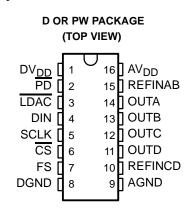
SLAS176B - DECEMBER 1997 - REVISED JULY 2002

- Four 10-Bit D/A Converters
- Programmable Settling Time of 3 μs or 9 μs Typ
- TMS320, (Q)SPI[™], and Microwire[™] Compatible Serial Interface
- Internal Power-On Reset
- Low Power Consumption: 5.5 mW, Slow Mode – 5-V Supply 3.3 mW, Slow Mode – 3-V Supply
- Reference Input Buffers
- Voltage Output Range ... 2× the Reference Input Voltage
- Monotonic Over Temperature
- Dual 2.7-V to 5.5-V Supply (Separate Digital and Analog Supplies)


description

The TLV5604 is a quadruple 10-bit voltage output digital-to-analog converter (DAC) with a flexible 4-wire serial interface. The 4-wire serial interface allows glueless interface to TMS320, SPI, QSPI, and Microwire serial ports. The TLV5604 is programmed with a 16-bit serial word comprised of a DAC address, individual DAC control bits, and a 10-bit DAC value.

- Hardware Power Down (10 nA)
- Software Power Down (10 nA)
- Simultaneous Update

applications

- Battery Powered Test Instruments
- Digital Offset and Gain Adjustment
- Industrial Process Controls
- Machine and Motion Control Devices
- Communications
- Arbitrary Waveform Generation

The device has provision for two supplies: one digital supply for the serial interface (via pins DV_{DD} and DGND), and one for the DACs, reference buffers and output buffers (via pins AV_{DD} and AGND). Each supply is independent of the other, and can be any value between 2.7 V and 5.5 V. The dual supplies allow a typical application where the DAC will be controlled via a microprocessor operating on a 3-V supply (also used on pins DV_{DD} and DGND), with the DACs operating on a 5-V supply. Of course, the digital and analog supplies can be tied together.

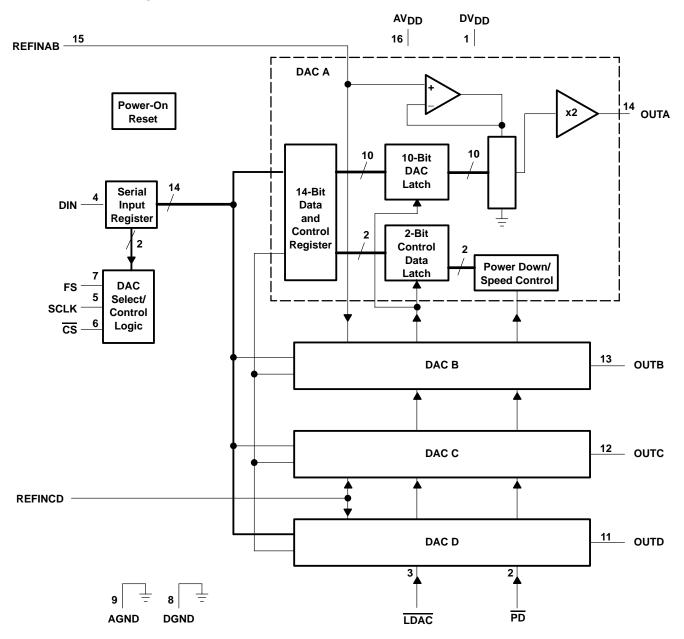
The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB output stage to improve stability and reduce settling time. A rail-to-rail output stage and a power-down mode makes it ideal for single voltage, battery based applications. The settling time of the DAC is programmable to allow the designer to optimize speed versus power dissipation. The settling time is chosen by the control bits within the 16-bit serial input string. A high-impedance buffer is integrated on the REFINAB and REFINCD terminals to reduce the need for a low source impedance drive to the terminal. REFINAB and REFINCD allow DACs A and B to have a different reference voltage then DACs C and D.

The device, implemented with a CMOS process, is available in 16-terminal SOIC and TSSOP packages. The TLV5604C is characterized for operation from 0°C to 70°C. The TLV5604I is characterized for operation from -40° C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 2002, Texas Instruments Incorporated

TLV5604 2.7-V TO 5.5-V 10-BIT 3- μ S QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B – DECEMBER 1997 – REVISED JULY 2002

AVAILABLE OPTIONS									
	PACKAGE								
TA	SOIC (D)	TSSOP (PW)							
0°C to 70°C	TLV5604CD	TLV5604CPW							
-40° C to 85° C	TLV5604ID	TLV5604IPW							

functional block diagram

TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

Terminal Functions

TERMIN	IAL		DECODIDENCI
NAME	NO.	1/0	DESCRIPTION
AGND	9		Analog ground
AV _{DD}	16		Analog supply
CS	6	I	Chip select. This terminal is active low.
DGND	8		Digital ground
DIN	4	Ι	Serial data input
DVDD	1		Digital supply
FS	7	I	Frame sync input. The falling edge of the frame sync pulse indicates the start of a serial data frame shifted out to the TLV5604.
PD	2	I	Power-down pin. Powers down all DACs (overriding their individual power down settings), and all output stages. This terminal is active low.
LDAC	3	I	Load DAC. When the LDAC signal is high, no DAC output updates occur when the input digital data is read into the serial interface. The DAC outputs are only updated when LDAC is low.
REFINAB	15	I	Voltage reference input for DACs A and B.
REFINCD	10	I	Voltage reference input for DACs C and D.
SCLK	5	I	Serial Clock input
OUTA	14	0	DAC A output
OUTB	13	0	DAC B output
OUTC	12	0	DAC C output
OUTD	11	0	DAC D output

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, (DV _{DD} , AV _{DD} to GND)	
Supply voltage difference, (AV _{DD} to DV _{DD})	
Digital input voltage range	
Reference input voltage range	–0.3 V to AV _{DD} + 0.3 V
Operating free-air temperature range, T _A : TLV5604C	0°C to 70°C
TLV5604I	–40°C to 85°C
Storage temperature range, T _{stg}	−65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TLV5604 2.7-V TO 5.5-V 10-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply we have $A = D = -$	5-V supply	4.5	5	5.5	v
Supply voltage, AV _{DD} , DV _{DD}	3-V supply	2.7	3	3.3	
	DV _{DD} = 2.7 V	2			v
High-level digital input voltage, VIH	DV _{DD} = 5.5 V				
	DV _{DD} = 2.7 V			0.6	v
Low-level digital input voltage, VIL	DV _{DD} = 5.5 V			1	v
	5-V supply (see Note 1)	0	2.048	AV _{DD} -1.5	v
Reference voltage, V_{ref} to REFINAB, REFINCD terminal	3-V supply (see Note 1)	4.5 5 5.5 2.7 3 3.3 2	v		
Load resistance, RL		2	10		kΩ
Load capacitance, CL				100	pF
Serial clock rate, SCLK				20	MHz
Operating free city temperature	TLV5604C	0		70	
Operating free-air temperature	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85	°C		

NOTE 1: Voltages greater than AV_{DD}/2 will cause output saturation for large DAC codes.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

static DAC specifications

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Resolution			10			bits	
	Integral nonlinearity (INL), end p	pint adjusted	See Note 2			±1	LSB	
	Differential nonlinearity (DNL)		See Note 3		±0.1	±1	LSB	
E _{ZS}	Zero scale error (offset error at z	ero scale)	See Note 4			±12	mV	
	Zero scale error temperature coe	efficient	See Note 5		10		ppm/°C	
EG	Gain error		See Note 6			±0.6	%of FS voltage	
	Gain error temperature coefficier	nt	See Note 7		10		ppm/°C	
PSRR		Zero scale gain	See Notes 8 and 9		-80		dB	
FORR	Power supply rejection ratio	Gain			-80		uВ	

NOTES: 2. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors.

3. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.

4. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.

5. Zero-scale-error temperature coefficient is given by: $E_{ZS} TC = [E_{ZS} (T_{max}) - E_{ZS} (T_{min})]/V_{ref} \times 10^6/(T_{max} - T_{min})$. 6. Gain error is the deviation from the ideal output ($2V_{ref} - 1 LSB$) with an output load of 10 k Ω excluding the effects of the zero-error.

7. Gain temperature coefficient is given by: $E_G TC = [E_G(T_{max}) - E_G(T_{min})]/V_{ref} \times 10^6/(T_{max} - T_{min})$.

8. Zero-scale-error rejection ratio (EZS-RR) is measured by varying the AVDD from 5 ±0.5 V and 3 ±0.3 V dc, and measuring the proportion of this signal imposed on the zero-code output voltage.

Gain-error rejection ratio (EG-RR) is measured by varying the AVDD from 5 ±0.5 V and 3 ±0.3 V dc and measuring the proportion 9. of this signal imposed on the full-scale output voltage after subtracting the zero scale change.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

individual DAC output specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vo	Voltage output	RL = 10 kΩ	0		AV _{DD} -0.4	V
	Output load regulation accuracy	R _L = 2 kΩ vs 10 kΩ		0.1	0.25	% of FS voltage

reference input (REFINAB, REFINCD)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VI	Input voltage range	See Note 10		0		AV _{DD} -1.5	V
RI	Input resistance				10		MΩ
Cl	Input capacitance				5		pF
	Reference feed through	REFIN = 1 V _{pp} at 1 kHz + 1.024 V dc (see Note 11)			-75		dB
	Reference input bandwidth	PEEIN = 0.2 V = 1.024 V do	Slow		0.5		MHz
	Reference input bandwidth	REFIN = $0.2 V_{pp} + 1.024 V dc$	Fast		1		

NOTES: 10. Reference input voltages greater than VDD/2 will cause output saturation for large DAC codes.

11. Reference feedthrough is measured at the DAC output with an input code = 000 hex and a V_{ref}(REFINAB or REFINCD) input = 1.024 Vdc + 1 V_{pp} at 1 kHz.

digital inputs (D0-D11, CS, WEB, LDAC, PD)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Iн	High-level digital input current	$V_I = DV_{DD}$			±1	μΑ
Ι _{ΙL}	Low-level digital input current	V _I = 0 V			±1	μA
Cl	Input capacitance			3		pF

power supply

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		5-V supply, No load, Clock running	Slow		1.4	2.2	mA
	Power oupply ourrept	5-V supply, No load, Clock fulling	Fast		3.5	5.5	ША
IDD	Power supply current	2 Vounnhy No lood Clock sunning	Slow		1	1.5	
		3-V supply, No load, Clock running	Fast		3	4.5	mA
	Power down supply current, See Figure 12				10		nA

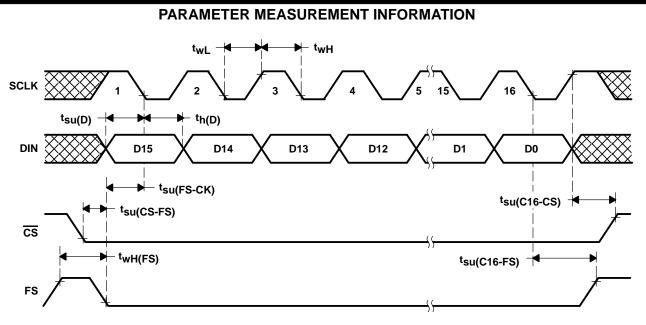
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

analog output dynamic performance

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS						
SR		$C_{L} = 100 \text{ pF}, R_{L} = 10 \text{ k}\Omega,$	Fast		5		V/µs		
SK	Output slew rate	V _O = 10% to 90%, V _{ref} = 2.048 V, 1024 V	Slow		1		V/µs		
	Output settling time	To ± 0.5 LSB, C _L = 100 pF,	Fast		2.5	4			
t _s	Output setting time	$R_L = 10 \text{ k}\Omega$, See Notes 12 and 14	Slow		8.5	18	μs		
t- (-)	Output settling time, code to code	To ± 0.5 LSB, C _L = 100 pF,	Fast		1				
^t s(c)		$R_{L} = 10 \text{ k}\Omega$, See Note 13	Slow		2		μs		
	Glitch energy	Code transition from 7FF to 800	-		10		nV-sec		
SNR	Signal-to-noise ratio	Sinewave generated by DAC,			68				
S/(N+D)	Signal to noise + distortion	Reference voltage = 1.024 at 3 V and 2 $f_s = 400$ KSPS,	.048 at 5 V,		65				
THD	Total harmonic Distortion	f _{OUT} = 1.1 kHz sinewave,			-68		dB		
SFDR	Spurious free dynamic range	$C_L = 100 \text{ pF},$ $R_L = 10 \text{ k}\Omega,$ BW = 20 kHz			70				

NOTES: 12. Settling time is the time for the output signal to remain within ± 0.5LSB of the final measured value for a digital input code change of 020 hex to 3FF hex or 3FF hex to 020 hex.

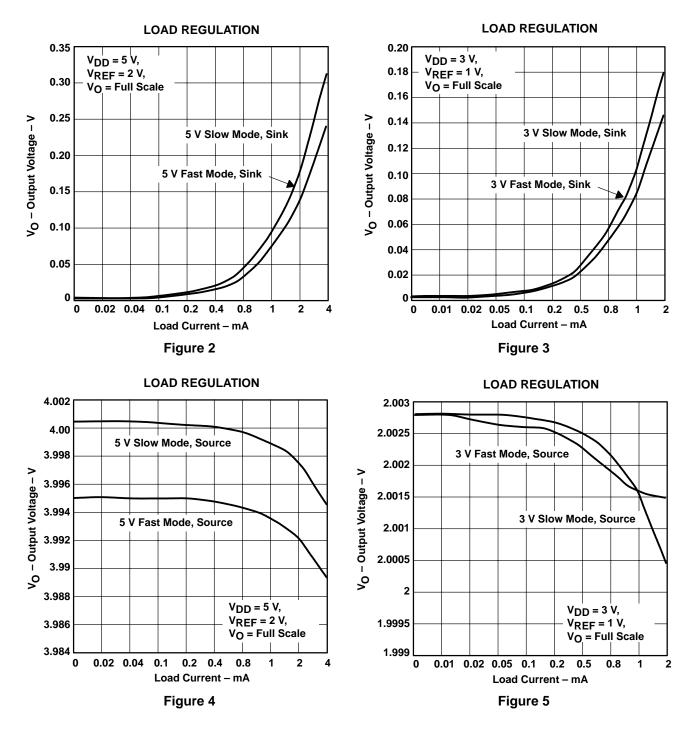
13. Settling time is the time for the output signal to remain within ± 0.5LSB of the final measured value for a digital input code change of one count, 1FF hex to 200 hex.


14. Limits are ensured by design and characterization, but are not production tested.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

digital input timing requirements

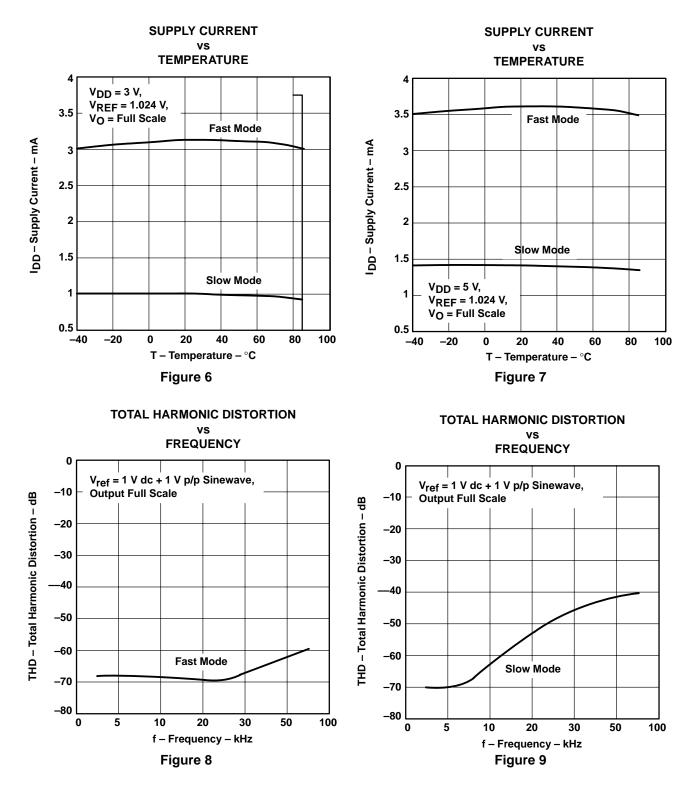
		MIN	NOM	MAX	UNIT
^t su(CS–FS)	Setup time, CS low before FS↓	10			ns
^t su(FS–CK)	Setup time, FS low before first negative SCLK edge	8			ns
^t su(C16–FS)	Setup time, sixteenth negative SCLK edge after FS low on which bit D0 is sampled before rising edge of FS	10			ns
^t su(C16–CS)	Setup time. The first positive SCLK edge after D0 is sampled before \overline{CS} rising edge. If FS is used instead of the SCLK positive edge to update the DAC, then the setup time is between the FS rising edge and \overline{CS} rising edge.	10			ns
^t wH	Pulse duration, SCLK high	25			ns
^t wL	Pulse duration, SCLK low	25			ns
^t su(D)	Setup time, data ready before SCLK falling edge	8			ns
^t h(D)	Hold time, data held valid after SCLK falling edge	5			ns
^t wH(FS)	Pulse duration, FS high	20			ns



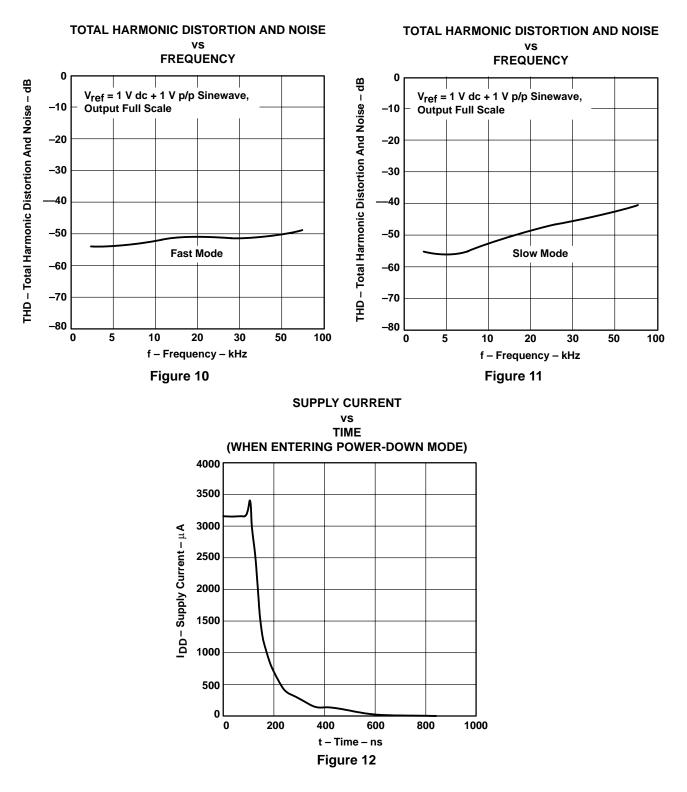
TLV5604 2.7-V TO 5.5-V 10-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

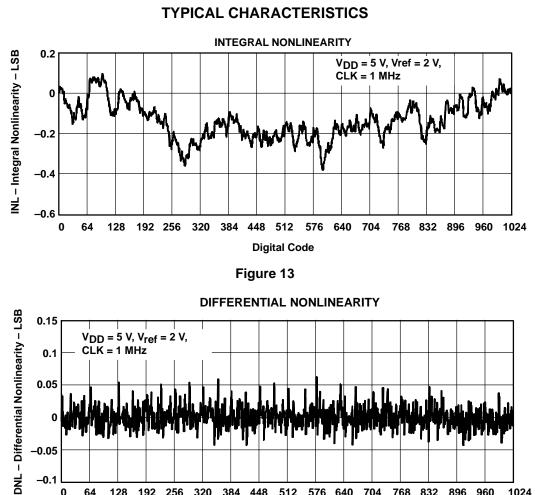
TYPICAL CHARACTERISTICS



TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN


SLAS176B - DECEMBER 1997 - REVISED JULY 2002

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

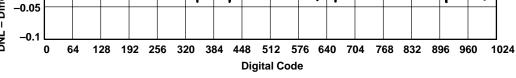


Figure 14

general function

The TLV5604 is a 10-bit single supply DAC based on a resistor string architecture. The device consists of a serial interface, speed and power-down control logic, a reference input buffer, a resistor string, and a rail-to-rail output buffer.

The output voltage (full scale determined by external reference) is given by:

2 REF
$$\frac{\text{CODE}}{2^n}$$
 [V]

Where REF is the reference voltage and CODE is the digital input value within the range of 0_{10} to $2^{n}-1$, where n=10 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the *data format* section. A power-on reset initially resets the internal latches to a defined state (all bits zero).

serial interface

Explanation of data transfer: First, the device has to be enabled with \overline{CS} set to low. Then, a falling edge of FS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch, which updates the voltage output to the new level.

The serial interface of the TLV5604 can be used in two basic modes:

- Four wire (with chip select)
- Three wire (without chip select)

Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of the data source (DSP or microcontroller). The interface is compatible with the TMS320 family. Figure 15 shows an example with two TLV5604s connected directly to a TMS320 DSP.

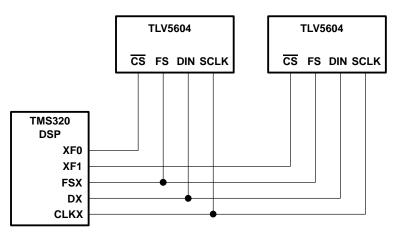


Figure 15. TMS320 Interface

serial interface (continued)

If there is no need to have more than one device on the serial bus, then \overline{CS} can be tied low. Figure 16 shows an example of how to connect the TLV5604 to a TMS320, SPI, or Microwire port using only three pins.

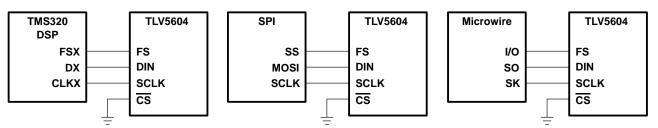


Figure 16. Three-Wire Interface

Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling edge on the I/O pin connected to FS. If the word width is 8 bits (SPI and Microwire), two write operations must be performed to program the TLV5604. After the write operation(s), the DAC output is updated automatically on the next positive clock edge following the sixteenth falling clock edge.

serial clock frequency and update rate

The maximum serial clock frequency is given by:

$$f_{SCLKmax} = \frac{1}{t_{wH(min)} + t_{wL(min)}} = 20 \text{ MHz}$$

The maximum update rate is:

$$f_{UPDATEmax} = \frac{1}{16 \left(t_{wH(min)} + t_{wL(min)} \right)} = 1.25 \text{ MHz}$$

Note that the maximum update rate is a theoretical value for the serial interface since the settling time of the TLV5604 has to be considered also.

data format

The 16-bit data word for the TLV5604 consists of two parts:

- Control bits (D15...D12)
- New DAC value (D11 . . . D0)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
A1	A0	PWR	SPD		New DAC value (10 bits)							Х	Х		

X: don't care

SPD: Speed control bit. $1 \rightarrow$ fast mode PWR: Power control bit. $1 \rightarrow$ power down

 $0 \rightarrow$ slow mode $0 \rightarrow$ normal operation

In power down mode, all amplifiers within the TLV5604 are disabled. A particular DAC (A, B, C, D) of the TLV5604 is selected by A1 and A0 within the input word.

A1	A0	DAC
0	0	A
0	1	В
1	0	С
1	1	D

TLV5604 interfaced to TMS320C203 DSP

Hardware interfacing

Figure 17 shows an example of how to connect the TLV5604 to a TMS320C203 DSP. The serial port is configured in burst mode, with FSX generated by the TMS320C203 to provide the Frame Sync (FS) input to the TLV5604. Data is transmitted on the DX line, with the serial clock input on the CLKX line. The general-purpose input/output port bits IO0 and IO1 are used to generate the Chip Select (\overline{CS}) and DAC Latch Update (\overline{LDAC}) inputs to the TLV5604. The active low Power Down (\overline{PD}) is pulled high all the time to ensure the DACs are enabled.

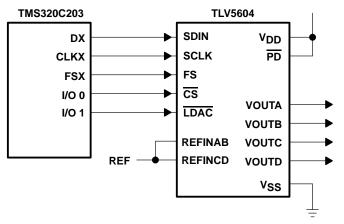


Figure 17. TLV5604 Interfaced with TMS320C203

Software

The application example generates a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and it is quadrature (cosine) signal as the differential signal between VOUTC and VOUTD.

The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses LDAC low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The samples are stored in a look-up table, which describes two full periods of a sine wave.

The synchronous serial port of the DSP is used in burst mode. In this mode, the processor generates an FS pulse preceding the MSB of every data word. If multiple, contiguous words are transmitted, a violation of the tsu(C16-FS) timing requirement will occur. To avoid this, the program waits until the transmission of the previous word has been completed.

2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

TLV5604

APPLICATION INFORMATION

------; Processor: TMS320C203 runnning at 40 MHz; ; Description: ; This program generates a differential in-phase (sine) on (OUTA-OUTB) and it's ; quadrature (cosine) as a differential signal on (OUTC-OUTD). ; The DAC codes for the signal samples are stored as a table of 64 12-bit values, ; describing 2 periods of a sine function. A rolling pointer is used to address the ; table location in the first period of this waveform, from which the DAC A samples are ; read. The samples for the other 3 DACs are read at an offset to this rolling pointer: ; DAC Function Offset from rolling pointer; ; А sine 0 16 В inverse sine : С cosine 8 ; inverse cosine 24 ; D ; The on-chip timer is used to generate interrupts at a fixed rate. The interrupt ; service routine first pulses LDAC low to update all DACs simultaneously with the ; values which were written to them in the previous interrupt. Then all $ilde{4}$ DAC values are ; fetched and written out through the synchronous serial interface. Finally, the ; rolling pointer is incremented to address the next sample, ready for the next ; interrupt. ; © 1998, Texas Instruments Incorporated -----: ; -----I/O and memory mapped regs -----I/O and memory mapped regs ------I/O .include "regs.asm" ; -----jump vectors-----_____ 0h .ps b start b int1 b int23 b timer_isr ------ variables -----temp .equ 0060h .equ .equ .equ 0061 r_ptr iosr_stat 0062h DACa_ptr 0063h .equ DACb_ptr 0064h DACc_ptr 0065h .equ DACd_ptr 0066h .equ ;----- constants ------; DAC control bits to be OR'ed onto data ; all fast mode DACa_control .equ 01000h .equ DACb_control 05000h 09000h .equ DACc_control .equ 0d000h DACd_control ;----- tables -----.ds 02000h sinevals .word 00800h 0097Ch .word 00AE9h .word .word 00C3Ah .word 00D61h 00E53h .word .word 00F07h 00F76h .word 00F9Ch .word .word 00F76h 00F07h .word 00E53h .word 00D61h .word 00C3Ah .word

	-	0.0.7	
	.word	00AE9h	
	.word	0097Ch	
	.word	00800h	
	.word	00684h	
	.word	00517h	
	.word	003C6h	
	.word	0029Fh	
	.word	001ADh	
	.word	000F9h	
	.word	0008Ah	
	.word	00064h	
	.word	0008Ah	
	.word	000F9h	
	.word	001ADh	
	.word	0029Fh	
	.word	003C6h	
	.word	00517h	
	.word	00684h	
	.word	00800h	
	.word	0097Ch	
	.word	00AE9h	
	.word	00C3Ah	
	.word	00D61h	
	.word	00E53h	
	.word	00F07h	
	.word	00F76h	
	.word	00F9Ch	
	.word	00F76h	
		00F07h	
	.word		
	.word	00E53h	
	.word	00D61h	
	.word	00C3Ah	
	.word	00AE9h	
	.word	0097Ch	
	.word	00800h	
	.word	00684h	
	.word	00517h	
	.word	003C6h	
	.word	0029Fh	
	.word	001ADh	
	.word	000F9h	
	.word	0008Ah	
	.word	00064h	
	.word	0008Ah	
	.word	000F9h	
		001ADh	
	.word		
	.word	0029Fh	
	.word	003C6h	
	.word	00517h	
	.word	00684h	
;			
; Main	Progra	m	
	.ps	1000h	
	.entry		
start	·enery		
		errupts	
		-	
,			
			; disable maskable interrupts
	splk	HULLLII, IFR	; clear all interrupts
	splk	#∪UU4n, IMR	; timer interrupts unmasked

TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

APPLICATION INFORMATION

; _ _ _ _____ set up the timer timer period set by values in PRD and TDDR ; period = (CLKOUT1 period) × (1+PRD) × (1+TDDR) examples for TMS320C203 with 40 MHz main clock PRD ; Timer rate TDDR 80 kHz 9 24 (18h) 50 kHz 9 39 (27h) _____ 0018h prd_val.equ tcr_val.equ 0029h #0000h, temp splk ; clear timer out temp, TIM #prd_val, temp ; set PRD splk out temp, PRD #tcr_val, temp ; set TDDR, and TRB=1 for auto-reload splk temp, TCR out ;-----_____ ; Configure IO0/1 as outputs to be : ; IOO CS - and set high ; IO1 LDAC - and set high in temp, ASPCR ; configure as output temp lacl or #0003h sacl temp temp, ASPCR out in temp, IOSR ; set them high temp lacl #0003h or sacl temp temp, IOSR out ;----_____ ; set up serial port for ; SSPCR.TXM=1 Transmit mode - generate FSX ; SSPCR.MCM=1 Clock mode - internal clock source ; SSPCR.FSM=1 Burst mode ;-----_____ splk #0000Eh, temp temp, SSPCR ; reset transmitter out splk #0002Eh, temp temp, SSPCR out ;-----------_____ ; reset the rolling pointer ;----lacl #000h saclr_ptr ;______ ; enable interrupts ;-----clrc INTM ; enable maskable interrupts ;______ ; loop forever! ;----next idle ;wait for interrupt b next ;------; all else fails stop here ; _ _ _ _ _ _____ _____ done b done ; hang there

TLV5604 2.7-V TO 5.5-V 10-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

APPLICATION INFORMATION

```
;------
                           _____
; Interrupt Service Routines
; ___
   _____
                                  _____
int1 ret ; do nothing and return
int23 ret ; do nothing and return
timer_isr:
           iosr_stat, IOSR ; store IOSR value into variable space
     in
     lacl iosr_stat ; load acc with iosr status
           #0FFFDh
     and
                       ; reset IO1 - LDAC low
     sacl
          temp
          temp, IOSR ;
     out
     or
          #0002h
                      ; set IO1 - LDAC high
     sacl temp
                       ;
          temp, IOSR
     out
                      ;
                      ; reset IOO - CS low
           #0FFFEh
     and
     sacl temp
                      ;
     out
          temp, IOSR
                        ;
     laclr_ptr; load rolling pointer to accumulatoradd#sinevals; add pointer to table startsaclDACa_ptr; to get a pointer for next DAC a sample
     add #08h
                        ; add 8 to get to DAC C pointer
     sacl DACc_ptr
     add #08h
                        ; add 8 to get to DAC B pointer
     sacl DACb_ptr
     add
          #08h
                        ; add 8 to get to DAC D pointer
         DACd_ptr
     sacl
           *,ar0
     mar
                        ; set ar0 as current AR
     ; DAC A
             ar0, DACa_ptr; ar0 points to DAC a sample
     lar
             * ; get DAC a sample into accumulator
     lacl
             #DACa_control; OR in DAC A control bits
     or
             temp
     sacl
                        ;
            temp, SDTR ; send data
     out
; We must wait for transmission to complete before writing next word to the SDTR.
; TLV5604 interface does not allow the use of burst mode with the full packet rate, as
; we need a CLKX -ve edge to clock in last bit before FS goes high again, to allow SPI
; compatibility.
#016h ; wait long enough for this configuration
     rpt
                        ; of MCLK/CLKOUT1 rate
     nop
     ; DAC B
     lar
             ar0, DACb_ptr; ar0 points to DAC a sample
             * ; get DAC a sample into accumulator
     lacl
     or
             #DACb_control; OR in DAC B control bits
     sacl
             temp
                        ;
             temp, SDTR ; send data
     out
             #016h ; wait long enough for this configuration
     rpt
                        ; of MCLK/CLKOUT1 rate
```


nop

; DAC C			and mainter to DNG a comple
lar	aru, DACC_ptr		ar0 points to DAC a sample
lacl			get DAC a sample into accumulator
or			OR in DAC C control bits
sacl	temp	;	
out	temp, SDTR		
rpt	#016h		wait long enough for this configuration
nop		;	of MCLK/CLKOUT1 rate
; DAC D			
lar	ar0, DACd_ptr	;	ar0 points to DAC a sample
lacl	* ;	ge	et DAC a sample into accumulator
or	#DACd_control	;	OR in DAC D control bits
sacl	temp	;	
out	temp, SDTR	;	send data
lacl	r_ptr	;	load rolling pointer to accumulator
add	#1h	;	increment rolling pointer
and	#001Fh	;	count 0-31 then wrap back round
sacl	r_ptr	;	store rolling pointer
rpt	#016h	;	wait long enough for this configuration
nop		;	of MCLK/CLKOUT1 rate
; now take CS	5 high again		
lacl	iosr_stat	;	load acc with iosr status
or	#0001h	;	set IOO - CS high
sacl	temp	;	5
out	temp, IOSR	;	
clrc	intm		re-enable interrupts
ret	-		return from interrupt
nd		'	result from front app

.end

TLV5604 interfaced to MCS®51 microcontroller

hardware interfacing

Figure 18 shows an example of how to connect the TLV5604 to an MCS[®]51 Microcontroller. The serial DAC input data and external control signals are sent via I/O Port 3 of the controller. The serial data is sent on the RxD line, with the serial clock output on the TxD line. Port 3 bits 3, 4, and 5 are configured as outputs to provide the DAC latch update (LDAC), chip select (\overline{CS}) and frame sync (FS) signals for the TLV5604. The active low power down pin (\overline{PD}) of the TLV5604 is pulled high to ensure that the DACs are enabled.

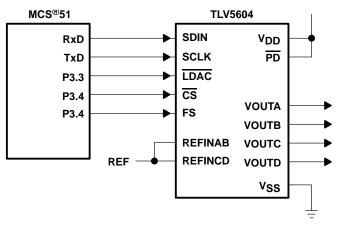


Figure 18. TLV5604 Interfaced with MCS[®]51

software

The example is the same as for the TMS320C203 in this datasheet, but adapted for a MCS®51 controller. It generates a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and it's quadrature (cosine) signal as the differential signal between VOUTC and VOUTD.

The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses $\overline{\text{LDAC}}$ low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The samples are stored as a look-up table, which describes one full period of a sine wave.

The serial port of the controller is used in Mode 0, which transmits 8 bits of data on RxD, accompanied by a synchronous clock on TxD. Two writes concatenated together are required to write a complete word to the TLV5604. The \overline{CS} and FS signals are provided in the required fashion through control of IO port 3, which has bit addressable outputs.

MCS is a registered trademark of Intel Corporation.

TLV5604 2.7-V TO 5.5-V 10-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS

SLAS176B – DECEMBER 1997 – REVISED JULY 2002

APPLICATION INFORMATION

; Processor: 80C51 ; Description: ; This program generates a differential in-phase (sine) on (OUTA-OUTB) and it's quadrature (cosine) as a differential signal on (OUTC-OUTD). © 1998, Texas Instruments Incorporated ; NAME GENIO SEGMENT CODE MAIN SEGMENT CODE ISR SINTBL SEGMENT CODE DATA VAR1 SEGMENT SEGMENT IDATA STACK ;______ ; Code start at address 0, jump to start :-----_____ CSEG AT 0 LJMP start ; Execution starts at address 0 on power-up. ;______ ; Code in the timer0 interrupt vector CSEG AT OBH LJMP timer0isr ; Jump vector for timer 0 interrupt is 000Bh :------; Global variables need space allocated ;______ RSEG VAR1 DS 1 Temp_ptr: rolling_ptr: _____ ; Interrupt service routine for timer 0 interrupts ;------RSEG ISR timer0isr: PUSH PSW PUSH ACC CLR TNT1 ; pulse LDAC low ; to latch all 4 previous values at the same time SETB TNT1 ; 1st thing done in timer isr => fixed period CLR т0 ; set CS low ; The signal to be output on each DAC is a sine function. ; One cycle of a sine wave is held in a table @ sinevals as 32 samples of msb, lsb pairs (64 bytes). We have one pointer which rolls round this table, ; ; rolling_ptr, incrementing by 2 bytes (1 sample) on each interrupt (at the end of ; this routine). ; The DAC samples are read at an offset to this rolling pointer: ; DAC Function Offset from rolling_ptr Α sine 0 ; ; В inverse sine 32 С cosine 16 ; 48 inverse cosine ; D ; set DPTR to the start of the sine table ; R7 holds the pointer into the sine table MOV DPTR, #sinevals ; set DPTR to the start of the table of sine signal values R7,rolling_ptr MOV MOV A,R7 ; get DAC A msb MOVC A,@A+DPTR ; msb of DAC A is in the ACC ; transmit it - set FS low т1 CLR MOV SBUF,A ; send it out the serial port ; increment the pointer in R7 ; to get the next byte from the table INC R7 MOV A,R7 ; which is the lsb of this sample, now in ACC MOVC A,@A+DPTR

TLV5604 2.7-V TO 5.5-V 10-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS176B - DECEMBER 1997 - REVISED JULY 2002

APPLICATION INFORMATION

A_MSB_TX: JNB CLR MOV	TI,A_MSB_TX TI	; wait for transmit to complete ; clear for new transmit ; and send out the lsb of DAC A
; DAC	nis gives a co A,R7	d be taken from 16 bytes (8 samples) further on in the sine table sine function ; pointer in R7 ; add 15 - already done one INC ; wrap back round to 0 if > 64 ; pointer back in R7
MOVC ORL	A,@A+DPTR A,#01H	; get DAC C msb from the table ; set control bits to DAC C address
A_LSB_TX:		
JNB SETB CLR		; wait for DAC A lsb transmit to complete ; toggle FS
CLR MOV	TI SBUF,A	; clear for new transmit ; and send out the msb of DAC C
INC MOV MOVC	A,R7	; increment the pointer in R7 ; to get the next byte from the table ; which is the lsb of this sample, now in ACC
C_MSB_TX:		
JNB		; wait for transmit to complete
CLR		; clear for new transmit
MOV	SBUF,A	; and send out the lsb of DAC C
; DAC	the sine table A,R7 A,#0FH A,#03FH	d be taken from 16 bytes (8 samples) further on - this gives an inverted sine function ; pointer in R7 ; add 15 - already done one INC ; wrap back round to 0 if > 64 ; pointer back in R7
MOVC		; get DAC B msb from the table
ORL	а #02н	; set control bits to DAC B address
0112	11, 110 211	
C_LSB_TX:		
JNB	TI,C_LSB_TX	; wait for DAC C lsb transmit to complete
SETB	T1	; toggle FS
CLR	 T1	
CLR	TI	; clear for new transmit
MOV	SBUF,A	; and send out the msb of DAC B ; get DAC B LSB
INC	R7	; increment the pointer in R7
MOV	A,R7	; to get the next byte from the table
MOVC	A,@A+DPTR	; which is the lsb of this sample, now in ACC
B_MSB_TX:		
JNB	TI,B_MSB_TX	; wait for transmit to complete
CLR	TI	; clear for new transmit
MOV	SBUF,A	; and send out the lsb of DAC B

; DA	C D next	
; DA	C D codes should be	e taken from 16 bytes (8 samples) further on in the sine table
; –	this gives an inver	ted cosine function
MOV	A,R7	; pointer in R7
ADD	A,#0FH	; add 15 - already done one INC
ANL	A,#03FH	; wrap back round to 0 if > 64
MOV	R7,A	; pointer back in R7
MOVC	A,@A+DPTR	; get DAC D msb from the table
ORL		; set control bits to DAC D address
B_LSB_T	X:	
JNB	TI,B_LSB_TX	; wait for DAC B lsb transmit to complete
SETE	3 T1	; toggle FS
CLR	T1	
CLR	TI	; clear for new transmit
MOV		; and send out the msb of DAC D
INC	R7	; increment the pointer in R7
MOV	A,R7	; to get the next byte from the table
MOVC	A,@A+DPTR	; which is the lsb of this sample, now in ACC
D_MSB_T	x:	
JNB	TI,D_MSB_TX	; wait for transmit to complete
CLR	TI	; clear for new transmit
MOV	SBUF,A	; and send out the lsb of DAC D
		pointer to point to the next sample
	ady for the next in	lterrupt
	A,rolling_ptr	
ADD		; add 2 to the rolling pointer
ANL	A,#03FH	; wrap back round to 0 if > 64 ; store in memory again
MOV	rolling_ptr,A	; store in memory again
D_LSB_T		
	FI,D_LSB_TX	; wait for DAC D lsb transmit to complete
CLR	TI	; clear for next transmit
SETE		; FS high
SETE		; CS high
POP		
POP	PSW	
RETI.		
; ; Stack	needs definition	
, F	 RSEG STACK	
Ι	DS 10h	; 16 Byte Stack!

;-----; Main program code RSEG MAIN start: MOV SP,#STACK-1 ; first set Stack Pointer CLR Α ; set serial port 0 to mode 0 SCON,A MOV ; set timer 0 to mode 2 - auto-reload MOV TMOD,#02H MOV тн0,#038н ; set THO for 5 kHs interrupts ; set LDAC = 1 SETB INT1 SETB т1 ; set FS = 1 SETB т0 ; set CS = 1 ; enable timer 0 interrupts SETB ET0 SETB ΕA ; enable all interrupts rolling_ptr,A ; set rolling pointer to 0 MOV SETB TR0 ; start timer 0

DW

DW

DW DW

DW DW

DW

DW DW

DW DW

DW

DW DW

DW

DW

DW

DW DW 0305CH 05097н

0903EH

01000H 06021H

0A0E8H

0C063H 040F9H

080B5H 0009FH

00051H

00026H 00051H

0009FH

080B5H

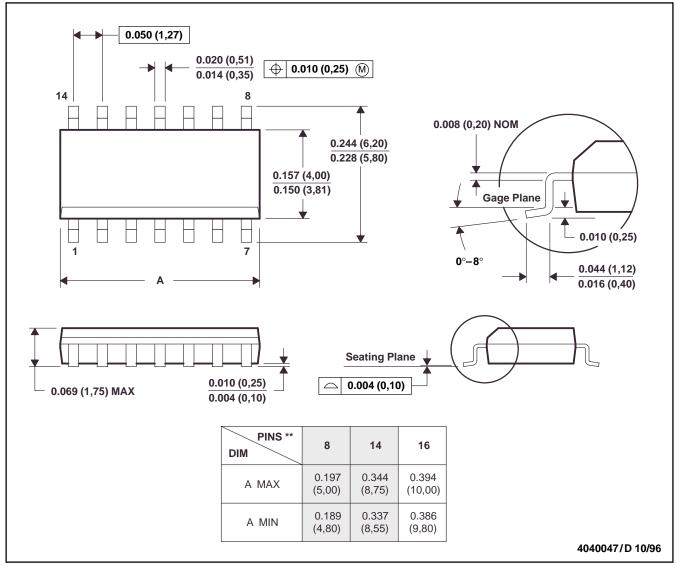
040F9H

0C063H 0A0E8H

06021H

always:		
JM RE	Palways T	; while(1) !
; Table c	of 32 sine wave s	amples used as DAC data
,	RSEG SINTB	эц
sinevals:	:	
DW	01000н	
DW	0903EH	
DW	05097н	
DW	0305CH	
DW	0В086Н	
DW	070CAH	
DW	OFOEOH	
DW	0F06EH	
DW	0F039H	
DW	0F06EH	
DW	OFOEOH	
DW	070CAH	
DW	0В086Н	

END



SLAS176B - DECEMBER 1997 - REVISED JULY 2002

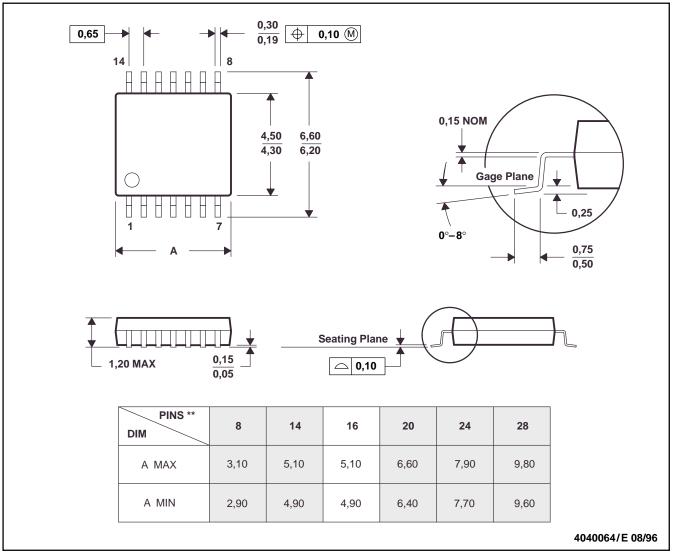
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) 14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012


TLV5604 2.7-V TO 5.5-V 10-BIT 3- μ S QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS176B - DECEMBER 1997 - REVISED JULY 2002

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

PW (R-PDSO-G**) 14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(1)		2.4			(2)	(6)	(3)		(4/3)	
TLV5604CD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV5604C	Samples
TLV5604CDG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV5604C	Samples
TLV5604CDR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV5604C	Samples
TLV5604CPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5604	Samples
TLV5604CPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5604	Samples
TLV5604CPWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5604	Samples
TLV5604ID	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLV5604I	Samples
TLV5604IPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY5604	Samples
TLV5604IPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY5604	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

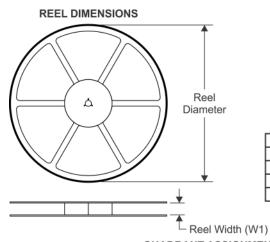
www.ti.com

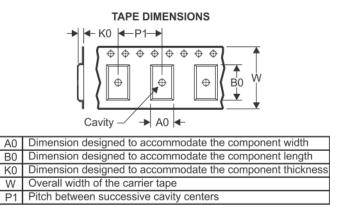
PACKAGE OPTION ADDENDUM

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

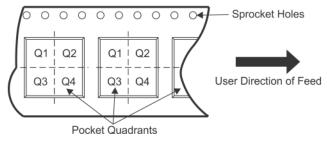
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

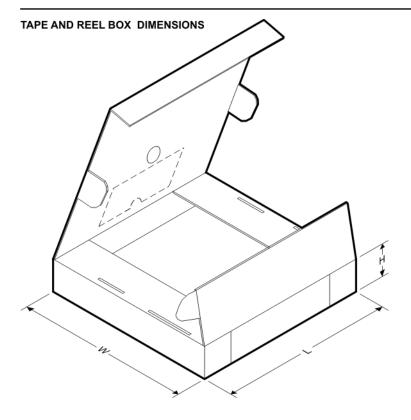

PACKAGE MATERIALS INFORMATION

Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

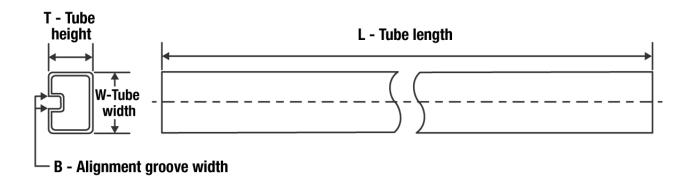

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV5604CDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TLV5604CPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV5604IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV5604CDR	SOIC	D	16	2500	350.0	350.0	43.0
TLV5604CPWR	TSSOP	PW	16	2000	350.0	350.0	43.0
TLV5604IPWR	TSSOP	PW	16	2000	350.0	350.0	43.0

www.ti.com

5-Jan-2022

TUBE

* ^ 11	diana a serie ta se a		
"All	dimensions	are	nominai

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
TLV5604CD	D	SOIC	16	40	505.46	6.76	3810	4
TLV5604CDG4	D	SOIC	16	40	505.46	6.76	3810	4
TLV5604CPW	PW	TSSOP	16	90	530	10.2	3600	3.5
TLV5604ID	D	SOIC	16	40	505.46	6.76	3810	4
TLV5604IPW	PW	TSSOP	16	90	530	10.2	3600	3.5

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated