
Vishay Beyschlag

Professional Thin Film Chip Resistors

www.vishay.com

MCS 0402, MCT 0603, MCU 0805, and MCA 1206 professional thin film flat chip resistors are the perfect choice for most fields of modern professional electronics where reliability and stability are of major concern. Typical applications include telecommunication, medical equipment, high-end computer and audio / video electronics.

FEATURES

- IECQ-CECC approved to EN 140401-801
- Excellent overall stability: class 0.5
- \bullet Professional tolerance of resistance: \pm 0.5 % and \pm 1 %
- Rated dissipation *P*₇₀ up to 0.4 W for size 1206
- Sulfur resistance verified according to ASTM B 809
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Industrial equipment
- Test and measuring equipment
- Telecommunication
- Medical equipment

TECHNICAL SPECIFICATIONS	S				
DESCRIPTION	MCS 0402	MCT 0603	MCU 0805	MCA 1206	
Imperial size	0402	0603	0805	1206	
Metric size code	RR1005M	RR1608M	RR2012M	RR3216M	
Resistance range	10 Ω to 1 MΩ; 0 Ω	1 Ω to 2 MΩ; 0 Ω	1 Ω to 2 MΩ; 0 Ω	1 Ω to 2 MΩ; 0 Ω	
Resistance tolerance		± 1 %;	± 0.5 %		
Temperature coefficient	± 50 ppm/K; ± 25 ppm/K				
Rated dissipation, P ₇₀ ⁽¹⁾	0.100 W	0.125 W	0.200 W	0.400 W	
Operating voltage, Umax. ACRMS/DC	50 V	75 V	150 V	200 V	
Permissible film temperature, $\vartheta_{\rm Fmax.}^{(1)}$	155 °C				
Operating temperature range		-55 °C t	o 155 °C		
Internal thermal resistance (1)	90 K/W	63 K/W	38 K/W	32 K/W	
Permissible voltage against ambient (insulation):					
1 min; U _{ins}	75 V	100 V	200 V	300 V	
Failure rate: FIT _{observed}		≤ 0.1 x	10 ⁻⁹ /h	•	

Note

(1) Please refer to APPLICATION INFORMATION below

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

nevision. 04-iviav-2023	Revision:	04-May-2023
-------------------------	-----------	-------------

COMPLIANT

www.vishay.com

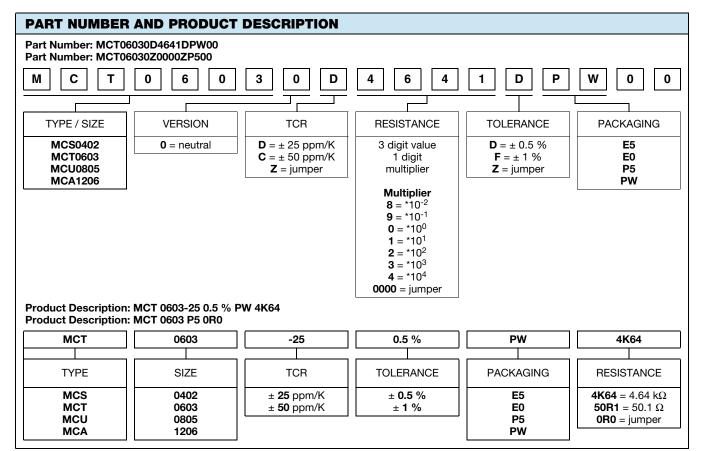
Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION								
OPERATION MODE	STANDARD	POWER						
	MCS 0402	0.063 W	0.100 W					
Rated dissipation, P_{70}	MCT 0603	0.100 W	0.125 W					
hated dissipation, F ₇₀	MCU 0805	0.125 W	0.200 W					
	MCA 1206	0.250 W	0.400 W					
Operating temperature range	-55 °C to 125 °C	-55 °C to 155 °C						
Permissible film temperature, $\vartheta_{Fmax.}$	Permissible film temperature, $v_{F max.}$							
	MCS 0402	10 Ω to 1 M Ω	10 Ω to 1 M Ω					
	MCT 0603	1 Ω to 2 M Ω	1 Ω to 2 M Ω					
Maria di la constata de la constata	MCU 0805	1 Ω to 2 M Ω	1 Ω to 2 M Ω					
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:	MCA 1206	1 Ω to 2 M Ω	1 Ω to 2 M Ω					
	1000 h	≤ 0.25 %	≤ 0.5 %					
	8000 h	≤ 0.5 %	≤ 1.0 %					
	225 000 h	≤ 1 .5 %	-					

Note

The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to
different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the
circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please
consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (<u>www.vishay.com/doc?28844</u>) for
information on the general nature of thermal resistance

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE ⁽¹⁾						
TYPE / SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES		
	. 50 ppm/k	±1%	10 Ω to 1 MΩ	E24; E96		
MCS 0402	± 50 ppm/K	± 0.5 %	10 Ω to 221 kΩ	E24; E192		
WICS 0402	± 25 ppm/K	± 0.5 %	10 Ω to 221 kΩ	E24; E192		
	Jumper, <i>I</i> _{max.} = 0.63 A	≤20 mΩ	0 Ω	-		
	· 50 mm//	±1%	1 Ω to 2 MΩ	E24; E96		
MCT 0603	± 50 ppm/K	± 0.5 %	10 Ω to 511 kΩ	E24; E192		
	± 25 ppm/K	± 0.5 %	10 Ω to 511 kΩ	E24; E192		
	Jumper, I _{max.} = 1 A	≤20 mΩ	0 Ω	-		
	± 50 ppm/K	±1%	1 Ω to 2 M Ω	E24; E96		
MCU 0805	± 30 ppn/K	± 0.5 %	10 Ω to 1.5 MΩ	E24; E192		
	± 25 ppm/K	± 0.5 %	10 Ω to 1.5 MΩ	E24; E192		
	Jumper, I _{max.} = 1.5 A	≤20 mΩ	0 Ω	-		
	- 50 ppm/k	±1%	1 Ω to 480 kΩ	E24; E96		
MCA 1206	± 50 ppm/K	± 0.5 %	10 Ω to 480 kΩ	E24; E192		
WICA 1200	± 25 ppm/K	± 0.5 %	10 Ω to 2 M Ω	E24; E192		
	Jumper, I _{max.} = 2 A	\leq 20 m Ω	0 Ω	-		


Note

⁽¹⁾ For the approved IECQ-CECC resistance range, please refer to <u>www.vishay.com/doc?28945</u>

PACKAGING								
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	РІТСН	PACKAGING DIMENSIONS		
MCS 0402	E5	5000	Paper tape acc. IEC 60286-3, Type 1a	8 mm	2 mm	Ø 180 mm / 7"		
	E0	10 000						
MCT 0603	P5	5000			4 mm	Ø 180 mm / 7"		
	PW	20 000				Ø 330 mm / 13"		
MOLLOROF	P5	5000				Ø 180 mm / 7"		
MCU 0805	PW	20 000				Ø 330 mm / 13"		
MCA 1206	P5	5000				Ø 180 mm / 7"		

MCS 0402, MCT 0603, MCU 0805, MCA 1206 - Professional **SHA** www.vishay.com

Note

Products can be ordered using either the PART NUMBER or PRODUCT DESCRIPTION

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic substrate (Al_2O_3) and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly cutting a meander groove in the resistive layer without damaging the ceramics. For the high and low ohmic range, optimized Cermet products provide comparable properties. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating.

www.vishay.com

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. This includes full screening for the elimination of products with potential risk of early field failures (feasible for $R \ge 10 \Omega$). Only accepted products are laid directly into the paper tape in accordance with **IEC 60286-3 Type 1a** ⁽¹⁾.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1**. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS-compliant, the pure matte tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein ⁽²⁾
- The Global Automotive Declarable Substance List (GADSL) $^{\rm (3)}$
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) ⁽⁴⁾ for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

Where applicable, the resistors are approved within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification **EN 140401-801** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedures of the IEC 60068 ⁽¹⁾ series. The detail specification refers to the climatic category 55/125/56, which relates to the "standard operation mode" of this datasheet.

Conformity is attested by the use of the **CECC** logo (**(**) as the mark of conformity on the package label.

Vishay Beyschlag has achieved **"Approval of Manufacturer"** in accordance with **IECQ 03-1**. The release certificate for **"Technology Approval Schedule"** in accordance with **CECC 240001** based on **IECQ 03-3-1** is granted for the Vishay BEYSCHLAG manufacturing process.

RELATED PRODUCTS

For more information about products with better TCR and tighter tolerance please refer to the Precision Thin Film Chip Resistors datasheet (<u>www.vishay.com/doc?28700</u>).

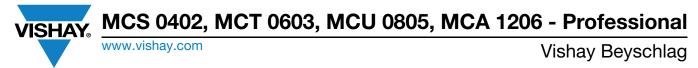
Resistors are available with established reliability in accordance with EN 140401-801 version E. Please refer to the special datasheet (<u>www.vishay.com/doc?28744</u>) for information on failure rate level, available resistance ranges and order codes.

Precision chip resistor arrays may be used in voltage divider applications or precision amplifiers where close matching between multiple resistors is necessary. ACAS 0612 chip arrays are specified by the following datasheets:

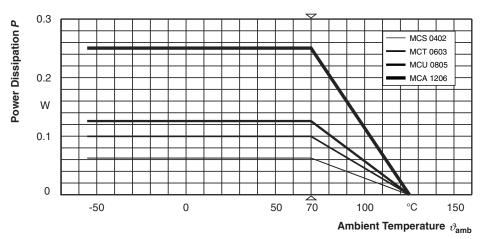
- Professional type (www.vishay.com/doc?28754)
- Precision type (<u>www.vishay.com/doc?28751</u>)

Notes

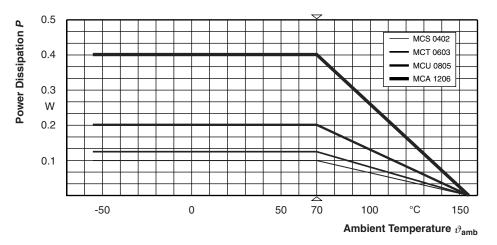
- ⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474

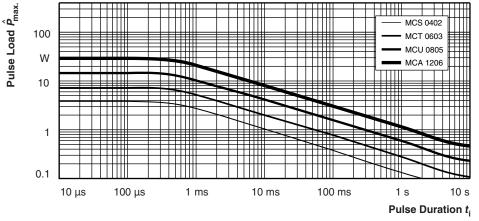

⁽⁴⁾ The SVHC list is maintained by the European Chemical Agency (ECHA) and available at <u>http://echa.europa.eu/candidate-list-table</u>

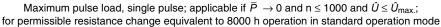
Document Number: 28705


For technical questions, contact: <u>thinfilmchip@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

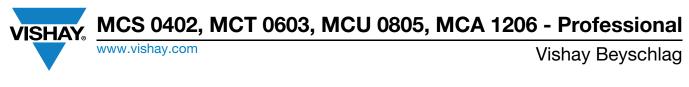
⁽³⁾ The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at <u>www.gadsl.org</u>

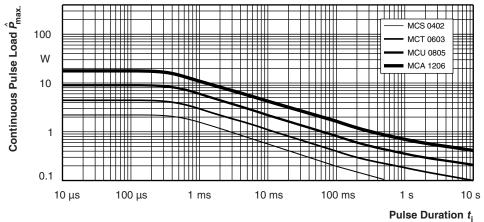

Revision: 04-May-2023

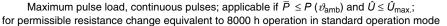

FUNCTIONAL PERFORMANCE

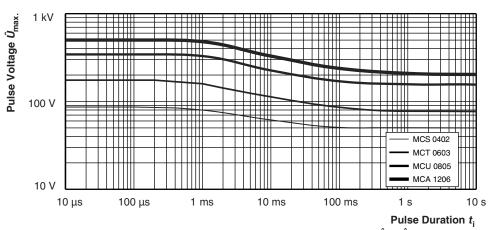


Derating - Power Operation

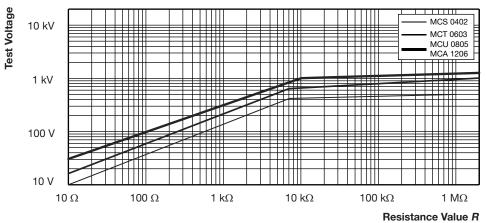





Single Pulse

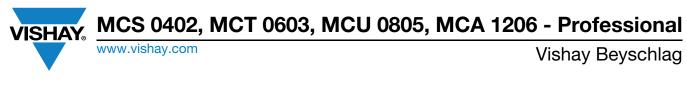

Revision: 04-May-2023

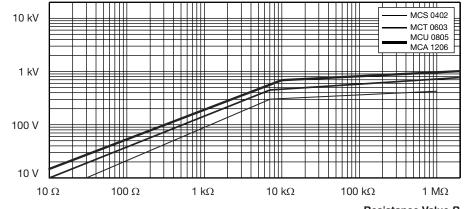
For technical questions, contact: <u>thinfilmchip@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Continuous Pulse

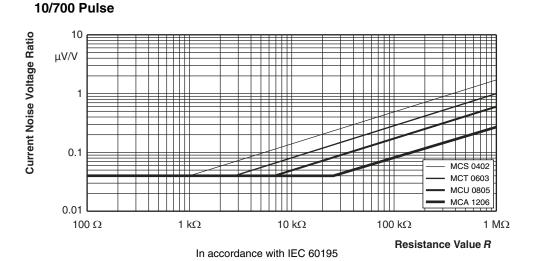
Maximum pulse voltage, single and continuous pulses; applicable if $\ddot{P} \leq \ddot{P}_{max.}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode

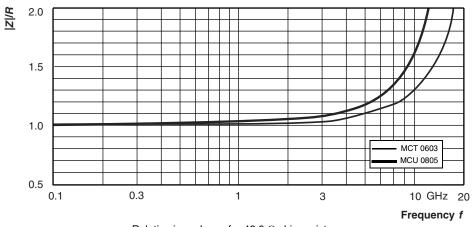




Pulse load rating in accordance with EN 60115-1 clause 4.27; 1.2 μ s/50 μ s; 5 pulses at 12 s interval; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

1.2/50 Pulse


6


Resistance Value R

Pulse load rating in accordance with EN 60115-1 clause 4.27; 10 μ s/700 μ s; 10 pulses at 1 min intervals; for permissible resistance change \pm (0.5 % *R* + 0.05 Ω)

Test Voltage

Relative impedance for 49.9 Ω chip resistor

RF-Behavior

Revision: 04-May-2023

www.vishay.com

Vishay Beyschlag

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8, sectional specification

EN 140401-801, detail specification

IEC 60068-2-xx, test methods

The components are approved under the IECQ-CECC quality assessment system for electronic components.

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included. The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C

Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar)

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

TEST PF	ROCEDURE	S AND REQU	IREMENTS			
EN 60115-1	IEC 60068-2 ⁽¹⁾	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆ <i>R</i>)		
CLAUSE	TEST METHOD			STABILITY CLASS 0.5	STABILITY CLASS 1	
			Stability for product types:			
			MCS 0402	10 Ω to 33.2 k Ω	$>$ 33.2 k Ω to 1 M Ω	
			MCT 0603	10 Ω to 100 k Ω	1 Ω to < 10 Ω; > 100 kΩ to 2 MΩ	
			MCU 0805	10 Ω to 221 k Ω	1 Ω to < 10 Ω; > 221 kΩ to 2 MΩ	
			MCA 1206	10 Ω to 332 k Ω	1 Ω to < 10 Ω; > 332 kΩ to 2 MΩ	
4.5	-	Resistance	-	± 1 % <i>R</i> ; ± 0.5 % <i>R</i>		
4.8	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 125 / 20) °C	± 50 ppm/K; ± 25 ppm/K		
			Endurance at 70 °C: standard operation mode	$U = \sqrt{P_{70} \times R} \text{ or } U = U_{\text{max}};$ whichever is the less severe; 1.5 h on; 0.5 h off; 70 °C; 1000 h	. (0.25.%)	2 + 0.05 (0)
		operation mode	70 °C; 8000 h	\pm (0.25 % R + 0.05 Ω) \pm (0.5 % R + 0.05 Ω)		
4.25.1	-	Endurance at 70 °C: power	$U = \sqrt{P_{70} \times R} \text{ or } U = U_{\text{max}};$ whichever is the less severe; 1.5 h on; 0.5 h off;		· · · · ·	
		operation mode	70 °C; 1000 h	$\pm (0.5 \% R + 0.05 \Omega)$		
			70 °C; 8000 h	,	+ 0.05 Ω)	
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h 155 °C; 1000 h	\pm (0.25 % R + 0.05 Ω) \pm (0.5 % R + 0.05 Ω)	± (0.5 % <i>R</i> + 0.05 Ω) ± (1 % <i>R</i> + 0.05 Ω)	
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	\pm (0.5 % R + 0.05 Ω)	± (1 % <i>R</i> + 0.05 Ω)	

8

For technical questions, contact: <u>thinfilmchip@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Beyschlag

TEST PF	TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1	IEC 60068-2 ⁽¹⁾	TEST	PROCEDURE		EMENTS CHANGE (\(\triangle R))			
CLAUSE	TEST METHOD			STABILITY CLASS 0.5	STABILITY CLASS 1			
			Stability for product types:					
			MCS 0402	10 Ω to 33.2 k Ω	$>$ 33.2 k Ω to 1 M Ω			
			MCT 0603	10 Ω to 100 k Ω	1 Ω to < 10 Ω; > 100 kΩ to 2 MΩ			
			MCU 0805	10 Ω to 221 k Ω	1 Ω to < 10 Ω; > 221 kΩ to 2 MΩ			
			MCA 1206	10 Ω to 332 k Ω	1 Ω to < 10 Ω; > 332 kΩ to 2 MΩ			
4.23		Climatic sequence: standard operation mode:						
4.23.2	2 (Bb)	dry heat	125 °C; 16 h					
4.23.3	30 (Db)	damp heat, cyclic	55 °C; 24 h; > 90 % RH; 1 cycle					
4.23.4	1 (Ab)	cold	-55 °C; 2 h					
4.23.5	13 (M)	low air pressure	8.5 kPa; 2 h; (25 ± 10) °C	$\pm (0.5 \% R + 0.05 \Omega)$	± (1 % <i>R</i> + 0.05 Ω)			
4.23.6	30 (Db)	damp heat, cyclic	55 °C; 24 h; > 90 % RH; 5 cycles					
4.23.7	-	DC load	$U = \sqrt{P_{70} \times R} \le U_{\text{max.}};$ 1 min.					
-	1 (Aa)	Cold	-55 °C; 2 h	\pm (0.1 % R + 0.01 Ω)	\pm (0.25 % R + 0.05 Ω)			
4.19	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; LCT = -55 °C; UCT = 125 °C; 5 cycles	± (0.1 % <i>R</i> + 0.01 Ω) no visible damage				
			LCT = -55 °C; UCT = 125 °C; 1000 cycles	± (0.25 % <i>R</i> + 0.05 Ω) no visible damage				
4.13	_	Short time overload: standard operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{max}$; whichever is the less severe; 5 s	± (0.1 % <i>R</i> + 0.01 Ω)	± (0.25 % <i>R</i> + 0.05 Ω)			
4.10		Short time overload: power operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{max}$; whichever is the less severe; 5 s	± (0.25 % <i>R</i> + 0.05 Ω)	± (0.5 % <i>R</i> + 0.05 Ω)			
4.27	-	Single pulse high voltage overload: standard operation mode	Severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{max}$; whichever is the less severe; 10 pulses 10 µs/700 µs	± (0.5 % <i>R</i> + 0.05 Ω) no visible damage				
4.39	_	Periodic electric overload: standard operation mode	$\begin{array}{l} U = \sqrt{15 \ x \ P_{70} \ x \ R} \\ \text{or } U = 2 \ x \ U_{\text{max}}; \\ 0.1 \ \text{s on; } 2.5 \ \text{s off;} \\ \text{whichever is the less severe;} \\ 1000 \ \text{cycles} \end{array}$	± (0.5 % F no visible				
5.00	-	Periodic electric overload: power operation mode	$U = \sqrt{15 \times P_{70} \times R}$ or $U = 2 \times U_{max}$; 0.1 s on; 2.5 s off; whichever is the less severe; 1000 cycles	± (1 % <i>R</i> no visible	+ 0.05 Ω) e damage			

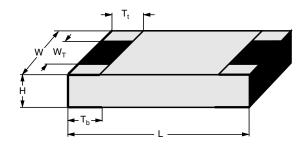
Revision: 04-May-2023

9 For technical questions, contact: <u>thinfilmchip@vishay.com</u> Document Number: 28705

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Beyschlag


TEST PF	ROCEDURE	S AND REQU	IREMENTS			
EN 60115-1	IEC 60068-2 ⁽¹⁾	TEST	PROCEDURE	REQUIR PERMISSIBLE	EMENTS CHANGE (∆R)	
CLAUSE	TEST METHOD			STABILITY CLASS 0.5	STABILITY CLASS 1	
			Stability for product types:			
			MCS 0402	10 Ω to 33.2 k Ω	$>$ 33.2 k Ω to 1 M Ω	
			MCT 0603	10 Ω to 100 k Ω	1 Ω to < 10 Ω; > 100 kΩ to 2 MΩ	
			MCU 0805	10 Ω to 221 k Ω	1 Ω to < 10 Ω; > 221 kΩ to 2 MΩ	
			MCA 1206	10 Ω to 332 k Ω	1 Ω to < 10 Ω; > 332 kΩ to 2 MΩ	
4.38	-	Electro static discharge (human body model)	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. (equivalent to MIL-STD-883, method 3015) MCS 0402: 500 V MCT 0603: 1000 V MCU 0805: 1500 V MCA 1206: 2000 V	± (0.5 % F	? + 0.05 Ω)	
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s ² ; 7.5 h	\pm (0.1 % R + 0.01 Ω) no visible damage		
			Solder bath method; SnPb40; non-activated flux; (215 ± 3) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered); no visible damage		
4.17	58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s	Good tinning (≥ 95 % covered); no visible damage		
4.18	58 (Td)	Resistance to soldering heat	Solder bath method; (260 \pm 5) °C; (10 \pm 1) s	± (0.1 % <i>R</i> + 0.01 Ω) no visible damage	± (0.25 % <i>R</i> + 0.05 Ω) no visible damage	
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol +50 °C; method 2	No visible	e damage	
4.00	01 (11-)	Shear	MCS 0402 and MCT 0603: 9 N			
4.32	21 (Ue ₃)	(adhesion)	MCU 0805 and MCA 1206: 45 N	No visible	e uamage	
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	\pm (0.1 % R + 0.01 Ω) no visible damage, no open circuit in bent position		
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins};$ (60 ± 5) s	No flashover	or breakdown	
4.35	-	Flammability	IEC 60695-11-5 $^{(1)}$, needle flame test; 10 s	No burning	g after 30 s	

Note

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

DIMENSIONS

DIMENSIONS AND MASS									
TYPE / SIZE	H (mm)	L (mm)	W (mm)	W _T (mm)	T _t (mm)	T _b (mm)	MASS (mg)		
MCS 0402	0.32 ± 0.05	1.0 ± 0.05	0.5 ± 0.05	> 75 % of W	0.2 + 0.1 / - 0.15	0.2 ± 0.1	0.6		
MCT 0603	0.45 + 0.1 / - 0.05	1.55 ± 0.05	0.85 ± 0.1	> 75 % of W	0.3 + 0.15 / - 0.2	0.3 + 0.15 / - 0.2	1.9		
MCU 0805	0.45 + 0.1 / - 0.05	2.0 ± 0.1	1.25 ± 0.15	> 75 % of W	0.4 + 0.1 / - 0.2	0.4 + 0.1 / - 0.2	4.6		
MCA 1206	0.55 ± 0.1	3.2 + 0.1 / - 0.2	1.6 ± 0.15	> 75 % of W	0.5 ± 0.25	0.5 ± 0.25	9.2		

SOLDERING RECOMMENDATIONS

For recommended solder pad dimensions please refer to <u>www.vishay.com/doc?28950</u>. For recommended soldering profiles please refer to <u>www.vishay.com/doc?31090</u>.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.