
RoHS


HALOGEN

FREE

GREEN (5-2008)

UV SMD LED With Silicone Lens

DESCRIPTION

VLMU1610-365-135 is a ceramic based mid power UV LED with silicone lens for long life time. The package size is 1.6 mm x 1.6 mm and the radiant power up to 26 mW at 20 mA in a wavelength range of 362.5 nm to 370 nm.

PRODUCT GROUP AND PACKAGE DATA

• Product group: LED

Package: SMD ceramic mid power
Product series: mid power UV LED
Angle of half intensity: ± 67.5°

· Lead-finishing: Au

SAFETY ADVICES

Depending on the mode of operation, these devices emit highly concentrated non visible ultraviolet light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 62471 "Photobiological Safety of Lamps and Lamp Systems".

FEATURES

- Ceramic SMT package with silicone lens
- Dimension (L x W x H) in mm: 1.6 x 1.6 x 1.4
- Forward current: up to 60 mA_{DC}
- Radiant power (typ.): 25 mW at 20 mA, 68 mW at 60 mA
- · Materials:
 - Die: InGaN
 - Resin: silicone (water clear)
 - Leads / terminations finish: gold plated (Au)
- · Grouping parameters:
 - Radiant power
 - Peak wavelength
 - Forward voltage
- Reflow soldering method
- MSL 3 according to J-STD-020
- Packaging: MOQ = 6000 pieces; 12 mm tape with 1500 pieces per reel, Ø 180 mm (7")
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- Industrial curing
- · Photocatalytic purification
- Poster printing curing
- · Counterfeit money detector
- Blood detector
- Nail curing
- · Teeth curing

PARTS TABLE														
PART	COLOR	RADIANT POWER (mW)		at I _F	WAY	WAVELENGTH (nm)		at I _F	FORWARD VOLTAGE (V)		o+ I_	TECHNOLOGY		
		MIN.	TYP.	MAX.	(mA)	MIN.	TYP.	MAX.	(mA)	MIN.	TYP.	MAX.	(IIIA)	
VLMU1610-365-135	Ultraviolet	20	25	30	20	362.5	367	370	20	2.8	3.5	4.0	20	InGaN

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25$ °C, unless otherwise specified) VLMU1610-365-135							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
DC forward current		I _F	60	mA			
Pulse forward current	$t_p = 2 \text{ ms}, t_p/T = 0.1$	I _{FP}	300	mA			
Power dissipation		P _V	240	mW			
Reverse voltage Not designed for reverse operation							
Electrostatic discharge	HBM: MIL-STD-883 C 3B	ESD	2000	V			
Junction temperature		Tj	+90	°C			
Operating temperature range		T _{amb}	-40 to +85	°C			
Storage temperature range		T _{stg}	-40 to +90	°C			
Solder temperature		T _{sol}	260	°C			

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}$ C, unless otherwise specified) VLMU1610-365-135, ULTRAVIOLET								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Forward voltage	I _F = 20 mA	V _F	2.8	3.5	4.0	V		
Dedient news	I _F = 20 mA		20	25	30	mW		
Radiant power	I _F = 60 mA	φ _e	-	68	-			
Ratio: radiant intensity / radiant flux	I _F = 20 mA	l _e /φ _e	-	0.2	-	sr-1		
Peak wavelength	I _F = 20 mA	λ_{p}	362.5	367	370	nm		
Angle of half intensity	I _F = 20 mA	φ	-	± 67.5	-	0		
Reverse voltage (1)	I _R = 10 μA	V _R	-	-	1.2	V		
Thermal resistance junction to case		R _{thJC}	-	53	-	K/W		

Notes

- Tolerances: \pm 11 % for $\varphi_e,$ \pm 0.1 V for $V_F,$ \pm 3 nm for λ_p
- (1) Reverse current is applied for reverse voltage test only (function test of Zener diode). The device is not designed for reverse operation. Operating the LED under reverse current condition for long time might result in damage or failure of the component.

RADIANT POWER CLASSIFICATION (I _F = 20 mA)						
GROUP	UNIT					
R6	20	22				
R7	22	24				
R8	24	26	mW			
R9	26	28				
R10	28	30				

PEAK WAVELENGTH CLASSIFICATION (I _F = 20 mA)						
GROUP MIN. MAX. UNIT						
P3M2	362.5	365				
P3N1	365	367.5	nm			
P3N2	367.5	370				

FORWARD VOLTAGE CLASSIFICATION (I _F = 20 mA)						
GROUP	UNIT					
V1	2.8	3.2				
V2	3.2	3.6	V			
V3	3.6	4.0				

Note

The optical and electrical specification table shows the parameter ranges, comprising only a few classification groups. In order to ensure
availability, single groups for radiant intensity, wavelength, and forward voltage will not be orderable. Only one group for radiant intensity,
wavelength, and forward voltage will be shipped in any one reel.

MARKING EXAMPLE FOR SELECTION CODE ON LABEL

Selection code: R6-P3N1-V2
R5 range: 20 mW to 20 mW
P3N1 range: 365 nm to 367.5 nm

• V2 range: 3.2 V to 3.6 V

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

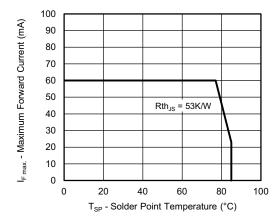


Fig. 1 - Maximum Forward Current vs. Solder Point Temperature

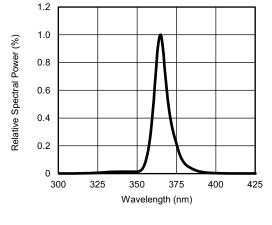


Fig. 4 - Relative Spectral Power vs. Wavelength

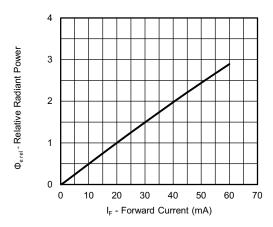


Fig. 2 - Relative Radiant Power vs. Forward Current

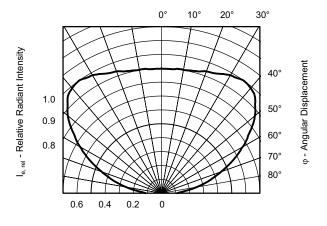


Fig. 5 - Relative Radiant Intensity vs. Angular Displacement

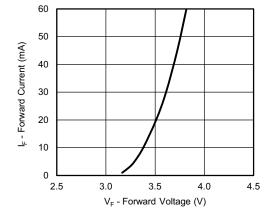


Fig. 3 - Forward Current vs. Forward Voltage

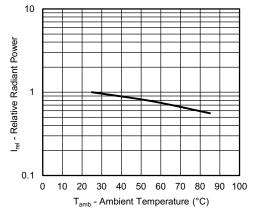
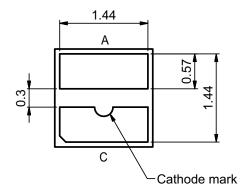
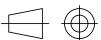
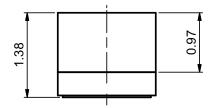
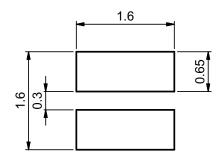
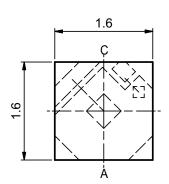




Fig. 6 - Relative Radiant Power vs. Ambient Temperature


PACKAGE DIMENSIONS in millimeters




Technical drawings according to DIN specification.

Not indicated tolerances ±0.1

Recommended solder pad footprint

Drawing-No.: 6.541-5113.01-4 Issue: prel; 27.04.16

WIRING

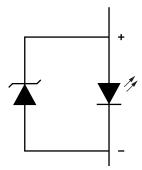
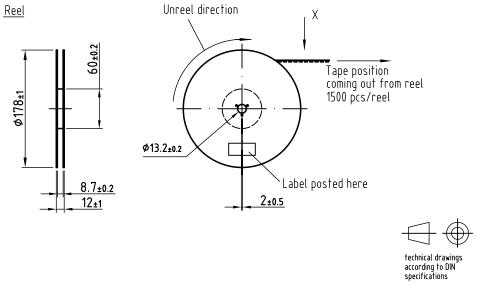
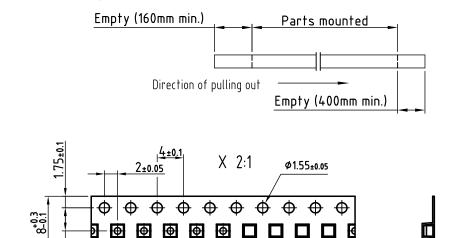




Fig. 7 - Wiring Diagram

TAPE AND REEL DIMENSIONS in millimeters

Leader and trailer tape:

Ø1 min.

4±0.1

Reel dimensions and tape

Drawing-No.: 9.800-5141.01-4 Issue: prel; 27.04.16

1.6±0.05

MOQ: 6000 pieces (4 reels each with 1500 pieces)

HANDLING RECOMMENDATIONS

In order to achieve excellent lifetime, the package of these UV-LEDs consists of a ceramic substrate in combination with a UV stable silicone as lens material. Compared to standard materials silicone is generally softer and it tends more to attract dust:

- Minimize the level of dirt and dust particles in contact with the LED
- Small amounts of particles on the LEDs, although noticeable from a cosmetic point of view, do not affect the performance in terms of brightness, reliability and quality
- If cleaning is required, a short rinsing with isopropy alcohol, not longer than 15 seconds, is recommended. Do not use ultrasonic cleaning, it may damage the LED
- Do not apply mechanical stress on the silicone lens
- Avoid any piercing of the silicone lens by sharp objects
- It is recommended to use a suitable pick and place tool for the removal of the LED from blister tape without applying stress to the lens. The recess of the pick-up needle has to be larger than the silicone lens
- For manual handling using tweezers make sure that the LED will be touched carefully at the sidewall of the ceramic substrate, but not at the silicone lens

SOLDERING PROFILE

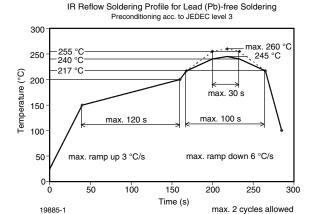
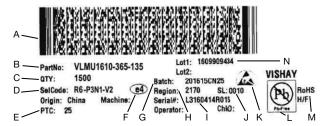
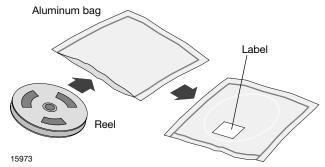



Fig. 8 - Vishay Lead (Pb)-free Reflow Soldering Profile (according to J-STD-020C)


BAR CODE PRODUCT LABEL (example only)

- A. 2D bar code
- B. Vishay part number
- C. Quantity
- D. Selection code (bin): P_e , λ_D , and V_F group
- E. Code of manufacturing plant
- F. Termination plating finish
- G. Batch = date code: year / week / plant code
- H. Region code
- I. Internal serial number
- J. Sales location
- K. ESD symbol
- L. Lead (Pb)-free symbol
- M. RoHS symbol, halogen-free symbol
- N. Internal lot number

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

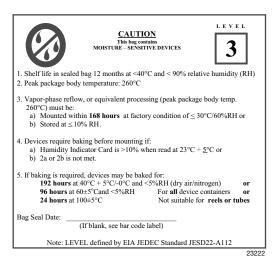
FINAL PACKING

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.


After more than 168 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition: 192 h at 40 °C + 5 °C / - 0 °C and < 5 % RH (dry air / nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC® standard JESD22-A112 level 3 label is included on all dry bags.

Example of JESD22-A112 level 3 label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.