

R1810x Series

600 nA IQ Low Quiescent Current Boost DC/DC Converter for Energy Harvester

No.EA-423-230620

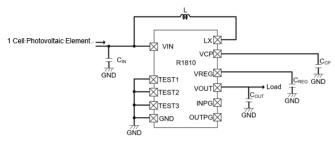
OVERVIEW

R1810x is a boost DC/DC converter for electrical power storage devices, especially dedicated for 1 cell photovoltaic energy harvester since the start-up voltage is Typ.0.35V.

This product can start up with only 9uW, and applicable for charging 1 cell photovoltaic element. A system which is working under low-illuminance environment can be composed with the R1810x.

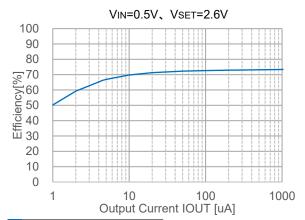
KEY BENEFITS

- Providing a low quiescent current (I_{Q_VOUT} =Typ.600 nA), and high efficiency (66%@ I_{OUT}=5 μA)
- Start up with low input energy, 9 μW (low illuminance) is possible.
- Maximum power point control function is built-in.


KEY SPECIFICATIONS

- Start-up voltage: Typ. 0.35V
 Max. 0.50V (0°C ≤ Ta ≤ 65°C),
 Max. 0.55V (-40°C ≤ Ta ≤ 85°C)
- Input Voltage Range: 0.2 V to 2.1 V (V_{SET}=2.7V)
- Output Voltage Range: 2.3 V to 4.5 V
- Output Voltage Accuracy: ±5.0%
- Low current consumption:

Typ.600 nA (Ta = 25° C, at no load)


- Start-up power: 9 μW (V_{MPSET} = 0.5V / V_{SET} = 2.6V)
- Maximum Power Point Control Voltage Setting: from 0.2V to 2.1V, in 50 mV increments
- Input Power Good Function
- Output Power Good Function

TYPICAL APPLICATION

L = 22 μ H, C_{IN} = 22 μ F, C_{CP} = 22 nF, C_{REG} = 4.7 μ F C_{OUT} = 4.7 μ F

EFFICIENCY CURVE

SELECTION GUIDE

Product name	Package	Quantity per Reel			
R1810Zxxx\$-E2-F	WLCSP-15-P1	5,000 pcs			
R1810Lxxx\$-E2	DFN2735-14	5,000 pcs			

xxx: Select the combination Code number of the set output voltage (V_{SET}) and the set maximum power voltage (V_{MPSET}) ex. 001 Refer to the Product-specific Electrical Characteristics for detail information.

\$: Set output power good low (PGL) (Refer to selection guide.)

PACKAGES

WLCSP-15-P1

2.88 x 1.68 x 0.36 (mm)

DFN2735-14

3.5 x 2.7 x 0.6 (mm)

APPLICATION

Energy harvesting modules such as 1 cell photovoltaic element /thermoelectric power generation.

SELECTION GUIDE

The set output voltage, the set maximum power point control voltage, and the output power good setting are user-selectable options.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free	
R1810Zxxx\$-E2-F	WLCSP-15-P1	5,000 pcs	Yes	Yes	
R1810Lxxx\$-E2	DFN2735-14	5,000 pcs	Yes	Yes	

xxx: Select the combination of the set output voltage (V_{SET}) and the set maximum power point control voltage (V_{MPSET}) by the code number. Ex. 001

Output voltage: from 2.3 V to 4.5 V in 0.1 V increments

Maximum power point control voltage: from 0.2 V to 2.1 V in 0.05 V increments

Refer to the Product-specific Electrical Characteristics for detail information.

* Contact our sales representatives for other codes.

It is recommended to set as V_{SET} ≥ V_{MPSET} + 1.0 V.

\$: Set output power good low (PGL) (1)

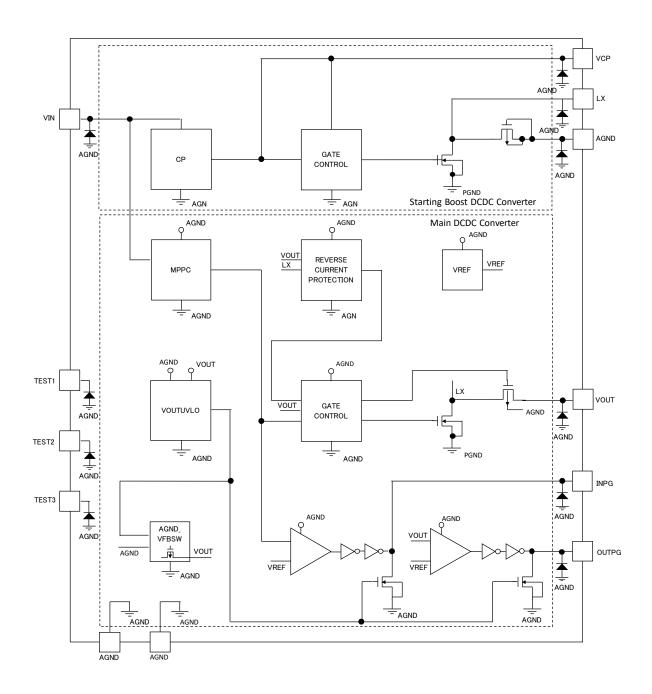
A; Vset x 80%

B; Vset x 70%

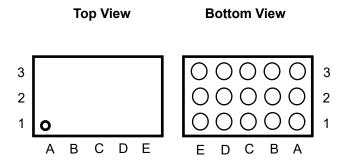
C: Vset x 60%

D; Vset x 50%

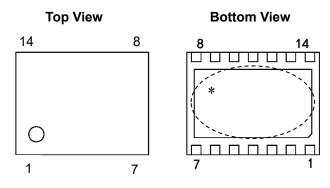
The accuracy of the OUTPG detection voltage depends on the output set voltage.


Output power good low OUTPG detection accuracy

			Set Output Voltage Vset [V]																					
		2.3	2.4	2.5	2.6	2.7	2.8	2.9	3	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5
	Α	-	-	-	5.0%										4.0%									
•	В	-	-	•	-	•	•	-	•	5.0)%							4.0%						
φ	C	-	-	ı	-	-	•	-	ı	-	ı	4.0%												
	D	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		4.0%	


[&]quot;-"; The OUTPG function cannot be used. please set the OUTPG pin to open.

⁽¹⁾ OUTPG outputs "Low" when the output is below the threshold of PGL according to the table above.


BLOCK DIAGRAM

PIN DESCRIPTIONS

R1810Z (WLCSP-15-P1) Pin Configuration

R1810L (DFN2735-14) Pin Configuration

* The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). The backside tab should be connected to the ground plane on the board.

R1810Z 、R1810L Pin Description

Symbol	Description	I/O	Pin No.			
	Description	1/0	R1810Z	R1810L		
VIN	Power Supply Input Pin. Apply input voltage between VIN pin and GND. Connect the input capacitor between the VIN pin and GND.	I	C3	5		
VOUT	Output voltage pin of step-up DC / DC converter. Connect the output load between VOUT pin and GND. Connect the output capacitor between VOUT pin and GND.	0	D1,E1	8		
INPG	Power good output pin for power input voltage (V _{IN}). "High" level of the output voltage for CMOS output is the output voltage (V _{OUT}) of the step-up DC / DC converter. Outputs "High" when V _{IN} exceeds V _{MPSET} and V _{OUT} exceeds V _{OUTUVLOR} **1. Please left open when not in use.	0	A1	13		
VREG	Output pin of step-up DC / DC converter (internal power supply) for startup. Supply voltage to the main DC / DC converter circuit that produces VOUT at startup. Please connect a capacitor between VREG pin and GND for voltage stabilization.	0	C1	11		
LX	The drain of the internal MOSFET. Connect an inductor between VIN pin and LX pin.	0	D2,D3	6		
VCP	Output pin of the startup internal step-up charge pump (internal power source). Supply voltage to the start-up DC / DC converter circuit that generates the VREG voltage at startup. Please connect a capacitor between the VCP pin and GND for voltage stabilization.	0	B1	12		
OUTPG	Power good output pin for Vout. "High" level of the output voltage for CMOS output is Vout. Outputs "High" when Vout is Voutpgh**1 or higher, and outputs "Low" when Vout is Voutpgl**1 or lower. Please left open when not in use.	0	A2	14		
TEST 1,2,3	Test pins for the IC. Be sure to connect to AGND.	-	C2,B2,A3	9,4,1		
AGND	Analog ground of the internal circuit. Please connect to the PGND and GND.	_	ВЗ	2		
PGND	Power ground of the internal circuit. Please connect to the AGND and GND.	_	E2,E3	7		
NC	No connection. It is recommended to make it open to prevent short circuit with adjacent pins during mounting.	_	_	3,10		

※1 : Refer to electrical characteristics.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

(GND = 0 V)

Symbol	Parameter	Rating	Unit		
VIN	Input Pin Voltage	-0.3 to 2.3	V		
V _{LX}	LX Pin Voltage	-0.3 to 6.5	V		
Vout	Output Pin Voltage	-0.3 to 6.5	V		
V_{REG}	Output Voltage of Boost DC to DC Converter for Start-up	-0.3 to 6.5	V		
V _{CP}	Output Pin Voltage of Charge Pump Circuit	-0.3 to 6.5	V		
V _{TEST1 to 3}	Pin Voltage for Testing	-0.3 to 6.5	V		
VINPG	INPG Pin Voltage	-0.3 to 6.5	V		
I _{INPG}	INPG Pin Current	10	mA		
Voutpg	OUTPG Pin Voltage	-0.3 to 6.5	V		
l _{OUTPG}	OUTPG Pin Current	10	mA		
PD	Power Dissipation	Refer to the Power Dissipation in the supplementary item			
Tj	Junction Temperature Range	-40 to 85	°C		
Tstg	Storage Temperature Range	−55 to 125	°C		

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings are not assured.

The functional operation at or over these absolute maximum ratings are not assu

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

SymbolParameterRatingUnit V_{IN} Input Voltage(1)0.35 to 2.1VTaOperating Temperature Range-40 to 85°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. The semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ The lower limit of the input voltage depends on the set output voltage. Please refer to Page.22 for details.

ELECTRICAL CHARACTERISTICS

The specifications surrounded by \square are guaranteed by design at -40° C \leq Ta \leq 85°C, not mass production tested.

R1810x Electrical Characteristics $(Ta = 25^{\circ}C)$ **Symbol Parameter Conditions** Min. Max. Unit Typ. $V_{IN} = 0.5V$ **VOUT Pin Quiescent Current** 600 3000 nΑ I_{Q_VOUT} V_{OUT} = 4.5 V, at no switching $V_{IN} = 0.5 V$, VIN Pin Quiescent Current 400 I_{Q_VIN} nΑ Vout = 4.5 V, at no switching V_{SET} V_{SET} ٧/ Vout Output Pin Voltage $V_{IN} > V_{MP}$ ×0.95 ×1.05 -5 5 % Vout = Vset Vmpset ≥0.5V Accuracy of Maximum V_{MP} Power Point Control Voltage 50 mV Vout = Vset, Vmpset < 0.5V -50 xxxA: 2.6V ≤ V_{SET} VSET OUTPG "High" Threshold xxxB: 3.1V ≤ V_{SET} VSET VSET V Voutpgh Voltage xxxC: 3.6V ≤ V_{SET} \times 0.87 $\times 0.93$ 0.90 $xxxD: 4.3V \le V_{SET}$ V_{SET} $\mathsf{V}_{\mathsf{SET}}$ VSET xxxA: $2.6V \le V_{SET} < 3.3V$ × (PGL × (PGL V $xxxB: 3.1V \le V_{SET} < 3.3V$ **PGL** -0.05) +0.05) OUTPG "Low" Threshold Voutpgl xxxA: 3.3V ≤ V_{SFT} Voltage V_{SET} V_{SET} V_{SET} xxxB: 3.3V ≤ V_{SET} × (PGL × (PGL X xxxC: 3.6V ≤ V_{SET} **PGL** +0.04) -0.04) $xxxD: 4.3V \le V_{SET}$ V_{MPSET} V_{INPGH} INPG "High" Threshold Voltage × 1.05 VMPSET V INPG "Low" Threshold Voltage VINPGL × 0.95 Voutuvlor 2.11 V Voutuvlo Release Voltage V Voutuvlof 1.55 Voutuvlo Detection Voltage $\mathsf{V}_{\mathsf{SET}}$ V Voutpgh OUTPG "High" Output Voltage IOUTPG=-1µA ×0.9 V_{SET} ٧ VINPGH INPG "High" Output Voltage I_{INPG}=-1µA ×0.9 Voutpgl 0.1 V OUTPG "Low" Output Voltage IOUTPG=1µA 0.1 VINPGL INPG "Low" Output Voltage $I_{INPG}=1\mu A$

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C). Test circuit is operated with "Open Loop Control" (GND = 0 V), unless otherwise specified.

The specifications surrounded by _____ are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C

R1810xxxxA Product-specific Electrical Characteristics

Product	Outpu	ut Voltage	e [V]	_	um Powe			JTPG"Hi	
Name					rol Voltaç			tion Volta	
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
R1810x003A	2.470	2.6	2.730	0.475	0.5	0.525	2.262	2.34	2.418
R1810x004A	2.470	2.6	2.730	1.995	2.1	2.205	2.262	2.34	2.418
R1810x005A	4.275	4.5	4.725	0.475	0.5	0.525	3.915	4.05	4.185
R1810x006A	4.275	4.5	4.725	1.140	1.2	1.260	3.915	4.05	4.185
R1810x007A	4.275	4.5	4.725	1.995	2.1	2.205	3.915	4.05	4.185
R1810x013A	2.565	2.7	2.835	1.425	1.5	1.575	2.349	2.43	2.511
R1810x015A	2.565	2.7	2.835	0.250	0.3	0.350	2.349	2.43	2.511
R1810x016A	2.185	2.3	2.415	0.475	0.5	0.525	-	-	-
R1810x017A	3.135	3.3	3.465	0.475	0.5	0.525	2.871	2.97	3.069
R1810x018A	3.135	3.3	3.465	1.995	2.1	2.205	2.871	2.97	3.069
R1810x019A	3.420	3.6	3.780	0.475	0.5	0.525	3.132	3.24	3.348
R1810x022A	2.565	2.7	2.835	0.475	0.5	0.525	2.349	2.43	2.511
R1810x023A	2.470	2.6	2.730	0.523	0.55	0.577	2.262	2.34	2.418
R1810x024A	2.565	2.7	2.835	0.523	0.55	0.577	2.349	2.43	2.511
R1810x025A	2.470	2.6	2.730	0.570	0.6	0.630	2.262	2.34	2.418
R1810x026A	2.565	2.7	2.835	0.570	0.6	0.630	2.349	2.43	2.511
R1810x027A	2.470	2.6	2.730	0.855	0.9	0.945	2.262	2.34	2.418
R1810x028A	2.565	2.7	2.835	0.855	0.9	0.945	2.349	2.43	2.511
R1810x029A	2.470	2.6	2.730	0.950	1.0	1.050	2.262	2.34	2.418
R1810x030A	2.565	2.7	2.835	0.950	1.0	1.050	2.349	2.43	2.511
R1810x031A	2.470	2.6	2.730	1.045	1.1	1.155	2.262	2.34	2.418
R1810x032A	2.565	2.7	2.835	1.045	1.1	1.155	2.349	2.43	2.511
R1810x033A	2.565	2.7	2.835	0.665	0.7	0.735	2.349	2.43	2.511
R1810x034A	2.565	2.7	2.835	0.760	0.8	0.840	2.349	2.43	2.511

If VSET < 2.6V, the OUTPG function cannot be used.

Product		TPG"Lov		INPG"High" Detection Voltage [V]	INPG"Low" Detection Voltage [V]
Name	Min.	Тур.	Max.	Min.	Max.
R1810x003A	1.950	2.080	2.210	0.525	0.475
R1810x004A	1.950	2.080	2.210	2.205	1.995
R1810x005A	3.420	3.600	3.780	0.525	0.475
R1810x006A	3.420	3.600	3.780	1.260	1.140
R1810x007A	3.420	3.600	3.780	2.205	1.995
R1810x013A	2.025	2.160	2.295	1.575	1.425
R1810x015A	2.025	2.160	2.295	0.315	0.285
R1810x016A	-	-	-	0.525	0.475
R1810x017A	2.508	2.640	2.772	0.525	0.475
R1810x018A	2.508	2.640	2.772	2.205	1.995
R1810x019A	2.736	2.880	3.024	0.525	0.475
R1810x022A	2.025	2.160	2.295	0.525	0.475
R1810x023A	1.950	2.080	2.210	0.578	0.523
R1810x024A	2.025	2.160	2.295	0.578	0.523
R1810x025A	1.950	2.080	2.210	0.630	0.570
R1810x026A	2.025	2.160	2.295	0.630	0.570
R1810x027A	1.950	2.080	2.210	0.945	0.855
R1810x028A	2.025	2.160	2.295	0.945	0.855
R1810x029A	1.950	2.080	2.210	1.050	0.950
R1810x030A	2.025	2.160	2.295	1.050	0.950
R1810x031A	1.950	2.080	2.210	1.155	1.045
R1810x032A	2.025	2.160	2.295	1.155	1.045
R1810x033A	2.025	2.160	2.295	0.735	0.665
R1810x034A	2.025	2.160	2.295	0.840	0.760

If VSET < 2.6V, the OUTPG function cannot be used.

R1	81	lΩx
		\mathbf{U}

The specifications surrounded by _____ are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C

R1810xxxxB Product-specific Electrical Characteristics

Product	Outpu	ıt Voltage	e [V]		um Powe		OUTPG"High" Detection Voltage [V]			
Name	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
R1810x003B	2.470	2.6	2.730	0.475	0.5	0.525	-	-	-	
R1810x004B	2.470	2.6	2.730	1.995	2.1	2.205	-	-	-	
R1810x005B	4.275	4.5	4.725	0.475	0.5	0.525	3.915	4.05	4.185	
R1810x006B	4.275	4.5	4.725	1.140	1.2	1.260	3.915	4.05	4.185	
R1810x007B	4.275	4.5	4.725	1.995	2.1	2.205	3.915	4.05	4.185	
R1810x013B	2.565	2.7	2.835	1.425	1.5	1.575	-	-	-	
R1810x017B	3.135	3.3	3.465	0.475	0.5	0.525	2.871	2.97	3.069	
R1810x018B	3.135	3.3	3.465	1.995	2.1	2.205	2.871	2.97	3.069	
R1810x019B	3.420	3.6	3.780	0.475	0.5	0.525	3.132	3.24	3.348	
R1810x022B	2.565	2.7	2.835	0.475	0.5	0.525	-	-	-	
R1810x023B	2.470	2.6	2.730	0.523	0.55	0.577	-	=	-	
R1810x024B	2.565	2.7	2.835	0.523	0.55	0.577	-	=	-	
R1810x025B	2.470	2.6	2.730	0.570	0.6	0.630	-	-	-	
R1810x026B	2.565	2.7	2.835	0.570	0.6	0.630	-	=	-	
R1810x027B	2.470	2.6	2.730	0.855	0.9	0.945	-	=	-	
R1810x028B	2.565	2.7	2.835	0.855	0.9	0.945	-	-	-	
R1810x029B	2.470	2.6	2.730	0.950	1.0	1.050	-	-	-	
R1810x030B	2.565	2.7	2.835	0.950	1.0	1.050	-	=	-	
R1810x031B	2.470	2.6	2.730	1.045	1.1	1.155	-	-	-	
R1810x032B	2.565	2.7	2.835	1.045	1.1	1.155	-	-	-	
R1810x033B	2.565	2.7	2.835	0.665	0.7	0.735	-	-	-	
R1810x034B	2.565	2.7	2.835	0.760	0.8	0.840	-	-	-	

If VSET < 3.1V, the OUTPG function cannot be used.

Product		TPG"Lov		INPG"High" Detection Voltage [V]	INPG"Low" Detection Voltage [V]
Name	Min.	Тур.	Max.	Min.	Max.
R1810x003B	-	-	-	0.525	0.475
R1810x004B	-	-	-	2.205	1.995
R1810x005B	2.970	3.150	3.330	0.525	0.475
R1810x006B	2.970	3.150	3.330	1.260	1.140
R1810x007B	2.970	3.150	3.330	2.205	1.995
R1810x013B	-	-	-	1.575	1.425
R1810x017B	2.178	2.310	2.442	0.525	0.475
R1810x018B	2.178	2.310	2.442	2.205	1.995
R1810x019B	2.376	2.520	2.664	0.525	0.475
R1810x022B	-	-	-	0.525	0.475
R1810x023B	-	-	-	0.578	0.523
R1810x024B	-	-	-	0.578	0.523
R1810x025B	-	-	-	0.630	0.570
R1810x026B	-	-	-	0.630	0.570
R1810x027B	-	-	-	0.945	0.855
R1810x028B	-	-	-	0.945	0.855
R1810x029B	-	-	-	1.050	0.950
R1810x030B	-	-	-	1.050	0.950
R1810x031B	-	-	-	1.155	1.045
R1810x032B	-	-	-	1.155	1.045
R1810x033B	-	-	-	0.735	0.665
R1810x034B	-	-	-	0.840	0.760

If VSET < 3.1V, the OUTPG function cannot be used.

	R1810x
	No.EA-423-230620
The specifications surrounded by are guaranteed by design engine	ering at −40°C ≤ Ta ≤ 85°C

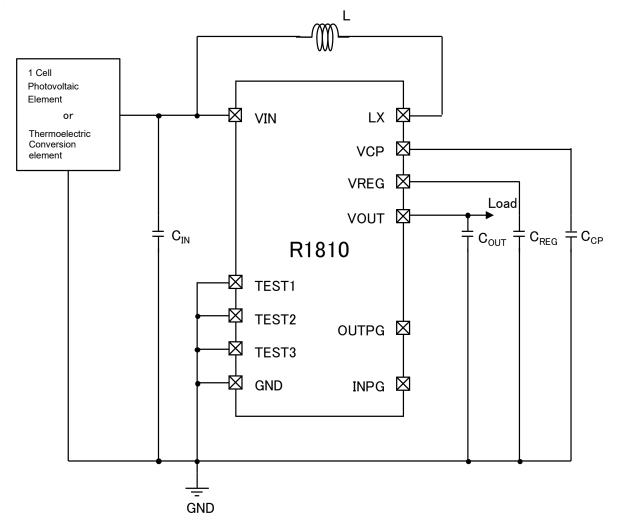
R1810xxxxC Product-specific Electrical Characteristics

Product	Outpu	ut Voltage	e [V]		um Powe rol Voltag		OUTPG"High" Detection Voltage [V]			
Name	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
R1810x005C	4.275	4.5	4.725	0.475	0.5	0.525	3.915	4.05	4.185	
R1810x006C	4.275	4.5	4.725	1.140	1.2	1.260	3.915	4.05	4.185	
R1810x007C	4.275	4.5	4.725	1.995	2.1	2.205	3.915	4.05	4.185	
R1810x017C	3.135	3.3	3.465	0.475	0.5	0.525	-	-	-	
R1810x018C	3.135	3.3	3.465	1.995	2.1	2.205	-	-	-	
R1810x019C	3.420	3.6	3.780	0.475	0.5	0.525	3.132	3.24	3.348	

Product	OUTPG"Low" Detection Voltage [V]			INPG"High" Detection Voltage [V]	INPG"Low" Detection Voltage [V]	
Name	Min.	Тур.	Max.	Min.	Max.	
R1810x005C	2.520	2.700	2.880	0.525	0.475	
R1810x006C	2.520	2.700	2.880	1.260	1.140	
R1810x007C	2.520	2.700	2.880	2.205	1.995	
R1810x017C	-	-	-	0.525	0.475	
R1810x018C	-	-	-	2.205	1.995	
R1810x019C	2.016	2.160	2.304	0.525	0.475	

If VSET < 3.6V, the OUTPG function cannot be used.

R1810	0x
No.EA-423-2306	20
Γhe specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C	


R1810xxxxD Product-specific Electrical Characteristics

Product	Output Voltage [V]			Maximum Power Point Control Voltage [V]			OUTPG"High" Detection Voltage [V]		
Name	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
R1810x005D	4.275	4.5	4.725	0.475	0.5	0.525	3.915	4.05	4.185
R1810x006D	4.275	4.5	4.725	1.140	1.2	1.260	3.915	4.05	4.185
R1810x007D	4.275	4.5	4.725	1.995	2.1	2.205	3.915	4.05	4.185
R1810x019D	3.420	3.6	3.780	0.475	0.5	0.525	-	1	-

Product	OUTPG"Low" Detection Voltage [V]			INPG"High" Detection Voltage [V]	INPG"Low" Detection Voltage [V]	
Name	Min.	Тур.	Max.	Min.	Max.	
R1810x005D	2.070	2.250	2.430	0.525	0.475	
R1810x006D	2.070	2.250	2.430	1.260	1.140	
R1810x007D	2.070	2.250	2.430	2.205	1.995	
R1810x019D	-	-	-	0.525	0.475	

If VSET < 4.3V, the OUTPG function cannot be used.

TYPICAL APPLICATION CIRCUIT

R1810x Typical Application Circuit

Recommended External Components

Symbol	Descriptions						
CIN	Ceramic Capacitor, 22 µF or more						
Сср	Ceramic Capacitor, 0.022µF or more						
Creg	Ceramic Capacitor, 4.7 µF or more						
C	Ceramic Capacitor, 4.7 µF or more						
Соит	Large-capacity Electrical Storage Device						
L	Inductor, 22 µH						

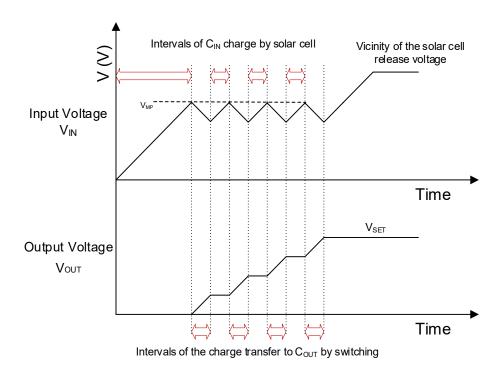
TECHNICAL NOTES

The performance of the IC largely depends on the external components and circuitry layout. Especially, design the circuit carefully not to exceed each rating (voltage, current, power) for each component and the IC and consider the best layout pattern.

Use a ceramic capacitor with low ESR (equivalent series resistance). We recommend 22uF as CIN which is set between V_{IN} and GND.

We recommend 4.7uF ceramic capacitor or 10uF or more ceramic capacitor with large capacity of electrical storage device as Cout. The capacitors should cover the operating temperature range, and effective capacitance should be more than our recommendation capacity with 0 bias. Note that insulation resistance should not be too small. If insulation resistance is small, the leakage current may increase. Such a system cannot be recommended. (Refer to Page.24, 31)

We recommend an inductor with equal or more current rating (400mA or more), ESR, DC superimposition characteristics as our recommendation part. If ESR is large, or bad DC superimposition characteristics may lead to the bad efficiency. If the current rating is too small, the inductor may be broken down.

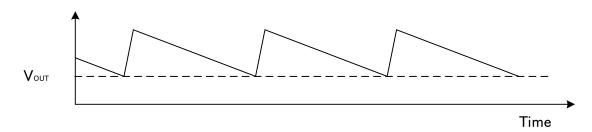

If other than GND level is connected to the TEST1,2,3 pins, by the shoot current of logic circuits inside the IC, consumption current may increase. Make sure to connect these pins to the ground level.

OPERATION

Boost DC/DC Converters For Energy Harvesting

Generally, boost DC/DC converters are used to make a suitable voltage for MCU and logic circuits by boost the input voltage. The R1810s is not a general boost DC to DC converter, but it is dedicated for energy harvesting, in other words, the power generated by a photovoltaic element is converted and accumulated to an electrical storage device with high efficiency. By intermittent operation by the power from the electrical storage device, the system can operate continuously without using a primary battery or power supply. The R1810x has the function of the maximum power point control to generate power at the best suitable voltage point. To realize single cell photovoltaic element base, the start-up voltage is 0.5V and once after start-up, even if the input voltage goes down to 0.2V, keeping on the operation is possible. Furthermore, start-up and charging to an electrical storage device with only 9uW input power, the system which operates under the low illuminance condition, can be built.

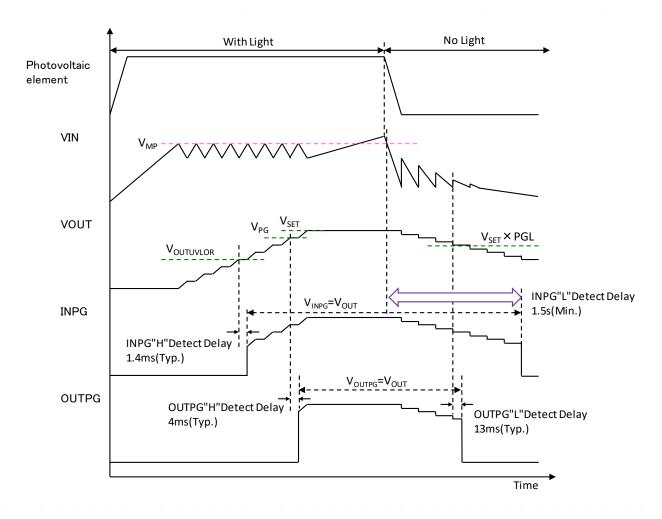
Maximum Power Point Control


The R1810x converts the power from the photovoltaic cell at the voltage (V_{MP}), which is the maximum power generation possible point, and transferred to the power to C_{OUT} .

In other words, when the input voltage of the R1810x increases by the power from a photovoltaic element, and when the voltage reaches maximum power voltage (V_{MP}), switching operation starts and the R1810x transfers power to the C_{OUT} side.

In case that the power transfer amount exceeds the supplied power from the photovoltaic element, the input voltage decreases by switching. Then, when the voltage of V_{IN} becomes lower than V_{MP} , the next switching stops and C_{IN} is charged by the photovoltaic element and the voltage of V_{IN} increases. When the input voltage reaches the V_{MP} again, the R1810x transfers power to C_{OUT} side. By repeating this operation enables transferring power to the C_{OUT} side with keeping the maximum power generation point of the photovoltaic element.

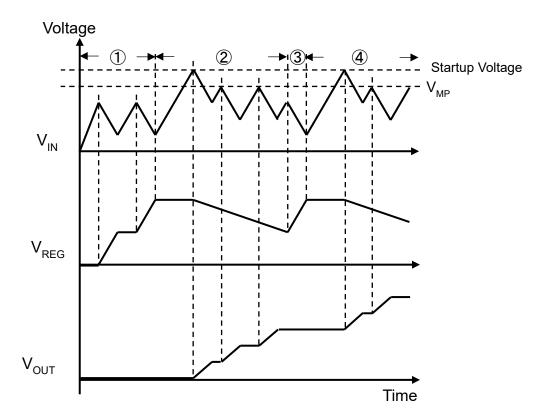
Supplemental Remarks: If the photovoltaic power supply is low while the secondary capacitor is charged with the photovoltaic cell, the input voltage (V_{IN}) will fall at every energy transfer point. The boost ratio can be big by connecting a bigger capacitance capacitor (C_{IN}) , the efficiency at charging is also improved.


Operation While The Output Voltage Is At Stable Set Output Voltage.

Output Voltage Waveform at stable set output voltage point

When the output voltage reaches to set output voltage, the operation of the R1810x is as follows: When the output voltage becomes higher than the set output voltage, even if V_{IN} voltage is higher than V_{MP} voltage, the switching stops. When the output voltage becomes equal to set V_{OUT} voltage by a load, the switching resumes. By repeating this operation, the output voltage is maintained as the set output voltage.

Power Good (PG) Function

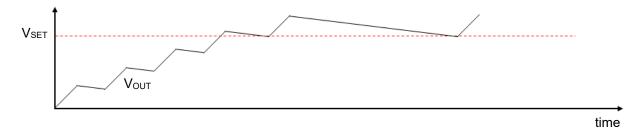


When Vout exceeds Vout released voltage, Voutuvlor, the INPG pin becomes "High" (= Vout level). Otherwise, the INPG pin holds "Low". There are two cases the INPG pin becomes from "High" to "Low". One is when Vout falls below the Voutuvlo detector threshold, Voutuvlof, and the other is in the case that the switching stops for a certain time (Min. 1.5 sec.) (Refer to the chart above.). The halt of switching means V_{IN} voltage level is less than V_{MP} voltage, and the internal circuit recognizes the shading. If you do not use the INPG function, set the INPG pin to "Open".

Typ. 4ms from when the switching starts and the voltage of V_{OUT} exceeds 90% of V_{SET}, the OUTPG pin becomes "High". Depending on the PG pin voltage, the condition of the output can be judged, and sequence control is possible. While the OUTPG is "High", the output is same as set voltage. When the output becomes lower than the (PGL) of V_{SET}, the OUTPG pin becomes "Low". This preset value (PGL) can be selected from 50% and 80% with 10% increment depending on V_{SET}. Refer to the "*SELECTION GUIDE*" about PGL setting. OUTPG function operates with using the V_{OUT} voltage as the power supply, therefore regardless of the supply of V_{IN} voltage, the operation is possible. For example, supposed that a system substantially operates a few times a day, and a large capacitance electrical storage device is connected with C_{OUT}, even if V_{IN} voltage becomes too low, as long as V_{OUT} voltage is beyond the V_{OUTUVLO} released voltage (V_{OUTUVLOR}), OUTPG can maintain "High". However, if you use the OUTPG function, please note that the VSET value varies in between 50% and 80% of the PGL value to ensure the minimum operating voltage of the OUTPG function. If you do not use the PG function, Set the OUTPG pin to "Open".

Cold Start Function

When the start-up voltage or more voltage is input, initially the boost DC/DC converter for start-up operates. The internal power supply (V_{REG}) for main DC/DC converter's operation is generated by the built-in start-up boost DC/DC converter. When the main converter starts the operation and output voltage rises high enough, the internal power supply is generated from the output of the main DC/DC converter, then the boost DC/DC converter for startup stops the operation.



- ① Boost DC/DC converter for start-up operates and boost the power supply V_{REG} of internal circuits.
- ② When V_{REG} is beyond the threshold, the boost DC/DC converter for start-up stops, and the main DC/ DC converter starts the operation. While V_{REG} maintains more than a certain voltage, the main DC/ DC converter operates and boost V_{OUT} voltage.
- ③ Since the main DC/DC converter operates, the voltage of V_{REG} becomes down due to the consumption current of internal circuits. When the voltage of V_{REG} becomes lower than a certain voltage, the main DC/DC converter stops and the boost DC/DC converter for start-up boosts the voltage of V_{REG}.
- When the voltage of V_{REG} becomes more than the threshold, the boost DC/DC converter for start-up stops and the main DC/DC converter starts operation.
 By repeating ③ and ④, the main converter boosts the voltage of VOUT pin until set output voltage, V_{SET}.

Output Voltage Feedback Control

Under the conditions that the cold start is completed and V_{OUT} is boosted by the main DC/DC converter, when the voltage of V_{OUT} reaches the V_{OUTUVLO} released voltage, V_{OUTUVLO} , the internal power supply V_{REG} and V_{OUT} are connected. This allows the main DC/DC converter to continue the operation without returning to the cold start condition, and to boost the output voltage until the set output voltage efficiently.

Output Generation Function

The R1810x stops boost operation when the output voltage exceeds V_{SET} . The output voltage (V_{OUT}) is tied to the internal power supply V_{REG} by the output voltage feedback control. When the voltage of V_{OUT} becomes lower than V_{SET} due to the internal circuit consumption current or the external load current, the boost operation starts again until (V_{OUT}) exceeds V_{SET} . When a large capacitance electrical storage device described in "TYPICAL APPLICATION CIRCUIT" is connected, the ripple voltage will be extremely small.

Reverse Current Protection Function

While the main DC/DC converter is operating, when the high-side MOSFET turns on, C_{OUT} connected V_{OUT} pin is charged, but due to the boost DC/DC converter's topology, $V_{\text{IN}} < V_{\text{OUT}}$ is true. After the charge is transferred to the output capacitor, when the reverse condition of V_{OUT} and V_{IN} is detected by comparing Lx and V_{OUT} , the R1810x turns off the high-side driver not to flow the reverse current.

By shading, the power generation level by a photovoltaic element decreases, the charge of C_{IN} consumes by the consumption current of the IC and input voltage, V_{IN} gradually decreases. Even if the input voltage is zero, reverse current protection function can operate. If input voltage becomes lower than output voltage, V_{OUT} , by the reverse current protection function, the storage charge of C_{OUT} or a large capacitance electrical storage device is not drained in reverse.

Application Information

Set Output Voltage and Input Voltage Range.

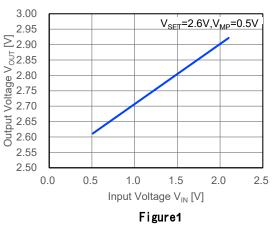
Depending on the setting value of the output voltage, the lower limit of the operable input voltage after the IC start-up is different.

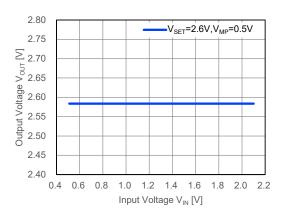
Refer to the table below.

V _{SET} [V]	Input Voltage Range [V]
$2.3 \le V_{SET} \le 2.7$	$0.20 \le V_{IN} \le 2.10$
$2.3 \le V_{SET} \le 3.3$	$0.25 \le V_{IN} \le 2.10$
$2.3 \le V_{SET} \le 3.6$	$0.30 \le V_{IN} \le 2.10$
2.3 ≤ V _{SET} ≤ 4.5	$0.35 \le V_{IN} \le 2.10$

Case 1: The R1810 is Connected to a Photovoltaic Element.

In Figure 1, 2 shown below are graphs of the input voltage dependence of the output voltage of the R1810 series.


When the R1810 is connected to an energy harvesting element (photovoltaic element), the input voltage V_{IN} depends on the power generation amount of the photovoltaic device and the load current.


When the voltage, V_{OUT} of the R1810 reaches V_{SET} , V_{IN} becomes the value $V_{IN}1$, which is determined by the relationship between the IV curve of the photovoltaic element and the quiescent VIN pin current (400nA) of R1810. (Fig. 3).

Input voltage $V_{IN}1$ is higher than V_{MP} . Therefore, when the switching is resumed, the average value of V_{OUT} will be higher than V_{SET} . When the input charge is consumed by the switching and V_{IN} drops, V_{OUT} is controlled by the V_{MP} again, and the average value of V_{OUT} drops to the nominal value.

If the amount of the power generated by the photovoltaic element is greater than the power consumed by the switching of the R1810, even if the switching is resumed, V_{IN} does not drop to V_{MP} , the average value of V_{OUT} rises. The graphs shown below are typical characteristics of the average value of V_{OUT} .

Select the device connected to the R1810 which can operate with the average value of Vout.

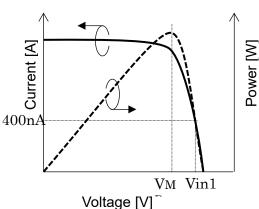


Figure2

Figure 1 : Input voltage dependence of the average value of the output voltage.

Figure 2 : Input voltage dependence of Bottom voltage (*) of output voltage.

* Bottom Voltage; Minimum value of the output ripple.

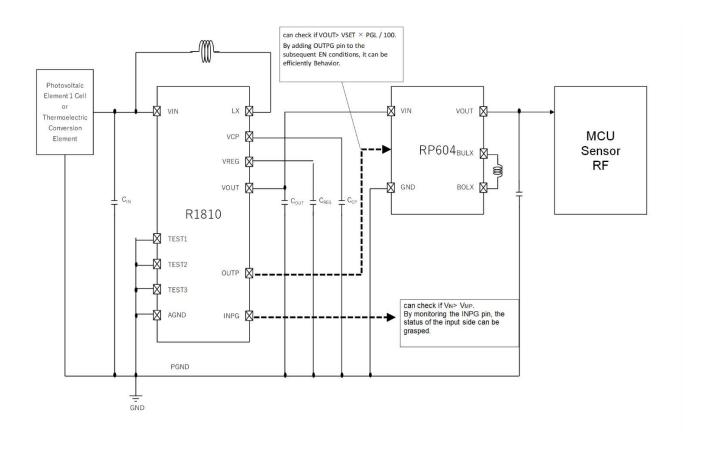
Figure 3: Characteristics of Photovoltaic Elements.

Figure3

Case 2: The R1810 is connected to a Large-Capacity Power Storage Device.

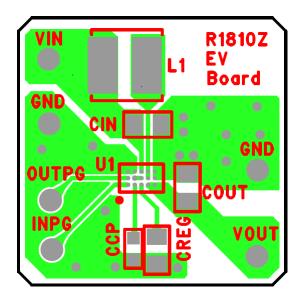
If the capacitance value of ceramic capacitor is small, output ripple becomes large, then the output ripple may exceed the voltage rating of the storage battery or rear-stage devices.

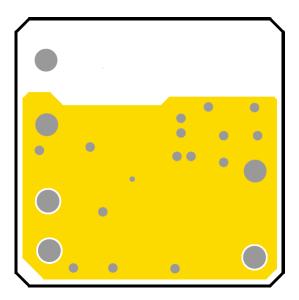
Please adjust the set output voltage and the value of the ceramic capacitor not to exceed the voltage rating with considering the ripple with the total capacity that can be calculated with the ceramic capacitor and the storage battery.


The guideline for the output ripple value from the total capacity of the ceramic capacitor and storage battery is calculated by the next formula.

 $1.35 \div C[\mu F](\ Total \ Capacitance \ Value) \div (\ V_{IN}[V] - V_{OUT}[V]) + V_{OUT}[V] < V_{ABSOLUTE}[V](\ Absolute \ maximum \ rating \ value)$

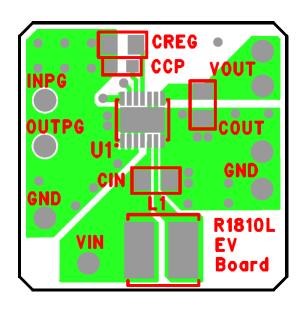
Recommended example of large-capacity power storage device

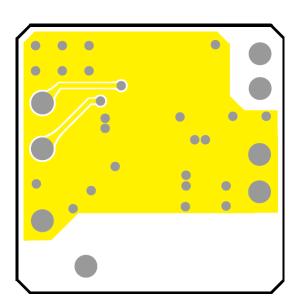

Manufacturer	Product	Part#	Capacity	Туре	Notes
TDK	CeraCharge™	BCT1812M101AG	100µAh	All-solid-state	CeraCharge™ is a trademark of TDK.
Nichicon	SLB series	SLB03070LR35	350µAh	LiB	TDIX.
NGK	EnerCera®	ET1210C-R ET2016C-R ET271704P-H	5mAh 25mAh 5mAh	LiB	EnerCera® is a trademark of NGK.
Murata	CT series	CT04120	3mA	LiB	


Case 3: The R1810 is used with a Sensor.

PCB Layout

R1810Z (WLCSP-15-P1) Board Layout Diagram





Top Layer

Bottom Layer

R1810L (DFN2735-14) Board Layout Diagram

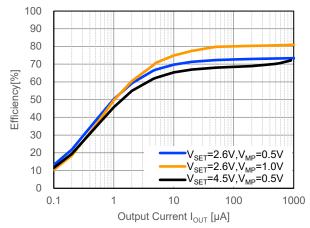
Top Layer

Bottom Layer

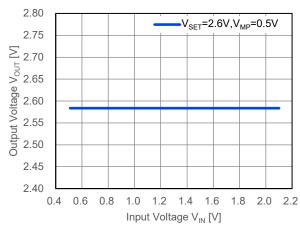
Notes for PCB Layout.

Since large current may flow through the V_{IN} , V_{REG} , V_{OUT} , AGND, and PGND wiring, if the impedance of the wiring is high, unexpected noise or the unstable operation may result. Therefore, the impedance of wiring should be as low as possible.

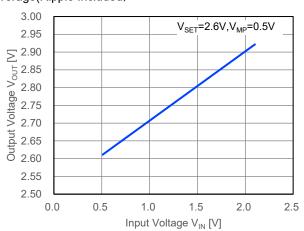
As for C_{IN} , C_{CP} , and C_{OUT} , make the wiring as short as possible to the VIN pin, VCP pin, and VOUT pin, respectively.

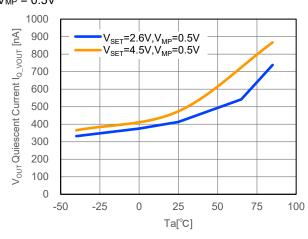

Connect the AGND and PGND with low impedance point of the same board layer as the layer mounted the IC.

Be sure to leave the NC pin node to "Open".


TYPICAL CHARACTERISTICS

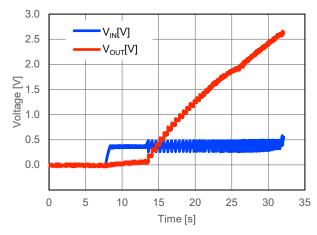
Note: Typical Characteristics are just reference data; not guaranteed with the value shown in the graphs.


1) Efficiency vs. Output Current Ta = 25°C

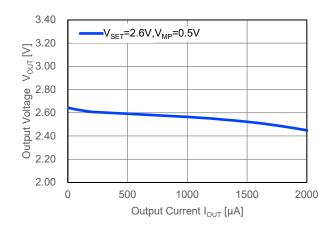

2) Input Voltage vs. Output Voltage V_{SET} = 2.6V, V_{MP} = 0.5V Ta = 25°C Bottom Voltage


 V_{SET} = 2.6V, V_{MP} = 0.5V Ta = 25°C Average(Ripple Included)

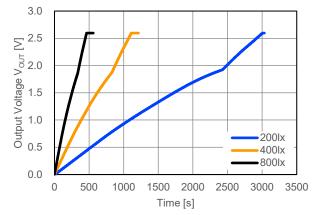
3) Operating Quiescent Current vs. Temperature V_{MP} = 0.5V

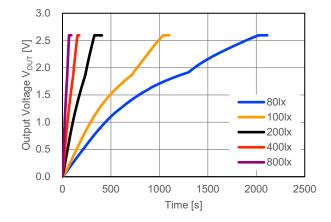


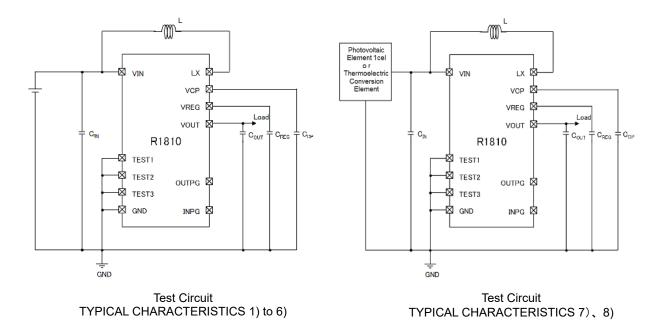
4) Operating Quiescent Current vs. Temperature V_{SET} = 2.6V, V_{MP} = 0.5V



5) Minimum Starting Power Ramp up waveforms $V_{SET} = 2.6V$, $V_{MP} = 0.5V$, $I_{IN} = 18 \mu A$




6) Output Voltage vs. Output Current V_{SET} = 2.6V, V_{MP} = 0.5V


7) Start-up by the power generation element 1 R1810Z003A, Photovoltaic Element = AM-30-11C (14.0 \times 13.0mm) V_{SET} = 2.6V, V_{MP} = 0.5V, C_{OUT} = 1mF Ta = 25°C

8) Start-up by the power generation element 2 R1810Z003A , Photovoltaic Element = FDSC-FSC6FG (44.5 × 40.5mm) V_{SET} = 2.6V, V_{MP} = 0.5V, C_{OUT} = 1mF Ta = 25°C

Test Circuit

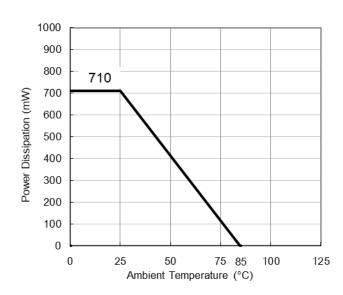
[Components list for our evaluation]

Symbol	Part#	Description
C _{IN}	C1608JB1A226M	22 μF, Ceramic Capacitor
ССР	GRM155R71E223K	0.022 μF, Ceramic Capacitor
CREG	C1608JB1E475K	4.7 μF, Ceramic Capacitor
Соит	C1608JB1E475K	4.7 μF, Ceramic Capacitor
L	VLCF4028T-220MR72-2	22 μH, Inductor

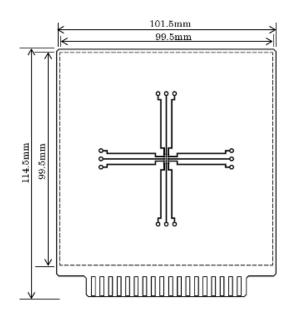
PD-WLCSP-15-P1-(8585)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

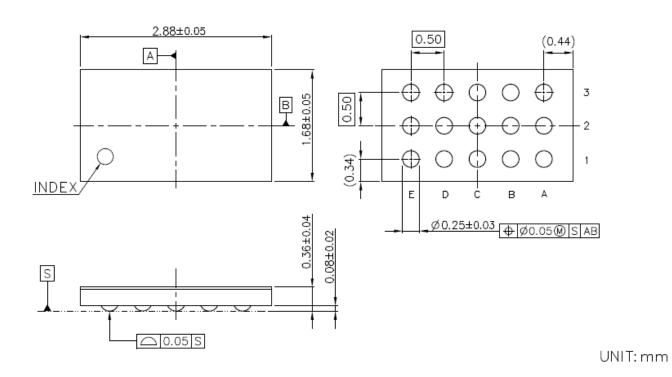

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	101.5 mm x 114.5 mm x 1.6 mm
Copper Ratio	Outer Layer (First Layer): 10% Inner Layers (Second and Third Layers): 99.5 x 99.5mm 100% Outer Layer (Fourth Layer): 10%

Measurement Result


 $(Ta = 25^{\circ}C, Tjmax = 85^{\circ}C)$

Item	Measurement Result		
Power Dissipation	710 mW		
Thermal Resistance (θja)	θja = 84°C/W		

θja: Junction-to-Ambient Thermal Resistance

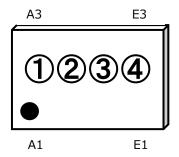


Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DM-WLCSP-15-P1-JE-A

WLCSP-15-P1 Package Dimensions


VI-160823

No.	Inspection Items	Inspection Criteria	Figure
1	Package chipping	A≥0.2mm is rejected B≥0.2mm is rejected C≥0.2mm is rejected And, Package chipping to Si surface and to bump is rejected.	B C
2	Si surface chipping	A≥0.2mm is rejected B≥0.2mm is rejected C≥0.2mm is rejected But, even if A≥0.2mm, B≤0.1mm is acceptable.	B C
3	No bump	No bump is rejected.	
4	Marking miss	To reject incorrect marking, such as another product name marking or another lot No. marking.	
5	No marking	To reject no marking on the package.	
6	Reverse direction of marking	To reject reverse direction of marking character.	
7	Defective marking	To reject unreadable marking. (Microscope: X15/ White LED/ Viewed from vertical direction)	
8	Scratch	To reject unreadable marking character by scratch. (Microscope: X15/ White LED/ Viewed from vertical direction)	
9	Stain and Foreign material	To reject unreadable marking character by stain and foreign material. (Microscope: X15/ White LED/ Viewed from vertical direction)	

PART MARKINGS R1810Z

MK-R1810Z-JE-B

①②: Product Code ··· Refer to Part Marking List ③④: Lot Number ··· Alphanumeric Serial Number

R1810Z (WLCSP-15-P1) Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

PART MARKINGS R1810Z

MK-R1810Z-JE-B

R1810Z Part Marking List

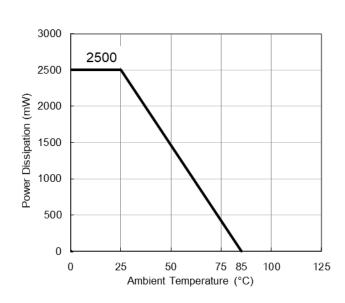
KIOIUZ Part Wari	ing List		1				
Product Name	12	Product Name	12	Product Name	12	Product Name	12
R1810Z003A	10	R1810Z003B	20				
R1810Z004A	11	R1810Z004B	21				
R1810Z005A	12	R1810Z005B	22	R1810Z005C	30	R1810Z005D	40
R1810Z006A	13	R1810Z006B	23	R1810Z006C	31	R1810Z006D	41
R1810Z007A	14	R1810Z007B	24	R1810Z007C	32	R1810Z007D	42
R1810Z013A	15	R1810Z013B	25				
R1810Z015A	1V						
R1810Z016A	16						
R1810Z017A	17	R1810Z017B	26	R1810Z017C	33		
R1810Z018A	18	R1810Z018B	27	R1810Z018C	34		
R1810Z019A	19	R1810Z019B	28	R1810Z019C	35	R1810Z019D	43
R1810Z022A	1A	R1810Z022B	29				
R1810Z023A	1C	R1810Z023B	2A				
R1810Z024A	1E	R1810Z024B	2C				
R1810Z025A	1F	R1810Z025B	2E				
R1810Z026A	1G	R1810Z026B	2F				
R1810Z027A	1H	R1810Z027B	2G				
R1810Z028A	1J	R1810Z028B	2H				
R1810Z029A	1K	R1810Z029B	2J				
R1810Z030A	1L	R1810Z030B	2K				
R1810Z031A	1N	R1810Z031B	2L				
R1810Z032A	1P	R1810Z032B	2N				
R1810Z033A	1R	R1810Z033B	2P				
R1810Z034A	1T	R1810Z034B	2R				

PD-DFN2735-14-(8585)-JE- B

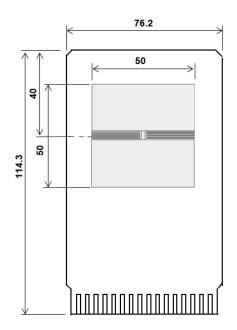
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

Item	Measurement Conditions			
Environment	Mounting on Board (Wind Velocity = 0 m/s)			
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)			
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm			
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square			
Through-holes	φ 0.3 mm × 32 pcs			

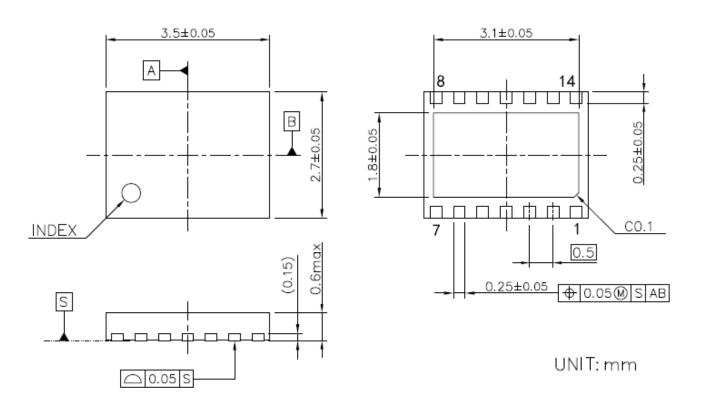

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 85^{\circ}C)$


Item	Measurement Result		
Power Dissipation	2500 mW		
Thermal Resistance (θja)	θja = 24°C/W		
Thermal Characterization Parameter (ψjt)	ψjt = 4°C/W		

 θ ja: Junction-to-Ambient Thermal Resistance

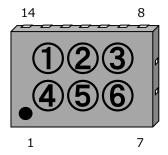
ψjt: Junction-to-Top Thermal Characterization Parameter



Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DM-DFN2735-14-JE-A



DFN2735-14 Package Dimensions

PART MARKINGS R1810L

MK-R1810L-JE-B

①②③④:Product Code ··· Refer to *Part Marking List* ⑤⑥ :Lot Number ··· Alphanumeric Serial Number

R1810L (DFN2735-14) Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

PART MARKINGS R1810L

MK-R1810L-JE-B

R1810L Part Marking List

R1610L Part Marking List								
Product Name	1234	Product Name	1234	Product Name	1234	Product Name	1234	
R1810L003A	G V 0 0	R1810L003B	G W 0 0					
R1810L004A	G V 0 1	R1810L004B	G W 0 1					
R1810L005A	G V 0 2	R1810L005B	G W 0 2	R1810L005C	G X 0 0	R1810L005D	G Y 0 0	
R1810L006A	G V 0 3	R1810L006B	G W 0 3	R1810L006C	G X 0 1	R1810L006D	G Y 0 1	
R1810L007A	G V 0 4	R1810L007B	G W 0 4	R1810L007C	G X 0 2	R1810L007D	G Y 0 2	
R1810L013A	G V 0 5	R1810L013B	G W 0 5					
R1810L015A	G V 2 3							
R1810L016A	G V 0 6							
R1810L017A	G V 0 7	R1810L017B	G W 0 6	R1810L017C	G X 0 3			
R1810L018A	G V 0 8	R1810L018B	G W 0 7	R1810L018C	G X 0 4			
R1810L019A	G V 0 9	R1810L019B	G W 0 8	R1810L019C	G X 0 5	R1810L019D	G Y 0 3	
R1810L022A	G V 1 0	R1810L022B	G W 0 9					
R1810L023A	G V 1 1	R1810L023B	G W 1 0					
R1810L024A	G V 1 2	R1810L024B	G W 1 1					
R1810L025A	G V 1 3	R1810L025B	G W 1 2					
R1810L026A	G V 1 4	R1810L026B	G W 1 3					
R1810L027A	G V 1 5	R1810L027B	G W 1 4					
R1810L028A	G V 1 6	R1810L028B	G W 1 5					
R1810L029A	G V 1 7	R1810L029B	G W 1 6					
R1810L030A	G V 1 8	R1810L030B	G W 1 7					
R1810L031A	G V 1 9	R1810L031B	G W 18					
R1810L032A	G V 2 0	R1810L032B	G W 1 9					
R1810L033A	G V 2 1	R1810L033B	G W 2 0					
R1810L034A	G V 2 2	R1810L034B	G W 2 1					

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - · Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/