FEATURES OVERVIEW

- Interleaved PFC/PWM switching
- Green-mode PFC and PWM operation
- No switching of PFC at light loads for best power saving
- Low start-up and operating current
- \blacksquare Innovative switching-charge multiplier-divider
- Multi-vector control for improved PFC output transient response
- Average-current-mode Control for PFC
- **Programmable two-level PFC output voltage**
- **PFC** over-voltage and under-voltage protections
- **PFC and PWM feedback open-loop protection**
- Cycle-by-cycle current limiting for PFC/PWM
- Slope compensation for PWM
- Constant power limit for PWM
- **Brownout protection**

APPLICATIONS

Switching Power Suppliers with Active PFC

High-Power Adaptors

DESCRIPTION

 The highly integrated SG6903 is specially designed for power supplies consist of boost PFC and flyback PWM. It requires very few external components to achieve green-mode operation and versatile protections. It is available in 16-pin SOP packages.

synchronizes the PFC and PWM stages and reduces switching noise. At light loads, the switching frequency is continuously decreased to reduce power consumption. If output loading is further reduced, the PFC stage is turned off to further reduce power consumption. The proprietary interleave-switching feature

For PFC stage, the proprietary multi-vector control scheme provides a fast transient response in a low-bandwidth PFC loop, in which the overshoot and undershoot of the PFC voltage are clamped. If the feedback loop is broken, the SG6903 will shut off PFC to prevent extra-high voltage on output. Programmable two-level output voltage control will reduce the PFC output voltage at low line input to increase the efficiency of the power supply.

For the flyback PWM, the synchronized slope compensation ensures the stability of the current loop under continuous-conduction-mode operation. Built-in line-voltage compensation maintains constant output-power limit. Hiccup operation during output overloading is also guaranteed.

In addition, SG6903 provides complete protection functions such as brownout protection and RI pin open/short.

TYPICAL APPLICATION

MARKING DIAGRAMS PIN CONFIGURATION

ORDERING INFORMATION

PIN DESCRIPTIONS

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

*All voltage values, except differential voltages, are given with respect to GND pin.

*Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

RECOMMENDED OPERATING CONDITIONS

*For proper operation, electrical characteristics (12V<V_{DD}<20V, -20°C <T_A<85°C Unless noted)

VDD section

Oscillator & Green-Mode Operation

VRMS for UVP and RANGE

PFC stage

Voltage Error Amplifier

Current Error Amplifier

Peak Current Limit

Multiplier

PFC Output Driver

PWM Stage

FBPWM

PWM-Current Sense

PWM Output Driver

TYPICAL CHARACTERISTICS

OPERATION DESCRIPTION

SG6903 is a highly integrated PFC/PWM combo controller. Lots functions and protections are built in to provide a possible compact design. The following description will describe the operation and function in detail to give an overview of this chip.

Start-up

Figure 1 shows the start-up circuit of the SG6903. A resistor R_{AC} is utilized to charge V_{DD} capacitor through S1. The turn-on and turn-off threshold of SG6903 are fixed internally at 16V/10V. During start-up, the hold-up capacitor must be charged to 16V through the start-up resistor so that SG6903 will be enabled. The hold-up capacitor will continue to supply V_{DD} before the energy can be delivered from auxiliary winding of the main transformer. V_{DD} must not drop below 10V during this start-up process. This UVLO hysteresis window ensures that hold-up capacitor is adequate to supply V_{DD} during start-up. Since SG6903 consumes less than 25µA startup current, the value of R_{AC} can be large to reduce power consumption. One 10µF capacitor should hold enough energy for successful start-up. After start-up, S1 will switch so that the current I_{AC} will be the input for PFC multiplier. This helps reduce circuit complexity and power consumption.

FIG.1 Start-up circuit of the SG6903

Switching Frequency and Current

Sources

The switching frequency of SG6903 can be programmed by the resistor R_I connected between RI pin and GND. The relationship is:

Fosc =
$$
\frac{1560}{R_1 (k\Omega)} (KHz) \dots (1)
$$

For example, a 24K Ω resistor R_I results in a 65 KHz switching frequency. Accordingly, a constant Current I_T will flow through R_I.

$$
I_T = \frac{1.2V}{R_I (k\Omega)} (mA) \dots (2)
$$

 I_T is used to generate internal current reference.

Line Voltage Detection (VRMS)

Figure 2 shows a resistive divider with low-pass filtering for line-voltage detection on VRMS pin. The VRMS voltage is used for the PFC multiplier, brownout protection, and range control.

For brownout protection, the SG6903 is disabled with 195ms delay time if the voltage V_{RMS} drops below 0.8V.

For PFC multiplier and range control, please refer to below section for more details.

FIG.2 Line voltage detection circuit

PFC Output Voltage Control (RANGE)

For a universal input (90 \sim 264Vac) power supply applying active boost PFC and Flyback as a second stage, the output voltage of PFC is usually designed around 250V at low line while it is 390V at high line. This can improve the efficiency at low-line input. In SG6903, the RANGE pin (open-drain structure) is used for the two-level output voltage setting.

Figure 3 shows the RANGE output that programs the PFC output voltage. The RANGE output is shorted to ground when the V_{RMS} voltage exceeds V_{RMS-H} (1.95V) while it is of high impedance (open) whenever the V_{RMS} voltage drops below V_{RMS-L} (1.6V). The output voltages can be designed using below equations.

Range = Open
$$
\Rightarrow
$$
 Vo = $\frac{R_A + R_B}{R_B} \times 3V$ ----(3)
Range = Ground \Rightarrow Vo = $\frac{R_A + (R_B//R_C)}{(R_B//R_C)} \times 3V$

FIG.3 Range control two level output voltage

Interleave Switching

The SG6903 uses interleaved switching to synchronize the PFC and Flyback stages. This reduces switching noise and spreads the EMI emissions. Figure 4 shows that an off-time T_{OFF} is inserted in between the turn-off of the PFC gate drive and the turn-on of the PWM.

FIG.4 Interleaved switching pattern

PFC Operation

The purpose of a boost active power factor corrector (PFC) is to shape the input current of a power supply. The input current waveform and phase will follow that of the input voltage. Using SG6903, average-current-mode control is utilized for continuous-current-mode operation for the PFC booster. With the innovative multi-vector control for voltage loop and *Switching Charge*® multiplier/divider for current reference, excellent input power factor is achieved with good noise immunity and transient response. Figure 5 shows the total control loop for the average-current-mode control circuit of SG6903.

The current source output from the *Switching Charge*® multiplier/divider can be expressed as:

$$
I_{MO} = K \times \frac{I_{AC} \times V_{EA}}{V_{RMS}^{2}} (uA) \ \cdots \cdots \cdots \cdots (4)
$$

Refer to Figure 5, the current output from IMP pin, I_{MP} , is the summation of I_{MO} and I_{MR1} . I_{MR1} and I_{MR2} are identical fixed current sources. They are used to pull high the operating point of the IMP and IPFC pins since the voltage across R_S goes negative with respect to ground. The constant current sources I_{MR1} and I_{MR2} are typically 60µA.

Through the differential amplification of the signal across Rs, better noise immunity is achieved. The output of IEA will be compared with an internal sawtooth and hence the pulse width for PFC is determined. Through the average current-mode control loop, the input current Is will be proportional to I_{MO} .

$$
Im \alpha \times R_2 = Is \times Rs
$$
 \n
$$
3.1 \times 10^{-10}
$$

SYSTEM PRODUCT SEXUAL SEXUALLY STATE SEXUALLY STATE SEXUALLY SEXUALLY SEXUALLY SPECIFICATION SPECIFICATION

Green Mode PFC/Flyback-PWM Controller SG6903

According to Equation (5), the minimum value of R2 and maximum of Rs can be determined since I_{MO} should not exceed the specified maximum value.

There are different concerns in determining the value of the sense resistor Rs. The value of Rs should be small to reduce power consumption, but it should be large enough to maintain the resolution. A current transformer (CT) may be used to improve the efficiency of high power converters.

To achieve good power factor, the voltage for V_{RMS} and V_{EA} should be kept as constant as possible according to Equation (4). In other words, good RC filtering for VRMS and narrow bandwidth (lower than the line frequency) for voltage loop are suggested for better input current shaping. The trans-conductance error amplifier has output impedance Z_0 and a capacitor C_{EA} (1µF ~ 10µF) should be connected to ground. This establishes a dominant pole f1 (Equation (6)) for the voltage loop.

$$
f_1 = \frac{1}{2\pi \times Z_0 \times C_{EA}} \qquad \qquad \dots \quad (6)
$$

The average total input power can be expressed as:

$$
Pin = Vin(rms) \times lin(rms)
$$
\n
$$
\propto V_{RMS} \times I_{MO}
$$
\n
$$
\propto V_{RMS} \times \frac{I_{AC} \times V_{EA}}{V_{RMS}^{2}}
$$
\n
$$
\propto \frac{Vin}{R_{AC}} \times V_{EA}
$$
\n
$$
\propto V_{RMS} \times \frac{R_{AC}^{2}}{V_{RMS}^{2}}
$$
\n
$$
= \sqrt{2} \times \frac{V_{EA}}{R_{AC}}
$$
\n(11.12)

From Equation (7), V_{EA} , the output of the voltage error amplifier, actually controls the total input power and hence the power delivered to the load.

FIG.5 Average current mode control loop

Multi-vector Error Amplifier

Although the PFC stage has a low bandwidth voltage loop for better input power factor, the innovative *Multi-Vector Error Amplifier* provides a fast transient response to clamp the overshoot and undershoot of the PFC output voltage.

Figure 6 shows the block diagram of the multi-vector error amplifier. When the variation of the feedback voltage exceeds \pm 5% of the reference voltage, the trans-conductance error amplifier will adjust its output impedance to increase the loop response.

Once the voltage on the FBPFC pin is over OVP_{FBPFC} , the OPFC of the SG6903 will be disabled. THE OPFC will not be enabled again until the FBPFC voltage falls below OVP_{FBPFC}.

FIG. 6 Multi-vector error amplifier

Cycle-by-cycle Current Limiting

SG6903 provides cycle-by-cycle current limiting for both PFC and PWM stages. The voltage of V_{RMS} determines the voltage of V_{PK} . The relationship between V_{PK} and VRMS is also shown in Figure 7. The PFC gate drive will be terminated once the voltage on ISENSE pin goes below V_{PK}.

The amplitude of the constant current I_P is determined by the internal current reference according to the following equation:

Therefore the peak current of the ISENSE is given by $(V_{RMS}<1.05V)$,

$$
ISENSE_peak = \frac{(IP \times RP) - 0.2V}{Rs}
$$
 \n----- (9)

Flyback PWM and Slope Compensation

As shown in Figure 8, peak-current-mode control is utilized for Flyback PWM. The SG6903 inserts a synchronized 0.5V ramp at the beginning of each switching cycle. This built-in slope compensation ensures stable operation for continuous current-mode operation.

FIG. 8 Peak current control loop

When the IPWM voltage, across the sense resistor, reaches the threshold voltage (0.9V), the OPWM will be turned off after a small propagation delay t_{PD-PWM} .

To improve stability or prevent sub-harmonic oscillation, a synchronized positive-going ramp in inserted at every switching cycle.

Limited Power Control

Every time when the output of power supply is shorted or over loaded, the FBPWM voltage will increase. If the FBPWM voltage is higher than a designed threshold, FB_{OPEN-LOOP} (4.5V), for longer than t_{OPEN-PWM} (56ms), the OPWM will then be turned off.

As long as the voltage on the VDD pin is larger than V_{DD-OFF} (minimum operating voltage), the OPWM will not be enabled. And this protection will be reset every tOPEN-PWM-Hiccup interval. A low frequency hiccup mode protection will then be achieved to prevent the power supply from being overheated under over loading condition.

Gate Drivers

SG6903 output stage is a fast totem-pole gate driver. The output driver is clamped by an internal 18V Zener diode in order to protect the external power MOSFET.

PACKAGE INFORMATION

16 PINS – PLASTIC SOP (S)

A1

DIMENSION:

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEX^{\bigcirc}$ Build it Now™ CorePLUS™ CROSSVOLT[™] CTL ™ Current Transfer Logic™ EcoSPARK[®] \mathbf{F} $\overline{\mathsf{F}}$ airchild® Fairchild Semiconductor® FACT Quiet Series™
FACT[®] FAST[®] FastyCore™ **FPS™** FRFET[®] Global Power Resourcest

Green FPS™ Green FPS™e-Series™ GTO™ i \text{-}LO^{\text{TM}} IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR[®] PDP-SPM™ Power220[®]

$Power247^{\circledR}$ POWEREDGE[®] Power-SPM™ PowerTrench[®] Programmable Active Droop™ $QFET^E$ $\mathsf{Q}\mathsf{S}^{\mathsf{TM}}$ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™
SPM® STEALTH™ SuperFET™ SuperSOT™3 SuperSOT[™]-6

SyncFET™ The Power Franchise[®] puwer^t TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™
UHC® UniFET™ VCX^{TM}

SuperSOT[™]-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Definition of Terms Datasheet Identification **Product Status** Definition This datasheet contains the design specifications for product Advance Information Formative or In Design development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve desian. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only

Rev. 131