ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification

1994 Nov 15

IC15 Data Handbook

Philips Semiconductors

74F245

FEATURES

- Octal bidirectional bus interface
- 3-State buffer outputs sink 64mA
- 15mA source current
- Outputs are placed in high impedance state during power-off conditions

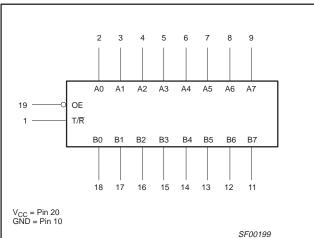
DESCRIPTION

The 74F245 is an octal transceiver featuring non-inverting 3-State bus compatible outputs in both transmit and receive directions. The B port outputs are capable of sinking 64mA and sourcing 15mA, producing very good capacitive drive characteristics. The device features an Output Enable (\overline{OE}) input for easy cascading and Transmit/Receive (T/ \overline{R}) input for direction control. The 3-State outputs, B0–B7, have been designed to prevent output bus loading if the power is removed from the device.

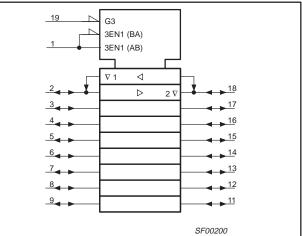
PIN CONFIGURATIO	Ν	
T/R 1		20 V _{CC}
A0 2		19 OE
A1 3		18 B0
A2 4		17 B1
A3 5		16 B2
A4 6		15 B3
A5 7		14 B4
A6 8		13 B5
A7 9		12 B6
GND 10		11 B7
	SF	00198

ТҮРЕ	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)			
74F245	4.0ns	70mA			

ORDERING INFORMATION


DESCRIPTION	COMMERCIAL RANGE V _{CC} = 5V ±10%, T _{amb} = 0°C to +70°C	DRAWING NUMBER
20-Pin Plastic DIP	N74F245N	SOT146-1
20-Pin Plastic SO	N74F245D	SOT163-1
20-Pin Plastic SSOP Type II	N74F245DB	SOT339-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0–A7, B0–B7	Data inputs	3.5/1.0	70μA/0.6mA
ŌĒ	Output Enable input (active Low)	1.0/2.0	20µA/1.2mA
T/R	Transmit/Receive input	1.0/2.0	20µA/1.2mA
A0–A7	A port outputs	150/40	3.0mA/24mA
B0–B7	B port outputs	750/106.7	15mA/64mA

NOTE: One (1.0) FAST unit load is defined as: 20μ A in the High state and 0.6mA in the Low state.

LOGIC SYMBOL



IEC/IEEE SYMBOL

74F245

LOGIC DIAGRAM

FUNCTION TABLE

INP	INPUTS		
OE	T/R	0012013	
L	L	Bus B data to Bus A	
L	Н	Bus A data to Bus B	
Н	X	Z	

H = High voltage level

L = Low voltage level

X = Don't care

Z = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	PARAMETER					
V _{CC}	Supply voltage		-0.5 to +7.0	V			
V _{IN}	Input voltage		-0.5 to +7.0	V			
I _{IN}	Input current	-30 to +5	mA				
V _{OUT}	Voltage applied to output in High output state	Voltage applied to output in High output state					
	Current emplied to output in Low output state	A0–A7	48	mA			
OUT	Current applied to output in Low output state	128	mA				
T _{amb}	Operating free-air temperature range	0 to +70	°C				
T _{stg}	Storage temperature range	-65 to +150	°C				

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			LIMITS		UNIT
STNIBUL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage		2.0			V
VIL	Low-level input voltage				0.8	V
I _{IK}	Input clamp current				-18	mA
	Lieb level extent extent	A0–A7			-3	mA
юн	High-level output current	B0–B7			-15	mA
		A0–A7			24	mA
IOL	Low-level output current			64	mA	
T _{amb}	Operating free-air temperature range		0		+70	°C

74F245

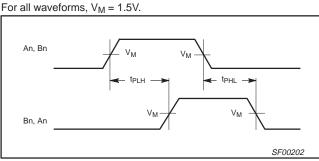
DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

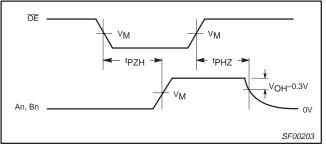
SYMBOL	DADAMETE			TEST CONDITIONS ¹				LIMITS		
STMBUL	PARAMETE	ĸ	163	MIN	TYP ²	MAX	UNIT			
		A.0. A.7. D.0. D.7			±10% V _{CC}	2.4			V	
		A0–A7, B0–B7	$V_{CC} = MIN,$	$I_{OH} = -3mA$	±5% V _{CC}	2.7	3.4		V	
V _{OH}	High-level output voltage	D.0. D.7	$V_{IL} = MAX,$ $V_{IH} = MIN$		±10% V _{CC}	2.0			V	
		B0–B7		$I_{OH} = -15 mA$	±5% V _{CC}	2.0			V	
		40.47	V _{CC} = MIN,	I _{OL} = 20mA	±10% V _{CC}		0.30	0.50	V	
V _{OL}	Low-level output voltage	A0–A7	$V_{IL} = MAX,$	I _{OL} = 24mA	±5% V _{CC}		0.35	0.50	V	
		B0–B7	V _{IH} = MIN	I _{OL} = MAX	±10% V _{CC}			0.55	V	
V _{OL}	Low-level output voltage	B0–B7	$V_{CC} = MIN, \\ V_{IL} = MAX, \\ V_{IH} = MIN$	I _{OL} = MAX	±5% V _{CC}		0.42	0.55	V	
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$				-0.73	-1.2	V	
	Input current at maximum	ŌĒ, T/R	V _{CC} = 5.5V, V ₁ = 7.0V					100	μΑ	
1 ₁	input voltage	A0–A7, B0–B7	V _{CC} = 5.5V, V _I = 5.5V					1	mA	
I _{IH}	High-level input current	OE, T/R only	$V_{CC} = MAX, V_I = 2.7V$					20	μΑ	
IIL	Low-level input current	OE, T/R only	$V_{CC} = MAX, V_I = 0.5V$					-1.2	mA	
I _{IH} +I _{OZH}	Off-state output current High level voltage applied		V _{CC} = MAX, V _O = 2.7V				70	μA		
I _{IL} +I _{OZL}	Off-state output current Low level voltage applied		V _{CC} = MAX, V _C	_O = 0.5V				-600	μΑ	
		A0–A7				-60		-150	mA	
los	Short-circuit output current ³	B0–B7	V _{CC} = MAX		-100		-225	mA		
		I _{ССН}				60	87	mA		
I _{CC}	Supply current (total)	I _{CCL}	V _{CC} = MAX				70	100	mA	
		I _{CCZ}	1 1				75	110	mA	

NOTES:

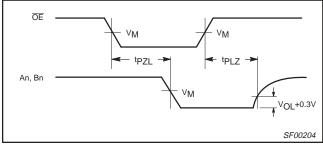
 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

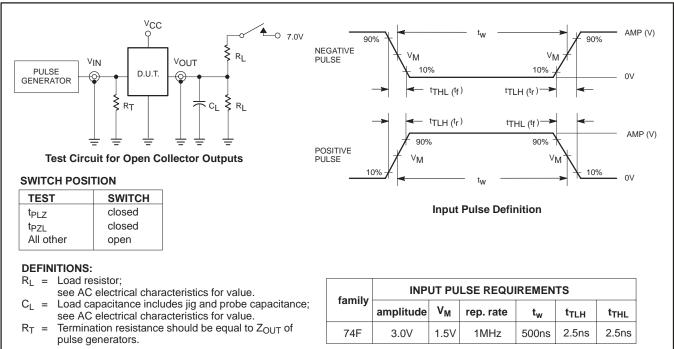

					LIM	ITS		
SYMBOL	PARAMETER TEST CONDITION		$V_{CC} = +5.0V$ $T_{amb} = +25^{\circ}C$ $C_{L} = 500F, R_{L} = 500\Omega$			V _{CC} = +5. T _{amb} = 0°C C _L = 50pF,	UNIT	
			MIN	ТҮР	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay An to Bn, Bn to An	Waveform 1	2.5 2.5	3.5 4.0	6.0 6.0	2.5 2.5	7.0 7.0	ns
t _{PZH} t _{PZL}	Output Enable time to High or Low level	Waveform 2 Waveform 3	2.0 3.5	4.5 5.5	7.0 8.0	2.0 3.5	8.0 9.0	ns
t _{PHZ} t _{PLZ}	Output Disable time from High or Low level	Waveform 2 Waveform 3	2.5 1.0	5.0 3.5	6.5 6.0	2.0 1.0	7.5 7.0	ns

AC ELECTRICAL CHARACTERISTICS


Product specification

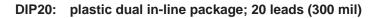
74F245

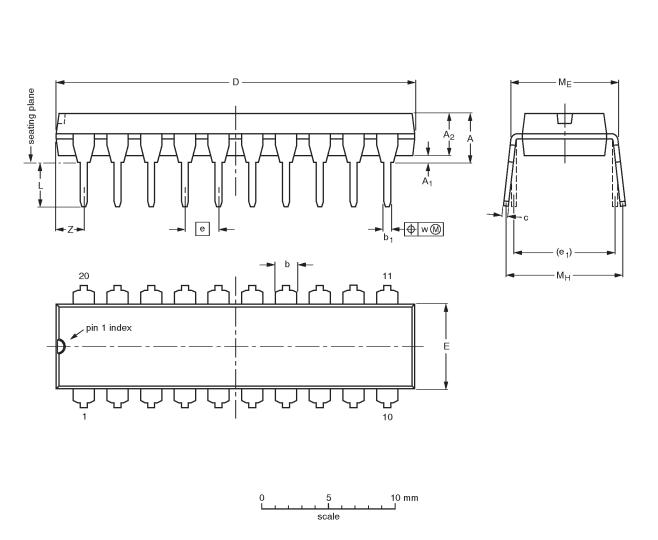

AC WAVEFORMS


Waveform 1. Propagation Delay for Non-Inverting Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level



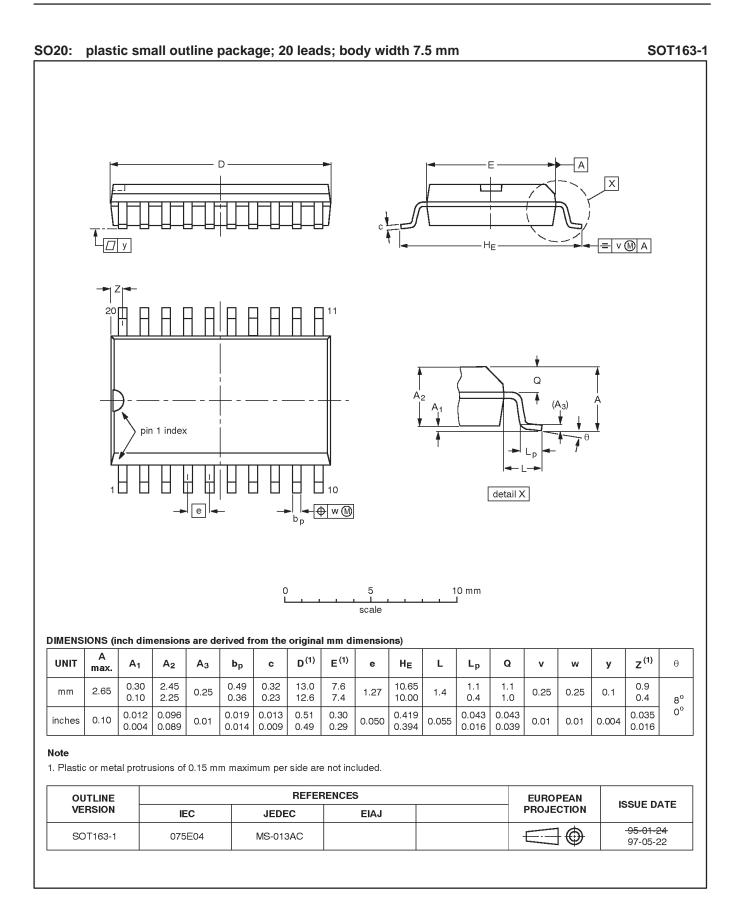

TEST CIRCUIT AND WAVEFORMS

SF00128

74F245

SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)


UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	Е ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

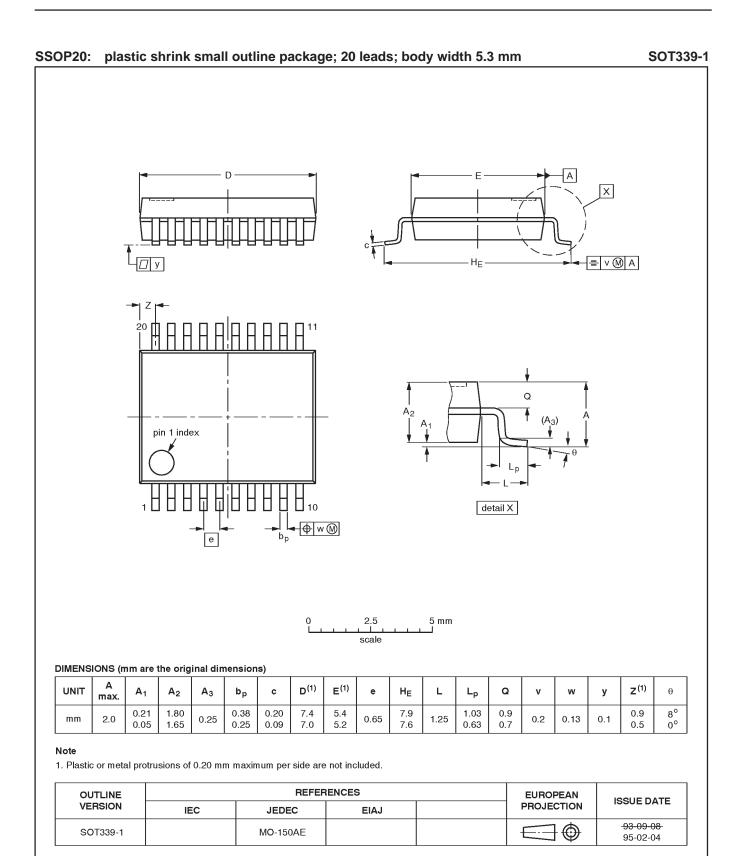
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFEF	ENCES	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT146-1			SC603			-92-11-17 95-05-24	

74F245

1994 Nov 15

Product specification


74F245

NOTES

8

Product specification

74F245

Product specification

74F245

	DEFINITIONS							
Data Sheet Identification	Definition							
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.						
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.						
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.						

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996 All rights reserved. Printed in U.S.A.

(print code)

Date of release: July 1994

9397-750-05104

Document order number: