 if S = 1							
BLT	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } P/V \ \forall S = 1$							
BGE	\$addr20	3	$PC \leftarrow PC + 3 + jidsp8 \text{ if } P/V \forall S = 0$							
BLE	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (P/V \forall S) \lor Z = 1$							
BGT	\$addr20	3	$PC \leftarrow PC + 3 + jidsp8 \text{ if } (P/V \forall S) \lor Z = 0$							
BNH	\$addr20	3	$PC \leftarrow PC + 3 + jdisp8 \text{ if } Z \lor CY = 1$							
ВН	\$addr20	3	$PC \leftarrow PC + 3 + jidsp8 \text{ if } Z \lor CY = 0$							
BF	saddr.bit, \$addr20	4/5	PC ← PC + 4 ^{Note} + jdisp8 if (saddr.bit) = 0							
	sfr.bit, \$addr20	4	PC ← PC + 4 + jdisp8 if sfr.bit = 0							
	X.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if X.bit = 0							
	A.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if A.bit = 0							
	PSWL.bit, \$addr20	VL.bit, $$addr20$ 3 PC \leftarrow PC + 3 + jdisp8 if PSWL.bit = 0								
	PSWH.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if PSW _H .bit = 0							
	!addr16.bit, \$addr20	6	PC ← PC + 3 + jdisp8 if !addr16.bit = 0							
	!!addr24.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if !!addr24.bit = 0							
	mem2.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if mem2.bit = 0							

Note This is used when the number of bytes is four. When five, it becomes $PC \leftarrow PC + 5 + jdisp8$.

CHAPTER 28 INSTRUCTION OPERATION

Mnemonic	Operand	Dutos	Operation			Flag	ı	
winemonic	Operand	Bytes	Ореганоп	S	Z	AC	P/V	CY
ВТ	saddr.bit, \$addr20	3/4	PC ← PC + 3 ^{Note 1} + jdisp8 if (saddr.bit) = 1					
	sfr.bit, \$addr20	4	PC ← PC + 4 + jdisp8 if sfr.bit = 1					
	X.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if X.bit = 1					
	A.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if A.bit = 1					
	PSWL.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if PSWL.bit = 1					
	PSWH.bit, $$addr20$ 3 PC \leftarrow PC + 3 + jdisp8 if PSW _H .bit = 1							
	!addr16.bit, \$addr20	6	PC ← PC + 3 + jdisp8 if !addr16.bit = 1					
	!!addr24.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if !!addr24.bit = 1					
	mem2.bit, \$addr20	3	PC ← PC + 3 + jdisp8 if mem2.bit = 1					
BTCLR	saddr.bit, \$addr20	4/5	$\{PC \leftarrow PC + 4^{\text{Note 2}} + \text{jdisp8}, (\text{saddr.bit}) \leftarrow 0\}$ if $(\text{saddr.bit} = 1)$					
	sfr.bit, \$addr20	4	$\{PC \leftarrow PC + 4 + jdisp8, sfr.bit \leftarrow 0\}$ if sfr. bit = 1					
	X.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, X.bit \leftarrow 0\}$ if $X.bit = 1$					
	A.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, A.bit \leftarrow 0\}$ if A.bit = 1					
	PSWL.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, PSWL.bit \leftarrow 0\}$ if $PSWL.bit = 1$	×	×	×	×	×
	PSWH.bit, \$addr20	3	${PC \leftarrow PC + 3 + jdisp8, PSWh.bit ← 0}$ if PSWh.bit = 1					
	!addr16.bit, \$addr20	6	$\{PC \leftarrow PC + 3 + jdisp8, !addr16.bit \leftarrow 0\}$ if !addr16.bit = 1					
	!!addr24.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, !!addr24.bit \leftarrow 0\}$ if !!addr24.bit = 1					
	mem2.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, mem2.bit \leftarrow 0\}$ if mem2.bit = 1					

Notes 1. This is used when the number of bytes is three. When four, it becomes $PC \leftarrow PC + 4 + jdisp8$.

2. This is used when the number of bytes is four. When five, it becomes PC \leftarrow PC + 5 + jdisp8.

Mnemonic	Operand	Dutos	Operation			Flag		
Minemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY
BFSET	saddr.bit, \$addr20	4/5	$\{PC \leftarrow PC + 4^{\text{Note 2}} + \text{jdisp8}, (\text{saddr.bit}) \leftarrow 1\}$ if $(\text{saddr.bit} = 0)$					
	sfr.bit, \$addr20	4	$\{PC \leftarrow PC + 4 + jdisp8, sfr.bit \leftarrow 1\}$ if sfr. bit = 0					
	X.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, X.bit \leftarrow 1\}$ if X.bit = 0					
	A.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, A.bit \leftarrow 1\}$ if A.bit = 0					
	PSWL.bit, \$addr20	×	×	×	×	×		
	PSWH.bit, \$addr20	PSWH.bit, \$addr20 3 {PC \leftarrow PC + 3 + jdisp8, PSW _H .bit \leftarrow 1} if PSW _H .bit = 0						
	!addr16.bit, \$addr20	6	$\{PC \leftarrow PC + 3 + jdisp8, !addr16.bit \leftarrow 1\}$ if $!addr16.bit = 0$					
	!!addr24.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, !!addr24.bit \leftarrow 1\}$ if !!addr24.bit = 0					
	mem2.bit, \$addr20	3	$\{PC \leftarrow PC + 3 + jdisp8, mem2.bit \leftarrow 1\}$ if mem2.bit = 0					
DBNZ	B, \$addr20	2	$B \leftarrow B - 1$, PC \leftarrow PC + 2 + jdisp8 if B \neq 0					
	C. \$addr20	2	$C \leftarrow C - 1$, $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$					
	saddr, \$addr20	3/4	(saddr) ← (saddr) − 1, $PC \leftarrow PC + 3^{\text{Note 1}} + \text{jdisp8 if (saddr)} \neq 0$					

Notes 1. This is used when the number of bytes is three. When four, it becomes $PC \leftarrow PC + 4 + jdisp8$.

2. This is used when the number of bytes is four. When five, it becomes $PC \leftarrow PC + 5 + jdisp8$.

(19) CPU control instructions: MOV, LOCATION, SEL, SWRS, NOP, EI, DI

Masania	Onevend	Dutaa	Onemakina					
Mnemonic	Operand	Bytes Operation		S	Z	AC	P/V	CY
MOV	STBC, #byte	4	STBC ← byte					
	WDM, #byte	4	WDM ← byte					
LOCATION	locaddr	4	Specification of the high-order word of the location address of the SFR and internal data area					
SEL	RBn	2	$RSS \leftarrow 0, RBS2 - 0 \leftarrow n$					
	RBn, ALT	2	$RSS \leftarrow 1, RBS2 - 0 \leftarrow n$					
SWRS		2	$RSS \leftarrow \overline{RSS}$					
NOP		1	No operation					
El		1	IE ← 1 (Enable interrupt)					
DI		1	$IE \leftarrow 0$ (Disable interrupt)					

(20) String instructions: MOVTBLW, MOVM, XCHM, MOVBK, XCHBK, CMPME, CMPMNE, CMPMC, CMPBKE, CMPBKNE, CMPBKNC, CMPBKNC

Mnemonic	Operand	Bytos	Operation	Flag						
Millemonic	Operand	Bytes	Operation	S	Z	AC	P/V	CY		
MOVTBLW	!addr8, byte	4	$(addr8 + 2) \leftarrow (addr8)$, byte \leftarrow byte -1 , addr8 \leftarrow addr8 -2 End if byte $=0$							
MOVM	[TDE+], A	2	$(TDE) \leftarrow A$, $TDE \leftarrow TDE + 1$, $C \leftarrow C - 1$ End if $C = 0$							
	[TDE-], A	2	$(TDE) \leftarrow A$, $TDE \leftarrow TDE - 1$, $C \leftarrow C - 1$ End if $C = 0$							
XCHM	[TDE+], A	2	$(TDE) \leftrightarrow A$, $TDE \leftarrow TDE + 1$, $C \leftarrow C - 1$ End if $C = 0$							
	[TDE-], A	2	$(TDE) \leftrightarrow A$, $TDE \leftarrow TDE - 1$, $C \leftarrow C - 1$ End if $C = 0$							
MOVBK	[TDE+], [WHL+]	2	$(TDE) \leftarrow (WHL), TDE \leftarrow TDE + 1,$ $WHL \leftarrow WHL + 1, C \leftarrow C - 1 \text{ End if } C = 0$							
	[TDE-], [WHL-]	2	$(TDE) \leftarrow (WHL), TDE \leftarrow TDE - 1,$ $WHL \leftarrow WHL - 1, C \leftarrow C - 1 \text{ End if } C = 0$							
XCHBK	[TDE+], [WHL+]	2	$(TDE) \leftrightarrow (WHL), TDE \leftarrow TDE + 1,$ $WHL \leftarrow WHL + 1, C \leftarrow C - 1 \text{ End if } C = 0$							
	[TDE-], [WHL-]	2	$(TDE) \leftrightarrow (WHL), TDE \leftarrow TDE - 1,$ $WHL \leftarrow WHL - 1, C \leftarrow C - 1 \text{ End if } C = 0$							
СМРМЕ	[TDE+], A	2	(TDE) – A, TDE \leftarrow TDE + 1, C \leftarrow C – 1 End if C = 0 or Z = 0	×	×	×	V	×		
	[TDE-], A	2	(TDE) – A, $TDE \leftarrow TDE$ – 1, $C \leftarrow C$ – 1 End if $C = 0$ or $Z = 0$	×	×	×	V	×		
CMPMNE	[TDE+], A	2	(TDE) – A, TDE \leftarrow TDE + 1, C \leftarrow C – 1 End if C = 0 or Z = 1	×	X	×	V	×		
	[TDE-], A	2	(TDE) – A, TDE \leftarrow TDE – 1, C \leftarrow C – 1 End if C = 0 or Z = 1	×	×	×	V	×		
СМРМС	[TDE+], A	2	(TDE) – A, TDE \leftarrow TDE + 1, C \leftarrow C – 1 End if C = 0 or CY = 0	×	×	×	V	×		
	[TDE-], A	2	(TDE) – A, $TDE \leftarrow TDE$ – 1, $C \leftarrow C$ – 1 End if $C = 0$ or $CY = 0$	×	×	×	٧	×		
CMPMNC	[TDE+], A	2	(TDE) – A, $TDE \leftarrow TDE + 1$, $C \leftarrow C - 1$ End if $C = 0$ or $CY = 1$	×	×	×	V	×		
	[TDE-], A	2	(TDE) – A, $TDE \leftarrow TDE$ – 1, $C \leftarrow C$ – 1 End if $C = 0$ or $CY = 1$	×	×	×	V	×		
СМРВКЕ	[TDE+], [WHL+]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C –1 End if C = 0 or Z = 0	×	×	X	V	×		
	[TDE-], [WHL-]	2	(TDE) – (WHL), TDE \leftarrow TDE – 1, WHL \leftarrow WHL – 1, C \leftarrow C –1 End if C = 0 or Z = 0	×	×	X	V	×		
CMPBKNE	[TDE+], [WHL+]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C –1 End if C = 0 or Z = 1	×	×	×	V	×		
	[TDE-], [WHL-]	2	(TDE) – (WHL), TDE \leftarrow TDE – 1, WHL \leftarrow WHL – 1, C \leftarrow C –1 End if C = 0 or Z = 1	×	×	X	V	×		
СМРВКС	[TDE+], [WHL+]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C –1 End if C = 0 or CY = 0	×	×	×	V	×		
	[TDE-], [WHL-]	2	(TDE) – (WHL), TDE \leftarrow TDE – 1, WHL \leftarrow WHL – 1, C \leftarrow C –1 End if C = 0 or CY = 0	×	×	×	V	×		
CMPBKNC	[TDE+], [WHL+]	2	(TDE) – (WHL), TDE \leftarrow TDE + 1, WHL \leftarrow WHL + 1, C \leftarrow C –1 End if C = 0 or CY = 1	×	×	×	V	×		
	[TDE-], [WHL-]	2	$(TDE) - (WHL), TDE \leftarrow TDE - 1,$ $WHL \leftarrow WHL - 1, C \leftarrow C - 1$ End if $C = 0$ or $CY = 1$	×	×	X	V	×		

28.3 Lists of Addressing Instructions

(1) 8-bit instructions (The values enclosed by parentheses are combined to express the A description as r.)
MOV, XCH, ADD, ADDC, SUB, SUBC, AND OR XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,
ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC,
MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC

Table 28-1. 8-Bit Addressing Instructions

Second operand First operand	#byte	А	r r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [%saddrg]	r3 PSWL PSWH	[WHL+] [WHL-]	n	None ^{Note 2}
A	(MOV) ADDNote 1	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH (ADD)Note 1	(MOV)Note 6 (XCH)Note 6 (ADD)Notes 1, 6	MOV (XCH) (ADD) ^{Note 1}	(MOV) (XCH) ADDNote 1	MOV XCH ADDNote 1	MOV	(MOV) (XCH) (ADD)Note 1		
r	MOV ADD ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV				RORNote 3	MULU DIVUW INC DEC
saddr	MOV ADD ^{Note 1}	(MOV)Note 6 (ADD)Note 1	MOV ADD ^{Note 1}	MOV XCH ADD ^{Note 1}							INC DEC DBNZ
sfr	MOV ADD ^{Note 1}	MOV (ADD) ^{Note 1}	MOV ADD ^{Note 1}								PUSH POP
!addr16 !!addr24	MOV	MOV ADDNote 1	MOV								
mem [saddrp] [%saddrg]		MOV ADDNote 1									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
[TDE+] [TDE–]		(MOV) (ADD)Note 1 MOVMNote 4							MOVBKNote 5		

- Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are identical to ADD.
 - 2. There is no second operand, or the second operand is not an operand address.
 - 3. ROL, RORC, ROLC, SHR, and SHL are identical to ROR.
 - 4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are identical to MOVM.
 - 5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are identical to MOVBK.
 - 6. When saddr is saddr2 in this combination, the instruction has a short code length.

(2) 16-bit instructions (The values enclosed by parentheses are combined to express AX description as rp.) MOVM, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 28-2. 16-Bit Addressing Instructions

Second operand First operand	#word	AX	rp rp'	saddrp saddrp'	sfrp	!addr16 !!addr24	mem [saddrp] [%saddrg]	[WHL+]	byte	n	None ^{Note 2}
AX	(MOVW) ADDW ^{Note 1}	(MOVW) (XCHW) (ADD)Note 1	(MOVW) (XCHW) (ADDW) ^{Note 1}	(MOVW)Note 3 (XCHW)Note 3 (ADDW)Notes 1,3	MOVW (XCHW) (ADDW)Note 1	(MOVW) XCHW	MOVW XCHW	(MOVW) (XCHW)			
rp	MOVW ADDW ^{Note 1}	(MOVW) (XCHW) (ADDW)Note 1	MOVW XCHW ADDW ^{Note 1}	MOVW XCHW ADDW ^{Note 1}	MOVW XCHW ADDW ^{Note 1}	MOVW				SHRW SHLW	MULWNote 4 INCW DECW
saddrp	MOVW ADDWNote 1	(MOVW)Note 3 (ADDW)Note 1	MOVW ADDWNote 1	MOVW XCHW ADDWNote 1							INCW DECW
sfrp	MOVW ADDWNote 1	MOVW (ADDW) ^{Note 1}	MOVW (ADDW) ^{Note 1}								PUSH POP
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [%saddrg]		MOVW									
PSW											PUSH POP
SP	ADDWG SUBWG										
post											PUSH POP PUSHU POPU
[TDE+] byte		(MOVW)						SACW			MACW MACSW

Notes 1. SUBW and CMPW are identical to ADDW.

- 2. There is no second operand, or the second operand is not an operand address.
- 3. When saddrp is saddrp2 in this combination, this is a short code length instruction.
- 4. MULUW and DIVUX are identical to MULW.

(3) 24-bit instructions (The values enclosed by parentheses are combined to express WHL description as rg.)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 28-3. 24-Bit Addressing Instructions

	Second operand	#imm24	WHL	rg rg'	saddrg	!!addr24	mem1	[%saddrg]	SP	None ^{Note}
First operand										
WHL		(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) ADDG SUBG	(MOVG)	MOVG	MOVG	MOVG	
rg		MOVG ADDG SUBG	(MOVG) (ADDG) (SUBG)	MOVG ADDG SUBG	MOVG	MOVG				INCG DECG PUSH POP
saddrg			(MOVG)	MOVG						
!!addr24			(MOVG)	MOVG						
mem1			MOVG							
[%saddrg]			MOVG							
SP		MOVG	MOVG							INCG DECG

Note There is no second operand, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 28-4. Bit Manipulation Instruction Addressing Instructions

Second operand First operand	CY	saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	/saddr.bit /sfr.bit /A.bit /X.bit /PSWL.bit /PSWH.bit /mem2.bit /!addr16.bit /!laddr24.bit	None ^{Note}
СҮ		MOV1 AND1 OR1 XOR1	AND1 OR1	NOT1 SET1 CLR1
saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	MOV1			NOT1 SET1 CLR1 BF BT BTCLR BFSET

Note There is no second operand, or the second operand is not an operand address.

(5) Call return instructions and branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 28-5. Call Return Instructions and Branch Instruction Addressing Instructions

Instruction Address Operand	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instructions	BC ^{Note}	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALLF	CALLT	BRKCS	BRK
	BR	BR	BR	BR	BR	BR	BR	BR				RET
			RETCS									RETI
			RETCSB									RETB
Composite instructions	BF											
	ВТ											
	BTCLR											
	BFSET											
	DBNZ											

Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are identical to BC.

(6) Other instructions

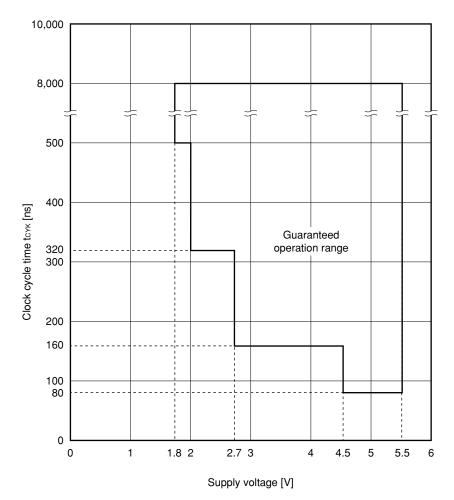
ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

*

29.1 Electrical Specifications of μ PD784224, 784225, 784224Y, and 784225Y

For the timing charts, refer to 29.3 Timing Charts.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)


Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	VDD = VDD0 = VDD1	-0.3 to +6.5	V
	AVDD		-0.3 to V _{DD0} + 0.3	V
	AVss		-0.3 to Vsso + 0.3	V
	AV _{REF1}	D/A converter reference voltage input	-0.3 to V _{DD0} + 0.3	V
Input voltage	Vı		-0.3 to V _{DD0} + 0.3	V
Analog input voltage	Van	Analog input pin	AVss - 0.3 to AVREF1 + 0.3	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
Output current, low	lou	Per pin	15	mA
		Total of all pins	100	mA
Output current, high	Іон	Per pin	-10	mA
		Total of all pins	-40	mA
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Operating Conditions

- Operating ambient temperature (T_A): -40 to +85°C
- Power supply voltage and clock cycle time: see Figure 29-1
- Operating voltage during subsystem clock operation: $V_{\text{DD}} = 1.8 \text{ to } 5.5 \text{ V}$

Figure 29-1. Power Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fcpu)

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	f = 1 MHz			15	pF
Output capacitance	Со	Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю				15	pF

Main System	Clock Oscillator	Characteristics ($(T_A = -40 \text{ to } +85^{\circ}C)$	ļ
-------------	------------------	-------------------	--	---

Resonator	Recommended Circuit	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	1	Oscillation	ENMP = 0	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4		25	MHz
resonator	X2 X1 Vss	frequency (fx)		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	
or crystal resonator				2.0 V ≤ V _{DD} < 2.7 V	4		6.25	
resonator				1.8 V ≤ V _{DD} < 2.0 V	4		4	
	+C1 +C2		ENMP = 1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2		12.5	MHz
	'			2.7 V ≤ V _{DD} < 4.5 V	2		6.25	
				2.0 V ≤ V _{DD} < 2.7 V	2		3.125	
				1.8 V ≤ V _{DD} < 2.0 V	2		2	
External		X1 input	ENMP = 0	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4		25	MHz
clock	X2 X1	frequency (fx)		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	
				2.0 V ≤ V _{DD} < 2.7 V	4		6.25	
	μPD74HCU04			1.8 V ≤ V _{DD} < 2.0 V	4		4	
	· 		ENMP = 1	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2		12.5	MHz
				2.7 V ≤ V _{DD} < 4.5 V	2		6.25	
				2.0 V ≤ V _{DD} < 2.7 V	2		3.125	
				1.8 V ≤ V _{DD} < 2.0 V	2		2	
		X1 input high-/low-level width (twxH, twxL)			15		250	ns
		X1 input rising/falling		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		5	ns
		time (txr, txr)		2.7 V ≤ V _{DD} < 4.5 V	0		10	
				$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0		20	
				1.8 V ≤ V _{DD} < 2.0 V	0		30	

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- . Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal	Voc VT2 VT1	Oscillation frequency (fxT)		32	32.768	35	kHz
resonator	ator Vss XT2 XT1	Oscillation stabilization	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		1.2	2	S
		time ^{Note}	1.8 V ≤ V _{DD} < 4.5 V			10	
External	XT2 XT1	XT1 input frequency (fxT)		32		35	kHz
clock	μPD74HCU04Δ	XT1 input high-/low-level width (txтн, txть)		14.3		15.6	μѕ

Note Time required to stabilize oscillation after applying the supply voltage (VDD).

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- . Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constants

Main system clock: Ceramic resonator connection ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Product Name	Oscillation Frequency		ed Oscillator		n Voltage nge	Oscillation Stabilization Time
		fxx (MHz)	C1 (pf)	C2 (pf)	MIN. (V)	MAX. (V)	(MAX.) Tost (ms)
Murata Mfg.	CSA2.00MG040	2.0	100	100	1.8	5.5	0.60
	CST2.00MG040	2.0	On-chip	On-chip	1.8	5.5	0.60
	CSA3.00MG	3.0	30	30	2.0	5.5	0.25
	CST3.00MGW	3.0	On-chip	On-chip	2.0	5.5	0.25
	CSA4.00MG	4.0	30	30	2.7	5.5	0.15
	CST4.00MGW	4.0	On-chip	On-chip	2.7	5.5	0.15
	CSA6.00MG	6.0	30	30	2.7	5.5	0.25
	CST6.00MGW	6.0	On-chip	On-chip	2.7	5.5	0.25
	CSA8.00MTZ	8.0	30	30	4.5	5.5	0.40
	CST8.00MTW	8.0	On-chip	On-chip	4.5	5.5	0.40
	CSA12.0MTZ	12.0	30	30	4.5	5.5	0.40
	CST12.0MTW	12.0	On-chip	On-chip	4.5	5.5	0.40
Kyocera	PBRC2.00AR-A	2.0	68	68	1.8	5.5	0.34
	PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.25
	KBR-4.0MKC	4.0	On-chip	On-chip	2.7	5.5	0.25
	PBRC8.00HR	8.0	On-chip	On-chip	4.5	5.5	0.25
	KBR-8.0MKC	8.0	On-chip	On-chip	4.5	5.5	0.25
	PBRC12.50BR	12.5	On-chip	On-chip	4.5	5.5	0.14
TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.22
	FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.18
	FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.16

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V) (1/2)

Parameter	Symbol	Conditions	1	MIN.	TYP.	MAX.	Unit
Input voltage, low	V _{IL1}	Note 1	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0		0.2V _{DD}	
	V _{IL2}	P00 to P05, P20, P22, P33,	$2.2~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	0		0.2V _{DD}	V
		P34, P70, P72, RESET	1.8 V ≤ V _{DD} < 2.2 V	0		0.15V _{DD}	
	V _{IL3}	P10 to P17, P130, P131	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0		0.2V _{DD}	
	V _{IL4}	X1, X2, XT1, XT2	$2.2~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	0		0.2V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0		0.1VDD	
	V _{IL5}	P25, P27	$2.2~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	0		0.3V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0		0.2V _{DD}	
Input voltage, high	V _{IH1}	Note 1	2.2 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH2}	P00 to P05, P20, P22, P33,	2.2 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
		P34, P70, P72, RESET	1.8 V ≤ V _{DD} < 2.2 V	0.85V _{DD}		V _{DD}	
	VIH3	P10 to P17, P130, P131	2.2 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH4}	X1, X2, XT1, XT2	$2.2 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.8V _{DD}		V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0.85V _{DD}		V _{DD}	
	V _{IH5}	P25, P27	2.2 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
			1.8 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
Output voltage, low	V _{OL1}	For pins other than P40 to P47, P50 to P57, lo _L = 1.6 mA ^{Note 2}	4.5 V ≤ V _{DD} ≤ 5.5 V			0.4	V
		P40 to P47, P50 to P57 lo _L = 8 mA ^{Note 2}	4.5 V ≤ V _{DD} ≤ 5.5 V			1.0	V
•	V _{OL2}	IoL = 400 μA ^{Note 2}	1.8 V ≤ V _{DD} ≤ 5.5 V			0.5	V
Output voltage, high	V _{OH1}	IoH = −1 mA ^{Note 2}	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	V _{DD} - 1.0			V
		$I_{OH} = -100 \ \mu A^{Note 2}$	1.8 V ≤ V _{DD} ≤ 5.5 V	V _{DD} - 0.5			V
Input leakage current, low	ILIL1	V1 = 0 V	Except X1, X2, XT1, XT2			-3	μΑ
i	ILIL2	•	X1, X2, XT1, XT2			-20	μΑ
Input leakage current, high	Ішні	VI = VDD	Except X1, X2, XT1, XT2			3	μΑ
•	I _{LIH2}		X1, X2, XT1, XT2			20	μΑ
Output leakage current, low	ILOL1	Vo = 0 V				-3	μΑ
Output leakage current, high	ILOH1	Vo = VDD				3	μΑ

Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P120 to P127

2. Per pin

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	I _{DD1}	Operation	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		17	40	mA
		mode	fxx = 6 MHz, V _{DD} = 3.0 V ±10%		5	17	mA
			fxx = 2 MHz, V _{DD} = 2.0 V ±10%		2	8	mA
	I _{DD2}	HALT mode	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		7	20	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		2	8	mA
			$fxx = 2 \text{ MHz}, V_{DD} = 2.0 \text{ V} \pm 10\%$		0.5	3.5	mA
	IDD3	IDLE mode	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		1	2.5	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		0.4	1.3	mA
			$fxx = 2 \text{ MHz}, V_{DD} = 2.0 \text{ V} \pm 10\%$		0.2	0.9	mA
	I _{DD4}	Operation	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		80	200	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		60	110	μΑ
			$fxx = 32 \text{ kHz}, V_{DD} = 2.0 \text{ V} \pm 10\%$		30	100	μΑ
	I _{DD5}	HALT	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		60	160	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		20	80	μΑ
			fxx = 32 kHz, V _{DD} = 2.0 V ±10%		10	70	μΑ
	I _{DD6}	IDLE	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		50	150	μΑ
		mode ^{Note}	fxx = 32 kHz, V _{DD} = 3.0 V ±10%		15	70	μΑ
			fxx = 32 kHz, V _{DD} = 2.0 V ±10%		5	60	μΑ
Data retention voltage	VDDDR	HALT, IDLE m	odes	1.8		5.5	V
Data retention current	Idddr	STOP mode	V _{DD} = 2.0 V ±10%		2	10	μΑ
			V _{DD} = 5.0 V ±10%		10	50	μΑ
Pull-up resistor	RL	V1 = 0 V		10	30	100	kΩ

Note When the main system clock is stopped and the subsystem clock is operating.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	t cyk	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	80			ns
		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.5~\textrm{V}$	160			ns
		2.0 V ≤ V _{DD} < 2.7 V	320			ns
		1.8 V ≤ V _{DD} < 2.0 V	500			ns
Address setup time	t sast	V _{DD} = 5.0 V ±10%	(0.5 + a) T – 20			ns
(to ASTB↓)		V _{DD} = 3.0 V ±10%	(0.5 + a) T - 40			ns
		V _{DD} = 2.0 V ±10%	(0.5 + a) T - 80			ns
Address hold time	t HSTLA	V _{DD} = 5.0 V ±10%	0.5T – 19			ns
(from ASTB↓)		V _{DD} = 3.0 V ±10%	0.5T – 24			ns
		V _{DD} = 2.0 V ±10%	0.5T – 34			ns
ASTB high-level width	twsтн	V _{DD} = 5.0 V ±10%	(0.5 + a) T - 17			ns
		V _{DD} = 3.0 V ±10%	(0.5 + a) T - 40			ns
		V _{DD} = 2.0 V ±10%	(0.5 + a) T - 110			ns
Address hold time	thra	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
(from $\overline{RD} \uparrow$)		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±10%	0.5T – 14			ns
Delay time from address to	tdar	V _{DD} = 5.0 V ±10%	(1 + a) T – 24			ns
RD↓		V _{DD} = 3.0 V ±10%	(1 + a) T – 35			ns
		V _{DD} = 2.0 V ±10%	(1 + a) T - 80			ns
Address float time	t far	V _{DD} = 5.0 V ±10%			0	ns
(from $\overline{RD} \downarrow$)		V _{DD} = 3.0 V ±10%			0	ns
		V _{DD} = 2.0 V ±10%			0	ns
Data input time from	t DAID	V _{DD} = 5.0 V ±10%			(2.5 + a + n) T - 37	ns
address		V _{DD} = 3.0 V ±10%			(2.5 + a + n) T - 52	ns
		V _{DD} = 2.0 V ±10%			(2.5 + a + n) T - 120	ns
Data input time from ASTB \downarrow	t DSTID	V _{DD} = 5.0 V ±10%			(2 + n) T - 35	ns
		V _{DD} = 3.0 V ±10%			(2 + n) T - 50	ns
		V _{DD} = 2.0 V ±10%			(2 + n) T - 80	ns
Data input time from $\overline{RD} \downarrow$	torio	V _{DD} = 5.0 V ±10%			(1.5 + n) T - 40	ns
		V _{DD} = 3.0 V ±10%			(1.5 + n) T – 50	ns
		V _{DD} = 2.0 V ±10%			(1.5 + n) T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(1) Read/write operation (2/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from ASTB↓	tostr	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
to RD↓		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±10%	0.5T – 20			ns
Data hold time (from RD↑)	thrid	V _{DD} = 5.0 V ±10%	0			ns
		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±10%	0			ns
Address active time from	tdra	V _{DD} = 5.0 V ±10%	0.5T – 2			ns
RD↑		V _{DD} = 3.0 V ±10%	0.5T – 12			ns
		V _{DD} = 2.0 V ±10%	0.5T – 35			ns
Delay time from RD↑ to	tdrst	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±10%	0.5T – 40			ns
RD low-level width	twal	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T – 30			ns
		V _{DD} = 2.0 V ±10%	(1.5 + n) T – 25			ns
Address active time from	towa	V _{DD} = 5.0 V ±10%	0.5T – 2			ns
WR↑		V _{DD} = 3.0 V ±10%	0.5T – 12			ns
		V _{DD} = 2.0 V ±10%	0.5T – 35			ns
Delay time from address to	tdaw	V _{DD} = 5.0 V ±10%	(1 + a) T – 24			ns
$\overline{WR} \!\downarrow$		V _{DD} = 3.0 V ±10%	(1 + a) T – 34			ns
		V _{DD} = 2.0 V ±10%	(1 + a) T - 70			ns
Address hold time	thwa	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
(from $\overline{WR}\uparrow$)		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±10%	0.5T – 14			ns
Delay time from ASTB↓ to	tostod	V _{DD} = 5.0 V ±10%			0.5T + 15	ns
data output		V _{DD} = 3.0 V ±10%			0.5T + 30	ns
		V _{DD} = 2.0 V ±10%			0.5T + 240	ns
Delay time from WR↓ to	towod	V _{DD} = 5.0 V ±10%			0.5T – 30	ns
data output		V _{DD} = 3.0 V ±10%			0.5T – 30	ns
		V _{DD} = 2.0 V ±10%			0.5T - 30	ns
Delay time from ASTB↓ to	tostw	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
$\overline{WR} \!\downarrow$		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±10%	0.5T – 20			ns
Data setup time (to WR↑)	tsodwr	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 20			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 2.0 V ±10%	(1.5 + n) T – 70			ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(1) Read/write operation (3/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data hold time (from WR↑)	thwod	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±10%	0.5T - 50			ns
Delay time from WR↑ to	towst	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±10%	0.5T - 30			ns
WR low-level width	twwL	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T - 30			ns
		V _{DD} = 2.0 V ±10%	(1.5 + n) T - 30			ns
Delay time from address to EXA \downarrow	tadexd	V _{DD} = 5.0 V ±10%	0			ns
		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±10%	0			ns
Delay time from EXA↓ to	t EXTAH	V _{DD} = 5.0 V ±10%	0.5T – 20			ns
ASTB↓		V _{DD} = 3.0 V ±10%	0.5T - 30			ns
		V _{DD} = 2.0 V ±10%	0.5T – 40			ns
Delay time from RD↑ to	texrds	V _{DD} = 5.0 V ±10%	0			ns
EXA↑		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±10%	0			ns
Delay time from WR↑ to	texwos	V _{DD} = 5.0 V ±10%	Т			ns
EXA↑		V _{DD} = 3.0 V ±10%	Т			ns
		V _{DD} = 2.0 V ±10%	Т			ns
Delay time from EXA↑ to	texadr	V _{DD} = 5.0 V ±10%	0.5T			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T		·	ns
		V _{DD} = 2.0 V ±10%	0.5T			ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

(2) External wait timing (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input time from address to	t DAWT	V _{DD} = 5.0 V ±10%			(2 + a) T - 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			(2 + a) T - 60	ns
		V _{DD} = 2.0 V ±10%			(2 + a) T - 300	ns
Input time from ASTB↓ to	tdstwt	V _{DD} = 5.0 V ±10%			1.5T - 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			1.5T - 60	ns
		V _{DD} = 2.0 V ±10%			1.5T – 260	ns
Hold time from ASTB↓ to	tнsтwт	V _{DD} = 5.0 V ±10%	(0.5 + n) T + 5			ns
WAIT		V _{DD} = 3.0 V ±10%	(0.5 + n) T + 10			ns
		V _{DD} = 2.0 V ±10%	(0.5 + n) T + 30			ns
Delay time from ASTB↓ to	tostwth	V _{DD} = 5.0 V ±10%			(1.5 + n) T - 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1.5 + n) T - 60	ns
		V _{DD} = 2.0 V ±10%			(1.5 + n) T - 90	ns
Input time from $\overline{RD} \downarrow$ to	t DRWTL	V _{DD} = 5.0 V ±10%			T – 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			T – 60	ns
		V _{DD} = 2.0 V ±10%			T – 70	ns
Hold time from \overline{RD} ↓ to	thrwt	V _{DD} = 5.0 V ±10%	nT + 5			ns
WAIT		V _{DD} = 3.0 V ±10%	nT + 10			ns
		V _{DD} = 2.0 V ±10%	nT + 30			ns
Delay time from $\overline{RD}{\downarrow}$ to	t DRWTH	V _{DD} = 5.0 V ±10%			(1 + n) T - 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1 + n) T - 60	ns
		V _{DD} = 2.0 V ±10%			(1 + n) T - 90	ns
Input time from $\overline{\text{WAIT}} \uparrow$ to	t DWTID	V _{DD} = 5.0 V ±10%			0.5T – 5	ns
data		V _{DD} = 3.0 V ±10%			0.5T - 10	ns
		V _{DD} = 2.0 V ±10%			0.5T - 30	ns
Delay time from WAIT↑ to	towtr	V _{DD} = 5.0 V ±10%	0.5T			ns
RD↑		V _{DD} = 3.0 V ±10%	0.5T			ns
		V _{DD} = 2.0 V ±10%	0.5T + 5			ns
Delay time from $\overline{\text{WAIT}} \uparrow$ to	towtw	V _{DD} = 5.0 V ±10%	0.5T			ns
WR↑		V _{DD} = 3.0 V ±10%	0.5T			ns
		V _{DD} = 2.0 V ±10%	0.5T + 5			ns
Delay time from WR↓ to	t DWWTL	V _{DD} = 5.0 V ±10%			T – 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			T – 60	ns
		V _{DD} = 2.0 V ±10%			T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(2) External wait timing (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Hold time from WR↓ to	tнwwт	V _{DD} = 5.0 V ±10%	nT + 5			ns
WAIT		V _{DD} = 3.0 V ±10%	nT + 10			ns
		V _{DD} = 2.0 V ±10%	nT + 30			ns
Delay time from WR↓ to	towwth	V _{DD} = 5.0 V ±10%			(1 + n) T - 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1 + n) T - 60	ns
		V _{DD} = 2.0 V ±10%			(1 + n) T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(3) Serial Operation (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V) (1/2)

(a) 3-wire serial I/O mode (SCK: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	640			ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	1,280			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	2,560			ns
		1.8 V ≤ V _{DD} < 2.0 V	4,000			ns
SCK high-/low-level	t кн1,	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	270			ns
width	t KL1	$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	590			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1,180			ns
		1.8 V ≤ V _{DD} < 2.0 V	1,900			ns
SI setup time (to SCK↑)	tsıĸı	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	10			ns
		1.8 V ≤ V _{DD} < 2.7 V	30			ns
SI hold time (from SCK↑)	t _{HIK1}		40			ns
SO output delay time (from SCK↓)	tDSO1				30	ns
SO output hold time (from SCK↑)	thso1		0.5tkcy1 - 50			ns

(b) 3-wire serial I/O mode (SCK: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.5 V	640			ns
		2.7 V ≤ V _{DD} < 4.5 V	1,280			ns
		2.0 V ≤ V _{DD} < 2.7 V	2,560			ns
		1.8 V ≤ V _{DD} < 2.0 V	4,000			ns
SCK high-/low-level	t кн2,	4.5 V ≤ V _{DD} ≤ 5.5 V	320			ns
width	t KL2	2.7 V ≤ V _{DD} < 4.5 V	640			ns
		2.0 V ≤ V _{DD} < 2.7 V	1,280			ns
		1.8 V ≤ V _{DD} < 2.0 V	2,000			ns
SI setup time (to SCK↑)	tsık2	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	10			ns
		1.8 V ≤ V _{DD} < 2.7 V	30			ns
SI hold time (from SCK↑)	tHIK2		40			ns
SO output delay time (from SCK↓)	tDSO2				30	ns
SO output hold time (from SCK1)	tHSO2		0.5tkcy2 - 50			ns

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	417			ns
		2.7 V ≤ V _{DD} < 4.5 V	833			ns
		1.8 V ≤ V _{DD} < 2.7 V	1,667			ns
ASCK high-/low-level	t кнз,	4.5 V ≤ V _{DD} ≤ 5.5 V	208			ns
width	tкLз	2.7 V ≤ V _{DD} < 4.5 V	416			ns
		1.8 V ≤ V _{DD} < 2.7 V	833			ns

(3) Serial Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$) (2/2)

(d) I^2C bus mode (μ PD784224Y, 784225Y only)

F	arameter	Symbol	Standa	rd Mode	High-Spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 cloc	k frequency	fclk	0	100	0	400	kHz
Bus free ti and start o	me (between stop	t BUF	4.7	_	1.3	-	μs
Hold time ^N	lote1	thd : STA	4.0	-	0.6	-	μs
Low-level	width of SCL0	tLOW	4.7	-	1.3	-	μs
High-level clock	width of SCL0	tніgн	4.0	_	0.6	-	μs
Setup time conditions	of start/restart	tsu:sta	4.7	_	0.6	-	μs
Data hold time	When using CBUS-compatible master	thd : dat	5.0	-	-	-	μs
	When using I ² C bus		_O Note 2	_	ONote 2	0.9 Note 3	μs
Data setup	time	tsu : dat	250	-	100 ^{Note 4}	_	ns
Rising time SCL0 sign	e of SDA0 and als	tв	-	1,000	20 + 0.1Cb ^{Note 5}	300	ns
Falling tim SCL0 sign	e of SDA0 and als	tF	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Setup time	of stop condition	t su : sto	4.0	_	0.6	-	μs
Pulse widt restricted l	h of spike by input filter	tsp	-		0	50	ns
Load capa bus line	citance of each	Cb	_	400	-	400	pF

Notes 1. For the start condition, the first clock pulse is generated after the hold time.

- 2. To fill the undefined area of the SCL0 falling edge, it is necessary for the device to provide an internal SDA0 signal (on VIHmin.) with at least 300 ns of hold time.
- 3. If the device does not extend the SCL0 signal low-level hold time (tLow), only the maximum data hold time thd: DAT needs to be satisfied.
- **4.** The high-speed mode I²C bus can be used in a standard mode I²C bus system. In this case, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low-level hold time $t_{SU:DAT} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low-level hold time
 Be sure to transmit the data bit to the SDA0 line before the SCL0 line is released
 (trmax. + tsu: DAT = 1,000 + 250 = 1,250 ns by standard mode I²C bus specification)
- **5.** Cb: Total capacitance per bus line (unit: pF)

(4) Clock Output Operation (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	tcycL	4.5 V ≤ V _{DD} ≤ 5.5 V, nT	80		31,250	ns
PCL high-/low-level width	tcll, tclн	$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 0.5\text{T} - 10$	30		15,615	ns
PCL rising/falling time	tclr,	4.5 V ≤ V _{DD} ≤ 5.5 V			5	ns
	tclf	2.7 V ≤ V _{DD} < 4.5 V			10	ns
		1.8 V ≤ V _{DD} < 2.7 V			20	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

n: Divided frequency ratio set by software in the CPU

When using the main system clock: n = 1, 2, 4, 8, 16, 32, 64, 128
When using the subsystem clock: n = 1

(5) Other Operations (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twnil, twnih		10			μs
INTP input high-/low-level width	twiть, twiтн	INTP0 to INTP5	100			ns
RESET high-/low-level width	twrst,		10			μs

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Notes 1, 2		6.25 MHz < fxx ≤ 12.5 MHz, 4.5 V ≤ V _{DD} ≤ 5.5 V, AV _{DD} = V _{DD}			±1.2	%FSR
		3.125 MHz < fxx ≤ 6.25 MHz, 2.7 V ≤ V _{DD} ≤ 5.5 V, AV _{DD} = V _{DD}			±1.2	%FSR
		2 MHz < fxx ≤ 3.125 MHz, 2.0 V ≤ V _{DD} ≤ 5.5 V, AV _{DD} = V _{DD}			±1.6	%FSR
					±1.6	%FSR
Conversion time	tconv		14		144	μs
Sampling time	t SAMP		24/fxx			μs
Analog input voltage	VIAN		AVss		AVDD	V
Reference voltage	AV _{DD}		V _{DD}	V _{DD}	V _{DD}	V
Resistance between AVDD and AVSS	Ravrefo	A/D conversion is not performed		40		kΩ

Notes 1. Excludes quantization error (±0.2%FSR).

2. This value is indicated as a ratio to the full-scale value (%FSR).

Remark fxx: Main system clock frequency

D/A Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.8 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Overall error Notes 1, 2		$2.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $R = 10 \text{ M}\Omega, 2.0 \text{ V} \le N$	$R = 10 \text{ M}\Omega$, $2.0 \text{ V} \le \text{AV}_{\text{REF1}} \le \text{AV}_{\text{DD}}$, $\text{AV}_{\text{DD}} = \text{V}_{\text{DD}}$			±0.6	%FSR
						±1.2	%FSR
Settling time		Load conditions:	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
		C = 30 pF	2.7 V ≤ AV _{REF1} < 4.5 V			15	μs
			1.8 V ≤ AV _{REF1} < 2.7 V			20	μs
Output resistance	Ro	DACS0, 1 = 55H			8		kΩ
Reference voltage	AV _{REF1}			1.8		V _{DD}	V
AVREF1 current	AIREF1	For only 1 channel				2.5	mA

Notes 1. Excludes quantization error (±0.2%FSR).

2. This value is indicated as a ratio to the full-scale value (%FSR).

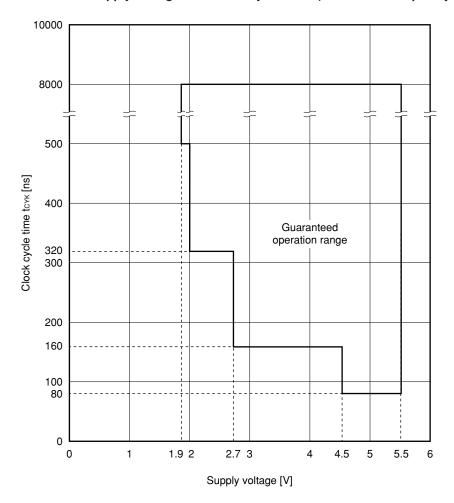
Data Retention Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.8 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode	1.8		5.5	V
Data retention current	Idddr	VDDDR = 5.0 V ±10%		10	50	μΑ
		VDDDR = 2.0 V ±10%		2	10	μΑ
V _{DD} rise time	t RVD		200			μs
V _{DD} fall time	t FVD		200			μs
V _{DD} hold time (from STOP mode setting)	thvd		0			ms
STOP release signal input time	t DREL		0			ms
Oscillation stabilization	twait	Crystal resonator	30			ms
wait time		Ceramic resonator	5			ms
Low-level input voltage	VIL	RESET, P00/INTP0 to P05/INTP5	0		0.1Vdddr	V
High-level input voltage	ViH		0.9VDDDR		VDDDR	V

29.2 Electrical Specifications of μ PD78F4225 and 78F4225Y

For the timing charts, refer to 29.3 Timing Charts.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)


Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}	VDD = VDD0 = VDD1	-0.3 to +6.5	V
	V _{PP}		-0.3 to +10.5	V
	AV _{DD}		-0.3 to V _{DD0} + 0.3	V
	AVss		-0.3 to Vsso + 0.3	V
	AV _{REF1}	D/A converter reference voltage input	-0.3 to V _{DD0} + 0.3	V
Input voltage	VII		-0.3 to V _{DD0} + 0.3	V
	Vı2	V _{PP} pin during programming	-0.3 to +10.5	V
Analog input voltage	Van	Analog input pin	AVss - 0.3 to AVREF1 + 0.3	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
Output current, low	lou	Per pin	15	mA
		Total for all pins	100	mA
Output current, high	Іон	Per pin	-10	mA
		Total for all pins	-40	mA
Operating ambient	Та	During normal operation	-40 to +85	°C
temperature		During flash memory programming	+10 to +40	°C
Storage temperature	Tstg		-65 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Operating Conditions

- Operating ambient temperature (T_A): -40 to +85°C
- Power supply voltage and clock cycle time: See Figure 29-2.
- Operating voltage during subsystem clock operation: VDD = 1.9 to 5.5 V

Figure 29-2. Power Supply Voltage and Clock Cycle Time (CPU Clock Frequency: fcpu)

Capacitance (TA = 25° C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			15	pF
Output capacitance	Со	Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю				15	pF

Resonator	Recommended Circuit	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	1 1	Oscillation	ENMP = 0	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	4		25	MHz
resonator	X2 X1 Vss	frequency (fx)		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	
or crystal resonator				2.0 V ≤ V _{DD} < 2.7 V	4		6.25	
resonator	→			1.9 V ≤ V _{DD} < 2.0 V	4		4	
			ENMP = 1	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	2		12.5	MHz
	<i>7//</i>			2.7 V ≤ V _{DD} < 4.5 V	2		6.25	
				2.0 V ≤ V _{DD} < 2.7 V	2		3.125	
				1.9 V ≤ V _{DD} < 2.0 V	2		2	
External		X1 input	ENMP = 0	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	4		25	MHz
clock	Ivo vil	frequency (fx)		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	
	X2 X1			2.0 V ≤ V _{DD} < 2.7 V	4		6.25	
				1.9 V ≤ V _{DD} < 2.0 V	4		4	
	μPD74HCU04		ENMP = 1	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	2		12.5	MHz
	·			$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	2		6.25	
				2.0 V ≤ V _{DD} < 2.7 V	2		3.125	
				$1.9 \text{ V} \leq \text{V}_{DD} < 2.0 \text{ V}$	2		2	
		X1 input high-/low-level width (twxH, twxL)			15		250	ns
		X1 input rising/falling		$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	0		5	ns
		time (txR, txF)		2.7 V ≤ V _{DD} < 4.5 V	0		10	
				2.0 V ≤ V _{DD} < 2.7 V	0		20	
				1.9 V ≤ V _{DD} < 2.0 V	0		30	

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- . Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal		Oscillation frequency (fxT)		32	32.768	35	kHz
resonator	Vss XT2 XT1	Oscillation stabilization	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		1.2	2	S
		time Note	1.9 V ≤ V _{DD} < 4.5 V			10	
External	XT2 XT1	XT1 input frequency (fxT)		32		35	kHz
clock	μPD74HCU04Δ	XT1 input high-/low-level width (txтн, txть)		14.3		15.6	μѕ

Note Time required to stabilize oscillation after applying supply voltage (VDD).

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- . Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are required to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended Oscillator Constants

Main system clock: Ceramic resonator connection ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Part Number	Oscillation Frequency		mended Constant		lation Range	Oscillation Stabilization Time
		fxx (MHz)	C1 (pf)	C2 (pf)	MIN. (V)	MAX. (V)	(MAX.) Tost (ms)
Murata Mfg.	CSTLS2M00G56-B0	2.0	On-chip	On-chip	1.9	5.5	0.44
Co., Ltd.	CSTCC2.00MG0H6	2.0	On-chip	On-chip	1.9	5.5	0.40
	CSTCR4M00G55-R0	4.0	On-chip	On-chip	2.7	5.5	0.38
	CSTS0400MG06	4.0	On-chip	On-chip	2.7	5.5	0.40
	CSTCC4.00MG0H6	4.0	On-chip	On-chip	2.7	5.5	0.38
	CSTCR6M00G53-R0	6.0	On-chip	On-chip	2.7	5.5	0.28
	CSTS0600MG03	6.0	On-chip	On-chip	2.7	5.5	0.24
	CSTCC6.00MG	6.0	On-chip	On-chip	2.7	5.5	0.23
	CSTS0800MG03	8.0	On-chip	On-chip	4.5	5.5	0.22
	CSTCC8.00MG	8.0	On-chip	On-chip	4.5	5.5	0.22
	CSTS1000MG03	10.0	On-chip	On-chip	4.5	5.5	0.23
	CSTCC10.0MG	10.0	On-chip	On-chip	4.5	5.5	0.22
	CSA12.5MTZ	12.5	30	30	4.5	5.5	0.24
	CST12.5MTW	12.5	On-chip	On-chip	4.5	5.5	0.24
	CSTCV12.5MTJ0C4	12.5	On-chip	On-chip	4.5	5.5	0.22
Kyocera	PBRC4.00HR	4.0	On-chip	On-chip	2.7	5.5	0.3
Corporation	PBRC4.00GR	4.0	33	33	2.7	5.5	0.3
	KBR-4.0MKC	4.0	On-chip	On-chip	2.7	5.5	0.3
	KBR-4.0MSB	4.0	33	33	2.7	5.5	0.3
	PBRC8.00HR	8.0	On-chip	On-chip	4.5	5.5	0.3
	PBRC8.00GR	8.0	33	33	4.5	5.5	0.3
	KBR-8.0MKC	8.0	On-chip	On-chip	4.5	5.5	0.3
	KBR-8.0MSB	8.0	33	33	4.5	5.5	0.3
	PBRC10.00BR-A	10.0	On-chip	On-chip	4.5	5.5	0.2
	PBRC12.50BR-A	12.5	On-chip	On-chip	4.5	5.5	0.1
TDK	FCR4.0MC5	4.0	On-chip	On-chip	2.7	5.5	0.15
	FCR6.0MC5	6.0	On-chip	On-chip	2.7	5.5	0.15
	FCR8.0MC5	8.0	On-chip	On-chip	4.5	5.5	0.12

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V) (1/2)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
VPP supply voltage	V _{PP1}	In normal operation	0		0.2V _{DD}	V	
Input voltage, low	V _{IL1}	Note 1	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0		0.2V _{DD}	
	V _{IL2}	P00 to P05, P20, P22, P33,	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
		P34, P70, P72, RESET	1.9 V ≤ V _{DD} < 2.2 V	0		0.15V _{DD}	
	V _{IL3}	P10 to P17, P130, P131	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0		0.2V _{DD}	
	V _{IL4}	X1, X2, XT1, XT2	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0		0.1V _{DD}	
	V _{IL5}	P25, P27	2.2 V ≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0		0.2V _{DD}	
Input voltage, high	V _{IH1}	Note 1	2.2 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH2}	P00 to P05, P20, P22, P33,	2.2 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
		P34, P70, P72, RESET	1.9 V ≤ V _{DD} < 2.2 V	0.85V _{DD}		V _{DD}	
	V _{IH3}	P10 to P17, P130, P131	2.2 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
	V _{IH4}	X1, X2, XT1, XT2	2.2 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0.85V _{DD}		V _{DD}	
	V _{IH5}	P25, P27	2.2 V ≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
			1.9 V ≤ V _{DD} < 2.2 V	0.8V _{DD}		V _{DD}	
Output voltage, low	V _{OL1}	For pins other than P40 to P47, P50 to P57, lo _L = 1.6 mA ^{Note 2}	4.5 V ≤ V _{DD} ≤ 5.5 V			0.4	V
		P40 to P47, P50 to P57 I _{OL} = 8 mA ^{Note 2}	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			1.0	V
	V _{OL2}	I _{OL} = 400 μA ^{Note 2}	1.9 V ≤ V _{DD} ≤ 5.5 V			0.5	V
Output voltage, high	V _{OH1}	loH = −1 mA ^{Note 2}	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$	V _{DD} - 1.0			V
		$I_{OH} = -100 \ \mu A^{Note 2}$	1.9 V ≤ V _{DD} ≤ 5.5 V	V _{DD} - 0.5			V
Input leakage current, low	ILIL1	V1 = 0 V	Except X1, X2, XT1, XT2			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
Input leakage current, high	Ішн1	Vi = VDD	Except X1, X2, XT1, XT2			3	μΑ
	I _{LIH2}		X1, X2, XT1, XT2			20	μΑ

Notes 1. P21, P23, P24, P26, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P71, P120 to P127

2. Per pin

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output leakage current, low	ILOL1	Vo = 0 V				-3	μΑ
Output leakage current, high	ILOH1	Vo = VDD				3	μΑ
Supply voltage	I _{DD1}	Operating	fxx = 12.5 MHz, V _{DD} = 5.0 V ±10%		24	40	mA
		mode	$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		8	17	mA
			$fxx = 2 \text{ MHz}, V_{DD} = 2.0 \text{ V } \pm 5\%$		2	10	mA
	I _{DD2}	HALT mode	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		8	20	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		2	10	mA
			$fxx = 2 \text{ MHz}, V_{DD} = 2.0 \text{ V } \pm 5\%$		0.7	7	mA
	Іррз	IDLE mode	$fxx = 12.5 \text{ MHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		1	3	mA
			$fxx = 6 \text{ MHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		0.5	1.3	mA
			$fxx = 2 \text{ MHz}, V_{DD} = 2.0 \text{ V } \pm 5\%$		0.3	0.9	mA
	I _{DD4}	Operating	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		130	500	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		90	350	μΑ
			$fxx = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} < 2.7 \text{ V}$		80	300	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		70	250	μΑ
	I _{DD5}	HALT	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		60	200	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		20	160	μΑ
			$fxx = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} < 2.7 \text{ V}$		15	120	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		10	100	μΑ
	I _{DD6}	IDLE	$fxx = 32 \text{ kHz}, V_{DD} = 5.0 \text{ V} \pm 10\%$		50	190	μΑ
		mode ^{Note}	$fxx = 32 \text{ kHz}, V_{DD} = 3.0 \text{ V} \pm 10\%$		15	150	μΑ
			$fxx = 32 \text{ kHz}, 2.0 \text{ V} \le V_{DD} < 2.7 \text{ V}$		12	110	μΑ
			$fxx = 32 \text{ kHz}, 1.9 \text{ V} \le V_{DD} < 2.0 \text{ V}$		7	90	μΑ
Data retention voltage	VDDDR	HALT, IDLE m	odes	1.9		5.5	V
Data retention current	IDDDR	STOP mode	V _{DD} = 2.0 V ±5%		2	10	μΑ
			V _{DD} = 5.0 V ±10%		10	50	μΑ
Pull-up resistor	R∟	Vı = 0 V		10	30	100	kΩ

Note When the main system clock is stopped and the subsystem clock is operating.

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	tcyk	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	80			ns
		2.7 V ≤ V _{DD} < 4.5 V	160			ns
		2.0 V ≤ V _{DD} < 2.7 V	320			ns
		1.9 V ≤ V _{DD} < 2.0 V	500			ns
Address setup time	t sast	V _{DD} = 5.0 V ±10%	(0.5 + a) T – 20			ns
(to ASTB↓)		V _{DD} = 3.0 V ±10%	(0.5 + a) T - 40			ns
		V _{DD} = 2.0 V ±5%	(0.5 + a) T - 80			ns
Address hold time	t HSTLA	V _{DD} = 5.0 V ±10%	0.5T – 19			ns
(from ASTB↓)		V _{DD} = 3.0 V ±10%	0.5T – 24			ns
		V _{DD} = 2.0 V ±5%	0.5T – 34			ns
ASTB high-level width	twsтн	V _{DD} = 5.0 V ±10%	(0.5 + a) T - 17			ns
		V _{DD} = 3.0 V ±10%	(0.5 + a) T - 40			ns
		V _{DD} = 2.0 V ±5%	(0.5 + a) T - 110			ns
Address hold time	thra	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
(from RD↑)		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T – 14			ns
Delay time from address to	tdar	V _{DD} = 5.0 V ±10%	(1 + a) T – 24			ns
RD↓		V _{DD} = 3.0 V ±10%	(1 + a) T – 35			ns
		V _{DD} = 2.0 V ±5%	(1 + a) T - 80			ns
Address float time	tfar	V _{DD} = 5.0 V ±10%			0	ns
(from $\overline{RD} \downarrow$)		V _{DD} = 3.0 V ±10%			0	ns
		V _{DD} = 2.0 V ±5%			0	ns
Data input time from	t DAID	V _{DD} = 5.0 V ±10%			(2.5 + a + n) T - 37	ns
address		V _{DD} = 3.0 V ±10%			(2.5 + a + n) T - 52	ns
		V _{DD} = 2.0 V ±5%			(2.5 + a + n) T - 120	ns
Data input time from ASTB \downarrow	t DSTID	V _{DD} = 5.0 V ±10%			(2 + n) T - 35	ns
		V _{DD} = 3.0 V ±10%			(2 + n) T - 50	ns
		V _{DD} = 2.0 V ±5%			(2 + n) T - 80	ns
Data input time from $\overline{\text{RD}} \downarrow$	torio	V _{DD} = 5.0 V ±10%			(1.5 + n) T - 40	ns
		V _{DD} = 3.0 V ±10%			(1.5 + n) T - 50	ns
		V _{DD} = 2.0 V ±5%			(1.5 + n) T - 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(1) Read/write operation (2/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from ASTB↓	tostr	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
to RD↓		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 20			ns
Data hold time (from $\overline{RD}\uparrow$)	thrid	V _{DD} = 5.0 V ±10%	0			ns
		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±5%	0			ns
Address active time from	t DRA	V _{DD} = 5.0 V ±10%	0.5T – 2			ns
RD↑		V _{DD} = 3.0 V ±10%	0.5T – 12			ns
		V _{DD} = 2.0 V ±5%	0.5T – 35			ns
Delay time from RD↑ to	torst	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 40			ns
RD low-level width	twrL	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T - 30			ns
		V _{DD} = 2.0 V ±5%	(1.5 + n) T – 25			ns
Address active time	towa	V _{DD} = 5.0 V ±10%	0.5T – 2			ns
(from $\overline{WR} \uparrow$)		V _{DD} = 3.0 V ±10%	0.5T – 12			ns
		V _{DD} = 2.0 V ±5%	0.5T – 35			ns
Delay time from address to	tdaw	V _{DD} = 5.0 V ±10%	(1 + a) T – 24			ns
WR↓		V _{DD} = 3.0 V ±10%	(1 + a) T – 34			ns
		V _{DD} = 2.0 V ±5%	(1 + a) T - 70			ns
Address hold time	thwa	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
from WR↑		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T – 14			ns
Delay time from ASTB↓ to	tostod	V _{DD} = 5.0 V ±10%			0.5T + 15	ns
data output		V _{DD} = 3.0 V ±10%			0.5T + 30	ns
		V _{DD} = 2.0 V ±5%			0.5T + 240	ns
Delay time from WR↓ to	towod	V _{DD} = 5.0 V ±10%			0.5T – 30	ns
data output		V _{DD} = 3.0 V ±10%			0.5T – 30	ns
		V _{DD} = 2.0 V ±5%			0.5T – 30	ns
Delay time from ASTB↓ to	tostw	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
$\overline{WR} \!\!\downarrow$		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T – 20			ns
Data setup time (to WR↑)	tsodwr	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 20			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 2.0 V ±5%	(1.5 + n) T – 70			ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(1) Read/write operation (3/3)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data hold time (from $\overline{WR}\uparrow$)	thwod	V _{DD} = 5.0 V ±10%	0.5T – 14			ns
		V _{DD} = 3.0 V ±10%	0.5T – 14			ns
		V _{DD} = 2.0 V ±5%	0.5T – 50			ns
Delay time from WR↑ to	towst	V _{DD} = 5.0 V ±10%	0.5T – 9			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T – 9			ns
		V _{DD} = 2.0 V ±5%	0.5T - 30			ns
WR low-level width	twwL	V _{DD} = 5.0 V ±10%	(1.5 + n) T – 25			ns
		V _{DD} = 3.0 V ±10%	(1.5 + n) T – 30			ns
		V _{DD} = 2.0 V ±5%	(1.5 + n) T - 30			ns
Delay time from address to	tadexd	V _{DD} = 5.0 V ±10%	0			ns
EXA↓		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±5%	0			ns
Delay time from EXA↓ to	textah	V _{DD} = 5.0 V ±10%	0.5T – 20			ns
ASTB↓		V _{DD} = 3.0 V ±10%	0.5T - 30			ns
		V _{DD} = 2.0 V ±5%	0.5T – 40			ns
Delay time from RD↑ to	texrds	V _{DD} = 5.0 V ±10%	0			ns
EXA↑		V _{DD} = 3.0 V ±10%	0			ns
		V _{DD} = 2.0 V ±5%	0			ns
Delay time from WR↑ to	texwos	V _{DD} = 5.0 V ±10%	Т			ns
EXA↑		V _{DD} = 3.0 V ±10%	Т			ns
		V _{DD} = 2.0 V ±5%	Т			ns
Delay time from EXA↑ to	texadr	V _{DD} = 5.0 V ±10%	0.5T			ns
ASTB↑		V _{DD} = 3.0 V ±10%	0.5T			ns
		V _{DD} = 2.0 V ±5%	0.5T			ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

(2) External wait timing (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input time from address to	t dawt	V _{DD} = 5.0 V ±10%			(2 + a) T - 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			(2 + a) T - 60	ns
		V _{DD} = 2.0 V ±5%			(2 + a) T - 300	ns
Input time from ASTB↓ to	tostwt	V _{DD} = 5.0 V ±10%			1.5T – 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			1.5T - 60	ns
		V _{DD} = 2.0 V ±5%			1.5T – 260	ns
Hold time from ASTB↓ to	tнsтwт	V _{DD} = 5.0 V ±10%	(0.5 + n) T + 5			ns
WAIT		V _{DD} = 3.0 V ±10%	(0.5 + n) T + 10			ns
		V _{DD} = 2.0 V ±5%	(0.5 + n) T + 30			ns
Delay time from ASTB↓ to	tostwth	V _{DD} = 5.0 V ±10%			(1.5 + n) T – 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1.5 + n) T - 60	ns
		V _{DD} = 2.0 V ±5%			(1.5 + n) T - 90	ns
Input time from RD↓ to	†DRWTL	V _{DD} = 5.0 V ±10%			T – 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			T – 60	ns
		V _{DD} = 2.0 V ±5%			T – 70	ns
Hold time from RD↓ to	t HRWT	V _{DD} = 5.0 V ±10%	nT + 5			ns
WAIT		V _{DD} = 3.0 V ±10%	nT + 10			ns
		V _{DD} = 2.0 V ±5%	nT + 30			ns
Delay time from RD↓ to	t DRWTH	V _{DD} = 5.0 V ±10%			(1 + n) T - 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1 + n) T - 60	ns
		V _{DD} = 2.0 V ±5%			(1 + n) T - 90	ns
Data input time from WAIT	t DWTID	V _{DD} = 5.0 V ±10%			0.5T – 5	ns
		V _{DD} = 3.0 V ±10%			0.5T - 10	ns
		V _{DD} = 2.0 V ±5%			0.5T - 30	ns
Delay time from WAIT↑ to	t DWTR	V _{DD} = 5.0 V ±10%	0.5T			ns
RD↑		V _{DD} = 3.0 V ±10%	0.5T			ns
		V _{DD} = 2.0 V ±5%	0.5T + 5			ns
Delay time from WAIT↑ to	t DWTW	V _{DD} = 5.0 V ±10%	0.5T			ns
WR↑		V _{DD} = 3.0 V ±10%	0.5T			ns
		V _{DD} = 2.0 V ±5%	0.5T + 5			ns
Input time from WR↓ to	towwtl	V _{DD} = 5.0 V ±10%			T – 40	ns
WAIT↓		V _{DD} = 3.0 V ±10%			T - 60	ns
		V _{DD} = 2.0 V ±5%			T – 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

a: 1 (during address wait), otherwise, 0

(2) External wait timing (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Hold time from WR↓ to	tнwwт	V _{DD} = 5.0 V ±10%	nT + 5			ns
WAIT		V _{DD} = 3.0 V ±10%	nT + 10			ns
		V _{DD} = 2.0 V ±5%	nT + 30			ns
Delay time from WR↓ to	t DWWTH	V _{DD} = 5.0 V ±10%			(1 + n) T - 40	ns
WAIT↑		V _{DD} = 3.0 V ±10%			(1 + n) T - 60	ns
		V _{DD} = 2.0 V ±5%			(1 + n) T - 90	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

(3) Serial Operation (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V) (1/2)

(a) 3-wire serial I/O mode (SCK: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy1	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	640			ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	1,280			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	2,560			ns
		1.9 V ≤ V _{DD} < 2.0 V	4,000			ns
SCK high-/low-level	t кн1,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	270			ns
width	t KL1	$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	590			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1,180			ns
		1.8 V ≤ V _{DD} < 2.0 V	1,900			ns
SI setup time (to SCK↑)	tsıkı	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	10			ns
		1.9 V ≤ V _{DD} < 2.7 V	30			ns
SI hold time (from SCK↑)	t _{HIK1}		40			ns
SO output delay time (from SCK↓)	tDSO1				30	ns
SO output hold time (from SCK↑)	thso1		0.5tkcy1 - 50			ns

(b) 3-wire serial I/O mode (SCK: External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	640			ns
		2.7 V ≤ VDD < 4.5 V	1,280			ns
		2.0 V ≤ V _{DD} < 2.7 V	2,560			ns
		1.9 V ≤ V _{DD} < 2.0 V	4,000			ns
SCK high-/low-level	t кн2,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	320			ns
width	t KL2	2.7 V ≤ V _{DD} < 4.5 V	640			ns
		2.0 V ≤ V _{DD} < 2.7 V	1,280			ns
		1.9 V ≤ V _{DD} < 2.0 V	2,000			ns
SI setup time (to SCK↑)	tsık2	2.7 V ≤ V _{DD} ≤ 5.5 V	10			ns
		1.9 V ≤ V _{DD} < 2.7 V	30			ns
SI hold time (from SCK↑)	tHIK2		40			ns
SO output delay time (from SCK↓)	tDSO2				30	ns
SO output hold time (from SCK↑)	tHSO2		0.5tkcy2 - 50			ns

(c) UART mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	417			ns
		2.7 V ≤ V _{DD} < 4.5 V	833			ns
		1.9 V ≤ V _{DD} < 2.7 V	1,667			ns
ASCK high-/low-level	tкнз,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	208			ns
width	t _{KL3}	2.7 V ≤ V _{DD} < 4.5 V	416			ns
		1.9 V ≤ V _{DD} < 2.7 V	833			ns

(3) Serial Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$) (2/2)

(d) I²C bus mode (μ PD78F4225Y only)

F	arameter	Symbol	Standa	rd Mode	High-Spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 cloc	k frequency	fclk	0	100	0	400	kHz
Bus free ti and start o	me (between stop	t BUF	4.7	-	1.3	_	μs
Hold time ^N	lote1	thd:sta	4.0	-	0.6	-	μs
Low-level	width of SCL0	tLOW	4.7	-	1.3	-	μs
High-level clock	width of SCL0	tніgн	4.0	-	0.6	_	μs
Setup time conditions	of start/restart	tsu:sta	4.7	-	0.6	_	μs
Data hold time	When using CBUS-compatible master	thd : dat	5.0	_	_	-	μs
	When using I ² C bus		_O Note 2	-	ONote 2	0.9 ^{Note 3}	μs
Data setup	time	tsu : dat	250	-	100Note 4		ns
Rise time of SCL0 sign	of SDA0 and als	tr	-	1,000	20 + 0.1Cb ^{Note 5}	300	ns
Fall time o SCL0 sign	f SDA0 and als	tF	-	300	20 + 0.1Cb ^{Note 5}	300	ns
Setup time	of stop condition	t su : sto	4.0	_	0.6	_	μs
Pulse widt restricted l	h of spike by input filter	tsp	-	-	0	50	ns
Load capa bus line	citance of each	Cb	_	400	_	400	pF

- **Notes 1.** For the start condition, the first clock pulse is generated after the hold time.
 - 2. To fill the undefined area of the SCL0 falling edge, it is necessary for the device to provide an internal SDA0 signal (on V_{IHmin.}) with at least 300 ns of hold time.
 - 3. If the device does not extend the SCL0 signal low-level hold time (tLow), only the maximum data hold time thd: DAT needs to be satisfied.
 - **4.** The high-speed mode I²C bus can be used in a standard mode I²C bus system. In this case, the conditions described below must be satisfied.
 - If the device does not extend the SCL0 signal low-level hold time $t_{SU\,:\,DAT} \geq 250~ns$
 - If the device extends the SCL0 signal low-level hold time

 Be sure to transmit the data bit to the SDA0 line before the SCL0 line is released (tRmax. + tsu : DAT = 1,000 + 250 = 1,250 ns by standard mode I²C bus specification)
 - 5. Cb: Total capacitance per bus line (unit: pF)

(4) Clock Output Operation (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PCL cycle time	tcycL	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \text{ nT}$	80		31,250	ns
PCL high-/low-level width	tcll, tclн	$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 0.5\text{T} - 10$	30		15,615	ns
PCL rise/fall time	tclr,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			5	ns
	tclf	2.7 V ≤ V _{DD} < 4.5 V			10	ns
		$1.9 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			20	ns

Remark T: tcyk = 1/fxx (fxx: Main system clock frequency)

n: Division ratio set by software in the CPU

When using the main system clock: n = 1, 2, 4, 8, 16, 32, 64, 128
When using the subsystem clock: n = 1

(5) Other Operations (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twniL,		10			μs
Interrupt input high-/ low-level width	twiть, twiтн	INTP0 to INTP5	100			ns
RESET high-/low-level width	twrst,		10			μs

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = 1.9 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Notes 1, 2		6.25 MHz < fxx ≤ 12.5 MHz, 4.5 V ≤ V _{DD} ≤ 5.5 V, AV _{DD} = V _{DD}			±1.2	%FSR
		$3.125 \text{ MHz} < \text{fxx} \le 6.25 \text{ MHz},$ $2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, \text{AVdd} = \text{Vdd}$			±1.2	%FSR
		2 MHz < $fxx \le 3.125$ MHz, 2.0 V $\le V_{DD} \le 5.5$ V, $AV_{DD} = V_{DD}$			±1.6	%FSR
					±1.6	%FSR
Conversion time	tconv		14		144	μs
Sampling time	tsamp		24/fxx			μs
Analog input voltage	VIAN		AVss		AVDD	V
Reference voltage	AV _{DD}		V _{DD}	V _{DD}	V _{DD}	V
Resistance between AVDD and AVSS	Ravrefo	A/D conversion is not performed		40		kΩ

Notes 1. Excludes quantization error (±0.2%FSR).

2. This value is indicated as a ratio to the full-scale value (%FSR).

Remark fxx: Main system clock frequency

D/A Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Overall error Notes 1, 2		$2.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ A}$ $R = 10 \text{ M}\Omega, 2.0 \text{ V} \le \text{A}$				±0.6	%FSR
		1.9 V \leq V _{DD} \leq 2.0 V, A R = 10 MΩ, 1.9 V \leq A				±1.2	%FSR
Settling time		Load conditions:	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
		C = 30 pF	2.7 V ≤ AV _{REF1} < 4.5 V			15	μs
			1.9 V ≤ AVREF1 < 2.7 V			20	μs
Output resistance	Ro	DACS0, 1 = 55H			8		kΩ
Reference voltage	AV _{REF1}			1.9		V _{DD}	V
AVREF1 current	Alref1	For only 1 channel				2.5	mA

Notes 1. Excludes quantization error (±0.2%FSR).

2. This value is indicated as a ratio to the full-scale value (%FSR).

Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode	1.9		5.5	V
Data retention current	IDDDR	VDDDR = 5.0 V ±10%		10	50	μΑ
		VDDDR = 2.0 V ±5%		2	10	μΑ
V _{DD} rise time	trvd		200			μs
V _{DD} fall time	t FVD		200			μs
V _{DD} hold time (from STOP mode setting)	thvd		0			ms
STOP release signal input time	torel		0			ms
Oscillation stabilization	twait	Crystal resonator	30			ms
wait time		Ceramic resonator	5			ms
Input voltage, low	VIL	RESET, P00/INTP0 to P05/INTP5	0		0.1VDDDR	V
Input voltage, high	ViH		0.9Vdddr		VDDDR	V

Flash Memory Programming Characteristics

 $(T_A = 10 \text{ to } 40^{\circ}\text{C}, V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, V_{PP} = 9.7 \text{ to } 10.3 \text{ V})$ (1/2)

(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency	fxx	4.5 V ≤ V _{DD} ≤ 5.5 V	2		12.5	MHz
		2.7 V ≤ V _{DD} < 4.5 V	2		6.25	MHz
		2.0 V ≤ V _{DD} < 2.7 V	2		3.125	MHz
		1.9 V ≤ V _{DD} < 2.0 V	2	2	2	MHz
Oscillation	fx	4.5 V ≤ V _{DD} ≤ 5.5 V	4		25	MHz
frequency ^{Note 1}		2.7 V ≤ V _{DD} < 4.5 V	4		12.5	MHz
		2.0 V ≤ V _{DD} < 2.7 V	4		6.25	MHz
		1.9 V ≤ V _{DD} < 2.0 V	4	4	4	MHz
Supply voltage	V _{DD}		1.9		5.5	٧
	V _{PPL}	When detecting VPP low level	0		0.2V _{DD}	٧
	V _{PP}	When detecting V _{PP} high level	0.9V _{DD}		1.1VDD	٧
	V _{PPH}	When detecting VPP high voltage	9.7	10	10.3	٧
Write time	Cwrt		20Note 2			times
Operating temperature	Та		-40		85	°C
Storage temperature	T _{stg}		-65		125	°C
Programming temperature	TPRG		10		40	°C

Notes 1. When rewriting without using handshake mode

2. Operation cannot be guaranteed when the number of rewrites exceeds 20. In the case of K standard products, operation cannot be guaranteed when the number of rewrites exceeds 5.

- Cautions 1. If writing is not successful in the initial write operation, execute the program command again, and then execute the verify command to confirm that the write operation has been completed normally (K standard).
 - 2. Handshake mode is supported by products other than those with the K standard.

- Remarks 1. The fifth letter from the left in the lot number indicates the standard of the product.
 - 2. After executing the program command, execute the verify command to confirm that the write operation has been completed normally.
 - 3. Handshake mode is the CSI write mode that uses P24. Handshake mode can be used with the PG-FR3 and FL-PR3.
 - 4. The I standard only applies to ES (engineering sample) products. Because these products are engineering samples, their operation cannot be guaranteed.

Flash Memory Programming Characteristics

 $(T_A = 10 \text{ to } 40^{\circ}\text{C}, V_{DD} = AV_{DD} = 1.9 \text{ to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, V_{PP} = 9.7 \text{ to } 10.3 \text{ V})$ (2/2)

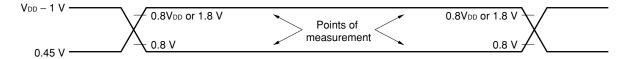
(2) Write erase characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VPP supply voltage	V _{PP2}	During flash memory programming	9.7	10.0	10.3	V
V _{DD} supply current	IDD	When VPP = VPP2, fxx = 12.5 MHz			40	mA
VPP supply current	IPP	When VPP = VPP2			100	mA
Step erase time	Ter	Note 1		0.2		s
Overall erase time per area	Tera	When step erase time = 0.2 s ^{Note 2}			20	s/area
Write-back time	Twb	Note 3		50		ms
Number of write-backs per write-back command	Cwb	When write-back time = 50 ms ^{Note 4}			60	times/ write- back command
Number of erase/ write-backs	Cerwb				16	times
Step write time	Twr	Note 5		50		μs
Overall write time per word	Twrw	When step write time = 50 μ s (1 word = 1 byte) ^{Note 6}	50		500	μs/ word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewriteNote 7		20		times/ area

Notes 1. The recommended setting value for the step erase time is 0.2 s.

- 2. The prewrite time before erasure and the erase verify time (write-back time) is not included.
- 3. The recommended setting value for the write-back time is 50 ms.
- **4.** Write-back is executed once by the issuance of the write-back command. Therefore, the retry times must be the maximum value minus the number of commands issued.
- **5.** The recommended step write time setting value is 50 μ s.
- 6. The actual write time per word is 100 μ s longer. The internal verify time during or after a write is not included.
- 7. When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

```
Example: P: Write, E: Erase Shipped product \rightarrow P \rightarrow E \rightarrow P\rightarrow E \rightarrow P: 3 rewrites Shipped product \rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P: 3 rewrites
```

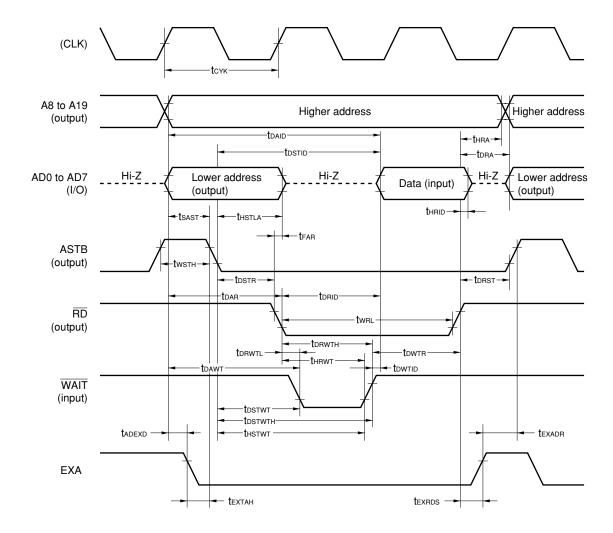

Remarks 1. The range of the operating clock during flash memory programming is the same as the range during normal operation.

2. When using the PG-FP3, the time parameters that need to be downloaded from the parameter files for write/erase are automatically set. Unless otherwise directed, do not change the set values.

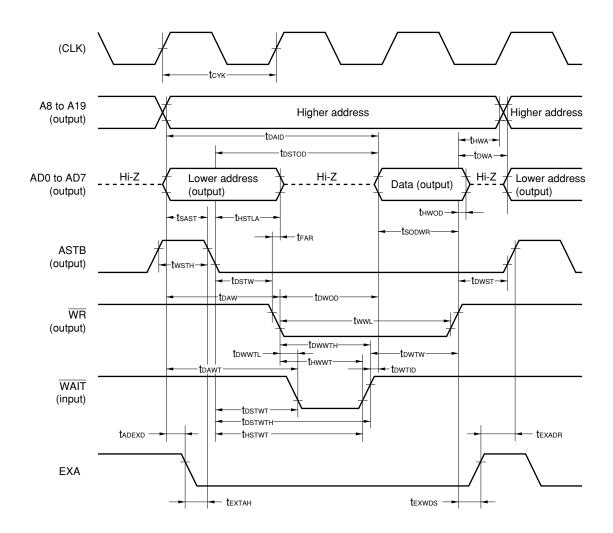
29.3 Timing Charts

AC Timing Measurement Points

(1) μ PD784224, 784225, 784224Y, 784225Y

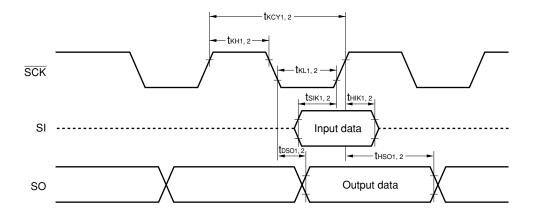


(2) μ PD78F4225, 78F4225Y

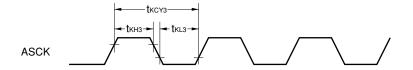


Timing Waveforms

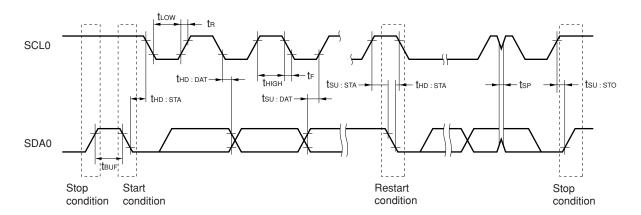
(1) Read operation

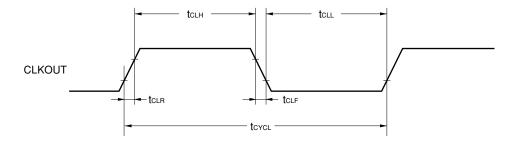


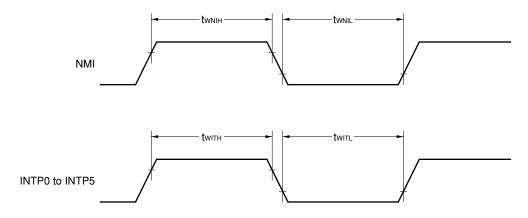
(2) Write operation

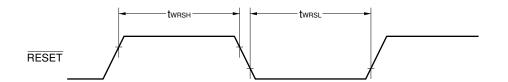


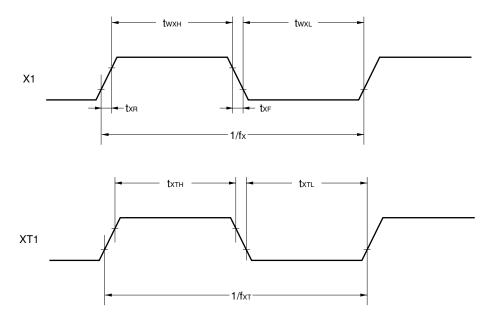
Serial Operation

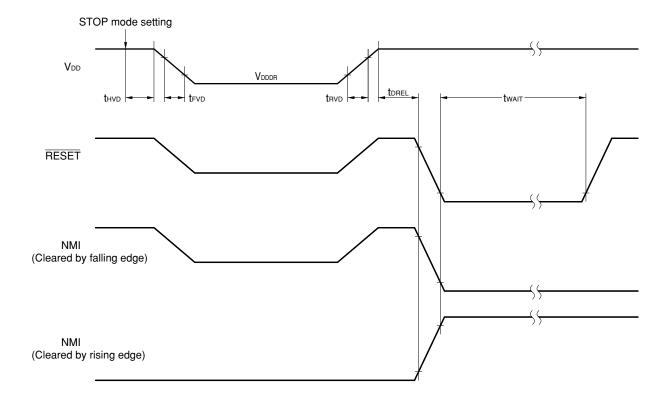

(1) 3-wire serial I/O mode

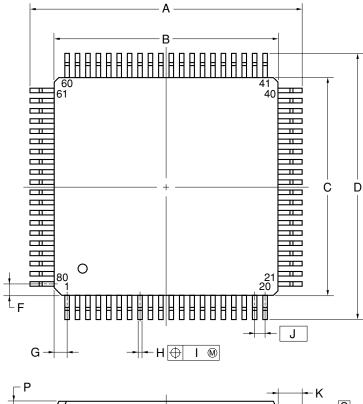

(2) UART mode

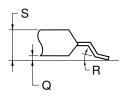

(3) I²C bus mode (μ PD784224Y, 784225Y, and 78F4255Y only)

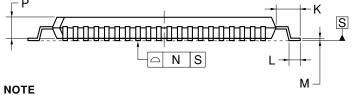

Clock Output Timing


Interrupt Input Timing


Reset Input Timing

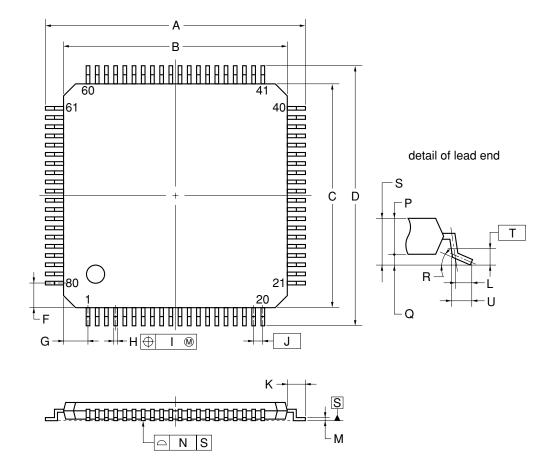

Clock Timing


Data Retention Characteristics



80-PIN PLASTIC QFP (14x14)

detail of lead end



Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
K	1.60±0.20
L	0.80±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3° ^{+7°} -3°
S	1.70 MAX.
	DOUCC SE OFT

P80GC-65-8BT-1

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
- 1	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	0.145±0.05
N	0.08
Р	1.0
Q	0.1±0.05
R	3°+4° -3°
S	1.1±0.1
Т	0.25
U	0.6±0.15
	DOOCK EO OFIL 1

P80GK-50-9EU-1

CHAPTER 31 RECOMMENDED SOLDERING CONDITIONS

The PD784225, 784225Y Subseries should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 31-1. Soldering Conditions for Surface Mount Type (1/3)

(1) PD784224GK-80-pin plastic TQFP (fine pitch) (12 -9EU: 12) PD784224YGK--9EU: 80-pin plastic TQFP (fine pitch) (12 PD784225GK--9EU: 80-pin plastic TQFP (fine pitch) (12 12) PD784225YGK--9EU: 80-pin plastic TQFP (fine pitch) (12 12) PD78F4225GK-9EU: 80-pin plastic TQFP (fine pitch) (12 12) PD78F4225YGK-9EU: 80-pin plastic TQFP (fine pitch) (12 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-103-2
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65%RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

(2) PD784225GC- -8BT: 80-pin plastic QFP (14 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 31-1. Soldering Conditions for Surface Mount Type (2/3)

(3) μ PD784224GC- $\times\times$ -8BT: 80-pin plastic QFP (14 \times 14) μ PD784224YGC- $\times\times$ -8BT: 80-pin plastic QFP (14 \times 14) μ PD784225YGC- $\times\times$ -8BT: 80-pin plastic QFP (14 \times 14) μ PD78F4225GC-8BT: 80-pin plastic QFP (14 \times 14) μ PD78F4225YGC-8BT: 80-pin plastic QFP (14 \times 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 hours)	VP15-107-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that prepake at 125°C for 10 hours)	WS60-107-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 31-1. Soldering Conditions for Surface Mount Type (3/3)

(4) PD784224GC- -8BT-A: 80-pin plastic QFP (14 14) PD784225GK- -9EU-A: 80-pin plastic TQFP (fine pitch) (12 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-203-3
Wave soldering	For details, contact an NEC Electronics sales representative.	_
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark Products that have the part numbers suffixed by "-A" are lead-free products.

(5) PD784224YGC- -8BT-A: 80-pin plastic QFP (14 14)

PD784225GC- -8BT-A: 80-pin plastic QFP (14 14)

PD784225YGC- -8BT-A: 80-pin plastic QFP (14 14) PD78F4225GC-8BT-A: 80-pin plastic QFP (14 14)

PD78F4225GC-8BT-A: 80-pin plastic QFP (14 14) PD78F4225YGC-8BT-A: 80-pin plastic QFP (14 14)

PD784224GK- -9EU-A: 80-pin plastic TQFP (fine pitch) (12 12)

PD784224YGK- -9EU-A: 80-pin plastic TQFP (fine pitch) (12 12)

PD784225YGK- -9EU-A: 80-pin plastic TQFP (fine pitch) (12 12)

PD78F4225GK-9EU-A: 80-pin plastic TQFP (fine pitch) (12 12)

PD78F4225YGK-9EU-A: 80-pin plastic TQFP (fine pitch) (12 12)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	When the pin pitch of the package is 0.65 mm or more, wave soldering can also be performed. For details, contact an NEC Electronics sales representative.	_
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark Products that have the part numbers suffixed by "-A" are lead-free products.

APPENDIX A MAJOR DIFFERENCES BETWEEN THE $\mu\text{PD784225},$ 784225Y SUBSERIES, $\mu\text{PD784216A}$ SUBSERIES AND $\mu\text{PD780058A}$ SUBSERIES

	Series Name			
Item		μ PD784225 Subseries	μPD784216A Subseries	μPD780058 Subseries
CPU		16-bit CPU		8-bit CPU
Minimum instruction	When the main system clock is selected	160 ns (@ 12.5 MHz operation)		400 ns (@ 5.0 MHz operation)
execution time	When the subsystem clock is selected	61 μs (@ 32.768 kHz ope	eration	122 μs (@ 32.768 kHz operation)
Memory space		1 MB		64 KB
I/O ports	Total	67	86	68
	CMOS inputs	8	8	2
	CMOS I/O	59	72	62
	N-ch open-drain I/O	_	6	4
Pins with added	Pins with pull-up resistors	57	70	66 (62 for flash memory versions)
functions Note	LED direct drive outputs	16	22	12
	Middle voltage pins	_	6	4
Timer/counters		 16-bit timer/event counter × 1 unit 8-bit timer/event counter × 4 units 8-bit timer × 2 units 	16-bit timer/event counter × 1 unit 8-bit timer/event counter × 6 units	16-bit timer/event counter × 1 unit 8-bit timer/event counter × 2 units
Serial interfaces		UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O) × 1 channel		UART (time division transmission function)/ IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, 2-wire serial I/O, SBI) × 1 channel CSI (3-wire serial I/O with automatic communication function) × 1 channel
Interrupts	NMI pin	Yes		No
	Macro service	Yes		No
	Context switching	Yes		No
Programmable priority		4 levels		2 levels
Standby function		HALT/STOP/IDLE mode In low power consumption mode: HALT or IDLE mode		HALT/STOP mode
ROM correction		Yes	No	Yes
Package		80-pin plastic QFP (14 × 14) 80-pin plastic TQFP (fine pitch) (12 × 12)	100-pin plastic QFP (fine pitch) (14 × 14) 100-pin plastic QFP (14 × 20)	80-pin plastic QFP (14 × 14) 80-pin plastic TQFP (fine pitch) (12 × 12)

Note The pins with added functions are included in the I/O pins.

APPENDIX B DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD784225 Subseries. Figure B-1 shows the development tools.

• For PC98-NX series

Unless otherwise specified, products supported by IBM PC/ATTM and compatible machines can be used for the PC98-NX series. When using the PC98-NX series, refer to the explanation of IBM PC/AT and compatible machines.

For Windows

Unless otherwise specified, "Windows" indicates the following OSs.

- Windows 3.1
- Windows 95, 98, 2000
- Windows NT™ Ver. 4.0

Figure B-1. Development Tool Configuration (1/2)

(1) When using in-circuit emulator IE-78K4-NS

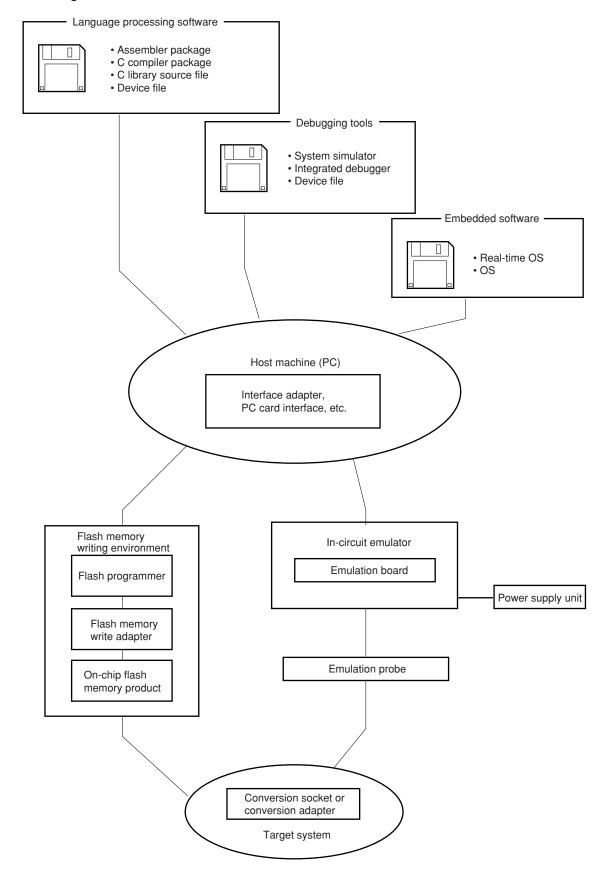
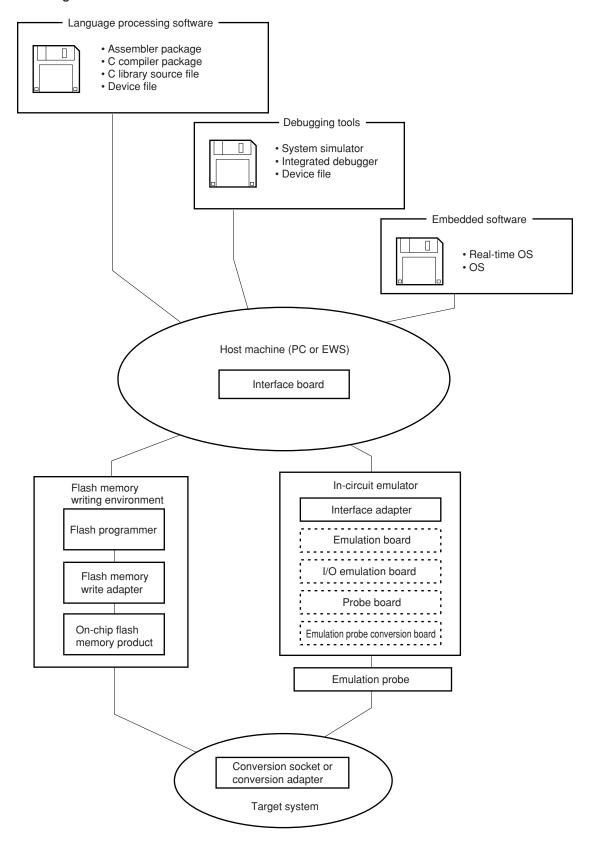



Figure B-1. Development Tool Configuration (2/2)

(2) When using in-circuit emulator IE-784000-R

Remark Parts enclosed by broken lines vary depending on the product. Refer to B.3.1 Hardware.

B.1 Language Processing Software

SP78K4 78K/IV Series Development tools (software) common to the 78K/IV Series are combined in this software package package. Part number: µS×××SP78K4 RA78K4 Assembler package Program that converts a program written in mnemonic to an executable microcontroller In addition, this assembler package has functions to create symbol tables and optimize branch instructions, etc. automatically. Use this in combination with the device file (DF784225) sold separately. <Caution on using in PC environment> Although the assembler package is a DOS-based application, it can be used in the Windows environment by using the Project Manager (included in the assembler package) on Windows. Part number: μ S×××RA78K4 CC78K4 C compiler package Program that converts a program written in C language to an executable microcontroller object code. Use this in combination with the assembler package and device file sold separately. <Caution on using in PC environment> Although the C compiler package is a DOS-based application, it can be used in the Windows environment by using the Project Manager (included in the assembler package) on Windows. Part number: μ S×××CC78K4 DF784225 Note Device file File containing device-specific information. Use this in combination with the tools sold separately (RA78K4, CC78K4, SM78K4, ID78K4-NS, ID78K4). The supported OS and host machine differ depending on the tool combinations. Part number: µS×××DF784225 CC78K4-L C library source file Function source file configuring the object library included in the C compiler package. This is required when changing the object library included in the C compiler package to accord with the user's specifications. Because this is a source file, the operating environment does not depend on the OS. Part number: µS×××CC78K4-L

Note The DF784225 can be used commonly for all the RA78K4, CC78K4, SM78K4, ID78K4-NS, and ID78K4.

603

* Remark The xxxx part number differs depending on the host machine and operating system used.

 $\mu \mathsf{S} \times \times \times \mathsf{RA78K4}$ $\mu \mathsf{S} \times \times \times \mathsf{CC78K4}$

\dashv	××××	Host Machine	OS	Supply Medium
	AB13	PC-9800 series,	Japanese Windows	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	English Windows	
	AB17		Japanese Windows	CD-ROM
	BB17		English Windows	
	3P17	HP9000 series 700 TM	HP-UX TM (Rel. 10.10)	
	3K17	SPARCstation TM	SunOS TM (Rel. 4.1.4), Solaris TM (Rel. 2.5.1)	

 μ S××××DF784225 μ S××××CC78K4-L

┨	××××	Host Machine	OS	Supply Medium
	AB13	PC-9800 series,	Japanese Windows	3.5-inch 2HD FD
	BB13	IBM PC/AT compatibles	English Windows	
	3P16	HP9000 series 700	HP-UX (Rel. 10.10)	DAT
	3K13	SPARCstation	SunOS (Rel. 4.1.4)	3.5-inch 2HD FD
	3K15		Solaris (Rel. 2.5.1)	1/4-inch CGMT

B.2 Flash Memory Writing Tools

Flashpro III (Part No.:FL-PR3, PG-FP3) Flash programmer	Dedicated flash programmer for microcontrollers with on-chip flash memory.
FA-80GC-8BT FA-80GK-9EU	Adapter for flash memory writing. Used with the Flashpro III connected. • FA-80GC-8BT: For 80-pin plastic QFP (GC-8BT type)
Flash memory writing adapter	• FA-80GK-9EU: For 80-pin plastic TQFP (GK-9EU type)

Remark The FL-PR3, FA-80GC-8BT, and FA-80GK-9EU are products made by Naito Densei Machida Mfg.Co., Ltd.

For further information, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191)

B.3 Debugging Tools

B.3.1 Hardware (1/2)

(1) When using in-circuit emulator IE-78K4-NS

IE-78K4-NS In-circuit emulator	In-circuit emulator used to debug hardware and software when developing application systems using the 78K/IV Series. Supports the integrated debugger (ID78K4-NS). Use in combination with an interface adapter to connect to the power supply unit, emulation probe, and host machine.	
IE-70000-MC-PS-B Power supply unit	Adapter to supply power from a socket of AC 100 V to 240 V	
IE-70000-98-IF-C Interface adapter	Interface adapter required when a PC-9800 series PC (except notebook type) is used as the host machine for the IE-78K4-NS (C bus supported)	
IE-70000-CD-IF-A PC card Interface	PC card and interface cable required when a notebook PC is used as the host machine for the IE-78K4-NS (PCMCIA socket supported)	
IE-70000-PC-IF-C Interface adapter	Interface adapter required when using an IBM PC/AT compatible as the host machine for the IE-78K4-NS (ISA bus supported)	
IE-70000-PCI-IF-A Interface adapter	Interface adapter required when using a PC that incorporates PCI bus as the host machine for the IE-78K4-NS	
IE-784225-NS-EM1 Emulation board	Board to emulate the peripheral hardware specific to device. Used in combination with an in-circuit emulator.	
NP-80GK Emulation probe	Probe used to connect the in-circuit emulator and the target system. This is for an 80 pin plastic TQFP (fine pitch) (GK-9EU type).	
TGK-080SDW Conversion adapter (refer to Figure B-4)	Conversion adapter to connect the NP-80GK and a target system board on which an 80-pin plastic TQFP (fine pitch) (GK-9EU type) can be mounted	
NP-80GC Emulation probe	Probe used to connect the in-circuit emulator and the target system. This is for an 80 pin plastic QFP (GC-8BT type).	
EV-9200GC-80 Conversion socket (refer to Figures B-2 and B-3)	Conversion socket to connect the NP-80GC and a target system board on which an 80-pin plastic QFP (GC-8BT type) can be mounted	

Remarks 1. The NP-80GK and NP-80GC are products made by Naito Densei Machida Mfg.Co., Ltd. For further information, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191)

2. The TGK-080SDW is a product made by Tokyo Eletech Corporation.

For further information, contact Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL: +81-3-3820-7112)

Osaka Electronics Department (TEL: +81-6-6244-6672)

- 3. The EV-9200GC-80 is sold in sets of 5.
- 4. The TGK-080SDW is sold individually.

B.3.1 Hardware (2/2)

(2) When using in-circuit emulator IE-784000-R

IE-784000-R In-circuit emulator	The IE-784000-R is an in-circuit emulator common to the 78K/IV Series, and is used in combination with IE-784000-R-EM and IE-784225-NS-EM1, which are sold separately. This in-circuit emulator debugs the connected host machine. An integrated debugger (ID78K4) and device file (sold separately) are required to enable debugging in C language and structured assembly language at the source program level. More efficient debugging and program verification is possible with functions such as C0 coverage. Connect to a host machine via Ethernet TM or a dedicated bus. An interface adapter (sold separately) is required for connection.	
IE-70000-98-IF-C Interface adapter	Interface adapter required when a PC-9800 series (except notebook type PC) is used as the host machine for the IE-784000-R (C bus supported)	
IE-70000-PC-IF-C Interface adapter	Interface adapter required when using an IBM PC/AT compatible as the host machine (ISA bus supported)	
IE-78000-R-SV3 Interface adapter	Interface adapter and cable required when an EWS is used as the host machine for the IE-784000-R. Connect to a board inside the IE-784000-R. Note that 10Base-5 is supported as the Ethernet. A commercial conversion adapter is required for other systems.	
IE-784000-R-EM	Emulation board common to 78K/IV Series	
IE-784225-NS-EM1 Emulation board	Board to emulate peripheral hardware specific to device	
IE-78K4-R-EX2 Emulation probe conversion board	Conversion board for 80-pin packages required when using the IE-784225-NS-EM1 on IE-784000-R	
EP-78054GK-R Emulation probe	Probe to connect the in-circuit emulator and the target system. For 80-pin plastic TQFP (fine pitch)(GK-9EU type).	
TGK-080SDW Conversion adapter (refer to Figure B-4)	Conversion adapter to connect the EP-78054GK-R and a target system board on which an 80-pin plastic TQFP (fine pitch)(GK-9EU type) can be mounted	
EP-78230GC-R Emulation probe	Probe to connect the in-circuit emulator and the target system. For 80-pin plastic QFP (GC-8BT type).	
EV-9200GC-80 Conversion socket (refer to Figures B-2 and B-3)	Conversion socket to connect the EP-78230GC-R and a target system board on which an 80-pin plastic QFP (GC-8BT type) can be mounted	

Remarks 1. The TGK-080SDW is a product made by Tokyo Eletech Corporation.

For further information, contact Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL: +81-3-3820-7112)

Osaka Electronics Department (TEL: +81-6-6244-6672)

- 2. The EV-9200GC-80 is sold in sets of 5.
- 3. The TGK-080SDW is sold individually.

B.3.2 Software

SM78K4	This enables debugging at the C source level or assembler level while simulating
System simulator	operation of the target system on the host machine.
	The SM78K4 operates on Windows.
	By using the SM78K4, logic verification and performance verification can be performed
	separately to hardware development without using an in-circuit emulator, thus
	improving development efficiency and software quality.
	Use the SM78K4 in combination with the device file (DF784225) sold separately.
	Part number: µSxxxxSM78K4

Remark The xxxx part number differs depending on the host machine and operating system used.

 μ S $\times \times \times$ SM78K4

Host Machine
OS
Supply Medium

AB13
BB13
AB17
BB17
Host Machine
OS
Supply Medium

Japanese Windows
English Windows

CD-ROM
English Windows

ID78K4-NS Integrated debugger (supporting in-circuit emulator IE-78K4-NS)	Windows and OSF/Motif TM are employed as the GUI for PC and EWS respectively providing users with their unique look and operability. In addition, the enhanced C language supported debug function enables the result of a trace to be displayed at the C language level using the window integration function in which the source program, disassemble display, and memory display are linked to the result of trace. Moreover, the efficiency of debugging programs that use a real-time OS can be raised by	
ID78K4 Integrated debugger (supporting in-circuit emulator IE-784000-R)	installing function expansion modules such as task debuggers and system performance analyzers. Control program to debug the 78K/IV Series. Use these integrated debuggers in combination with the device file (DF784225) sold separately.	
	Part number: μSxxxxID78K4-NS, μSxxxxID78K4	

Remark The xxxx part number differs depending on the host machine and operating system used.

 μ S \times \times SM78K4-NS μ S \times \times ID78K4

\exists	xxxx	Host Machine	OS	Supply Medium
	AB13	IBM PC/AT compatible	Japanese Windows	3.5-inch 2HD FD
	BB13		English Windows	
	AB17		Japanese Windows	CD-ROM
	BB17		English Windows	

607

★ B.4 Cautions on Designing Target System

The connection condition diagrams for the emulation probe, conversion socket, and conversion adapter are shown below. Design the system considering the shape of components, etc. to be mounted on the target system in accordance with this configuration.

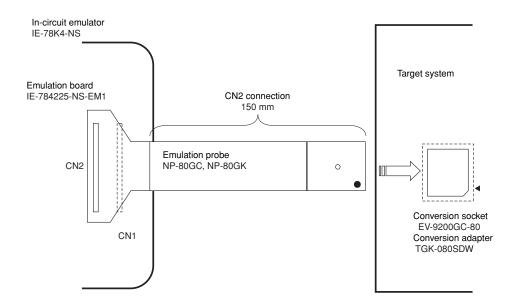
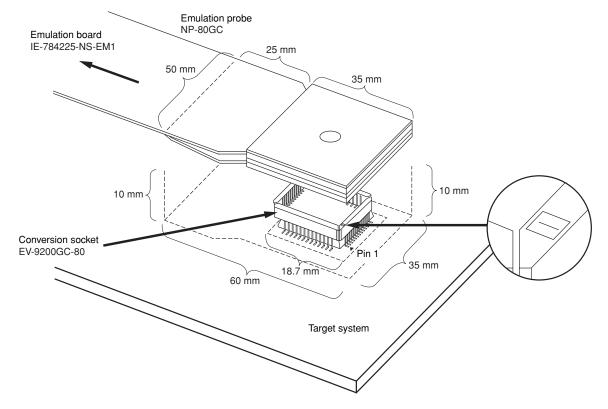



Figure B-2. Distance Between In-Circuit Emulator and Conversion Socket

Remark NP-80GC is a product made by Naito Densei Machida Mfg. Co., Ltd.

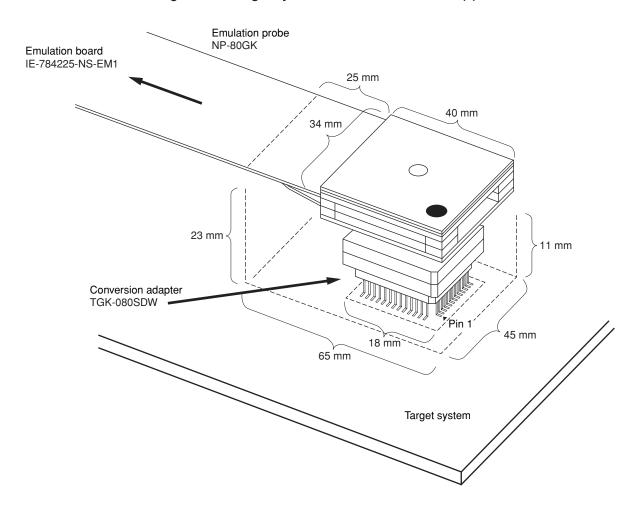


Figure B-4. Target System Connection Conditions (2)

Remark NP-80GK is a product made by Naito Densei Machida Mfg. Co., Ltd. TGK-080SDW is a product made by TOKYO ELETECH CORPORATION.

B.5 Conversion Socket (EV-9200GC-80) and Conversion Adapter (TGK-080SDW)

(1) The package drawing of the conversion socket (EV-9200GC-80) and recommended board installation pattern

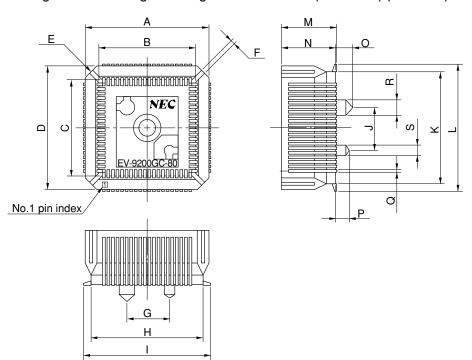
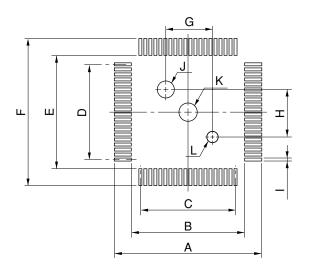



Figure B-5. Package Drawing of EV-9200GC-80 (Reference) (Unit: mm)

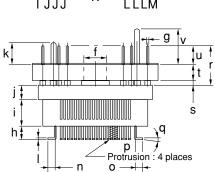
9200		

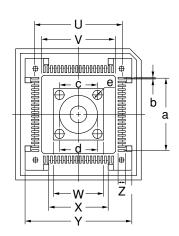
ITEM	MILLIMETERS	INCHES
Α	18.0	0.709
В	14.4	0.567
С	14.4	0.567
D	18.0	0.709
Е	4-C 2.0	4-C 0.079
F	0.8	0.031
G	6.0	0.236
Н	16.0	0.63
I	18.7	0.736
J	6.0	0.236
K	16.0	0.63
L	18.7	0.736
М	8.2	0.323
N	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	φ2.3	φ0.091
S	ø1.5	φ0.059

Figure B-6. Recommended Board Installation Pattern of EV-9200GC-80 (Reference) (Unit: mm)

EV-9200GC-80-P1E

ITEM	MILLIMETERS	INCHES
Α	19.7	0.776
В	15.0	0.591
С	0.65±0.02 × 19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
D	$0.65\pm0.02\times19=12.35\pm0.05$	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
Е	15.0	0.591
F	19.7	0.776
G	6.0±0.05	$0.236^{+0.003}_{-0.002}$
Н	6.0±0.05	$0.236^{+0.003}_{-0.002}$
I	0.35±0.02	0.014 ^{+0.001} _{-0.001}
J	φ2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$
K	φ2.3	φ0.091
L	φ1.57±0.03	ϕ 0.062 $^{+0.001}_{-0.002}$


Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (http://www.necel.com/pkg/en/mount/index.html).


(2) Package drawing of the conversion adapter (TGK-080SDW)

Combined with the emulation probe and mounted on the board.

Figure B-7. TGK-080SDW Package Drawing (Reference) (Unit: mm)

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
Α	18.0	0.709	а	0.5x19=9.5±0.10	0.020x0.748=0.374±0.004
В	11.77	0.463	b	0.25	0.010
С	0.5x19=9.5	0.020x0.748=0.374	С	φ5.3	φ0.209
D	0.5	0.020	d	φ5.3	φ0.209
E	0.5x19=9.5	0.020x0.748=0.374	е	φ1.3	φ0.051
F	11.77	0.463	f	φ3.55	φ0.140
G	18.0	0.709	g	φ0.3	φ0.012
Н	0.5	0.020	h	1.85±0.2	0.073±0.008
T	1.58	0.062	i	3.5	0.138
J	1.2	0.047	j	2.0	0.079
K	7.64	0.301	k	3.0	0.118
L	1.2	0.047	ī	0.25	0.010
М	1.58	0.062	m	14.0	0.551
N	1.58	0.062	n	1.4±0.2	0.055±0.008
0	1.2	0.047	0	1.4±0.2	0.055±0.008
P	7.64	0.301	р	h=1.8 φ1.3	h=0.071 φ0.051
Q	1.2	0.047	q	0~5°	0.000~0.197°
R	1.58	0.062	r	5.9	0.232
S	φ3.55	φ0.140	s	0.8	0.031
T	C 2.0	C 0.079	t	2.4	0.094
U	12.31	0.485	u	2.7	0.106
V	10.17	0.400	v	3.9	0.154
W	6.8	0.268		Т	GK-080SDW-G1E
X	8.24	0.324			

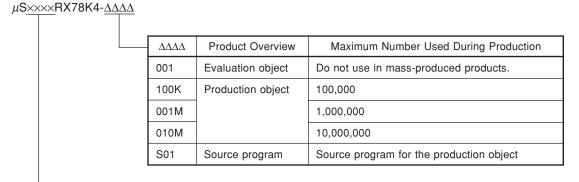
0.583

0.055±0.008

Note Made by TOKYO ELETECH Corp.

14.8 1.4±0.2

APPENDIX C EMBEDDED SOFTWARE


The following embedded software is available for more efficient program development or maintenance of the μ PD784225 Subseries.

Real-Time Operating System

RX78K4 real-time OS	This is a real-time OS complying with the μ ITRON specification. The RX78K4 nucleus and tools to create multiple information tables (configurator) have been added. Use the RX78K4 in combination with the assembler package (RA78K4) and device file (DF784225) (sold separately). Caution on using in PC environment> This real-time OS is a DOS-based application. With Windows, use the RX78K/IV at the DOS prompt.
	Part number: μSxxxxRX78K4-ΔΔΔΔ

Caution When purchasing the RX78K4, fill out the purchase application and sign the license agreement.

Remark The $\times\!\times\!\times\!\times$ and $\Delta\Delta\Delta\Delta$ part numbers vary depending on the host machine and operating system used.

××××	Host Machine	OS	Supply Medium
AA13	PC-9800 series	Japanese Windows ^{Note}	3.5-inch 2HD FD
AB13	IBM PC/AT and compatibles	Japanese Windows ^{Note}	3.5-inch 2HC FD
BB13		English Windows ^{Note}	
3P16	HP9000 series 700	HP-UX (Rel.10.10)	DAT (DDS)
3K13	SPARCstation	SunOS (Rel.4.1.4)	3.5-inch 2HC FD
3K15		Solaris (Rel.2.5.1)	1/4-inch CGMT

Note Also operates in DOS environment.

APPENDIX D REGISTER INDEX

D.1 Register Index

[A] A/D conversion result register (ADCR) 227 A/D converter input selection register (ADIS) 230 A/D converter mode register (ADM) 228 Asynchronous serial interface mode register 1 (ASIM1) 260, 261, 267 Asynchronous serial interface mode register 2 (ASIM2) 260, 261, 267 Asynchronous serial interface status register 1 (ASIS1) 262, 268 Asynchronous serial interface status register 2 (ASIS2) 262, 268
[B] Baud rate generator control register 1 (BRGC1) 262, 263, 269 Baud rate generator control register 2 (BRGC2) 262, 263, 269
[C] Capture/compare control register 0 (CRC0) 152, 155, 157 Clock output control register 0 (CKS) 350, 351 Clock status register (PCS) 94, 466
[D] D/A conversion setting register 0 (DACS0) 248 D/A conversion setting register 1 (DACS1) 248 D/A converter mode register 0 (DAM0) 249 D/A converter mode register 1 (DAM1) 249
[E] External access status enable register (EXAE) 459 External interrupt falling edge enable register 0 (EGN0) 356 External interrupt rising edge enable register 0 (EGP0) 356
[I] I ² C bus control register 0 (IICC0) 295, 296 I ² C bus status register 0 (IICS0) 300 In-service priority register (ISPR) 371 Internal memory size switching register (IMS) 68, 513 Interrupt control register (ADIC) 368 Interrupt mask flag register 0H (MK0H) 369, 370 Interrupt mask flag register 1H (MK1H) 369, 370 Interrupt mask flag register 1L (MK1H) 369, 370 Interrupt mode control register (IMC) 372

Interrupt selection control register (SNMI) ... 374

[M] Macro service mode register ... 401 Memory expansion mode register (MM) ... 437 [0] Oscillation mode selection register (CC) ... 93 Oscillation stabilization time specification register (OSTS) ... 95, 467 [P] Port 0 (P0) ... 106 Port 0 mode register (PM0) ... 128 Port 1 (P1) ... 108 Port 2 (P2) ... 109 Port 2 mode register (PM2) ... 128, 352, 355 Port 3 (P3) ... 113 Port 3 mode register (PM3) ... 128 Port 4 (P4) ... 115 Port 4 mode register (PM4) ... 128 Port 5 (P5) ... 117 Port 5 mode register (PM5) ... 128 Port 6 (P6) ... 119 Port 6 mode register (PM6) ... 128 Port 7 (P7) ... 123 Port 7 mode register (PM7) ... 128 Port 12 (P12) ... 126 Port 12 mode register (PM12) ... 128 Port 13 (P13) ... 127 Port 13 mode register (PM13) ... 128 Port function control register 2 (PF2) ... 132 Prescaler mode register 0 (PRM0) ... 154 Prescaler mode register 1 (PRM1) ... 186 Prescaler mode register 2 (PRM2) ... 186, 187 Prescaler mode register 5 (PRM5) ... 205 Prescaler mode register 6 (PRM6) ... 205, 206 Prescaler mode register 0 for the serial clock (SPRM0) ... 303 Program status word (PSW) ... 375 Programmable wait control register 1 (PWC1) ... 438 Programmable wait control register 2 (PWC2) ... 438 Pull-up resistor option register (PUO) ... 131 Pull-up resistor option register 0 (PU0) ... 131 Pull-up resistor option register 2 (PU2) ... 131 Pull-up resistor option register 3 (PU3) ... 131 Pull-up resistor option register 7 (PU7) ... 131 Pull-up resistor option register 12 (PU12) ... 131

[R]

Real-time output buffer register H (RTBH) ... 136 Real-time output buffer register L (RTBL) ... 136

Real-time output port control register (RTPC) 138 Real-time output port mode register (RTPM) 137 Receive shift register (RX1) 258 Receive shift register (RX2) 258 Receive buffer register 1 (RXB1) 258 Receive buffer register 2 (RXB2) 258 ROM correction address register H (CORAH) 509 ROM correction address register L (CORAL) 509 ROM correction control register (CORC) 509
Serial I/O shift register 0 (SIO0) 284 Serial I/O shift register 1 (SIO1) 279 Serial I/O shift register 2 (SIO2) 279 Serial operation mode register 0 (CSIM0) 286, 287, 288 Serial operation mode register 1 (CSIM1) 280, 281, 282 Serial operation mode register 2 (CSIM2) 280, 281, 282 Serial shift register 0 (IIC0) 294, 305 Slave address register 0 (SVA0) 294, 305 Standby control register (STBC) 91, 92, 464, 465
[T] Transmission shift register 1 (TXS1) 258 Transmission shift register 2 (TXS2) 258 [W]
Watch timer mode control register (WTM) 216 Watchdog timer mode register (WDM) 221, 373
8-bit compare register 10 (CR10) 182 8-bit compare register 20 (CR20) 182 8-bit compare register 50 (CR50) 202 8-bit compare register 60 (CR60) 202 8-bit timer mode control register 1 (TMC1) 183 8-bit timer mode control register 2 (TMC2) 183 8-bit timer mode control register 5 (TMC5) 203 8-bit timer mode control register 6 (TMC6) 203, 204 8-bit timer counter 1 (TM1) 182 8-bit timer counter 2 (TM2) 182 8-bit timer counter 5 (TM5) 202 8-bit timer counter 6 (TM6) 202
[16] 16-bit capture/compare register 00 (CR00) 147 16-bit capture/compare register 01 (CR01) 148 16-bit timer mode control register 0 (TMC0) 149, 150, 155, 157 16-bit timer output control register 0 (TOC0) 152, 153 16-bit timer counter 0 (TM0) 146

D.2 Register Index (Alphabetical Order)

ADCR: ADIC: ADIS: ADM: ASIM1: ASIM2: ASIS1: ASIS2:	A/D conversion result register 227 Interrupt control register 368 A/D converter input selection register 230 A/D converter mode register 228 Asynchronous serial interface mode register 1 260, 261, 267 Asynchronous serial interface mode register 2 260, 261, 267 Asynchronous serial interface status register 1 262, 268 Asynchronous serial interface status register 2 262, 268
[B] BRGC1: BRGC2:	Baud rate generator control register 1 262, 263, 269 Baud rate generator control register 2 262, 263, 269
[C] CC: CKS: CORAH: CORAL: CORC: CR00: CR10: CR10: CR20: CR50: CR60: CRC0: CSIIC0: CSIM0: CSIM1: CSIM1:	Oscillation mode selection register 93 Clock output control register 350, 351 ROM correction address register H 509 ROM correction control register L 509 16-bit capture/compare register 00 147 16-bit capture/compare register 01 148 8-bit compare register 10 182 8-bit compare register 20 182 8-bit compare register 50 202 8-bit compare register 60 202 Capture/compare control register 0 152, 155, 157 Interrupt control register 0 366 Serial operation mode register 1 280, 281, 282 Serial operation mode register 2 280, 281, 282
[D] DACS0: DACS1: DAM0: DAM1:	D/A conversion setting register 0 248 D/A conversion setting register 1 248 D/A converter mode register 0 249 D/A converter mode register 1 249
[E] EGN0: EGP0: EXAE:	External interrupt falling edge enable register 0 356 External interrupt rising edge enable register 0 356 External access status enable register 459
[I] IICO: IICCO:	Serial shift register 0 294, 305 I ² C bus control register 0 295, 296

617

```
IICS0:
           I<sup>2</sup>C bus status register 0 ... 300
IMC:
           Interrupt mode control register ... 372
IMS:
           Internal memory size switching register ... 68, 513
ISPR:
           In-service priority register ... 371
[M]
MK0H:
           Interrupt mask flag register 0H ... 369, 370
MK0L:
           Interrupt mask flag register 0L ... 369, 370
MK1H:
           Interrupt mask flag register 1H ... 369, 370
MK1L:
           Interrupt mask flag register 1L ... 369, 370
MM:
           Memory expansion mode register ... 437
[0]
OSTS:
           Oscillation stabilization time specification register ... 95, 467
[P]
P0:
           Port 0 ... 106
           Port 1 ... 108
P1:
P2:
           Port 2 ... 109
P3:
           Port 3 ... 113
           Port 4 ... 115
P4:
           Port 5 ... 117
P5:
P6:
           Port 6 ... 119
P7:
           Port 7 ... 123
P12:
           Port 12 ... 126
P13:
           Port 13 ... 127
PCS:
           Clock status register ... 94, 466
PF2:
           Port function control register 2 ... 132
PIC0:
           Interrupt control register ... 366
PIC1:
           Interrupt control register ... 366
PIC2:
           Interrupt control register ... 366
PIC3:
           Interrupt control register ... 366
PIC4:
           Interrupt control register ... 366
PIC5:
           Interrupt control register ... 366
PM0:
           Port 0 mode register ... 128
PM2:
           Port 2 mode register ... 128, 352, 355
PM3:
           Port 3 mode register ... 128
PM4:
           Port 4 mode register ... 128
PM5:
           Port 5 mode register ... 128
PM6:
           Port 6 mode register ... 128
PM7:
           Port 7 mode register ... 128
PM12:
           Port 12 mode register ... 128
PM13:
           Port 13 mode register ... 128
PRM0:
           Prescaler mode register 0 ... 154
PRM1:
           Prescaler mode register 1 ... 186
PRM2:
           Prescaler mode register 2 ... 186, 187
PRM5:
           Prescaler mode register 5 ... 205
PRM6:
           Prescaler mode register 6 ... 205, 206
```

PSW: PU0: PU2: PU3: PU7: PU12: PU0: PWC1: PWC2:	Program status word 375 Pull-up resistor option register 0 131 Pull-up resistor option register 2 131 Pull-up resistor option register 3 131 Pull-up resistor option register 7 131 Pull-up resistor option register 12 131 Pull-up resistor option register 1 131 Programmable wait control register 1 438 Programmable wait control register 2 438
RTBH: RTBL: RTPC: RTPM: RX1: RX2: RXB1: RXB2:	Real-time output buffer register H 136 Real-time output buffer register L 136 Real-time output port control register 138 Real-time output port mode register 137 Receive shift register 1 258 Receive shift register 2 258 Receive buffer register 1 258 Receive buffer register 2 258
SERIC1: SERIC2: SIO0: SIO1: SIO2: SNMI: SPRM0: SRIC1: SRIC2: STBC: STIC1: STIC2: SVA0:	Interrupt control register 367 Interrupt control register 367 Serial I/O shift register 0 284 Serial I/O shift register 1 279 Serial I/O shift register 2 279 Interrupt selection control register 374 Prescaler mode register 0 for serial clock 303 Interrupt control register 367 Interrupt control register 367 Standby control register 91, 92, 464, 465 Interrupt control register 367 Interrupt control register 367 Slave address register 0 294, 305
[T] TM0: TM1: TM2: TM5: TM6: TMC0: TMC1: TMC2: TMC5: TMC5: TMC6: TMIC00: TMIC01:	16-bit timer counter 0 146 8-bit timer counter 1 182 8-bit timer counter 2 182 8-bit timer counter 5 202 8-bit timer counter 6 202 16-bit timer mode control register 0 149, 150, 155, 157 8-bit timer mode control register 1 183 8-bit timer mode control register 2 183 8-bit timer mode control register 5 203 8-bit timer mode control register 6 203, 204 Interrupt control register 367 Interrupt control register 367

APPENDIX D REGISTER INDEX

TMIC1: Interrupt control register ... 368
 TMIC2: Interrupt control register ... 368
 TMIC3: Interrupt control register ... 367
 TMIC5: Interrupt control register ... 368
 TMIC6: Interrupt control register ... 368

TOC0: 16-bit timer output control register 0 ... 152, 153

TXS1: Transmission shift register 1 ... 258
TXS2: Transmission shift register 2 ... 258

[W]

WDM: Watchdog timer mode register ... 221, 373

WDTIC: Interrupt control register ... 366
WTIC: Interrupt control register ... 368

WTM: Watch timer mode control register ... 216

APPENDIX E REVISION HISTORY

(1/4)

Edition	Contents	Applied to:
2nd edition	Modification of power supply voltage range (only for μPD78F4225, 78F4225Y) Before change: V _{DD} 1.8 to 5.5 V → After change: V _{DD} 1.9 to 5.5 V Modification of package Before change: GK-BE9 type → After change: GK-9EU type Modification of I/O circuit Addition of programmable wait control register 2 (PWC2)	Throughout
	Modification of Table 2-1 Types of Pin I/O Circuits and Recommended Connection of Unused Pins	CHAPTER 2 PIN FUNCTIONS
	Modification of stop condition for main system clock oscillator Modification of Figure 4-1 Block Diagram of Clock Generator Addition of caution about CST bit to Figure 4-4 Format of Clock Status Register (PCS) Modification of CPU clock speed in 4.5 Clock Generator Operations	CHAPTER 4 CLOCK GENERATOR
	Modification of block diagram of ports 0 to 13 Addition of caution to Figure 5-21 Format of Pull-up Resistor Option Register	CHAPTER 5 PORT FUNCTIONS
	Modification of Figure 6-1 Block Diagram of Real-Time Output Port Addition of caution to Figure 6-4 Format of Real-Time Output Port Control Register (RTPC) Modification of 6.5 Using This Function	CHAPTER 6 REAL-TIME OUTPUT FUNCTIONS
	Modification of Table 8-3 Valid Edge of TI01 Pin and Capture Trigger of CR00 Addition of Table 8-4 Valid Edge of TI00 Pin and Capture Trigger of CR01 Modification of Figure 8-4 Format of 16-Bit Timer Output Control Register (TOC0) Modification of description in (1) Pulse width measurement with free-running counter and one capture register Modification of description in (2) Measurement of two pulse widths with free- running counter Addition of caution to Figure 8-15 Timing of Pulse Width Measurement with Free-Running Counter (with Both Edges Specified)	CHAPTER 8 16-BIT TIMER/ EVENT COUNTER
	Addition of caution to Figure 8-17 Timing of Pulse Width Measurement with Free-Running Counter and Two Capture Registers (with Rising Edge Specified) Addition of caution to Figure 8-19 Timing of Pulse Width Measurement by Restarting (with Rising Edge Specified) Modification of description in 8.4.4 Operation as external event counter Modification of Figure 8-26 Timing of One-Shot Pulse Output Operation by Software Trigger	

(2/4)

Edition	Contents	Applied to:
2nd edition	Modification of Figure 9-1 Block Diagram of 8-Bit Timer/Event Counters 1 and 2 Modification of caution in (1) 8-bit timer counters 1 and 2 (TM1, TM2) Modification of caution in (2) 8-bit compare registers 10 and 20 (CR10, CR20) Modification of Figure 9-2 Format of 8-Bit Timer Mode Control Register 1 (TMC1) Modification of Figure 9-3 Format of 8-Bit Timer Mode Control Register 2 (TMC2) Modification of caution in Figure 9-4 Format of Prescaler Mode Register 1 (PRM1) Modification of caution in Figure 9-5 Format of Prescaler Mode Register 2 (PRM2) Modification of setting method in 9.4.4 Operation as 8-bit PWM output Modification of Figure 9-8 Timing of PWM Output	CHAPTER 9 8-BIT TIMER/ EVENT COUNTERS 1, 2
	Deletion of timer output from Table 10-1 Configuration of 8-Bit Timers 5 and 6 Modification of Figure 10-1 Block Diagram of 8-Bit Timers 5 and 6 Modification of caution in (1) 8-bit timer counters 5 and 6 (TM5, TM6) Modification of caution in (2) 8-bit compare registers 50 and 60 (CR50, CR60) Modification of description in (1) 8-bit timer mode control registers 5 and 6 (TMC5, TMC6) Modification of Figure 10-2 Format of 8-Bit Timer Mode Control Register 5 (TMC5) Modification of Figure 10-3 Format of 8-Bit Timer Mode Control Register 6 (TMC6) Modification of Figure 10-4 Format of Prescaler Mode Register 5 (PRM5) Modification of Figure 10-5 Format of Prescaler Mode Register 6 (PRM6) Modification of Figure 10-6 Timing of Interval Timer Operation Modification of Figure 10-8 Cascade Connection Mode with 16-Bit Resolution	CHAPTER 10 8-BIT TIMERS 5, 6
	Modification of Table 11-1 Interval Time of Interval Timer Modification of Figure 11-1 Watch Timer Block Diagram Modification of Figure 11-2 Format of Watch Timer Mode Control Register (WTM) Modification and addition of caution to Figure 11-3 Operation Timing of Watch Timer/Interval Timer	CHAPTER 11 WATCH TIMER
	Modification of Figure 12-1 Watchdog Timer Block Diagram Modification of description in 12.3.2 Interrupt priority order	CHAPTER 12 WATCHDOG TIMER
	Modification of Figure 13-2 Format of A/D Converter Mode Register (ADM) Addition of 13.5 Reading the A/D Converter Characteristics Table Modification of description in 13.6 Cautions	CHAPTER 13 A/D CONVERTER
	Modification of Figure 16-2 Block Diagram in Asynchronous Serial Interface Mode Modification of Table 16-3 Relationship Between 5-Bit Counter Source Clock and m Value Modification of Table 16-4 Relationship Between Main System Clock and Baud Rate Modification of Figure 16-11 Block Diagram in 3-Wire Serial I/O Mode	CHAPTER 16 ASYNCHRONOUS SERIAL INTERFACE/ 3-WIRE SERIAL I/O

(3/4)

Edition	Contents	Applied to:
2nd edition	Modification of Figure 17-1 Block Diagram of Clocked Serial Interface (in 3-Wire Serial I/O Mode)	CHAPTER 17 3-WIRE SERIAL I/O MODE
	Modification of Figure 18-3 Format of I ² C Bus Control Register (IICC0) Addition of note about bit 3 (TRC0) to Figure 18-4 Format of I ² C Bus Status Register (IICS0) Modification of Figure 18-5 Format of Prescaler Mode Register (SPRM0) for Serial Clock Modification of description about interrupt request timing of master operation and slave operation in 18.5.7 I ² C interrupt request (INTIIC0) Modification of value in Table 18-5 Wait Times	CHAPTER 18 I ² C BUS MODE (μPD784225Y SUBSERIES ONLY)
	Modification of Figure 21-2 Block Diagram of P00 to P05	CHAPTER 21 EDGE DETECTION FUNCTION
	Addition of remark 3 to Table 22-2 Interrupt Request Sources Modification of Figure 22-33 Data Transfer Control Timing Modification of Figure 22-36 Automatic Addition Control + Ring Control Block Diagram 1 (When Output Timing Varies with 1-2-Phase Excitation) Modification of Figure 22-37 Automatic Addition Control + Ring Control Timing Diagram 1 (When Output Timing Varies with 1-2-Phase Excitation) Modification of Figure 22-38 Automatic Addition Control + Ring Control Block Diagram 2 (1-2-Phase Excitation Constant-Velocity Operation) Modification of Figure 22-39 Automatic Addition Control + Ring Control Timing Diagram 2 (1-2-Phase Excitation Constant-Velocity Operation)	CHAPTER 22 INTERRUPT FUNCTIONS
	23.2 Control Registers Modification of Figure 23-1 Format of Memory Expansion Mode Register (MM) Addition of (3) Programmable wait control register 2 (PWC2)	CHAPTER 23 LOCAL BUS INTERFACE FUNCTONS
	Modification of Figure 24-1 Standby Function State Transition Modification of Figure 24-4 Format of Oscillation Stabilization Time Specification Register (OSTS) Modification of Table 24-2 Operating States in HALT Mode Modification of Figure 24-5 Operations After Releasing HALT Mode Modification of caution in 24.4.1 Settings and operating states of STOP mode Modification of Table 24-5 Operating States in STOP Mode Modification of Figure 24-6 Operations After Releasing STOP Mode Modification of Table 24-7 Operating States in IDLE Mode Modification of Figure 24-9 Operations After Releasing IDLE Mode Modification of description in (iii) Releasing the HALT mode by RESET input Modification of description in (iii) Releasing the IDLE mode by RESET input	CHAPTER 24 STANDBY FUNCTION
	Modification of Figure 25-2 Receiving Reset Signal	CHAPTER 25 RESET FUNCTION
	Modification of Table 26-1 Differences Between 78K/IV ROM Correction and 78K/0 ROM Correction Modification of example of four pointer settings in 26.5 Conditions for Executing ROM Correction	CHAPTER 26 ROM CORREC- TION
	Modification of Figure 27-1 Format of Internal Memory Size Switching Register (IMS) Addition of dedicated flash programmer (Flashpro III)	CHAPTER 27 μPD78F4225 AND μPD78F4225Y PROGRAMMING

(4/4)

		(7/ 7
Edition	Contents	Applied to:
2nd edition	Modified throughout	APPENDIX B DEVELOPMENT TOOLS
	Modified throughout	APPENDIX C EMBEDDED SOFTWARE
3rd edition	The following products have been developed. • μPD78F4225GC-8BT, 78F4225GK-9EU, 78F4225YGC-8BT, 78F4225YGK-9EU	Throughout
	Addition of Caution related to operation in one-shot pulse output mode	CHAPTER 8 16-BIT TIMER/EVENT COUNTER
	Change of watch timer interrupt interval from 0.5 second to "2 ¹⁴ /fw or 2 ⁵ /fw"	CHAPTER 11 WATCH TIMER
	Modification of Figure 18-17 Communication Reservation Procedure	CHAPTER 18 I ² C BUS MODE (μPD784225Y SUBSERIES ONLY)
	Modification of Figure 23-8 Read Modify Write Timing for External Memory in External Memory Expansion Mode	CHAPTER 23 LOCAL BUS INTERFACE FUNCTIONS
	27.2 Flash Memory Overwriting • Deletion of self overwrite mode 27.3 On-Board Overwrite Mode • Deletion of dedicated flash programmer (Flashpro II) Modification of Table 27-3 Communication Modes Modification of Figure 27-2 Format of Communication Mode Selection Modification of Table 27-4 Major Functions of On-Board Overwrite Mode • Deletion of batch erase, batch blank check, and batch verify • Change of "block" to "area"	CHAPTER 27 μPD78F4225 AND μPD78F4225Y PROGRAMMING
4th	Change of 78K/IV SERIES LINEUP Modification of minimum instruction execution time in 1.5 Function List	CHAPTER 1 OVERVIEW
	Modification of Cautions in Figure 13-2 Format of A/D Converter Mode Register (ADM)	CHAPTER 13 A/D CONVERTER
	Addition of Table 16-2 Serial Interface Operation Mode Settings	CHAPTER 16 ASYNCHRONOUS SERIAL INTERFACE/ 3-WIRE SERIAL I/O
	Addition of Table 17-2 Serial Interface Operation Mode Settings	CHAPTER 17 3-WIRE SERIAL I/O MODE
	Addition of reserved words in Figure 22-21 Format of Macro Service Control Word	CHAPTER 22 INTERRUPT FUNCTIONS
	Modification of Table 23-3 Settings of Program Wait Control Register 2 (PWC2)	CHAPTER 23 LOCAL BUS INTERFACE FUNCTIONS
	Modification of Figure 24-1 Standby Function State Transition	CHAPTER 24 STANDBY FUNCTION
	Addition of chapter	CHAPTER 29 ELECTRICAL SPECIFICATIONS
	Addition of chapter	CHAPTER 30 PACKAGE DRAWINGS
	Addition of chapter	CHAPTER 31 RECOMMENDED SOLDERING CONDITIONS
	Addition of description on SP78K4 and change of Remark in B.1 Language Processing Software Change of Remark in B.3.2 Software Addition of B.4 Cautions on Designing Target System	APPENDIX B DEVELOPMENT TOOLS
	Deletion of MX78K4 description	APPENDIX C EMBEDDED SOFTWARE
4th edition	Modification of 1.2 Ordering Information	CHAPTER 1 OVERVIEW
(Modification	Addition of lead-free products to CHAPTER 31 RECOMMENDED	CHAPTER 31 RECOMMENDED
Version)	SOLDERING CONDITIONS	SOLDERING CONDITIONS