

High Performance HCSL Fanout Buffer

Features

- → 4 HCSL outputs
- → Up to 250MHz output frequency
- → Ultra low additive phase jitter: < 0.1 ps (typ)
- → Two selectable inputs
- → Low delay from input to output (Tpd typ. 1.5ns)
- \rightarrow 2.5V / 3.3V power supply
- → Industrial temperature support
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → TSSOP-20 package

Block Diagram

Description

The PI6C4931504-04 is a high performance fanout buffer device which supports up to 250MHz frequency. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.

Applications

- → Networking systems including switches and Routers
- → High frequency backplane based computing and telecom platforms

Pin Configuration (20-Pin TSSOP)

GND [10	20 🛛 Q0
CLK_EN	2	19 🗍 nQ0
CLK_SEL	3	18 🛛 V _{DD}
CLK0	4	17 🛛 Q1
nCLK0	5	16 🗍 nQ1
CLK1	6	15 🛛 Q2
NC E	7	14 🛛 nQ2
NC E	8	13 🛛 V _{DD}
IREF [9	12 🛛 Q3
V _{DD} C	10	11 🗍 nQ3
l		

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- PI6C4931504-04 Document Number DS41269 Rev 1-2

Pin Description

Pin #	Pin Name	Туре	Description		
1	GND	Power	Ground		
2	CLK_EN	Input	Clock output enable/ disable		
3	CLK_SEL	Input	Clock input source selection pin		
4, 5	CLK0	Input	Clock input		
4, 5	nCLK0	Input	Clock input		
6	CLK1	Input	Clock input		
7, 8	NC	-	No connect		
9	IREF	Power	External resistor connection to set differential output current		
10, 13, 18	V _{DD}	Power	Power supply		
11 12	nQ3	Quitmut	UCSI output do de		
11, 12	Q3	Output	HCSL output clock		
14 15	nQ2	Qutput	HCSL output clock		
14, 15 Q2		Output	HCSL output clock		
16 17	nQl	Qutput	HCSL output clock		
16, 17	Q1	Output	HCSL output clock		
10.20	nQ0	Output	HCSL output clock		
19, 20	Q0	Output	HCSL output clock		

Function Table

Table 1: Input select function

CLK_SEL	Function	
0	CLK0, nCLK0	
1	CLK1	

Table 2: Output Enable function

CLK_EN	Outputs		
	Q0:Q4	nQ0:nQ4	
0	Disabled; LOW	Disabled; HIGH	
1	Enabled	Enabled	

Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested)

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics and Operating Conditions

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{DD} Core S	Cone Sumply Voltage		2.97		3.63	V
	Core Supply Voltage		2.375		2.625	V
I _{DD} Power S		V_{DD} = 3.3V, Unloaded			90	
	Power Supply Current	V_{DD} = 2.5V, Unloaded			80	mA
T _A	Ambient Operating Temperature		-40		85	°C

DC Electrical Specifications - Differential Inputs

Symbol	Parameter		Min.	Тур.	Max.	Units
I _{IH}	Input High current: CLK0, nCLK0	Input = V_{DD}			200	uA
т	Input Low current: nCLK0		-200			uA
I _{IL}	Input Low current: CLK0		-10			uA
C _{IN}	Input capacitance			4		PF
V _{IH}	Input high voltage				V _{DD} +0.3	V
V _{IL}	Input low voltage		-0.3			V
V _{ID}	Input Differential Amplitude PK-PK		150		1300	mV
V _{CM}	Common model input voltage		GND + 0.5		V _{DD} -0.85	V

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
т	Input High current	CLK1, CLK_SEL	Lement V			200	uA
I _{IH}	Input Ingli current	CLK_EN	Input = V_{DD}			20	uA
I _{IL} Input Low current	CLK1, CLK_SEL	Lucrat CND	-10			uA	
	Input Low current	CLK_EN	Input = GND	-200			uA
V _{IH}	Input high voltage		$V_{DD}=3.3V$	2.0		3.765	V
VIL	Input low voltage		V _{DD} =3.3V	-0.3		0.8	V
VIH	Input high voltage		V _{DD} =2.5V	1.7		2.8	V
V _{IL}	Input low voltage		V _{DD} =2.5V	-0.3		0.7	V

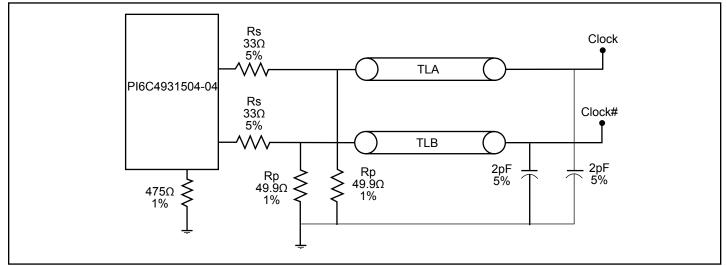
DC Electrical Specifications - LVCMOS Inputs

DC Electrical Specifications – HCSL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
Voh	Output High voltage	V _{DD} =3.3V	520	800		mV
Vol	Output Low voltage	V _{DD} =3.3V		0	150	mV

AC Electrical Specifications – Differential Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
f _{out}	Output frequency				250	MHz
Tr	Output rise time	From 20% to 80%	175		700	ps
T _f	Output fall time	From 80% to 20%	175		700	ps
T _{ODC}	Output duty cycle		48		52	%
Tj	Buffer additive jitter RMS			0.1		ps
V _{MAX}	Absolute Maximum Output Voltage				1150	mV
V _{MIN}	Absolute Minimum Output Voltage		-300			mV
V _{CROSS}	Absolute crossing voltage	HCSL	250		550	mV
DV _{CROSS}	Total variation of crossing voltage	HCSL			140	mV
T _{SK}	Output Skew			40	100	ps
T _{PD}	Propagation Delay			1500		ps
T _{P2P} Skew	Part to Part Skew ¹				600	ps

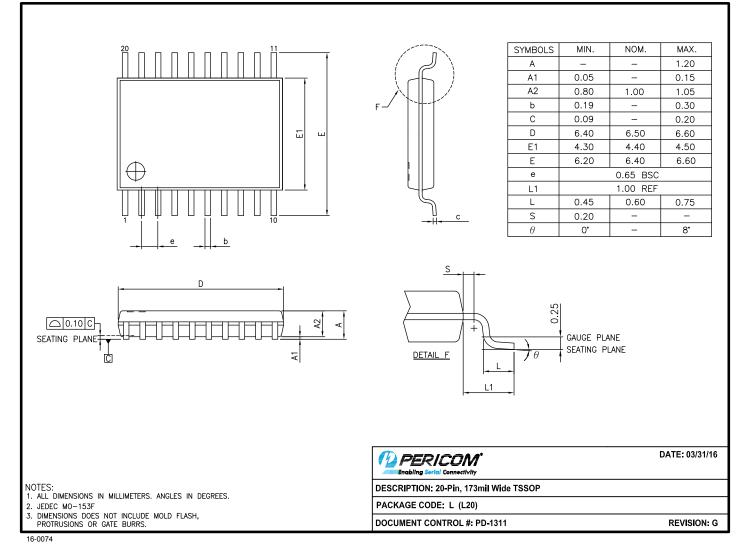

Notes:

1. This parameter is guaranteed by design

Configuration test load board termination for HCSL Outputs

Part Marking

L Package



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 20-TSSOP (L)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C4931504-04LIEX	L	20-pin, 173mil Wide (TSSOP)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND. EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com