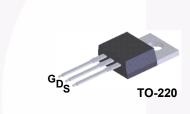
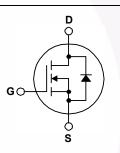


December 2013

FDP5800 N-Channel Logic Level PowerTrench[®] MOSFET 60 V, 80 A, 6 m Ω


Features


- R_{DS(on)} = 4.6 mΩ (Typ.) @ V_{GS} = 10 V, I_D = 80 A
- + High Performance Trench Technology for Extermly Low $R_{\text{DS}(\text{on})}$
- Low Gate Charge
- · High Power and Current Handing Capability
- RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

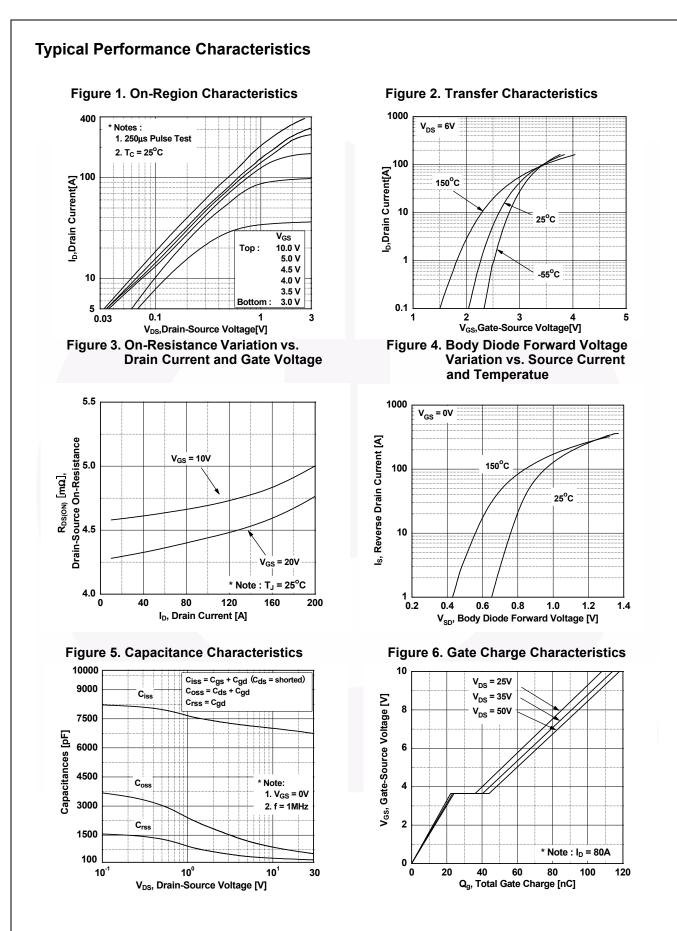
- Applications
- Power Tools
- Motor Drives and Uninterruptible Power Supplies
- Synchronous Rectification
- Battery Protection Circuit

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol			FDP5800	Unit	
V _{DSS}	Drain-Source Voltage		60	V	
V _{GSS}	Gate-Source Voltage			±20	V
I _D		- Continuous (T _C = 25 ^o C)		80	A
	Drain Current	- Continuous (T _C = 100 ^o C)		80*	Α
		- Continuous (T _A = 25 ^o C)		14	Α
I _{DM}	Drain Current - Pulsed			320	А
E _{AS}	Single Pulsed Avalanche Energy (Note		lote 1)	652	mJ
P _D	Power Dissipation (T _C = 25 ^o C) - Derate Above 25 ^o C			242 1.61	W W/°C
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C

*Drain current limited by package.

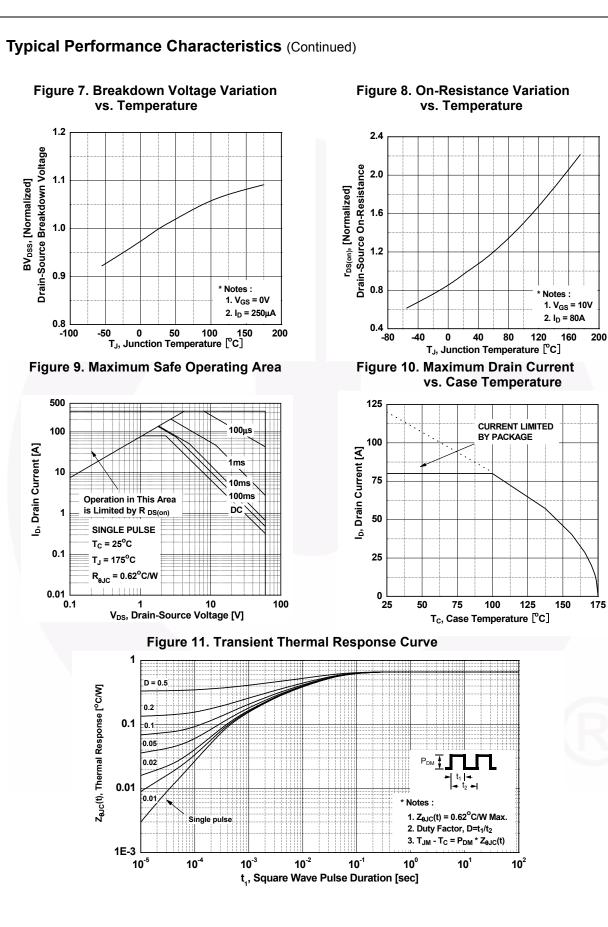
Thermal Characteristics

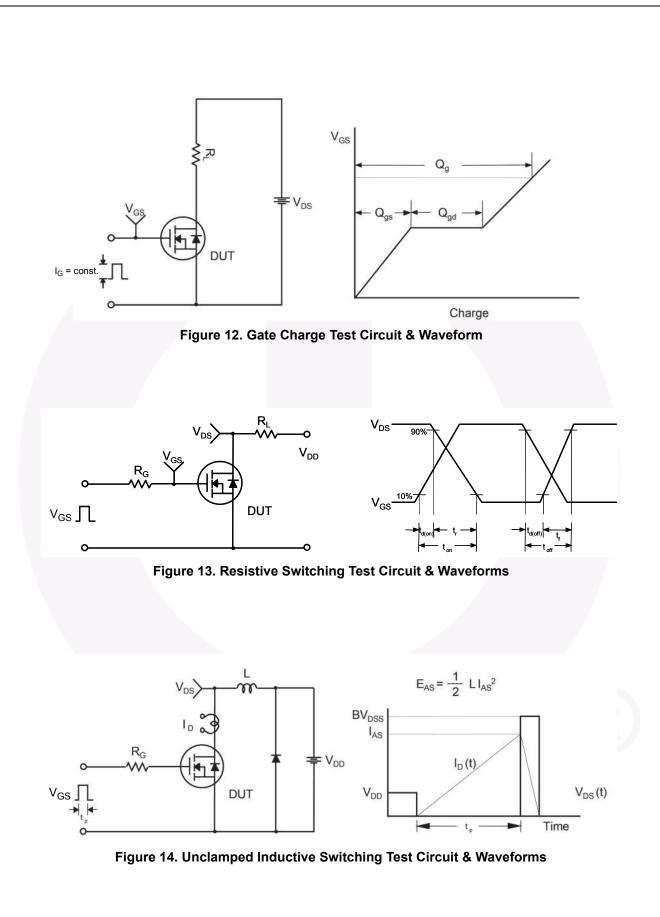

Symbol	Parameter	FDP5800	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.62	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	-0/00

1

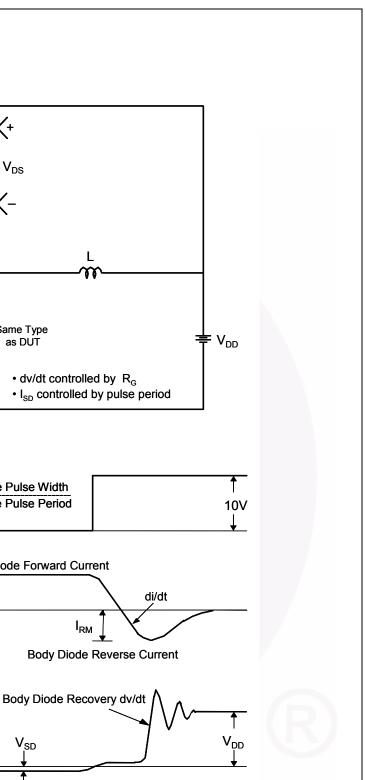
		Package	· · ·		ze Ta	e Tape Width		Quantity	
		TO-220				N/A	50 units		
Electrica	l Chara	acteristics T _C = 2	25°C unless ot	nerwise noted.					
Symbol		Parameter		Conditi	ons	Min.	Тур.	Max.	Unit
Off Charac	teristics	5							
B _{VDSS}	Drain-So	ource Breakdown Volta	ge	I _D = 250 μA, V _{GS} =	= 0 V, T _J =25 ^o C	60			V
	Zara Ca	ta Valtaga Drain Curra	,	V _{DS} = 48 V				1	μA
DSS	Zero Gate Voltage Drain Current		п ,	$V_{GS} = 0 V$ $T_J = 150^{\circ}C$				500	μA
I _{GSS}	Gate-Body Leakage Current, Forward		orward	V _{GS} = ±20 V, V _{DS} = 0 V				±100	nA
On Charac	teristics	5							
V _{GS(th)}				V _{GS} = V _{DS} , I _D = 2	50 μΑ	1.0		2.5	V
00(01)				V _{GS} = 10 V , I _D = 8			4.6	6.0	mΩ
				V _{GS} =4.5 V , I _D = 8			5.9	7.2	mΩ
R _{DS(on)}	Static Dr	ain-Source On Resista		$V_{GS} = 5 V, I_D = 80$			5.6	7.0	mΩ
		ľ	V _{GS} =10 V, I _D = 80 T _J = 175°C			10.4	12.6	mΩ	
Dynamic C	Characte	ristics							
C _{iss}	Input Capacitance						6890	9160	pF
C _{oss}	•	Capacitance		$V_{DS} = 15 V, V_{GS} = 0 V,$			750	1000	pF
C _{rss}	-	Transfer Capacitance		_f = 1 MHz		295	445	pF	
R _G		sistance		V _{GS} = 0.5 V, f = 1	MHz		1.2		Ω
Q _{g(TOT)}	Total Gate Charge at 10V			$V_{GS} = 0 V \text{ to } 10 V$			112	145	nC
Q _{g(TH)}		te Charge at 5V		$V_{oo} = 0 V to 5 V$			58		nC
Q _{g(TH)}	Thresho	ld Gate Charge		$V_{GS} = 0 V \text{ to } 1 V$	$V_{DS} = 30 V$,		7.0		nC
Q _{gs}	Gate to	Source Gate Charge			$I_{\rm D} = 80 \text{ A},$ $I_{\rm a} = 1 \text{ mA}$		23		nC
Q _{gs2}	Gate Ch	arge Threshold to Plate	eau	i _g = 1 mA			13		nC
Q _{gd}		Drain "Miller" Charge					18		nC
	Charact	teristics (V _{GS} = 10V)							
t _{on}	Turn-On						37	85	ns
t _{d(on)}	Turn-On	Turn-On Delay Time Turn-On Rise Time					18	46	ns
t _r	Turn-On			$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 80 \text{ A},$			19	47	ns
t _{d(off)}		Delay Time		$V_{GS} = 10 \text{ V}, \overline{R}_{G} = 1.5 \Omega$			55	120	ns
t _f		Fall Time					9	28	ns
t _{OFF}	Turn-Off Time						64	138	ns
	rce Dioc	le Characteristics	5						
				V _{GS} = 0 V, I _{SD} = 8	30 A			1.25	V
V _{SD}	Drain-So	ource Diode Forward V	oltage	$V_{GS} = 0 V, I_{SD} = 4$				1.0	V
t _{rr}	Reverse	Recovery Time		$V_{GS} = 0 V, I_{SD} = 60 A,$			58		ns
Q _{rr}	Reverse Recovery Charge			$dI_{F}/dt = 100 A/\mu s$,		106		nC

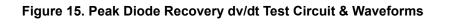

Notes: 1: L = 1 mH, I_{AS} = 36 A, V_{DD} = 54 V, V_{GS} = 10 V, R_G = 25 Ω , Starting T_J = 25^oC


FDP5800 — N-Channel Logic Level PowerTrench[®] MOSFET



©2006 Fairchild Semiconductor Corporation FDP5800 Rev. C2


www.fairchildsemi.com



FDP5800 — N-Channel Logic Level PowerTrench[®] MOSFET

 V_{SD}

Body Diode Forward Voltage Drop

DUT

Driver

D =

R_G,

 $\prod V_{GS}$

V_{GS}

(Driver)

I _{SD}

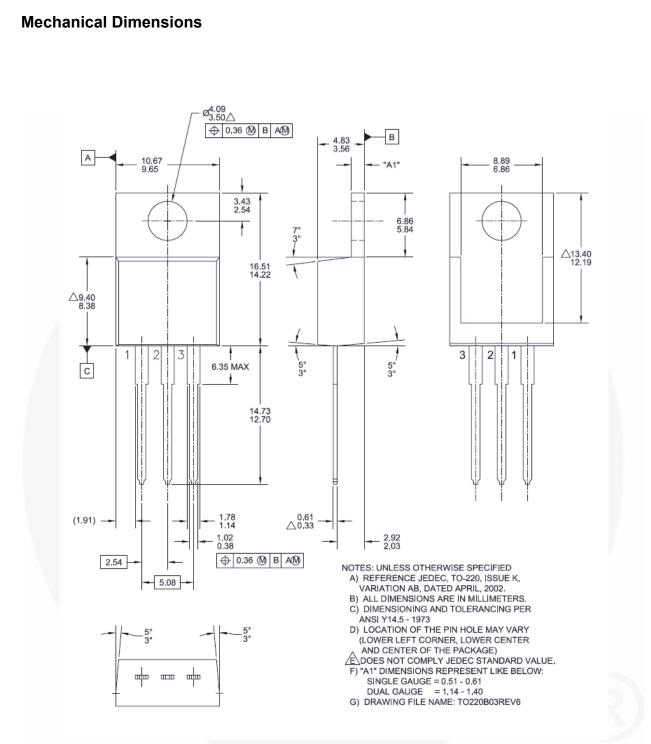
(DUT)

 V_{DS} (DUT)

a ۱_{SD} م +

 v_{DS}

Same Type as DUT


Gate Pulse Width

Gate Pulse Period

I_{FM}, Body Diode Forward Current

 I_{RM}

L

Figure 16. TO-220, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-3 CROSSVOLT™ Gmax™ CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ Dual Cool™ Marking Small Sj EcoSPAR® and Better™ EfficentMax™ MegaBuck™ ESBC™ MICROCOUPLE Fairchild® MicroPak™ Fairchild Semiconductor® MillerDrive™ FACT® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR®	QS [™] Quiet Series [™] RapidConfigure [™] Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperFET [®] SuperSOT [™] -3 SuperSOT [™] -8
I LI Belloli	

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Sync-Lock™ SYSTEM^{®*} GENERAL

TinyBoost

TinyBuck®

TinyCalc™

TinyLogic®

TINYOPTO™

TinvPower™

TinyPWM™

TinyWire™

TranSiC™

UHC®

VCX™

XS™

UniFFT™

TriFault Detect™

Ultra FRFET™

VisualMax™

VoltagePlus™

TRUECURRENT®* uSerDes™ μ_{ser}

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		