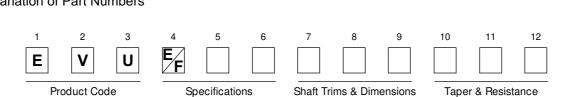
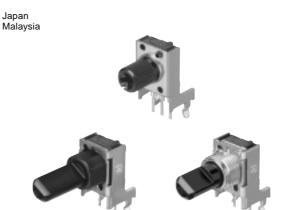

9 mm Square Rotary Potentiometers with Insulated Shaft


Type: EVUE/EVUF

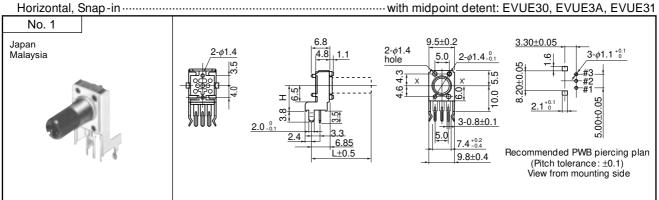
- Features
- Multi-gang block can be provided upon request
- DC voltage available
- Rigid rectangular shape suited for automatic insertion


- Audio Equipment
- Video Equipment
- Electronic Musical Instruments
- Audio Mixers

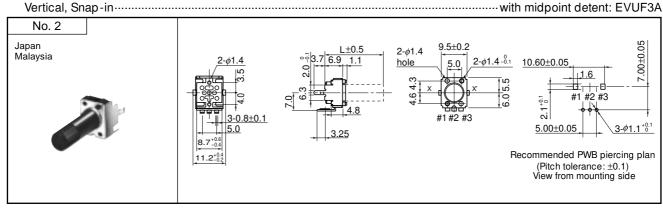
Explanation of Part Numbers

Product Chart

Construction	Style	Height (H=mm)	Detent	Туре
		0.5	Without detent	EVUE20
		6.5	Midpoint	EVUE30
	Without bushing	10.0	Without detent	EVUE2A
	without bushing	10.0	Midpoint	EVUE3A
		12.5	Without detent	EVUE21
		12.5	Midpoint	EVUE31
Horizontal		6.5	Without detent	EVUE25
HUHZUHILAI	With bushing	0.5	Midpoint	EVUE35
	with bushing	10.0	Without detent	EVUE2J
		10.0	Midpoint	EVUE3J
		6.5	Without detent	EVUE27
	With sleeve	0.5	Midpoint	EVUE37
	WITT SIEEVE	10.0	Without detent	EVUE2K
		10.0	Midpoint	EVUE3K
	Without bushing		Without detent	EVUF2A
	without busining	—	Midpoint	EVUF3A
		7.5	Without detent	EVUF2J
	With bushing	7.5	Midpoint	EVUF3J
Vertical	with bushing	8.5	Without detent	EVUF2M
ventical		0.0	Midpoint	EVUF3M
		7.5	Without detent	EVUF2K
	With sleeve	7.0	Midpoint	EVUF3K
		8.5	Without detent	EVUF2L
		0.0	Midpoint	EVUF3L

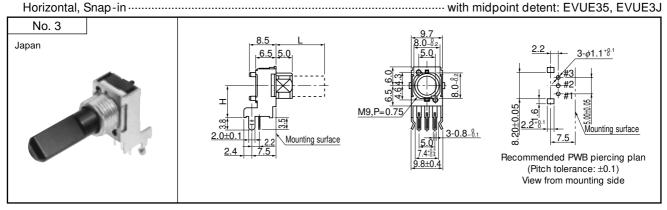


Specifications

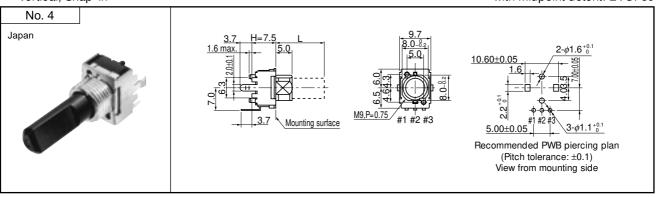

Classification	Item	Type without bushing	Type wit	h bushing	Type wit	h sleeve		
	Rotation Angle		30	00 °				
	Rotation Torque	1 mN·m to 8 mN·m (after rotation started) 1 mN·m to 20 mN·m	(after rotation started)	1 mN·m to 20 mN·m (after rotation started)		
	Shaft Stopper Strength	300 mN·m						
Mechanical Specifications	Shaft wobble	• Shaft bend and shaft wobble shall b $0.8 \times \frac{L}{20}$ (mm) max. (for one side) (When moment of 25 mN·m is applied.	0.5 × $\frac{L}{30}$ (mm)	shaft wobble shall be max. (for one side) oment of is applied.)	• Shaft bend and shaft wobble shall be $0.7 \times \frac{L}{30}$ (mm) max. (for one side) (When moment of 50 mN·m is applied.)			
		 L= Distance between mounting surface and measuring point 		etween mounting neasuring point	 L= Distance be surface and m 	-		
	Shaft Pull/Push Strength	Push strength Pull strength 100 N min. 100 N min.	Push strength 100 N min.	Pull strength 100 N min.	Push strength 100 N min.	Pull strength 100 N min.		
	Nut Tightening Torque	_	1 N·r	n max.	-	_		
	Nominal Total Resistance	1 k Ω to 1 M Ω , 300 k Ω to	2 M Ω for tape	r B (Tolerance	±20 %)			
	Taper	A, B, C, D, G						
		0.05 W (0 °C to 50 °C) For potentiometers opera	ting in ambien	1((%) It be	B0 60	ng Curve		
	Power Rating	temperatures above 50 ° be derated in accordance on the right.	-	t re Bate Coord (%)	40 33 20 0 20 Ambient Temp	40 60 70 berature(°C)		
Electrical Specifications		be derated in accordance	e with the figure R $50 \text{ k}\Omega < R$ $1 \text{ M}\Omega < R$ A, B, D, G	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D	max. max. max. C		
	Power Rating	be derated in accordance on the right. Standard Semi-standard	e with the figur 50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3	max. max. max. max. C T1 & T2		
		be derated in accordance on the right. Standard Semi-standard R < 2 kΩ	e with the figur 50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2 2 Ω	 3 < 50 kΩ 3 < 1 MΩ 3 < 2 MΩ B, C, G T2 & T3 max. 	20 0 20 2 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω	max. max. max. max. C T1 & T2 max.		
		be derated in accordance on the right. Standard Semi-standard	e with the figure $50 \text{ k}\Omega < \text{R}$ $1 \text{ M}\Omega < \text{R}$ A, B, D, G T1 & T2 2Ω 2Ω	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3	max. max. max. C T1 & T2 max. max.		
		be derated in accordance on the right. Standard Semi-standard R < 2 kΩ 2 kΩ < R < 50 kΩ	e with the figure $50 \text{ k}\Omega < \text{R}$ $1 \text{ M}\Omega < \text{R}$ A, B, D, G T1 & T2 2Ω 2Ω	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max.	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω	max. max. max. C T1 & T2 max. max. max. max.		
		be derated in accordance on the right. Standard Semi-standard $R < 2 k\Omega$ $2 k\Omega < R < 50 k\Omega$ $50 k\Omega < R < 250 k\Omega$	e with the figure $50 \text{ k}\Omega < \text{R}$ $1 \text{ M}\Omega < \text{R}$ A, B, D, G T1 & T2 2Ω 2Ω 25Ω	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max.	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. max. max. C T1 & T2 max. max. max. max.		
	Residual Resistance	be derated in accordance on the right. Standard Semi-standard $\frac{R < 2 k\Omega}{2 k\Omega < R < 50 k\Omega}$ $\frac{50 k\Omega < R < 250 k\Omega}{R > 250 k\Omega}$ $\frac{50 M\Omega \text{ min. at } 250 \text{ Vdc}}{R}$	e with the figure $50 \text{ k}\Omega < \text{R}$ $1 \text{ M}\Omega < \text{R}$ A, B, D, G T1 & T2 2Ω 2Ω 25Ω	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max.	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. max. max. C T1 & T2 max. max. max. max.		
	Residual Resistance	be derated in accordance on the right. Standard Semi-standard $\frac{R < 2 k\Omega}{2 k\Omega < R < 50 k\Omega}$ $\frac{50 k\Omega < R < 250 k\Omega}{R > 250 k\Omega}$ $\frac{50 M\Omega \text{ min. at } 250 \text{ Vdc}}{R}$	e with the figure	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max. max.	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω 50 Ω 100 Ω	max. max. max. C T1 & T2 max. max. max. max.		
	Residual Resistance	be derated in accordance on the right. Standard Semi-standard $\frac{R < 2 k\Omega}{2 k\Omega < R < 50 k\Omega}$ $50 k\Omega < R < 250 k\Omega$ 100 mV max. Apply 20 V (When Voltag	e with the figure	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max. max.	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω 50 Ω 100 Ω	max. max. max. C T1 & T2 max. max. max. max.		
Specifications	Residual Resistance Insulation Resistance Dielectric Withstand Voltage Noise Level Operating Life	be derated in accordance on the right. Standard Semi-standard R < 2 kΩ 2 kΩ < R < 50 kΩ 50 kΩ < R < 250 kΩ R > 250 kΩ 50 MΩ min. at 250 Vdc 250 Vac for 1 minute 100 mV max. Apply 20 V (When Voltag Rotate shaft at 30 r/min.	e with the figure	R < 50 kΩ R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max. max. V, use the rate	20 0 20 4 Ambient Temp 50 Ω 100 Ω 200 Ω A, D T2 & T3 20 Ω 50 Ω 100 Ω	max. max. max. C T1 & T2 max. max. max. max.		

- Dimensions in mm (not to scale)
- Single Type without Bushing Horizontal Span-in

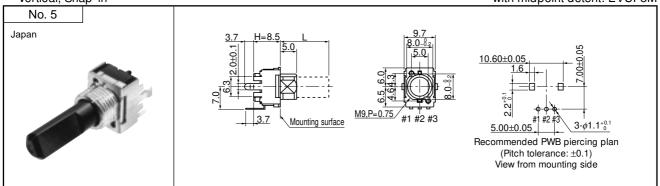
without midpoint detent: EVUE20, EVUE2A, EVUE21



without midpoint detent: EVUF2A

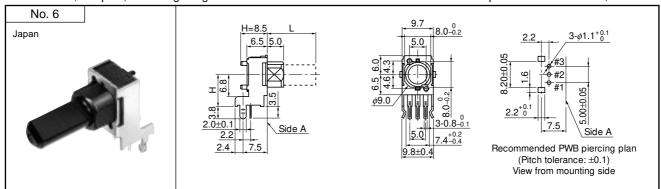

• Single Type with Bushing

without midpoint detent: EVUE25, EVUE2J

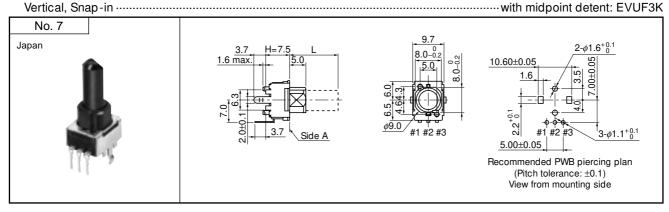


without midpoint detent: EVUF2J

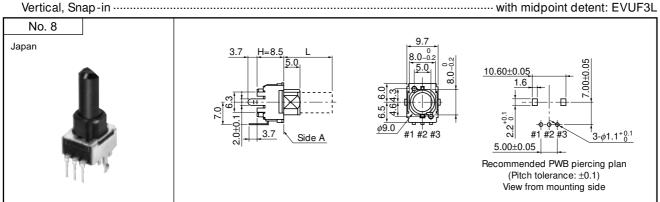
Vertical, Snap-in with midpoint detent: EVUF3J



without midpoint detent: EVUF2M Vertical, Snap-in with midpoint detent: EVUF3M



• Single Type with Sleeve Horizontal, Snap-in, Mounting Height H=10.0 mm with midpoint detent: EVUE37, EVUE37


without midpoint detent: EVUE27, EVUE2K

without midpoint detent: EVUF2K

without midpoint detent: EVUF2L

• Shaft Trims and Dimensions in mm for Type without Bushing (Drawings are at full CCW position.) Type F (Flat)

Product No. 7·8·9 th	F15	F20	F25	F30	$\frac{L\pm0.5}{30}$
L	15.0	20.0	25.0	30.0	
l	6.0	7.0	12.0	12.0	

Type E (40 teeth serrations)

Type M (24 teeth serrations)

Product No. 7·8·9 th	M20	M25	M30	M35	
L	20.0	25.0	30.0	35.0	
l	7.0	7.0	7.0	7.0	<u>c</u>

Type S (with screw slot)

Product No. 7.8.9 th	S01	0150
L	9.5	
l	_	

Type H (40 teeth serrations, with screw slot)

Product No. 7·8·9 th	H15	H20	H25	$\frac{L\pm0.5}{1000}$
L	15.0	20.0	25.0	
l	6.0	7.0	7.0	C 25 10

• Shaft Trims and Dimensions in mm for Types with Bushing or Sleeve (Drawings are at full CCW position.) Type F (Flat)

1 9 001 (1144)							
Product No. 7·8·9 th	FK1	FK3	FK4	FK5	FL3	FK6	
L	12.5	15.0	17.5	20.0	21.5	22.5	
l	7.0	7.0	12.0	12.0	12.0	12.0	Mounting surface M9 P=0.75 or ϕ 9 C1

Note: When you have special requirements other than the above, consult our salesmen.