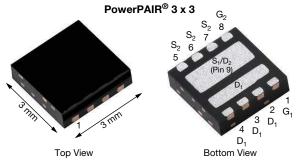
COMPLIANT

HALOGEN **FREE**



www.vishay.com

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFET

PRODUC	CT SUN	MMARY		
	V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A)	Q _g (Typ.)
Channel-1	30	0.0095 at V _{GS} = 10 V	30 ^a	5.6 nC
Grianner-1	30	0.0137 at V _{GS} = 4.5 V	22	3.0110
Channel-2	30	0.0051 at V _{GS} = 10 V	40 a	10.1 nC
Grianner-2	30	0.0070 at V _{GS} = 4.5 V	40 a	10.1110

APPLICATIONS

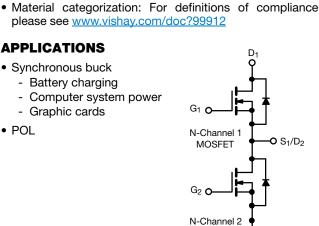
Synchronous buck

FEATURES PowerPAIR®

converters

- Battery charging
- Computer system power

TrenchFET® power Mosfets


• 100 % Rg and UIS tested

Optimizes

low-side MOSFETs for synchronous buck

high-side

- Graphic cards
- POL

MOSFET

Ordering Information:

SiZ340DT-T1-GE3 (lead (Pb)-free and halogen-free)

Parameter	Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage		V_{DS}	30		V
Gate-Source Voltage		V_{GS}	+20, -16		
	T _C = 25 °C		30 ^a	40 ^a	•
Continuous Drain Current /T 150 °C)	T _C = 70 °C	,	26.5	40 a	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	15.6 b,c	22.6 b,c	
	T _A = 70 °C		12.4 b,c	18.1 b,c	
Pulsed Drain Current (t = 100 μs)		I _{DM}	100	150	A
Continuous Courses Duning Diada Coursest	T _C = 25 °C		13.9	26	
Continuous Source Drain Diode Current	T _A = 25 °C	I _S	3.1 b,c	3.5 b,c	
Avalanche Current		I _{AS}	10	15	
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	5	11	mJ
	T _C = 25 °C		16.7	31	-
Maniana Barray Dissination	T _C = 70 °C	Б	10.7	20	
Maximum Power Dissipation	T _A = 25 °C	P_D	3.7 b,c	4.2 b,c	W
	T _A = 70 °C		2.4 b,c	2.7 b,c	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		00
Soldering Recommendations (Peak Temperature) d,e			26	60	°C

Notes

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishav.com/doc?73257). The PowerPAIR 3 x 3 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: Manual soldering with a soldering iron is not recommended for leadless components.

Vishay Siliconix

THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Chan	nel-1	Chan	nel-2	Unit	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Onit	
Maximum Junction-to-Ambient a,b	t ≤ 10 s	R_{thJA}	27	34	24	30	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	6	7.5	3.2	4	G/ V V	

Notes

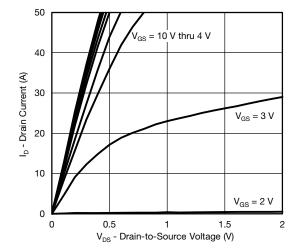
- a. Surface mounted on 1" x 1" FR4 board.
- b. Maximum under steady state conditions is 69 °C/W for channel-1 and 64 °C/W for channel-2.

SPECIFICATIONS ($T_J = 25 ^{\circ}\text{C}$,	unless othe	rwise noted)						
Parameter	Symbol	TEST CONDITIONS		Min.	Тур.	Max.	Unit	
Static								
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = 250 μA	Ch-1	30	-	-	V	
Brain Gource Breakdown Voltage	VDS	VGS = 0 V, 1D = 200 μΑ	Ch-2	30	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-1	-	18.4	-		
- D3 : eperatare decimerent	2.03, .0	.b 200 ks. t	Ch-2	-	30	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-1	-	-4.3	-		
Co(ti)	GO(III)	D P	Ch-2	-	-5	-		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Ch-1	1	-	2.4	V	
	the Source Leakage I_{GSS} $V_{DS} = 0$	20 00 2	Ch-2	1	-	2.4		
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = +20 \text{ V}, -16 \text{ V}$	Ch-1	-	-	± 100	nA	
			Ch-2	-	-	± 100		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1	-	-	1		
Zero Gate Voltage Drain Current	I _{DSS}		Ch-2	-	-	1	μA	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1	-	-	5		
			Ch-2	- 10	-	5	<u> </u>	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1 Ch-2	10	-	-	Α	
	<u> </u>	V _{GS} = 10 V, I _D = 15.6 A	Ch-2	-	0.0079	0.0095		
Drain-Source On-State Resistance b		$V_{GS} = 10 \text{ V}, I_D = 15.6 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0079	0.0093		
	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 13 \text{ A}$	Ch-1	-	0.0042	0.0031	mV/°C V 0 nA 0 μA Α 95 61 87 70 S pF	
		$V_{GS} = 4.5 \text{ V}, I_D = 13 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	0.0058	0.0137		
		$V_{DS} = 15 \text{ V}, I_D = 15.6 \text{ A}$	Ch-1	_	37	0.0070	S	
Forward Transconductance b	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 13.0 \text{ A}$ $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	60	_		
Dynamic ^a		VDS - 10 V, 10 - 20 / 1	011 2		1 00			
-	_		Ch-1	_	760	_		
Input Capacitance	C _{iss}	Channel-1	Ch-2	-	1552	-		
	_	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1	-	250	-	_	
Output Capacitance	C _{oss}	Channel-2	Ch-2	-	450	-	pF	
D T (0 "		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1	-	32	-	1	
Reverse Transfer Capacitance	C_{rss}	, de ,	Ch-2	-	40	-		
O /O Datia			Ch-1	0.042	-	0.084		
C _{rss} / C _{iss} Ratio			Ch-2	0.025	-	0.050	1 -	
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 15.6 \text{ A}$	Ch-1	-	12.3	19	V mV/°C V nA μA Ω Ω S pF	
Total Cata Charga		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	22.6	35		
Total Gate Charge	Q_g		Ch-1	-	5.6	9		
			Ch-2	-	10.1	16	- pF - pF	
Gate-Source Charge	Q _{gs}	Channel-1	Ch-1	-	2.3	-	nC	
date oddice onarge		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 15.6 \text{ A}$	Ch-2	-	4.2	-		
Gate-Drain Charge	Q_{gd}	Channel-2	Ch-1	-	1	-		
cate Brain Gridige		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	1.8	-]	
Output Charge	Q _{oss}		Ch-1	-	6.6	-		
a. c	→oss		Ch-2 Ch-1	-	12.4	-		
Gate Resistance	R_{g}	I f = 1 MH₂ L		0.3	1.7	3.4	Ω	
	9	· · · · · · · · · · · · · · · · · · ·	Ch-2	0.3	1.3	2.6		

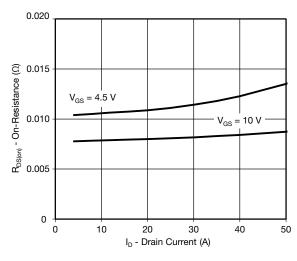
www.vishay.com

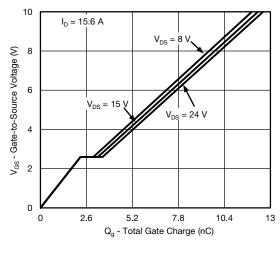
Vishay Siliconix

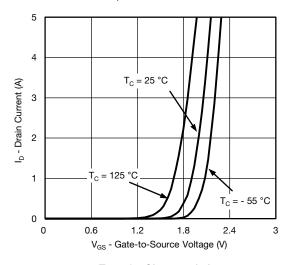
Parameter	Symbol TEST CONDITIONS			Min.	Тур.	Max.	Unit
Dynamic ^a							
Turn-On Delay Time	t _{d(on)}		Ch-1	-	13	20	
Turn-On Delay Time	٠d(on)	Channel-1 $V_{DD} = 15 \text{ V, R}_{L} = 1.5 \Omega$	Ch-2	-	22	33	
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_a = 1 \Omega$	Ch-1	-	55	85	
This time	प	<u> </u>	Ch-2	-	82	123	
Turn-Off Delay Time	t _{d(off)}	Chan nel-2	Ch-1	-	16	25	
	u(on)	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2	-	20	30	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1	-	7	14	
			Ch-2	-	7	14	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1	-	8	16	
	-()	$V_{DD} = 15 \text{ V}, R_L = 1.5 \Omega$	Ch-2	-	10	20	
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1	-	11	20	
			Ch-2	-	12	20	- - -
Turn-Off Delay Time	-Off Delay Time t _{d(off)} Channel-2		Ch-1	-	12	20	
		$V_{DD} = 15 \text{ V}, R_L = 1.5 \Omega$	Ch-2	-	16 7	30 15	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1	-	7	12	
Drain-Source Body Diode Characteristic	es e		OII-Z	_		12	
·			Ch-1	_	_	13.9	
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-2	_	_	25.8	
			Ch-1	_	-	100	Α
Pulse Diode Forward Current (t = 100 μs)	I _{SM}		Ch-2	-	-	150	
- · - · · · · ·	V _{SD}		Ch-1	-	0.8	1.2	V
Body Diode Voltage		$I_{S} = 10 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-2	-	0.82	1.2	
Red Birds Berry Brown Time			Ch-1	-	20	35	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2	-	26	40	ns
Body Diode Reverse Recovery Charge	Q _{rr}	Channel-1	Ch-1	-	9	20	nC
Body Diode neverse necovery Charge	Q _{rr}	$I_F = 10 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 ^{\circ}\text{C}$	Ch-2	-	20	30	
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1	-	11.5	-	
Tiovorso Hoodyery Fair Filme	•а	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$	Ch-2	-	18.1	-	ns
Reverse Recovery Rise Time	t _b		Ch-1	-	8.5	-	110
Tieverse Hoodvery Histo Time	טי		Ch-2	-	7.9	-	

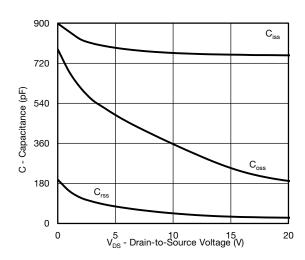

Notes

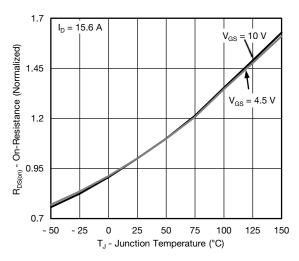
- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

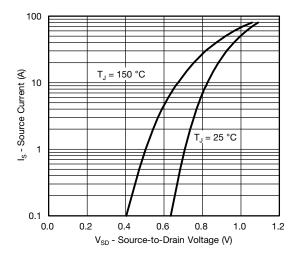

Output Characteristics

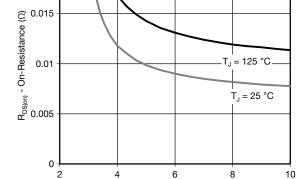

On-Resistance vs. Drain Current


Gate Charge

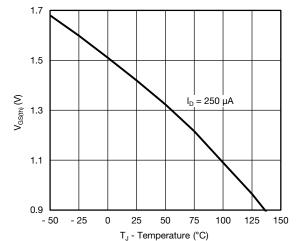
Transfer Characteristics

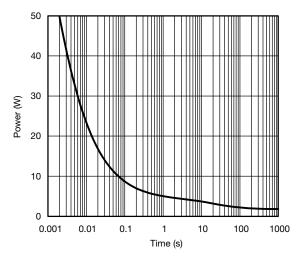
Capacitance



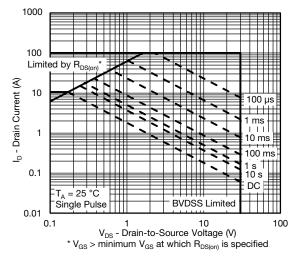

On-Resistance vs. Junction Temperature

I_D = 15.6 A


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

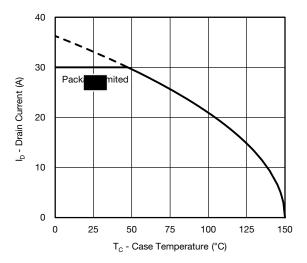

0.02

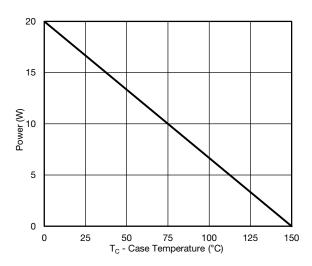
Source-Drain Diode Forward Voltage

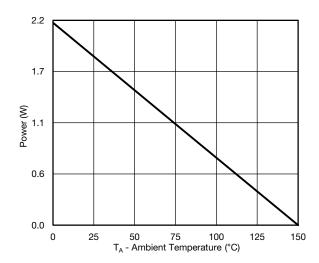

On-Resistance vs. Gate-to-Source Voltage

 $V_{\rm GS}$ - Gate-to-Source Voltage (V)

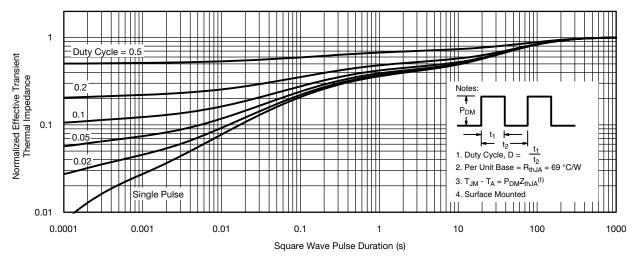
Threshold Voltage


Single Pulse Power

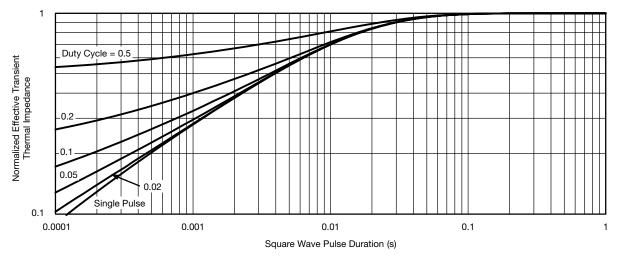

Safe Operating Area, Junction-to-Ambient


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

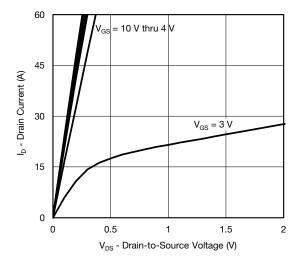
Current Derating*

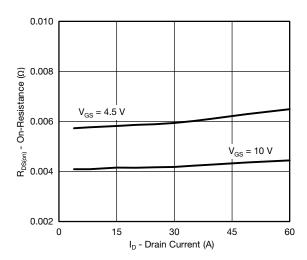


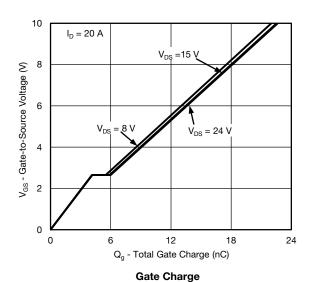
Power, Junction-to-Ambient

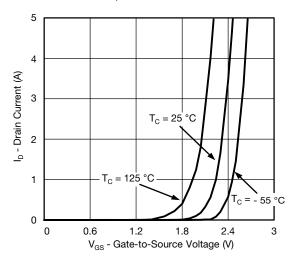

^{*} The power dissipation P_D is based on $T_{J \text{ (max.)}} = 150 \,^{\circ}\text{C}$, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

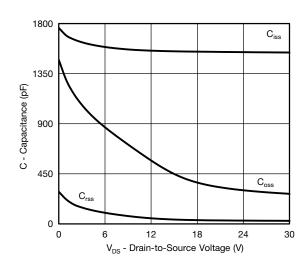

Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

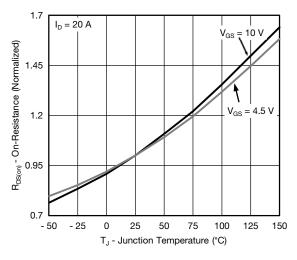

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Output Characteristics



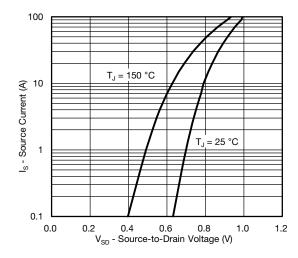
On-Resistance vs. Drain Current



Transfer Characteristics

Capacitance

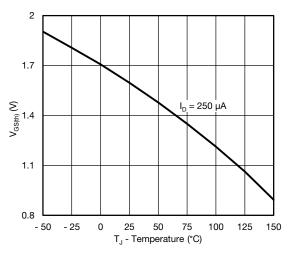
On-Resistance vs. Junction Temperature

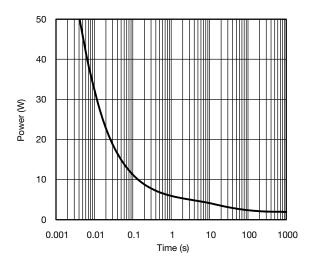

 $I_{D} = 20 \text{ A}$

T_{.1} = 125 °C

 $T_{J} = 25 \, ^{\circ}C$

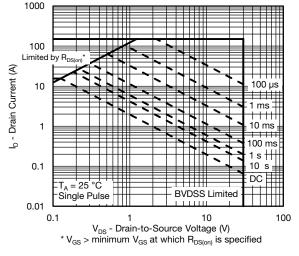
CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



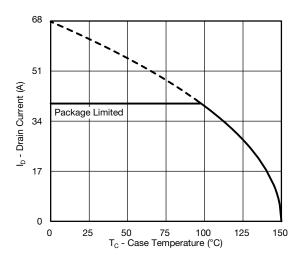

0.020

A_{DS(on)} - On-Resistance (Ω) 0.010 0.005

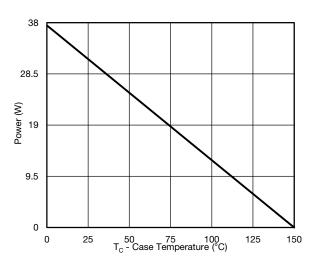
Source-Drain Diode Forward Voltage

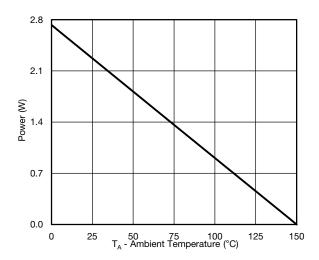


On-Resistance vs. Gate-to-Source Voltage

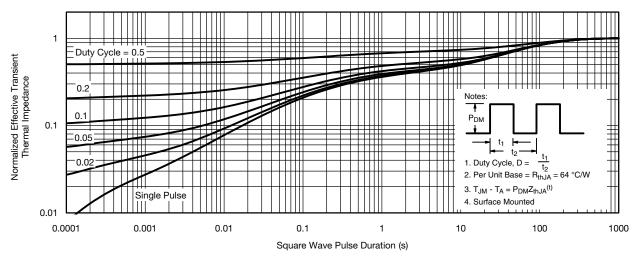

Threshold Voltage

Single Pulse Power

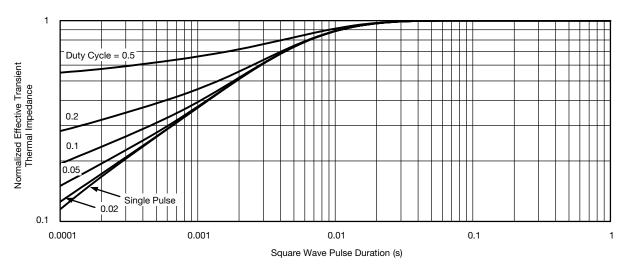



CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating*

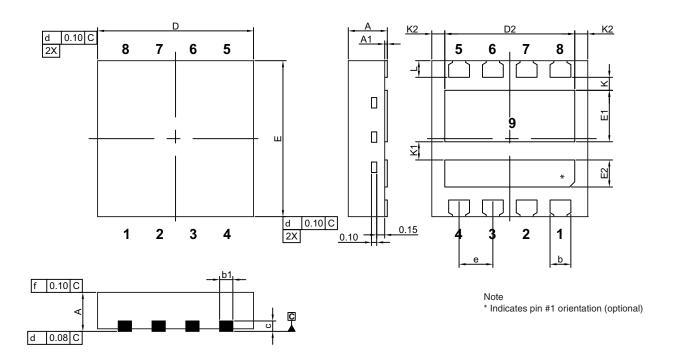


Power, Junction-to-Ambient


^{*} The power dissipation P_D is based on $T_{J \text{ (max.)}} = 150 \,^{\circ}\text{C}$, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

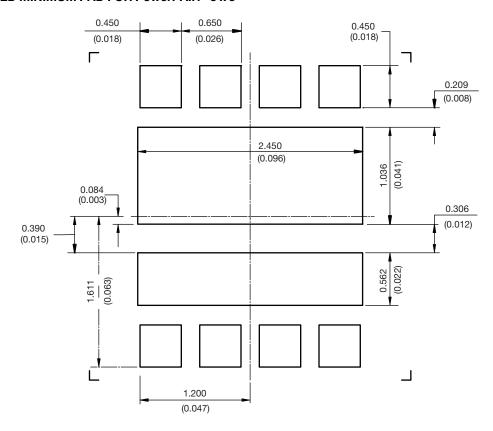
Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62877.

PowerPAIR® 3 x 3 Case Outline


		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.80	0.028	0.030	0.031		
A1	0.00		0.05	0.000		0.002		
b	0.35	0.40	0.45	0.014	0.016	0.018		
b1	0.20	0.25	0.38	0.008	0.010	0.015		
С	0.18	0.20	0.23	0.007	0.008	0.009		
D	2.90	3.00	3.10	0.114	0.118	0.122		
D2	2.35	2.40	2.45	0.093	0.094	0.096		
Е	2.90	3.00	3.10	0.114	0.118	0.122		
E1	0.94	0.99	1.04	0.037	0.039	0.041		
E2	0.47	0.52	0.57	0.019	0.020	0.022		
е		0.65 BSC			0.026 BSC			
K		0.25 typ.			0.010 typ.			
K1		0.35 typ.			0.014 typ.			
K2	0.30 typ.				0.012 typ.			
L	0.27	0.32	0.37	0.011	0.013	0.015		

DWG: 5998

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 3 x 3

Recommended PAD for PowerPAIR 3 x 3

Dimensions in millimeters (inches)

Keep-Out 3.5 mm x 3.5 mm for non terminating traces

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.