Desc ript ion

The 8V19N478 is a fully integrated FemtoClock NG jitter attenuator and clock synthesizer designed as a high-performance clock solution for conditioning and frequency/phase management of 10/40/100/400 Gigabit-Ethernet line cards. The device is optimized to deliver excellent phase noise performance as required to drive physical layer devices, and provides the clean clock frequencies of 625MHz, 500MHz, 312.5MHz, 250MHz, 156.25MHz, and 125MHz.

A two-stage PLL architecture supports both jitter attenuation and frequency multiplication. The first stage PLL is the jitter attenuator, and uses an external VCXO for best possible phase noise characteristics. The second stage PLL locks on the VCXO-PLL output signal, and synthesizes the target frequency. This PLL has a VCO circuit at 2500MHz.

The 8V19N478 generates the output clock signals from the VCO by frequency division. Four independent frequency dividers are available; three support integer-divider ratios, and one integer as well as fractional-divider ratios. Delay circuits can be used for achieving alignment and controlled phase delay between clock signals. The two redundant inputs are monitored for activity. Four selectable clock switching modes are provided to handle clock input failure scenarios. Auto-lock, individually programmable output frequency dividers, and phase adjustment capabilities are added for flexibility.

The device is configured through an I^2C interface and reports lock and signal loss status in internal registers and via a lock detect (LOCK) output. Internal status bit changes can also be reported via the nINT output. The device is ideal for driving converter circuits in wireless infrastructure, radar/imaging, and instrumentation/medical applications. The device is a member of the high-performance clock family from IDT.

Typic al Applic at ions

- Sub 70fs low phase noise clock generation
- 10/40/100 Gigabit-Ethernet line cards
- Wireless Infrastructure
- Reference clock for ADC and DAC circuits
- Radar and Imaging
- **Instrumentation and Medical**

Features

- High-performance clock RF-PLL:
	- Optimized for low phase noise: -157.7dBc/Hz (1MHz offset; 156.25MHz clock), design target
	- Integrated phase noise, RMS (12kHz-20MHz): 73fs (typical), design target
- Dual-PLL architecture:
	- 1st-PLL stage with external VCXO for clock jitter attenuation
	- 2nd-PLL stage with internal FemtoClock NG PLL at 2500MHz
- Four output banks with a total of 18 outputs, organized in:
	- Three clock banks with one integer frequency divider and four differential outputs
	- One clock bank with one fractional divider and six differential outputs
	- One VCXO-PLL output bank with one selectable LVDS and two LVCMOS outputs
- Four output banks contain a phase delay circuit with steps of the VCO clock period (400ps)
- Supported clock output frequencies include:
	- From the integer dividers: 2500MHz, 1250MHz, 625MHz, 500MHz, 312.5MHz, 250MHz, 156.25MHz, and 125MHz
	- From the fractional divider: 80-300MHz
- Low-power LVPECL and LVDS outputs support configurable signal amplitude, DC and AC coupling, and LVPECL, LVDS, and line termination techniques
- Redundant input clock architecture:
	- Two inputs
	- Individual input signal monitor
	- Digital holdover
	- Manual and automatic clock selection
	- Hitless switching
- Status monitoring and fault reporting:
	- Input signal status
	- Hold-over and reference loss status
	- Lock status with one status pin
	- Mask-able status interrupt pin
- Voltage supply:
	- Device core supply voltage: 3.3V
	- Output supply voltage: 3.3V, 2.5V, or 1.8V
	- I/O voltage: 1.8V or 3.3V (selectable), and 3.3V tolerant inputs when set to 1.8V
- **•** Package: $11 \times 11 \times 1$ mm ball pitch 100-FPBGA
- Temperature range: -40°C to +85°C

JIDT

Contents

Block Diagram

Pin Assignments

Figure 1. Pin Assignments for $11 \times 11 \times 1$ mm, 100-FPBGA Package (Bottom View)

Pin Descriptions

Table 1. Pin Descriptions [a]

Table 1. Pin Descriptions (Cont.)^[a]

Table 1. Pin Descriptions (Cont.)^[a]

Table 1. Pin Descriptions (Cont.)^[a]

[a] For essential information on power supply filtering, see [Power Supply Filtering](#page-64-0).

[b] Pull-up (PU) and pull-down (PD) internal input resistors are indicated in parentheses. For typical values, see *Input Characteristics,* [Table 41](#page-45-2).

Principles of Operation

Over view

The device generates low-phase noise, synchronized clock output signals locked to an input reference frequency. The device contains two PLLs with configurable frequency dividers. The first PLL (VCXO-PLL, suffix V) uses an external VCXO as the oscillator and provides jitter attenuation. The external loop filter is used to set the VCXO-PLL bandwidth frequency in conjunction with internal parameters. The second, low-phase noise PLL (FemtoClock NG, suffix F) multiplies the VCXO-PLL frequency to the VCO frequency of 2500MHz. The FemtoClock NG PLL is completely internal and provides a central reference timing reference point for all output signals. From this point, fully synchronous dividers generate the output frequencies.

The device has four output channels $A - D$, four channels with one integer output divider $A - C$ and one channel with a fractional output divider (D). The clock outputs are configurable with support for LVPECL and LVDS formats, and a variable output amplitude. In channels A – D, the clock phase can be adjusted in phase. Individual outputs, channels, and unused circuit blocks support powered-down states for operation at reduced power consumption. The register map, accessible through a selectable I^2C interface with read-back capability controls the main device settings and delivers device status information. For redundancy purpose, there are two selectable reference frequency inputs and a configurable switch logic with manual, auto-selection, and holdover support.

Phase-Locked Loop Operation

Frequency Generation

The 8V19N478 supports four operation modes: Dual-PLL and VCXO-PLL with jitter attenuation, frequency synthesis, and the buffer/ divider mode. Frequencies higher than the input frequency can be generated by the device by utilizing one or both PLLs. Using the PLL(s) require(s) the user to set the frequency dividers to match input, VCXO and VCO frequency and to achieve frequency and phase lock on the used PLLs. The frequency of the external VCXO is chosen by the user. The internal VCO frequency range is 2400–2500MHz. Available frequency dividers for each of the four modes are displayed in [Table 2](#page-10-0). Example divider configurations are shown in [Table 3](#page-11-1) and [Table 4.](#page-11-2)

Dual-PLL Jitter Attenuation Mode: Input clock jitter is attenuated by the VCXO-PLL (1st stage PLL). The 2nd stage PLL (FemtoClock NG) is locked to the 1st stage PLL and synthesizes a frequency in the range of 2400–2500MHz. Output dividers scale the frequency down to the target frequency. Dividers P_V, M_V, P_F, M_F, N_x, and (optionally) N_{*D*} require a user configuration. This is the main operation mode of the device with the highest flexibility in frequency generation. Best phase noise is achieved with internal frequency doubler turned on.

VCXO-PLL Jitter Attenuation Mode: Input clock jitter is attenuated by the VCXO-PLL (1st stage PLL). The VCXO-output signal is divided by the output dividers to the target frequency. Dividers P_V , M_V, and N_x require a user configuration. The VCXO sets the highest frequency the device can achieve. The output phase noise is equivalent to the phase noise of the VCXO scaled by the output divider.

Frequency Synthesis Mode: The 1st stage PLL is bypassed. The 2nd stage PLL (FemtoClock NG) is directly locked to the input source and synthesizes a frequency in the range of 2400–2500MHz. output dividers scale the frequency down to the target frequency. Dividers P_V, P_F, M_F, N_x, and (optionally) N_D require a user configuration. This mode is recommend for applications with a low-jitter input source.

Divider/Buffer Mode: Both PLLs are bypassed. Output dividers scale the input frequency to the target frequency. Dividers P_V and N_x require a user configuration. In this mode, the PLL frequency specifications do not apply.

Table 2. PLL Divider Values

[a] P_V divider settings are in the *PV0 register* (for CLK_0), and in the *PV1 register* (for CLK_1). The PV divider is automatically loaded from PV0 or PV1 according to the input selection [\(Clock Selection Settings, Table 11\)](#page-15-1).

[b] $f_{VCO} = 2400 - 2500$ MHz.

[c] Set P_F to 0.5 in the equation if the frequency doubler is engaged (FDF = 1).

[d] For a list of supported integer output dividers N_x ([Table 8\)](#page-13-1).

[e] Greatest N*D* fractional divider is $2 \times (14 + [2^{24} - 1] / 2^{24}) \approx 29.99999988$.

VCXO-PLL

The prescaler P_V and the VCXO-PLLs feedback divider M_V require configuration to match the input frequency to the VCXO-frequency. With the M_V and P_V divider value range of 15 bit, the device support is very flexible and supports a wide range of input and VCXOfrequencies.

In addition, the range of available inputs and feedback dividers allow to adjust the phase detector frequency independent of the used input and VCXO frequencies ([Table 3](#page-11-1) and [Table 4](#page-11-2)). The VCXO-PLL charge-pump current is controllable via internal registers, and can be set in 50µA steps, from 50µA to 1.6mA. The VCXO-PLL can be bypassed (BYPV): when in bypass, the FemtoClock NG PLL locks to the pre-divided input frequency.

Table 3. Example Configurations for $f_{VCXO} = 125 MHz$

Table 4. Example Configurations for f_{VCXO} = 156.25MHz

	VCXO- PLL Divider Settings		
Input Frequency (MHz)	PV	MV	f_{PFD} (MHz)
19.44	1944	15625	0.01
20	400	3125	0.05
25	4	25	6.25
	40	250	0.625
	400	2500	0.0625
125	4	5	31.25
	40	50	3.125
	400	500	0.3125
156.25		-4	156.25
	10	10	15.625
	100	100	1.5625

Table 5. VCXO-PLL Bypass Settings

FemtoClock NG PLL

The FemtoClock NG PLL is the second stage PLL, and locks to the output signal of the VCXO-PLL (BYPV $= 0$). It requires configuration from the frequency doubler FDF, or the pre-divider PF and the feedback divider MF to match the VCXO-PLL frequency to the VCO frequency of 2500MHz. Best phase noise is typically achieved by engaging the internal frequency doubler (FDF = 1, \times 2). If engaged, the signal from the first PLL stage is doubled in frequency, increasing the phase detector frequency of the FemtoClock NG PLL. When the frequency doubler is enabled, the frequency pre-divider PF is disabled. If the frequency doubler is not used (FDF $= 0$), the PF pre-divider has to be configured. Typically, the PF is set to \div 1 to keep the phase detector frequency as high as possible. Set the PF to other divider values to achieve specific frequency ratios between the first and second PLL stage. This PLL is internally configured to high-bandwidth.

Table 6. Frequency Doubler

Table 7. Example PLL Configurations

Channel Frequency Divider

The device supports four independent output channels A–D. The channels A–C have one configurable integer frequency divider N_x $(x = A - C)$, that divides the VCO frequency to the desired output frequency with very low phase noise. The integer divider values can be selected from the range of $\div 1$ to $\div 160$ ([Table 8\)](#page-13-1). Channel D supports fractional divider ratios ([Table 9\)](#page-13-2).

Table 8. Integer Frequency Divider Settings

Channel Divider Nx ^[a]	Output Clock Frequency (MHz) for VCO = 2500MHz	
\div 1	2500	
$\div 2$	1250	
$\div 3$	833.333	
$\div 4$	625	
$\div 5$	500	
$\div 8$	312.5	
$\div 10$	250	
$\div 16$	156.25	
$\div 20$	125	
$\div 30$	83.333	
$\div 32$	78.125	
$\div 40$	62.5	
$\div 50$	50	
$\div 60$	41.667	
$\div 64$	39.0625	
$\div 80$	31.25	
$\div 100$	25	
$\div 120$	20.833	
$\div 128$	19.53125	
$\div 160$	15.625	

 $[a]$ *x* = A – D.

Table 9. Typical Fractional Frequency Divider Settings

[a] Greatest ND fractional divider is $2 \times (14 + [2^{24} - 1] / 2^{24}) \approx 29.99999988$.

Table 10. PLL Feedback Path Settings

Redundant Inputs

The two inputs are compatible with LVDS and LVPECL signal formats, and also support single-ended LVCMOS signals. For applicable input interface circuits, see [Applications Information.](#page-57-0)

Definitions

- **•** Primary clock $-$ The CLK \overline{n} input selected by the selection logic.
- **EXECONDER** Secondary clock The CLK n input not selected by the selection logic.
- PLL reference clock The CLK_n input selected as the PLL reference signal by the selection logic. In automatic switching mode, the selection can be overwritten by a state machine.

Monit oring

Loss of Input Signal (LOS)

In operation, a clock input is declared invalid (LOS) with the corresponding ST_CLK_*n* and LS_CLK_*n* indicator bits set after a specified number of consecutive clock edges. If differential input signals are applied, the input will also detect an LOS condition in case of a zero differential input voltage.

The device supports LOS detect circuits, one for each input. The signal detect circuits compare the signals at the CLK_0 and CLK_1 inputs to the internal frequency-divided signals from the VCXO-PLL [\(Figure 2\)](#page-14-4). The loss-of-signal fault condition is declared upon three or more missing clock input edges. LOS requires configuration of the N_MON[4:0] frequency divider setting to individually match the input frequencies CLK_*n* to the VCXO frequency: f_{VCXO} ÷ N_MON[4:0] = f_{CLK_*n*}. For instance, if one of the input frequencies is 25MHz and a 125MHz VCXO is used, set N_MON[4:0] $= +5$. For configuration details see [Table 11](#page-15-1). Then, LOS is declared after three consecutive missing clock edges. LOS is signaled through the ST_CLK_*n* (momentary) and LS_CLK_*n* (sticky, resettable) status bits. and can be reported as an interrupt signal on the nINT output. The LOS circuit requires the jitter attenuation mode of the device $(BYPV = 0)$. LOS does not detect frequency errors.

C $I K$ ⁰ nCLK_0 ST_CLK_0, LS_CLK_0 $f_{\text{CIK }0}$ ˜P^V LOS N_MON[4:0] Detector 0 \div 1, \div 2, ..., \div 40 VCXO f_{vcxo} Input Select CLK₁ nCLK_1 $\begin{array}{c} \text{LOS} \\ \text{S} \end{array}$ $\begin{array}{c} \text{S} \end{array}$ Detector 1 f_{CLK_1}

Figure 2. LOS Detect Circuit

Input Re-Validation

A clock input is declared valid and the corresponding LOS bit is reset after the clock input signal returned for user-configurable number of consecutive input periods. This re-validation of the selected input clock is controlled by the CNTV setting (verification pulse counter).

Clock Selection

The device supports five input selection modes: manual with and without holdover, short-term holdover, and two automatic switch modes.

Table 11. Clock Selection Settings (Cont.)

[a] For the duration of an invalid input signal (LOS).

[b] For the duration of holdover.

[c] Delayed by holdover period.

Holdover

In holdover state, the output frequency and phase is derived from an internal, digital value based on previous frequency and phase information. Holdover characteristics are defined in [Table 48](#page-49-1).

Manual Holdover Control (nHO $EN = 0$)

This is the default switching mode of the device. The switch control is manual: The EXT_SEL pin or the INT_SEL bit as set by nEXT_INT determines the selected reference clock input. If the selection is changed by the user, the device will enter holdover until the CNTH[7:0] counter expires. Then, the new reference is selected (input switch). Application for this mode is startup and external selection control.

- ST_REF Status of selected reference clock
- \cdot ST_CLK_n Both will reflect the status of the corresponding input
- ST_SEL The new selection
- \blacksquare nST HOLD = 0 for the duration of holdover

Automatic with Holdover (nHO_EN = 1, nM/A[1:0] = 11)

If an LOS event is detected on the active reference clock:

- 1. Holdover begins immediately
- 2. Corresponding ST_REF and LS_REF go low immediately
- 3. Hold-off countdown begins immediately

During this time, both input clocks continue to be monitored and their respective ST_CLK, LS_CLK flags are active. LOS events will be indicated on ST_CLK, LS_CLK when they occur.

If the active reference clock resumes and is validated during the hold-off countdown:

- 1. Its ST_CLK status flag will return high and the LS_CLK is available to be cleared by an I²C write of 1 to that register bit
- 2. No transitions will occur of the active REF clock; ST_SEL does not change
- 3. Revertive bit has no effect during this time (whether 0 or 1)

When the hold-off countdown reaches zero:

If the active reference has resumed and has been validated during the countdown, it will maintain being the active reference clock:

- 1. ST_SEL does not change
- 2. ST_REF returns to 1
- 3. LS_REF can be cleared by an 1^2C write of 1 to that register
- 4. Holdover turns off and the VCXO-PLL attempts to lock to the active reference clock

If the active reference has not resumed, but the other clock input CLK n is validated, then:

- 1. ST_SEL1:0 changes to the new active reference
- 2. ST_REF returns to 1
- 3. LS REF can be cleared by an I^2C write of 1 to that register
- 4. Holdover turns off

If there is no validated CLK:

- 1. ST_SEL does not change
- 2. ST_REF remains low
- 3. LS_REF cannot be cleared by an 1^2C write of 1 to that register
- 4. Holdover remains active

Revertive capability returns if $REVS = 1$.

Hold-off Counter

A configurable down-counter applicable to the *Automatic with Holdover* and *Manual with Holdover* selection modes. The purpose of this counter is a deferred, user-configurable input switch. The counter expires when a zero-transition occurs; this triggers a new reference clock selection. The counter is clocked by the frequency-divided VCXO-PLL signal. The CNTR setting determines the hold-off counter frequency divider and the CNTH setting the start value of the hold-off counter. For instance, set CNTR to a value of $\div 131072$ to achieve 953.67Hz (or a period of 1.048ms at f_{VCXO} = 125MHz): the 8-bit CNTH counter is clocked by 953.67Hz and the user-configurable hold-off period range is:

0ms (CNTR = 0x00) to 267ms (CNTR = 0xFF). After the counter expires, it reloads automatically from the CNTH 1^2C register. After the LOS status bit (LS_CLK_n) for the corresponding input CLK_n has been cleared by the user, the input is enabled for generating a new LOS event.

The CNTR counter is only clocked if the device is configured in the clock selection modes, *Automatic with Holdover* and the selected reference clock experiences an *LOS* event, or in the *Manual with Holdover* mode with manual switching. Otherwise, the counter is automatically disabled (not clocked).

Revertive Switching

Revertive switching is only applicable to the two automatic switch modes shown in [Table 11.](#page-15-1) Revertive switching enabled: Re-validation of any non-selected input clock(s) will cause a new input selection according to the user-preset input priorities (revertive switch). An input switch is only done if the re-validated input has a higher priority than the currently selected reference clock. Revertive switching disabled: Re-validation of a non-selected input clock has no impact on the clock selection. The default setting is revertive switching disabled.

VCXO-PLL Lock Detect (LOLV)

The VCXO-PLL lock detect circuit uses the signal phase difference at the phase detector as Loss-of-lock criteria. Loss-of-lock is reported if the actual phase difference is larger than a configurable phase detector window set by the LOCK_TH[14:0] configuration bits. A Loss-of-lock state is reported through the nST_LOLV and nLS_LOLV status bits ([Table 21](#page-23-1)). The VCXO-PLL lock detect function requires to set $FVCV = 0$.

Table 12. ADR3 Selection Table

Table 13. Input Path Pin Configuration Table

Table 14. Output Frequency Pin Configuration Table

Table 15. I²C Address Selection Table

The 8V19N478 can be configured via pin or I2C. ADR3/2/1/0 provides a specific set of configuration options for input and output paths. In addition, the initialization sequence of the device is controlled by the ADR3 pin and the synchronization of the outputs by transition from Low to Middle or High.

The pin configuration is overridden by I2C programming of the register map. The I2C_A pin set the Address as shown in following table.

Table 17. I2C Address

The default values of the register map are Read back by the I²C in the Pin-Strap configuration mode.

FemtoClock NG Loss-of-lock (LOLF)

FemtoClock NG-PLL loss-of-lock is signaled through the nST_LOLF (momentary), and nLS_LOLF (sticky, resettable) status bits, and can reported as hardware signal on the LOCK_V output as well as an interrupt signal on the nINT output.

Differential Outputs

Table 18. Output Features

[a] Amplitudes are measured single-ended.

[b] For V_{TT} (Termination voltage) values (see [Table 50\)](#page-60-2).

[c] LVCMOS style: nQCLK_V and QCLK_V are complementary.

Table 19. Individual Clock Output Settings

[a] Power-down modes are available for the individual channels $A - D$ and the outputs QCLK_y (A0 - D3).

[b] Output amplitudes of 700mV and 850mV require a 3.3V output supply (V_{DDOV}). 350mV and 500mV output amplitudes support $V_{DDO_V} = 2.5V$ $V_{DDO_V} = 2.5V$ $V_{DDO_V} = 2.5V$ and 1.8V.

[c] Differential output is disabled in static low/high state.

[d] For V_{TT} (Termination voltage) values, see [Table 50](#page-60-2).

Output Phase-Delay

Output phase delay is supported in each channel. The selected VCO frequency sets the delay unit to $1/f_{VCO}$.

Table 20. Delay Circuit Settings

Status Conditions and Interrupts

The 8V19N478 has an interrupt output to signal changes in status conditions. Settings for status conditions may be accessed in the *Status registers*. The device has several conditions that can indicate faults and status changes in the operation of the device. These are shown in [Table 21](#page-23-1) and can be monitored directly in the status registers. Status bits (named: ST_*condition*) are read-only and reflect the momentary device status at the time of read-access. Several status bits are also copied into latched bit positions (named: LS_*condition*). The latched version is controlled by the corresponding fault and status conditions and remains set ("sticky") until reset by the user by writing "1" to the status register bit. The reset of the status condition has only an effect if the corresponding fault condition is removed, otherwise, the status bit will set again. Setting a status bit on several latched registers can be programmed to generate an interrupt signal (nINT) via settings in the Interrupt Enable bits (named: IE_*condition*). A setting of "0" in any of these bits will mask the corresponding latched status bits from affecting the interrupt status pin. Setting all IE bits to 0 has the effect of disabling interrupts from the device.

Table 21. Status Bit Functions

[a] Manual and short-term holdover mode: 0 indicates if the selected reference is lost, 1 if not lost.

Automatic mode: will transition to 0 while the input clock is lost and during input selection by priority.

Will transition to 1 once a new reference is selected.

Automatic with holdover mode: 0 indicates the reference is lost and still in holdover.

Interrupts are cleared by resetting the appropriate bit(s) in the latched register after the underlying fault condition has been resolved. When all valid interrupt sources have been cleared in this manner, this will release the nINT output until the next unmasked fault.

Table 22. LOCK Function

[a] Hardware interrupts on nINT required to set the IE_LOLV, IE_LOLF bits to "enable interrupt".

[b] SELSV1 controls the logic level 1.8V/3.3V of LOCK and nINT outputs.

Serial Control Port

Serial Control Port Configuration Description

The 8V19N478 has a serial control port that can respond as a slave in an I^2C compatible configuration at a base address of 11011[I2C_A1, I2C_A0]b, to allow access to any of the internal registers for device programming or examination of internal status. The I2C_A[1:0] bits of the I²C interface address are set by the logic state of the three-level pin, I2C_A (see [Table 17](#page-21-2)). If more than one 8V19N478 is connected to the same I²C bus, set I2C_A to a different state on each device to avoid address conflicts.

All registers are configured to have default values. For details, see the specifics for each register. Default values for registers are set after reset by the configuration pins.

I²C Mode Operation

The I²C interface fully supports v1.2 of the I²C Specification for Normal and Fast mode operation. The interface acts as a slave device on the I2C bus at 100kHz or 400kHz using a fixed base address of 11011[I2C_A1, I2C_A0]b.

The I²C interface accepts byte-oriented block write and block read operations (see [Figure 3](#page-24-3) and [Figure 4](#page-25-1)). One address byte specifies the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data is moved into the registers byte by byte and before a STOP bit is received.

For full electrical I²C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-up resistors have a size of $51k\Omega$ typical.

Figure 3. I²C Write Data (Master Transmit, Slave Receive) From Any Register Address

Write to slave to the specified register address A[7:0]. The slave auto-increments the register address and data is written sequentially.

Figure 4. I²C Read Data (Slave Transmit, Master Receive) From Any Register Address

Register Descriptions

This section contains all addressable registers, sorted by function, followed by a detailed description of each bit field for each register. Several functional blocks with multiple instances in this device have individual registers controlling their settings, but since the registers have an identical format and bit meaning, they are described only once, with an additional table to indicate their addresses and default values. All writable register fields will come up with a default values as indicated in the *Factory Defaults* column unless altered by values loaded from non-volatile storage during the initialization sequence.

Fixed read-only bits will have defaults as indicated in their specific register descriptions. Read-only status bits will reflect valid status of the conditions they are designed to monitor once the internal power-up reset has been released. Unused registers and bit positions are Reserved. Reserved bit fields may be used for an internal debug test and debug functions.

Table 23. Configuration Registers

Table 23. Configuration Registers (Cont.)

Device Configuration Registers

Table 24. Device Configuration Register Bit Field Locations

Table 25. Device Configuration Register Descriptions

PLL Frequency Divider Registers

Table 26. PLL Frequency Divider Register Bit Field Locations

Table 27. PLL Frequency Divider Register Descriptions

Table 27. PLL Frequency Divider Register Descriptions

PLL Control Registers

Table 28. PLL Control Bit Field Locations

Table 29. PLL Control Register Descriptions

Table 29. PLL Control Register Descriptions (Cont.)

Input Selection Mode Registers

Table 30. Input Selection Mode Register Bit Field Locations

Table 31. Input Selection Mode Registers

Table 31. Input Selection Mode Registers (Cont.)

Table 31. Input Selection Mode Registers (Cont.)

Channel Registers

The content of the channel registers set the channel state, the clock divider the clock phase delay and the power-down state.

Table 32. Channel Register Bit Field Locations

Table 33. Channel Register Descriptions^[a]

Table 33. Channel Register Descriptions^[a] (Cont.)

 $[a]$ $x = A$, B, C, D.

Output Registers

The content of the output registers set the power-down state, the output style and amplitude.

Table 34. Output Register Bit Field Locations

Table 35. Output Register Descriptions^[a]

[a] $y = A0, A1, A2, A3, B0, B1, B2, B3, C0, C1, C2, C3, D0, D1, D2, D3, D4, D5.$

[b] For V_{TT} (Termination voltage) values ([Table 50](#page-60-2)).

Status Registers

Table 36. Status Register Bit Field Locations

Table 37. Status Register Descriptions^[a]

Table 37. Status Register Descriptions^[a] (Cont.)

Table 37. Status Register Descriptions^[a] (Cont.)

[a] $CLKn = CLK0$, $CLK1$.

General Control Registers

Table 38. General Control Register Bit Field Locations

Table 39. General Control Register Descriptions

Electrical Characteristics

Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 8V19N478 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 40. Absolute Maximum Ratings

[a] According to JEDEC JS-001-2012/JESD22-C101.

Pin Characteristics

[a] Guaranteed by design.

[b] Design target specifications.

DC Characteristics

The device is configured to the maximum values of register settings, all outputs enabled in LVDS mode, and amplitude of 850mV. Process variation is included for the maximum current consumption.

Table 42. Pow er Supply DC Characteristics, $V_{DDV} = 3.3V \pm 5\%$, $V_{DDOV} = (3.3V, 2.5V, \text{or } 1.8V) \pm 5\%$, $T_A = -40$ °C to $+85$ °C

Table 43. Typical Power Supply DC Current Characteristics, V_{DD} $_V = 3.3V$ ±5%, V_{DDO} $_V = (3.3V, 2.5V,$ or 1.8V) $\pm 5\%$, T_A = -40°C to +85°C^[a]

[a] Design target specifications.

[b] f_{CLK} (input) = 40MHz, f_{VCXO} = 156.25MHz, f_{VCO} = 2500MHz, PV = 160, MV = 625, MF = 8, FDF = 1. Supply current is independent of the output frequency configuration used for this table: QCLKA[3:0] 41.66MHz, QCLKB[3:0] 500MHz, QCLKC[3:0] 31.25MHz, QCLKD[5:0] 500MHz. QCLK_y outputs terminated according to amplitude settings: LVPECL outputs terminated to V_{TT} .

[c] f_{CLK} (input) = 125MHz, f_{VCXO} = 156.25MHz, f_{VCO} = 2500MHz, PV = 1024, MV = 1280, MF = 8, FDF = 1. Supply current is independent of the output frequency configuration used for this table: QCLKA[3:0] = 125MHz, QCLKB[3:0] = 156.25MHz, QCLKC[3:0] = 250MHz, $QCLKD[5:0] = 312.5MHz$. $QCLK_y$ outputs terminated according to amplitude settings: LVPECL outputs terminated to V_{TT}.

[d] Includes total device power consumption and the power dissipated in external output termination components.

Table 44. LVCMOS DC Characteristics, $V_{DD-V} = 3.3V \pm 5\%$, $V_{DDO-V} = (3.3V, 2.5V, \text{ or } 1.8V) \pm 5\%$, T_A = -40°C to +85°C^[a]

[a] Design target specifications.

[b] EXT_SEL.

[c] I2C_A, ADR3, ADR2, ADR1, ADR0.

[d] SDAT, SCL.

Table 45. Differential Input DC Characteristics, $V_{DD-V} = 3.3V \pm 5\%$, $V_{DDO-V} = (3.3V, 2.5V, \text{ or } 1.8V) \pm 5\%$, $T_A = -40$ °C to $+85$ °C

[a] Non-Inverting inputs: CLK_0, CLK_1, OSC.

[b] Inverting inputs: nCLK_0, nCLK_1, nOSC.

Table 46. LVPECL DC Characteristics (QCLK_y, STYLE = 1), $\rm{V_{DD_V}}$ = 3.3V ±5%, $\rm{V_{DDO_V}}$ = (3.3V, 2.5V, or 1.8V) ±5%, T_A = -40°C to +85°C^[a]

[a] Design target specifications.

[b] Outputs terminated with 50 Ω to V_{TT}. For termination voltage V_{TT} values [\(Table 50\)](#page-60-2).

[c] 700mV and 850mV amplitude settings are only available at $V_{DDO-V} \ge 2.5V$.

Table 47. LVDS DC Characteristics (QCLK y, STYLE = 0), V_{DD_V} V_{DD_V} V_{DD_V} = 3.3V ± 5%, V_{DDO_V} V_{DDO_V} V_{DDO_V} = (3.3V, 2.5V, or 1.8V) $\pm 5\%$, T_A = -40°C to +85°C^[a]

[a] Design target specifications.

[b] V_{OS} changes with V_{DD} .

[c] 700mV and 850mV amplitude settings are only available at $V_{DDO-V} \ge 2.5V$.

AC Characteristics

Table 48. AC Characteristics, V_{[DD_V](#page-66-3)} = 3.3V ±5%, V_{[DDO_V](#page-66-2)} = (3.3V, 2.5V, or 1.8V) ±5%, T_A = -40°C to +85°C^{[a][b]}

Table 48. AC Characteristics, V_{DD_V} = 3.3V ±5%, V_{DDO_V} = (3.3V, 2.5V, or 1.8V) ±5%, T_A = -40°C to +85°C^{[a][b]} (Cont.)

[a] Design target specifications.

[b] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

- [c] V_{\parallel} should not be less than -0.3V and V_{\parallel} should not be greater than V_{\parallel} V .
- [d] Common Mode Input Voltage is defined as the cross-point voltage.
- [e] LVPECL outputs terminated with 50 Ω to V_{[DDO_V](#page-66-2)} 1.6V (350mV amplitude setting), V_{DDO_V} 1.75V (500mV amplitude setting), V_{DDO_V} V_{DDO_V} V_{DDO_V} – 1.95V (700mV amplitude setting), V_{DDO_V} – 2.1V (850mV amplitude setting).
- [f] LVDS outputs terminated 100 Ω across terminals.
- [g] This parameter is defined in accordance with JEDEC standard 65.
- [h] Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.

Table 49. Clock Phase Noise Characteristics (f_{VCXO} = 156.25MHz), V_{[DD_V](#page-66-3)} = 3.3V ±5%, $\bm{\mathsf{V}}_{\mathsf{DDO_V}} = (3.3\,\bm{\mathsf{V}}\,,\,2.5\,\bm{\mathsf{V}}\,,\,\texttt{or}\,\,1.8\,\bm{\mathsf{V}})\,\, \pm 5\,\%$, $\bm{\mathsf{T}}_{\mathsf{A}} =$ -40°C to +85°C $^{\texttt{[a][b][c]}}$

- [a] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
- [b] Phase noise specifications are applicable for all outputs active, Nx not equal.
- [c] VCXO characteristics: 156.25MHz and phase noise -67.9dBc/Hz at 10Hz, -97.9dBc/Hz at 100Hz, -121.9dBc/Hz at 1kHz, -141.9dBc/Hz at 10kHz, -152.9dBc/Hz at 100kHz.

Clock Phase Noise Characteristics

VCXO characteristics: 156.25MHz and phase noise -67.9dBc/Hz at 10Hz, -97.9dBc/Hz at 100Hz, -121.9dBc/Hz at 1kHz, -141.9dBc/Hz at 10kHz, -152.9dBc/Hz at 100kHz.

- Input reference frequency: 20MHz
- VCXO-PLL bandwidth: 30Hz
- VCXO-PLL charge pump current: 0.75mA
- FemtoClock-NG PLL bandwidth: 342kHz
- V_{DD} $_V = 3.3V$, $T_A = 25^{\circ}C$

Figure 5. 312.5MHz Output Phase Noise

Figure 6. 125MHz Output Phase Noise

Figure 8. 250MHz Output Phase Noise

Figure 9. 500MHz Output Phase Noise

Applications Information

VCXO-PLL Loop Filter

Each of the two PLLs uses a loop filter with external components. The value of the external components depends on the desired loop bandwidth for each PLL, the input clock frequency, and in the case of the VCXO-PLL on the external VCXO component. For the VCXO-PLL (first PLL stage), a 2nd or 3rd order loop filter may be used. The loop filter of the VCXO-PLL is connected to the device through the LFV charge-pump input. The filter output is connected to the control voltage input of the external VCXO. The FemtoClock NG PLL (second PLL stage) may use a 2nd order loop filter. The LFF output of the device connects to filter input and LFFR to the filter output. Typical loop filters are shown in [Figure 10](#page-57-3) (2nd order) in [Figure 11](#page-59-1) (3rd order) and are discussed below. Step by step calculations to determine the value of the loop filter components values are shown.

Figure 10. Second-Order Loop Filter

Step-by-step Calculation

Step 1: Determine the desired loop bandwidth \mathfrak{f}_C . \mathfrak{f}_C must satisfy the following condition:

$$
\frac{f_{PD}}{f_C} \gg 20
$$

Where f_{PD} is the input frequency of the VCXO-PLL phase detector frequency.

Step 2: Calculate R_Z by:

$$
R_Z = \frac{2 \times \pi \cdot f_C \times M_V}{I_{CP} \times K_{VCXO}}
$$

Where I_{CP} is the VCXO-PLL charge-pump current and K_{VCXO} is the gain of the VCXO component (consult the datasheet of the external VCXO for its gain parameter). M_V is the effective feedback divider:

$$
\mathrm{M_V} = \frac{\mathrm{f}_{VCXO}}{\mathrm{f}_{PD}}
$$

 f_{VCXO} is the frequency of the external VCXO component.

Step 3: Calculate C_Z by:

$$
\alpha = \frac{f_C}{f_Z}
$$

$$
C_Z = \frac{\alpha}{2 \times \pi \times f_C \times R_Z}
$$

α is ratio between the loop bandwidth and the filter zero. f_Z is the filter zero. α should be greater than 3.

Step 4: Calculate C_P by:

$$
C_p = \frac{C_Z}{\alpha \times \beta}
$$

$$
\beta\,=\,\frac{f_P}{f_C}
$$

f_P is the pole and β is ratio between the pole and the loop bandwidth. β should be greater than 3.

Step 5: Verify that the phase margin PM is greater than 50°.

$$
PM = \text{atan} \frac{b-1}{2 \times \sqrt{b}}
$$

$$
b = \frac{C_Z}{C_P} + 1
$$

Example calculation: The [Block Diagram](#page-3-0) shows a 2nd order loop filter for the VCXO-PLL. In this example, the VCXO-PLL reference frequency is 122.88MHz, and an external VCXO component of 122.88MHz is used. The desired VCXO-PLL loop bandwidth f $_{\rm C}$ is 40Hz. To achieve the desired loop bandwidth with small size loop filter components, set the PLL frequency pre-divider ${\sf P_V}$, and the PLL feedback divider M_V to 1024. According to the step 1 instruction, f_{PD} is 120kHz. This satisfies the condition f_{PD}/f_C >> 20. R_Z is calculated 32.2kΩ.

The VCXO gain K_{VCXO} used for the device reference circuit is 10kHz/V. The charge-pump current of the VCXO-PLL is configurable from 50μA to 1200μA. The charge-pump current is programmed to I_{CP} = 800uA. For α = 8, C_Z is calculated to be 0.99μF. C_Z greater than this value assures α > 12. For example, the actual chosen value is the standard capacitor value of 1μF. For β = 5, C_P is calculated 24.7nF. The standard capacitor value of $C_P = 27$ ps ensures $\beta > 7$.

Figure 11. Third-Order Loop Filter

[Figure 11](#page-59-1) shows a third-order loop filter. The filter is equivalent to the 2nd order filter in [Figure 12](#page-59-2) with the addition components R_{P2} and C_{P2} . The additional components R_{P2} and C_{P2} should be calculated as shown:

$$
C_{P2} = \frac{R_Z \times C_P}{R_{P2} \times \gamma}
$$

$$
R_{P2} \sim 1.5 \times R_Z
$$

 γ is the ratio between the 1st pole and the 2nd pole. γ should be greater than 3.

Example calculation for the 3rd order loop filter shown in [Figure 11:](#page-59-1) Equivalent to the 2nd order loop filter calculation, R_Z = 33k Ω , C_Z = 1µF, and C_P = 27nF. R_{P2} should be in the range of 0.5·R_Z < R_{P2} < 2.5·R_Z, for instance 51k Ω . With γ = 4, C_{P2} is 4.37nF (select 4.7µF).

FemtoClock NG PLL Loop Filter

[Figure 12](#page-59-2) shows a 2nd order loop filter for the FemtoClock NG PLL. This loop filter is equivalent to [Figure 10](#page-57-3) and uses the loop filter components R_{ZF} (R_{Z}), C_{ZF} (C $_{\mathsf{C}}$), C_{P}). The VCO frequency of the FemtoClock NG PLL is 2500MHz.

Figure 12. 2nd Order Loop Filer for FemtoClock NG PLL

Example calculation for the 2nd order loop filter shown in [Figure 12](#page-59-2)**:** the FemtoClock NG receives its reference frequency from the VCXO output. With the P_F pre-divider set to 1, the phase detector frequency is also 122.88MHz. The PLL feedback divider must be set to $\mathsf{M}_\mathsf{F}=$ 24 in order to locate the VCO frequencies in its center range. A target PLL loop bandwidth f_C is 80kHz satisfies the condition in step 1. The gain of the internal VCO is 30MHz/V and the charge-pump current I_{CP} is set to 3.6mA. Using the formula for R_Z in step 2, R_{ZF} is calculated 103Ω (chose the standard value of 100Ω); using the formula for C_Z in step 3, C_{ZF} is calculated 88nF for α = 4. A capacitor larger than 88nF should be used for C_{ZF} to assure that the α is greater than 4, for instance the standard component capacitor value 100nF.

With $β = 6$, C_{PZ} is calculated to be 3.6nF as shown in step 4. A capacitor less than 3.6nF should be used for C_{PZ} to assure that β remains greater than 6, for instance the standard capacitor value of 1nF is selected for C_{PZ.} The selected 2nd order loop filter components are R_{ZF} = 100 Ω , C_{ZF} = 100nF and C_{PZ} = 1nF.

Output Termination

LVPECL-style Outputs

Differential outputs configured to LVPECL-style are an open-emitter type, and require a termination with a DC current path to GND. This section displays parallel and thevenin termination, Y-termination and source termination for various output supply (V_{DDO-V}), and amplitude settings. V_{TT} is the termination voltage.

Figure 13. LVPECL Parallel Termination 1

Table 50. Termination Voltage V_{TT} ([Figure 13](#page-60-3))^[a]

[a] Output power supplies supporting 3.3V, 2.5V and 1.8V are V_{DDO_QCLKA}, V_{DDO_QCLKB}, V_{DDO_QCLKC} and V_{DDO} QCLKD.

Figure 14. LVPECL Parallel Termination 2

Table 51. Termination Resistor Values ([Figure 14](#page-61-0))

[a] Output power supplies supporting 3.3V, 2.5V, and 1.8V are V_{DDO_QCLKA}, V_{DDO_QCLKB}, V_{DDO_QCLKC} and V_{DDO_QCLKD}.

Figure 15. LVPECL Y-Termination

Table 52. Termination Resistor Values ([Figure 15](#page-62-0))

[a] Output power supplies supporting 3.3V, 2.5V, and 1.8V are V_{DDO_QCLKA}, V_{DDO_QCLKB}, V_{DDO_QCLKC} and V_{DDO_QCLKD}.

Figure 16. LVPECL Source Termination

Table 53. Termination Resistor Values ([Figure 16](#page-62-1))

[a] Output power supplies supporting 3.3V, 2.5V, and 1.8V are V_{DDO_QCLKA}, V_{DDO_QCLKB}, V_{DDO_QCLKC} and V_{DDO_QCLKD}.

LVDS-Style Outputs

LVDS style outputs support fully differential terminations. LVDS does not require board level pull-down resistors for DC termination. [Figure 17](#page-63-1) and [Figure 18](#page-63-2) show typical termination examples with DC coupling for the LVDS style driver. In these examples, the receiver is high input impedance without built-in termination. LVDS-style with a differential termination is preferred for best common-mode rejection and lowest device power consumption.

Figure 17. LVDS Termination

Figure 18. LVDS Termination (Alternative)

Power Supply Filtering

Please refer to the document *8V19N470 Hardware Design Guide* for comprehensive information about power supply and isolation, loop filter design for VCXO and VCO, schematics, input and output interfaces/terminations and an example schematics. This document shows a recommended power supply filter schematic in which the device is operated at V_{[DD_V](#page-66-3)} = 3.3V (the output supply voltages of V_{[DDO_V](#page-66-2)} = 3.3V, 2.5V, and 1.8V are supported). This example focuses on power supply connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set for the application.

As with any high-speed analog circuitry, the power supply pins are vulnerable to the board supply or device generated noise. This device requires an external voltage regulator for the V_{DD-V} pins for isolation of board supply noise. This regulator (example component: PS7A8300RGT) is indicated in the schematic by the power supply, VREG_3.3V. Consult the voltage regulator specification for details for the required performance. To achieve optimum jitter performance, power supply isolation is required to minimize device generated noise. The $V_{DD LCF}$ terminal requires the cleanest power supply. The device provides separate power supplies to isolate any high switching noise from coupling into the internal PLLs and into other outputs as shown. In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1μ F and 0.01μ F capacitors in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB. To set configuration pins, pull-up and pull-down resistors can all be placed on the PCB side, opposite the device side, to free up device side area if necessary.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

Thermal Characteristics

Table 54. Thermal Characteristics for the 100-FPBGA Package^[a]

[a] Standard JEDEC 2S2P multilayer PCB.

[b] Estimated thermal values.

[c] Thermal model where the majority (>90%) of the heat dissipated in the component is conducted through the package bottom (balls). ${\sf T}_{\sf B}$ is measured on or near the component lead.

[d] Thermal model where the heat dissipated to the ambient from all directions. T_B is measured on or near the component lead.

Tem perat ure Considerat ions

The device supports applications in a natural convection environment as long as the junction temperature does not exceed the specified junction temperature T_J. In applications where the heat dissipates through the PCB, $\Psi_{\sf JB}$ is the correct metric to calculate the junction temperature. The following calculation uses the junction-to-board thermal characterization parameter Ψ_{JB} to calculate the junction temperature (T_J). Care must be taken to not exceed the maximum allowed junction temperature T_J of 125 °C.

The junction temperature $\sf T_J$ is calculated using the following equation: $\sf T_J$ = $\sf T_B$ + $\sf P_{TOT}$ \times \uptheta_{JB}

where:

- \blacksquare T_J is the junction temperature at steady state conditions in \degree C.
- $-$ T_B is the board temperature at steady state condition in $^{\circ}$ C, measured on or near the component lead.
- \bullet Θ_{JB} is the thermal characterization parameter to report the difference between T_J and T_B.
- \blacksquare P_{TOT} is the total device power dissipation.

Maximum power dissipation scenario: With the maximum allowed junction temperature and the maximum device power consumption and at the maximum supply voltage of 3.3V + 5%, the maximum supported board temperature can be determined. In the device configuration for the maximum power consumption, IDD_V is 1.024A. In this configuration, all outputs are active and configured to LVDS, the output amplitude is set to 850mV and outputs use a 100 Ohm termination:

▪ Total system power dissipation (incl. termination resistor power): PTOT = VDD_V, MAX · IDD_V, MAX = 3.465V · 1.024A = 3.548W

In this scenario and with the Theta_JB thermal model, the maximum supported board temperature is as follows:

TB, $MAX = TJ$ MAX - Theta JB \cdot PTOT

TB, MAX = 125° C - 6.43° C/W \cdot 3.548W = 102.2° C

Table 55. Typical Power Consumption

[a] Junction temperature at board temperature T_B = 85°C

[b] Maximum board temperature for junction temperature < 125°C: T_{B, MAX} = T_{J, MAX} - θ_{JB} x P_{TOT}.

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

www.idt.com/document/psc/bdbdg100-package-outline-110-mm-sq-body-10-mm-pitch-cabga

Marking Diagram

 \bullet LOT COO

1. Line 1 and Line 2 is the part number.

2. "#" denotes stepping.

3. "YYWW" denotes: "YY" is the last two digits of the year, and "WW" is a work week number that the part was assembled.

4. "\$" denotes the mark code.

Ordering Information

Glossary

Revision History

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA <www.IDT.com>

Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 <www.IDT.com/go/sales>

Tech Support <www.IDT.com/go/support>

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

[Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property](www.IDT.com/go/glossary) [of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit w](www.IDT.com/go/glossary)ww.idt.com/go/glossary. Integrated Device Technology, Inc All rights reserved.

