

# STPSC20H065C

Datasheet - production data

### 650 V power Schottky silicon carbide diode

# A1 (1) A2 (3) K (2) A2 (3) TO-220ABSTPSC20H065CT K TO-220H065CT TO-247STPSC20H065CW

### **Features**

- No or negligible reverse recovery
- Switching behavior independent of temperature
- Dedicated to PFC applications
- High forward surge capability

### Description

The SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, this ST SiC diode will boost the performance in hard switching conditions. Its high forward surge capability ensures a good robustness during transient phases.

#### Table 1. Device summary

| Symbol               | Value    |
|----------------------|----------|
| I <sub>F(AV)</sub>   | 2 x 10 A |
| V <sub>RRM</sub>     | 650 V    |
| T <sub>j</sub> (max) | 175 °C   |

DocID023605 Rev 3

This is information on a product in full production.

## 1 Characteristics

## Table 2. Absolute ratings (limiting values per diode at 25 °C unless otherwise specified)

| Symbol              | Para                                                                                                                                     | Value                                                  | Unit |   |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|---|--|
| V <sub>RRM</sub>    | Repetitive peak reverse voltage                                                                                                          |                                                        | 650  | V |  |
| I <sub>F(RMS)</sub> | Forward rms current                                                                                                                      |                                                        | 22   | А |  |
| 1                   | Average ferward ourrent                                                                                                                  | $T_c = 135 \ ^{\circ}C^{(1)}$ , DC, per diode          | 10   | Α |  |
| I <sub>F(AV)</sub>  | Average forward current                                                                                                                  | $T_c = 125 \ ^{\circ}C^{(2)}$ , per device             | 20   | A |  |
|                     | Surge per repetitive ferward                                                                                                             | $t_p = 10 \text{ ms sinusoidal}, T_c = 25 \text{ °C}$  |      |   |  |
| I <sub>FSM</sub>    | Surge non repetitive forward<br>current                                                                                                  | $t_p = 10 \text{ ms sinusoidal}, T_c = 125 \text{ °C}$ | 80   | А |  |
|                     |                                                                                                                                          | $t_p = 10 \ \mu s \ square, \ T_c = 25 \ ^\circ C$     | 470  |   |  |
| I <sub>FRM</sub>    | $\label{eq:respective} \mbox{Repetitive peak forward current} \qquad T_c = 135 \ ^\circ C^{(1)}, \ T_j = 175 \ ^\circ C, \ \delta = 0.1$ |                                                        | 36   | А |  |
| T <sub>stg</sub>    | Storage temperature range                                                                                                                | -55 to +175                                            | °C   |   |  |
| Тj                  | Operating junction temperature <sup>(3)</sup>                                                                                            | -40 to +175                                            | °C   |   |  |

1. Value based on  $R_{th(j\text{-}c)} \max$  (per diode)

2. Value based on  $\mathsf{R}_{th(j\text{-}c)}$  max (per device)

3.  $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$  condition to avoid thermal runaway for a diode on its own heatsink

#### Table 3. Thermal resistance

| Symbol               | Parameter                  |           |          | Value |      | Unit |
|----------------------|----------------------------|-----------|----------|-------|------|------|
| Symbol               |                            |           |          | Тур.  | Max. | Unit |
|                      | Per diode                  | TO-247    | 1.25     | 1.5   |      |      |
|                      | Junction to case per diode | Fel diode | TO-220AB | 1.20  | 1.5  | °C/W |
| R <sub>th(j-c)</sub> |                            | Tetel     | TO-247   | 0.83  | 0.95 |      |
|                      |                            | Total     | TO-220AB | 0.05  |      |      |
| R <sub>th(c)</sub>   | Coupling                   |           |          |       |      |      |

When the two diodes 1 and 2 are used simultaneously:

 $\Delta T_{j}(\text{diode 1}) = P(\text{diode 1}) \times R_{\text{th}(j-c)}(\text{Per diode}) + P(\text{diode 2}) \times R_{\text{th}(c)}$ 

#### Table 4. Static electrical characteristics per diode

| Symbol                                          | Parameter                               | Tests conditions        |                                   | Min. | Тур. | Max. | Unit |
|-------------------------------------------------|-----------------------------------------|-------------------------|-----------------------------------|------|------|------|------|
| I <sub>B</sub> <sup>(1)</sup>                   | Reverse leakage current                 | T <sub>j</sub> = 25 °C  | V <sub>R</sub> = V <sub>RRM</sub> | -    | 9    | 100  | μA   |
| 'R`´                                            | R <sup>()</sup> Reverse leakage current | T <sub>j</sub> = 150 °C |                                   | -    | 85   | 425  |      |
| V <sub>F</sub> <sup>(2)</sup>                   | Forward voltage drop                    | T <sub>j</sub> = 25 °C  | - I <sub>F</sub> = 10 A           | -    | 1.56 | 1.75 | V    |
| V <sub>F</sub> <sup>(=)</sup> Forward voltage c | Torward voltage drop                    | T <sub>j</sub> = 150 °C |                                   | -    | 1.98 | 2.5  | v    |

1.  $t_p = 10 \text{ ms}, \delta < 2\%$ 

2.  $t_p = 500 \ \mu s, \ \delta < 2\%$ 

To evaluate the conduction losses use the following equation:

 $P = 1.35 \text{ x } I_{F(AV)} + 0.115 \text{ x } I_{F}^{2}(RMS)$ 



V<sub>FM</sub>(V)

7

8

| Symbol                         | Parameter               | Test conditions                                           | Тур. | Unit |
|--------------------------------|-------------------------|-----------------------------------------------------------|------|------|
| Q <sub>cj</sub> <sup>(1)</sup> | Total capacitive charge | V <sub>R</sub> = 400 V                                    | 28.5 | nC   |
| C <sub>j</sub> Total capacit   |                         | V <sub>R</sub> = 0 V, T <sub>c</sub> = 25 °C, F = 1 MHz   | 480  | рF   |
|                                | Total capacitance       | V <sub>R</sub> = 400 V, T <sub>c</sub> = 25 °C, F = 1 MHz | 48   | pr   |

<sub>FM</sub>(A)

Pulse test : t,=500µs

100

90

80

70

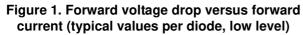
60

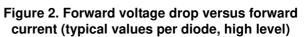
50

40

30

20


10


0

0

| Table 5. Dynamic electrical | characteristics per diode |
|-----------------------------|---------------------------|
|-----------------------------|---------------------------|

1. Most accurate value for the capacitive charge:  $Q_{cj} = \int_{0}^{V_{OUT}} c_{j}(v_R) dv_R$ 





T\_=25 °C

3

T<sub>a</sub>=100

2

. T<sub>a</sub>=150

1

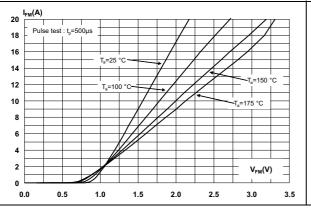
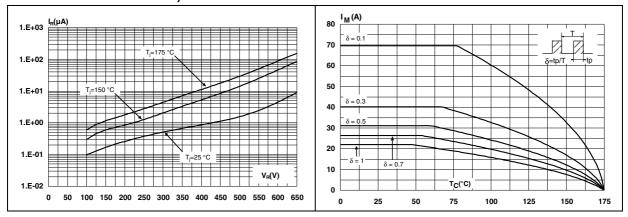
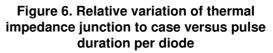


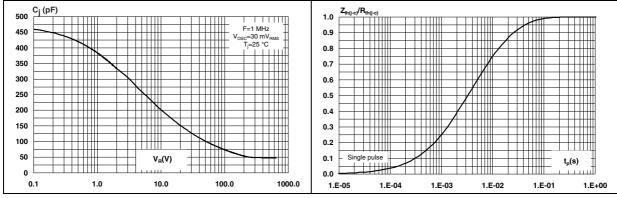

Figure 3. Reverse leakage current versus reverse voltage applied (typical values per diode)

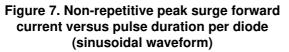

Figure 4. Peak forward current versus case temperature, per diode

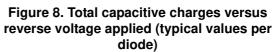
4

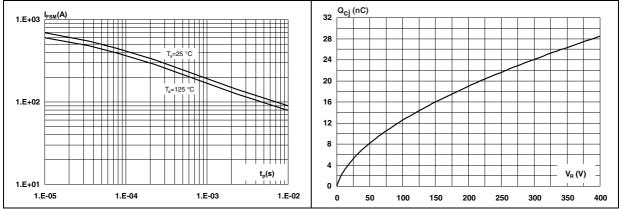
т<sub>а</sub>=175 °С


5


6



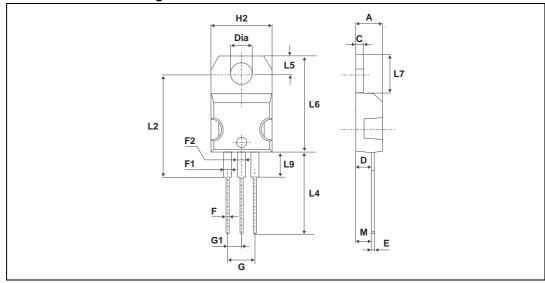


# Figure 5. Junction capacitance versus reverse voltage applied (typical values, per diode)











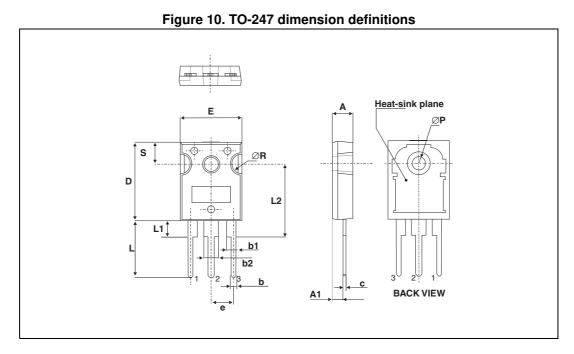



### 2 Package information

- Epoxy meets UL94, V0
- Cooling method: conduction (C)
- Recommended torque value:
  - TO-220AB 0.4 to 0.6 N·m,
  - TO-247 0.55 N·m (1.0 N·m maximum)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.




#### Figure 9. TO-220AB dimension definitions



|       | Dimensions |       |            |        |  |  |
|-------|------------|-------|------------|--------|--|--|
| Ref.  | Millim     | eters | Inches     |        |  |  |
| -     | Min.       | Max.  | Min.       | Max.   |  |  |
| А     | 4.40       | 4.60  | 0.173      | 0.181  |  |  |
| С     | 1.23       | 1.32  | 0.048      | 0.051  |  |  |
| D     | 2.40       | 2.72  | 0.094      | 0.107  |  |  |
| E     | 0.49       | 0.70  | 0.019      | 0.027  |  |  |
| F     | 0.61       | 0.88  | 0.024      | 0.034  |  |  |
| F1    | 1.14       | 1.70  | 0.044      | 0.066  |  |  |
| F2    | 1.14       | 1.70  | 0.044      | 0.066  |  |  |
| G     | 4.95       | 5.15  | 0.194      | 0.202  |  |  |
| G1    | 2.40       | 2.70  | 0.094      | 0.106  |  |  |
| H2    | 10         | 10.40 | 0.393      | 0.409  |  |  |
| L2    | 16.4       | typ.  | 0.645 typ. |        |  |  |
| L4    | 13         | 14    | 0.511      | 0.551  |  |  |
| L5    | 2.65       | 2.95  | 0.104      | 0.116  |  |  |
| L6    | 15.25      | 15.75 | 0.600      | 0.620  |  |  |
| L7    | 6.20       | 6.60  | 0.244      | 0.259  |  |  |
| L9    | 3.50       | 3.93  | 0.137      | 0.154  |  |  |
| М     | 2.6        | typ.  | 0.102      | 2 typ. |  |  |
| Diam. | 3.75       | 3.85  | 0.147      | 0.151  |  |  |

Table 6. TO-220AB dimension values





#### Table 7. TO-247 dimension values

|                   | Dimensions  |            |       |        |            |       |
|-------------------|-------------|------------|-------|--------|------------|-------|
| Ref.              | Millimeters |            |       | Inches |            |       |
|                   | Min.        | Тур.       | Max.  | Min.   | Тур        | Max.  |
| А                 | 4.85        |            | 5.15  | 0.191  |            | 0.203 |
| A1                | 2.20        |            | 2.60  | 0.086  |            | 0.102 |
| b                 | 1.00        |            | 1.40  | 0.039  |            | 0.055 |
| b1                | 2.00        |            | 2.40  | 0.078  |            | 0.094 |
| b2                | 3.00        |            | 3.40  | 0.118  |            | 0.133 |
| С                 | 0.40        |            | 0.80  | 0.015  |            | 0.031 |
| D <sup>(1)</sup>  | 19.85       |            | 20.15 | 0.781  |            | 0.793 |
| E                 | 15.45       |            | 15.75 | 0.608  |            | 0.620 |
| е                 | 5.30        | 5.45       | 5.60  | 0.209  | 0.215      | 0.220 |
| L                 | 14.20       |            | 14.80 | 0.559  |            | 0.582 |
| L1                | 3.70        |            | 4.30  | 0.145  |            | 0.169 |
| L2                |             | 18.50 typ. |       |        | 0.728 typ. |       |
| ØP <sup>(2)</sup> | 3.55        |            | 3.65  | 0.139  |            | 0.143 |
| ØR                | 4.50        |            | 5.50  | 0.177  |            | 0.217 |
| S                 | 5.30        | 5.50       | 5.70  | 0.209  | 0.216      | 0.224 |

1. Dimension D plus gate protrusion does not exceed 20.5 mm

2. Resin thickness around the mounting hole is not less than 0.9 mm



## **3** Ordering information

Table 8. Ordering information

| Order code    | Marking       | Package  | Weight | Base qty | Delivery mode |
|---------------|---------------|----------|--------|----------|---------------|
| STPSC20H065CT | STPSC20H065C  | TO-220AB | 1.86 g | 50       | Tube          |
| STPSC20H065CW | STPSC20H065CW | TO-247   | 4.43 g | 30       | Tube          |

## 4 Revision history

#### Table 9. Document revision history

| Date        | Revision | Changes                               |
|-------------|----------|---------------------------------------|
| 31-Aug-2012 | 1        | First issue.                          |
| 10-Oct-2012 | 2        | Added Max. values to <i>Table 3</i> . |
| 07-Nov-2013 | 3        | Updated Figure 1 and Figure 2.        |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



DocID023605 Rev 3