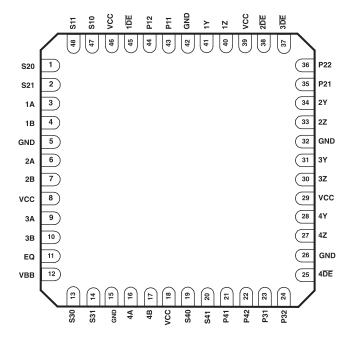


Gigabit 4 × 4 CROSSPOINT SWITCH

FEATURES

- Up to 2.5-Gbps Operation
- Non-Blocking Architecture Allows Each Output to Be Connected to Any Input
- 30 ps of Deterministic Jitter
- Selectable Transmit Preemphasis Per Lane
- Selectable Receive Equalization
- Available Packaging: 48-Pin QFN
- Propagation Delay Times: 500 ps Typical
- Inputs Electrically Compatible With CML Signal Levels
- Operates From a Single 3.3-V Supply
- Ability to Place Ouputs in High-Impedance State
- Low Power: 560 mW
- Integrated Termination Resistors

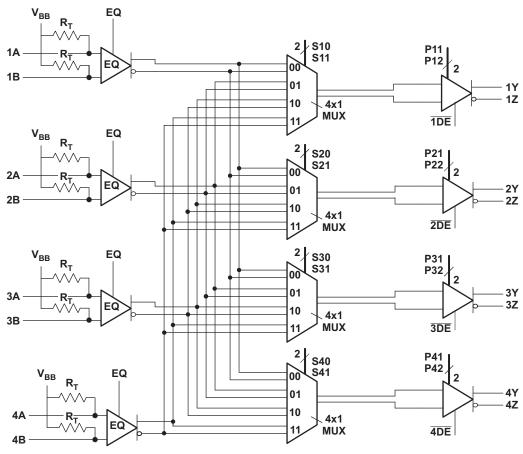

APPLICATIONS

- Clock Buffering/Clock MUXing
- Wireless Base Stations
- High-Speed Network Routing
- Telecom/Datacom

DESCRIPTION

The SN65LVCP204 is a 4×4 non-blocking crosspoint switch in a flow-through pinout that allows for ease in PCB layout. VML signaling is used to achieve a high-speed data throughput while using low power. Each of the output drivers includes a 4:1 multiplexer to allow any input to be routed to any output. Internal signal paths are fully differential to achieve high signaling speeds while maintaining low signal skews. The SN65LVCP204 incorporates $100\text{-}\Omega$ termination resistors for those applications where board space is at a premium. Transmit preemphasis and receive equalization are built in for superior signal integrity performance.

The SN65LVCP204 is characterized for operation from -40°C to 85°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

LOGIC DIAGRAM

Note:

V_{BB}: Receiver input internal biasing voltage (allows ac coupling)EQ: Input equalizer (compensates for frequency dependent

transmission line loss of backplanes)

 \mathbf{R}_{T} : Internal 50-Ω receiver termination (100-Ω differential) **Preemphasis:** Output precompensation for transmission line losses

TERMINAL FUNCTIONS

Т	ERMINAL	TYPE	DESCRIPTION
NAME NO.		ITPE	DESCRIPTION
High Speed	I/O		
xA xB	3, 6, 9, 16 4, 7, 10, 17	Differential inputs (with 50- Ω termination to V _{BB}) xA = P; xB = N	Line-side differential inputs, CML compatible
xY xZ	41, 34, 31, 28 40, 33, 30, 27	Differential output $xY = P$; $xZ = N$	Switch-side differential outputs, VML
Control Sign	nals		
xDE	45, 38, 37, 25	Input	Data enable; active low; LVTTL; when not enabled, the ouput is in the high-impedance state for power savings.
S10-S41	47, 48, 1, 2, 13, 14, 19, 20	Input; S1x = channel 1, bit x	Switching selection; LVTTL

Submit Documentation Feedback

TERMINAL FUNCTIONS (continued)

TI	ERMINAL	TYPE	DECORIDATION		
NAME NO.		TYPE	DESCRIPTION		
P11–P42	43, 44, 35, 36, 23, 24, 21, 22	Input; P1x = channel 1, bit x	Output preemphasis control; LVTTL		
EQ	11	Input; selection for receive equalization setting	EQ = 1 (default) is for the 5-dB setting, EQ = 0 is for the 12-dB setting		
Power Suppl	ly				
VCC	8, 18, 29, 39, 46	Power	Power supply 3.3 V ±5%		
GND	5, 15, 26, 32, 42		Ground		
Thermal pad			The ground center pad of the package must be connected to GND plane.		
V_{BB}	12	Input	Receiver input biasing voltage		

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

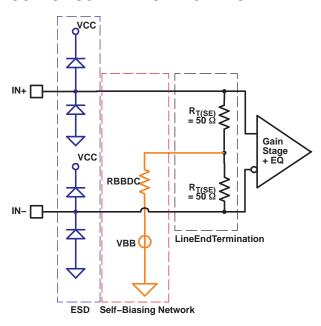


Figure 1. Equivalent Input Circuit Design

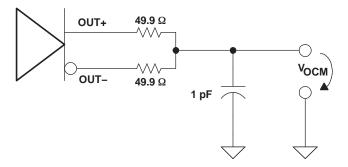


Figure 2. Common-Mode Output Voltage Test Circuit

Table 1. CROSSPOINT LOGIC TABLES

Ol	OUTPUT CHANNEL 1			OUTPUT CHANNEL 2			OUTPUT CHANNEL 3			OUTPUT CHANNEL 4		
	TROL NS	INPUT SELECTED		TROL NS	INPUT SELECTED	CONTROL INPUT PINS SELECTED		CONTROL PINS		INPUT SELECTED		
S10	S11	1Y/1Z	S20	S21	2Y/2Z	S30	S31	3Y/3Z	S40	S41	4Y/4Z	
0	0	1A/1B	0	0	1A/1B	0	0	1A/1B	0	0	1A/1B	
0	1	2A/2B	0	1	2A/2B	0	1	2A/2B	0	1	2A/2B	
1	0	3A/3B	1	0	3A/3B	1	0	3A/3B	1	0	3A/3B	
1	1	4A/4B	1	1	4A/4B	1	1	4A/4B	1	1	4A/4B	

AVAILABLE OPTIONS

т	DESCRIPTION	PACKAGED DEVICE ⁽¹⁾	
1A	DESCRIPTION	RGZ (48-Pin) (Orderable)	
-40°C to 85°C	Serial multiplexer	SN65LVCP204RGZ	

⁽¹⁾ The package is available taped and reeled. Add an R suffix to device types (e.g., SN65LVCP204RGZR).

PACKAGE THERMAL CHARACTERISTICS

PACKAGE THERMAL CHARACTER	NOM	UNIT	
θ _{JA} (junction-to-ambient)		33	°C/W
θ _{JB} (junction-to-board)	Four lover IEDEC heard (IESDE1 7) using eight CND vice of 0.2 mm	20	°C/W
θ _{JC} (junction-to-case)	Four-layer JEDEC board (JESD51-7) using eight GND-vias of 0.3-mm diameter on the center pad as shown in the section: Recommended	23.6	°C/W
Ψ-jt (junction-to-top pseudo)	PCB footprint with boundary and environment conditions of JEDEC	0.6	°C/W
Ψ-jb (junction-to-board pseudo)	board (JESD51-2)	19.4	°C/W
θ _{JP} (junction-to-pad)		5.4	°C/W

⁽¹⁾ See the IC Package Thermal Metrics application report SPRA953 for a detailed explanation of thermal parameters.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

				UNIT
V_{CC}	Supply-voltage ra	ange ⁽²⁾		-0.5 V to 6 V
	Voltago rango		Control inputs, all outputs	-0.5 V to (V _{CC} + 0.5 V)
	Voltage range		Receiver inputs	-0.5 V to 4 V
	ECD	Human-body model ⁽³⁾	All pins	3 kV
	ESD	Charged-device model ⁽⁴⁾	All pins	500 V
T _J	Maximum junction	on temperature		See Package Thermal Characteristics table
	Moisture sensitiv	rity level		2
	Reflow temperat	ure package soldering, 4 second	ds	260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to the ground terminals.

 ⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A.
 (4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT		
dR	Operating data rate				2.5	Gbps		
V _{CC}	Supply voltage		3.135	3.3	3.465	V		
$V_{CC(N)}$	Supply-voltage noise amplitude	10 Hz to 1.25 GHz			20	mV		
T_{J}	Junction temperature				125	°C		
T _A	Operating free-air temperature (1)		-40		85	°C		
DIFFERE	ENTIAL INPUTS							
		dR _(in) ≤ 1.25 Gbps	100		1750	mV_PP		
V_{ID}	Receiver peak-to-peak differential input voltage ⁽²⁾	$1.25 \text{ Gbps} < dR_{(in)} \le 2.5 \text{ Gbps}$	100		1560	mV_PP		
	. s. tage	$dR_{(in)} > 2.5 \text{ Gbps}$	100		1000	mV_PP		
V _{ICM}	Receiver common-mode input voltage	Note: for best jitter performance, ac coupling is recommended.	1.5	1.6 ^V C	$C - \frac{ V_{\text{ID}} }{2}$	V		
CONTRO	OL INPUTS							
V_{IH}	High-level input voltage		2	٧	CC + 0.3	V		
V _{IL}	Low-level input voltage		-0.3		0.8	V		
DIFFERE	DIFFERENTIAL OUTPUTS							
R_{L}	Differential load resistance		80	100	120	Ω		

⁽¹⁾ Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
DIFFERE	NTIAL INPUTS		<u>.</u>		<u> </u>	
V _{IT+}	Positive-going differential input, high threshold				50	mV
V _{IT}	Negative-going differential input, low threshold		-50			mV
A _(EQ)	Equalizer gain	at 1.25 GHz (EQ = 0)		12		dB
R _{T(D)}	Termination resistance, differential		80	100	120	Ω
V _{BB}	Open-circuit input voltage (input self-bias voltage)	AC-coupled inputs		1.6		V
R _(BBDC)	Biasing network dc impedance			30		kΩ
R _(BBAC)	Biasing network ac impedance	375 MHz		42		Ω
DIFFERE	NTIAL OUTPUTS		,			
V_{ODH}	High-level output voltage	$R_{I} = 100 \Omega \pm 1\%$		650		mV_{PP}
V_{ODL}	Low-level output voltage	Px2 = Px1 = 0;		-650		mV_PP
V _{ODB(PP)}	Output differential voltage without preemphasis (2)	2.5 Gbps alternating 1010-pattern; Figure 3	1000	1300	1500	mV_PP
V _{OCM}	Output common-mode voltage			1.65		V
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage between logic states	See Figure 2		1		mV

⁽¹⁾ All typical values are at $T_A = 25$ °C and $V_{CC} = 3.3$ -V supply unless otherwise noted. They are for reference purposes and are not production tested.

⁽²⁾ Differential input voltage V_{ID} is defined as | IN+ – IN- |.

⁽²⁾ Differential output voltage $V_{(ODB)}$ is defined as | OUT+ - OUT- |.

ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Output preemphasis voltage		Px2:Px1 = 00		0		
V	VODB(PP)	$R_L = 100 \Omega \pm 1\%;$	Px2:Px1 = 01		3		dB
$V_{(PE)}$	V/	x = L or S; See Figure 3	Px2:Px1 = 10		6		uБ
	ratio, *ODPE(PP)		Px2:Px1 = 11		9		
t _(PRE)	Preemphasis duration measurement	Pxx = 1;	is is set to 9 dB during test; 00-MHz clock signal; See Figure 4		175		ps
R _O	Output resistance	Differential on-chip OUT-	termination between OUT+ and		100		Ω
CONTR	OL INPUTS						
I _{IH}	High-level input current	V _{IN} = VCC				5	μΑ
I _{IL}	Low-level input current	V _{IN} = GND		-125	-90		μΑ
R _(PU)	Pullup resistance				35		kΩ
POWEF	RCONSUMPTION						
P_{D}	Device power dissipation	All outputs termina	ted 100 Ω		560	750	mW
P _Z	Device power dissipation in high-impedance state	All outputs in high-	impedance state			600	mW
I _{CC}	Device current consumption		sll outputs terminated 100 Ω PRBS 2 ⁷ – 1 pattern at 2.5 Gbps			220	mA

SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
MULTI	PLEXER					
t _(SM)	Multiplexer switch time	Multiplexer to valid output		3	6	ns
DIFFER	RENTIAL OUTPUTS					
t _{PLH}	Low-to-high propagation delay	Propagation delay, input to output		0.5	0.7	ns
t _{PHL}	High-to-low propagation delay	See Figure 6		0.5	0.7	ns
t _r	Rise time	20% to 80% of V _{O(DB)} ; test pattern: 100-MHz clock signal;		110		ps
t _f	Fall time	see Figure 5 and Figure 8		110		ps
t _{sk(p)}	Pulse skew, t _{PHL} - t _{PLH} ⁽²⁾				20	ps
t _{sk(o)}	Output skew ⁽³⁾	All outputs terminated with 100 Ω		25	100	ps
t _{sk(pp)}	Part-to-part skew ⁽⁴⁾				300	ps
t _{zd}	Switch time, hi-Z state to disable	50 Ω to Vcm and 150-pF load on each output			20	ns
t _{ze}	Switch time, hi-Z state to enable	50 Ω to Vcm and 150-pF load on each output			10	ns
RJ	Device random jitter, rms	See Figure 8 for test circuit. BERT setting 10 ⁻¹⁵ Alternating 10-pattern.		0.8	2	ps-rms

⁽¹⁾ All typical values are at 25°C and with 3.3-V supply, unless otherwise noted.

Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

 $t_{sk(p)}$ is the magnitude of the time difference between the t_{PLH} and t_{PHL} of any output of a single device.

 $t_{sk(p)}$ is the magnitude of the time difference between the t_{PLH} and t_{PHL} of any two outputs of a single device. $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

SWITCHING CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	TEST CONDITIONS			TYP ⁽¹⁾	MAX	UNIT
	Intrinsic deterministic device jitter ⁽⁵⁾⁽⁶⁾ , peak-to-peak	0 dB preemphasis (PREx_x = 0); See Figure 8 for the test circuit.	PRBS 2 ⁷ – 1 pattern	2.5 Gbps			30	ps
DJ	Absolute deterministic output jitter ⁽⁷⁾ , peak-to-peak	0 dB preemphasis (PREx_x = 0); See Figure 8 for the test circuit.	PRBS 2 ⁷ – 1 pattern	1.25 Gbps; EQ = 1 Over 25-inch (63,5-cm) FR4 trace		7		ps

- (5) Intrinsic deterministic device jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation (DJ_(OUT) DJ_(IN)), where DJ_(OUT) is the total peak-to-peak deterministic jitter measured at the output of the device in PSPP. DJ_(IN) is the peak-to-peak deterministic jitter of the pattern generator driving the device.
- (6) The SN65LVCP204 built-in passive input equalizer compensates for ISI. For a 25-inch (63,5-cm) FR4 transmission line with 8-mil (0,2-mm) trace width, the SN65LVCP204 typically reduces jitter by 60 ps from the device input to the device output.
- (7) Absolute deterministic output jitter reflects the deterministic jitter measured at the SN65LVCP204 output. The value is a real value measured with a bit-error tester as described in Figure 8. The absolute DJ reflects the sum of all deterministic jitter components accumulated over the link: DJ_(absolute) = DJ_(Signal generator) + DJ_(transmission line) + DJ_{(intrinsic(LVCP204))}.

Table 2. Preemphasis Controls PL2, PL1, PS2, and PS1

(1)	- (1)	OUTPUT	OUTPUT LE	VEL IN mVpp	TYPICAL FR4
Px2 ⁽¹⁾	Px1 ⁽¹⁾	PREEMPHASIS LEVEL IN dB	DE-EMPHASIZED	PREEMPHASIZED	TRACE LENGTH
0	0	0 dB	1200	1200	10 inches (25,4 cm) of FR4 trace
0	1	3 dB	850	1200	20 inches (50,8 cm) of FR4 trace
1	0	6 dB	600	1200	30 inches (76,2 cm) of FR4 trace
1	1	9 dB	425	1200	40 inches (101,6 cm) of FR4 trace

(1) x = L or S

Table 3. Receive Equalization Settings

EQ	EQUALIZATION	TYPICAL TRACE
1	5 dB	25 inches (63,5 cm) of FR4
0	12 dB	43 inches (109,2 cm) of FR4

Product Folder Link(s): SN65LVCP204

TEXAS INSTRUMENTS

PARAMETER MEASUREMENT INFORMATION

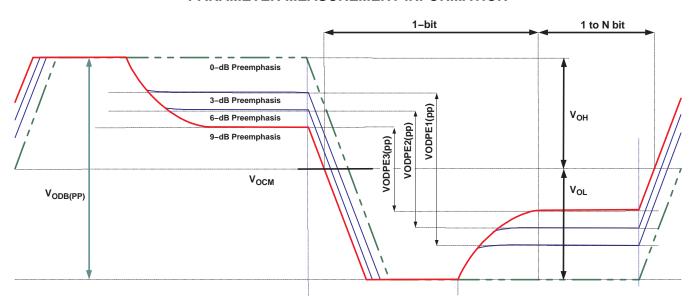


Figure 3. Preemphasis and Output Voltage Waveforms and Definitions

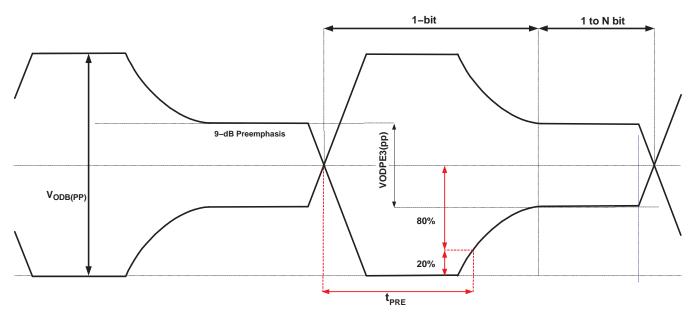


Figure 4. $t_{(PRE)}$ Preemphasis Duration Measurement

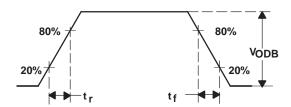


Figure 5. Driver Output Transition Time

PARAMETER MEASUREMENT INFORMATION (continued)

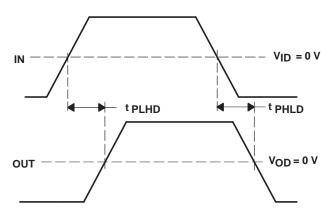
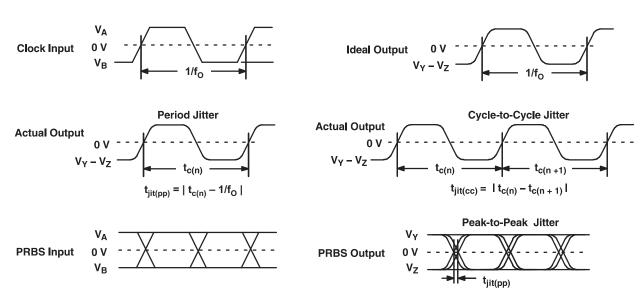



Figure 6. Propagation Delay Input to Output

- A. All input pulses are supplied by an Agilent 81250 Stimulus System.
- B. The measurement is made with the AgilentParBert measurement software.

Figure 7. Driver Jitter Measurement Waveforms

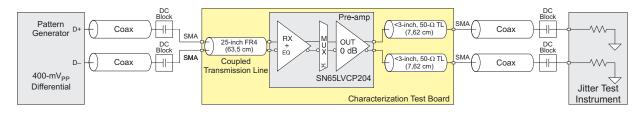
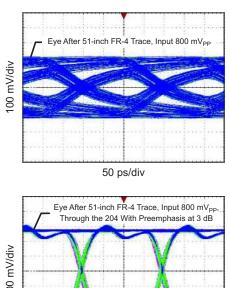



Figure 8. AC Test Circuit — Jitter and Output Rise Time Test Circuit

The SN65LVCP204 input equalizer provides 5-dB frequency gain to compensate for the frequency loss of a shorter backplane transmission line. For characterization purposes, a 25-inch (63,5 cm) FR-4 coupled transmission line is used in place of the backplane trace. The 25-inch trace provides roughly 5 dB of attenuation between 375 MHz and 2.125 GHz, representing closely the characteristics of a short backplane trace. The loss tangent of the FR4 in the test board is 0.018 with an effective $\epsilon(r)$ of 4.1.

TEXAS INSTRUMENTS

TYPICAL DEVICE BEHAVIOR

>ip//wm 00 50 ps/div

NOTE: 51-Inch (129,54-cm) input trace, dR = 2.5 Gbps; $2^7 - 1 \text{ PRBS}$

Figure 9. Data Input and Output Pattern

Figure 10. Preemphasis Signal Shape

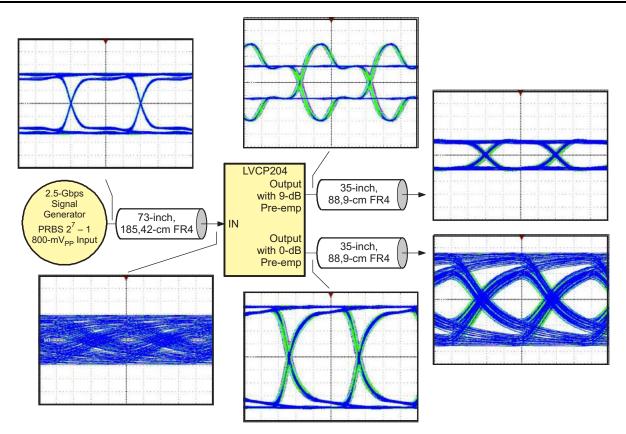
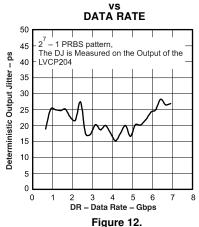
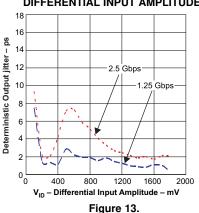
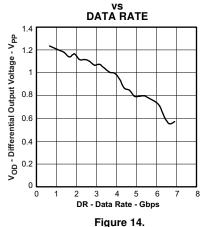
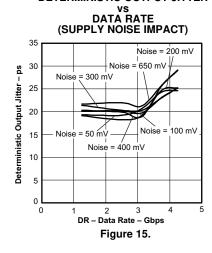



Figure 11. Data Output Pattern

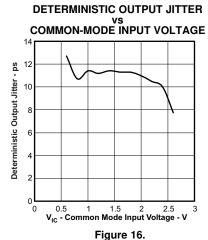


TYPICAL CHARACTERISTICS


DETERMINISTIC OUTPUT JITTER

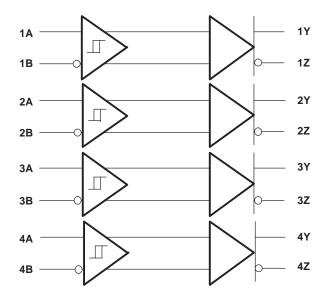


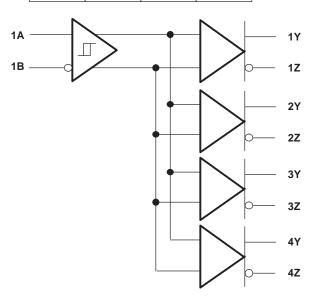
DETERMINISTIC OUTPUT JITTER VS DIFFERENTIAL INPUT AMPLITUDE



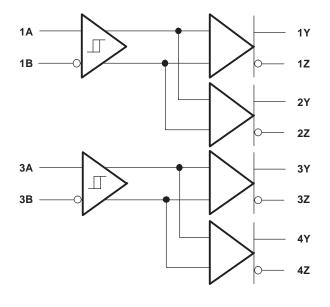
DIFFERENTIAL OUTPUT VOLTAGE

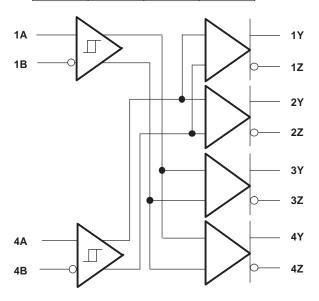
DETERMINISTIC OUTPUT JITTER




APPLICATION INFORMATION

CONFIGURATION EXAMPLES


S10	S11	S20	S21
0	0	0	1
S30	S31	S40	S41
1	0	1	1


S10	S11	S20	S21
0	0	0	0
S30	S31	S40	S41
0	0	0	0

S10	S11	S20	S21
0	0	0	0
S30	S31	S40	S41
4	•	4	•

S10	S11	S20	S21
1	1	1	1
S30	S31	S40	S41
0	0	0	0

EXPLANATION OF EQUALIZATION

Backplane designs differ widely in size, layer stackup, and connector placement. In addition, the performance is impacted by trace architecture (trace width, coupling method) and isolation from adjacent signals. Common to most commercial backplanes is the use of FR4 as board material, with its related high-frequency signal attenuation. Within a backplane, the shortest to longest trace lengths differ substantially, often ranging from 8 inches (20,3 cm) up to 40 inches (101,6 cm). Increased loss is associated with longer signal traces. In addition, the backplane connector often contributes a good amount of signal attenuation. As a result, the signal attenuation for a 300-MHz signal might range from 1 dB to 4 dB, whereas the corresponding attenuation for a 2-GHz signal might span 6 dB to 24 dB. This frequency-dependent loss causes distortion jitter on the transmitted signal. Each SN65LVCP204 receiver input incorporates an equalizer and compensates for such frequency loss. The SN65LVCP204 equalizer provides 5 dB or 12 dB of frequency gain between 375 MHz and 1.875 GHz, compensating roughly for 20 inches (50,8 cm) of FR4 material with 8-mil (0,2-mm) trace width. Distortion jitter improvement is substantial, often providing more than 30-ps jitter reduction. The 5-dB compensation is sufficient for most short backplane traces. For longer trace lengths, it is recommended to enable transmit preemphasis in addition.

SETTING THE PREEMPHASIS LEVEL

The receive equalization compensates for ISI. This reduces jitter and opens the data eye. In order to find the best preemphasis setting for each link, calibration of every link is recommended. Assuming each link consists of a transmitter (with adjustable preemphasis, such as the SN65LVCP204) and the SN65LVCP204 receiver, the following steps are necessary:

- Set the transmitter and receiver to 0-dB preemphasis; record the data eye on the SN65LVCP204 receiver output.
- 2. Increase the transmitter preemphasis until the data eye on the SN65LVCP204 receiver output looks the cleanest.

Submit Documentation Feedback

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN65LVCP204RGZR	ACTIVE	VQFN	RGZ	48	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	LVCP204	Samples
SN65LVCP204RGZT	ACTIVE	VQFN	RGZ	48	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	LVCP204	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

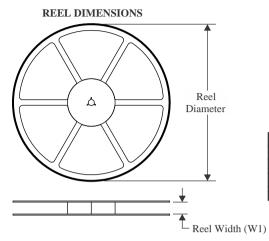
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

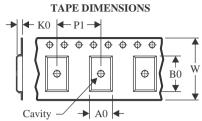
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

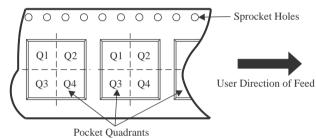
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




10-Dec-2020

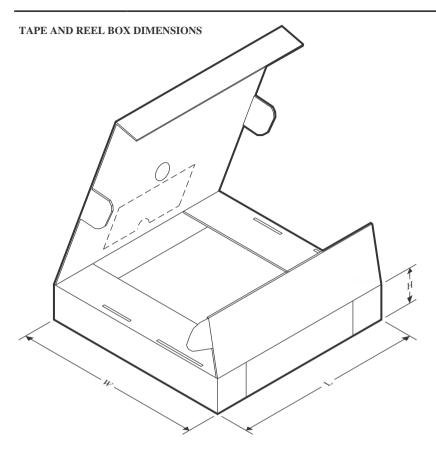
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

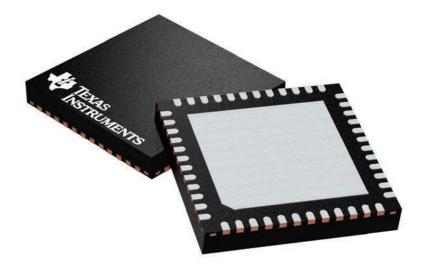


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVCP204RGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
SN65LVCP204RGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

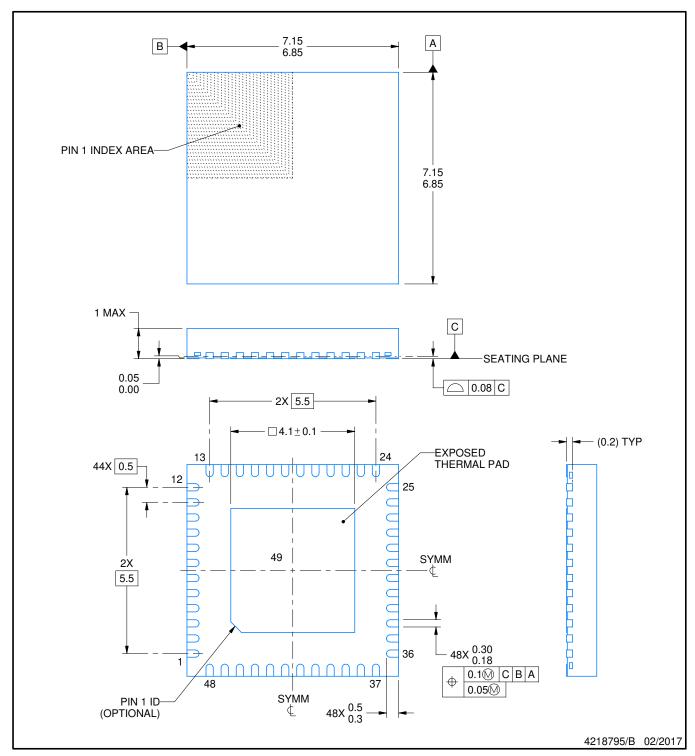


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVCP204RGZR	VQFN	RGZ	48	2500	356.0	356.0	35.0
SN65LVCP204RGZT	VQFN	RGZ	48	250	210.0	185.0	35.0

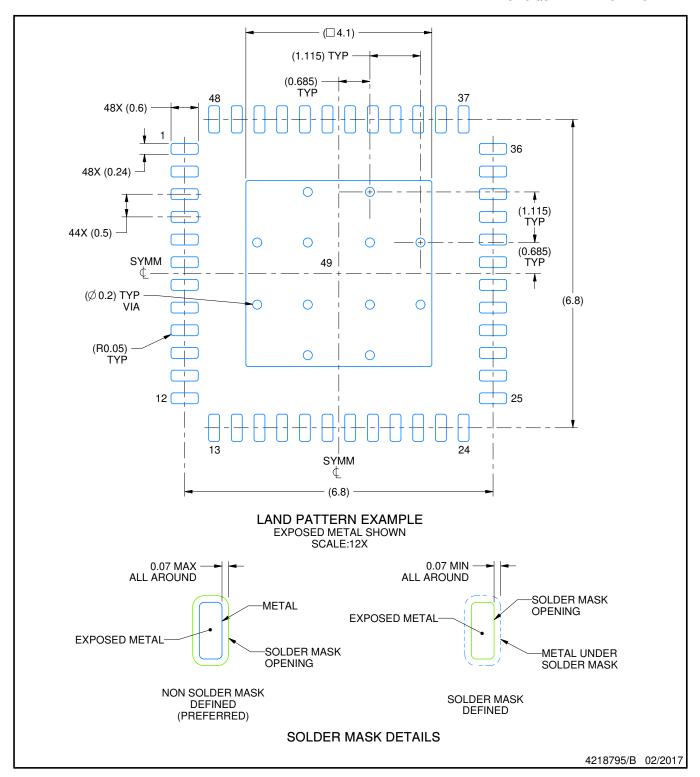
7 x 7, 0.5 mm pitch

PLASTIC QUADFLAT PACK- NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224671/A

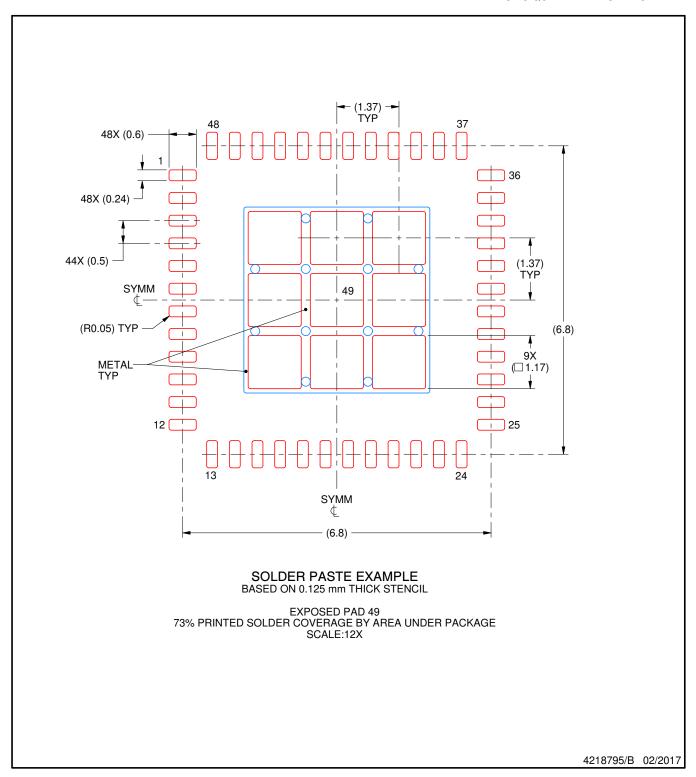
PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated