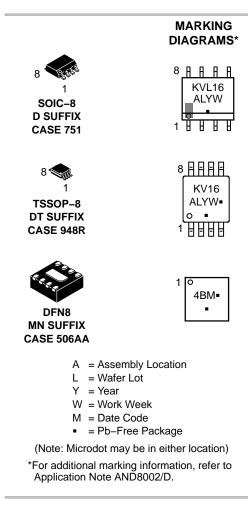
3.3V ECL Differential Receiver

Description

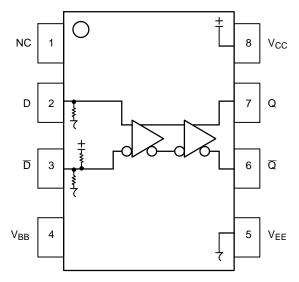
The MC100LVEL16 is a differential receiver. The device is functionally equivalent to the EL16 device, operating from a 3.3 V supply. The LVEL16 exhibits a wider V_{IHCMR} range than its EL16 counterpart. With output transition times and propagation delays comparable to the EL16 the LVEL16 is ideally suited for interfacing with high frequency sources at 3.3 V supplies.

Under open input conditions, the Q input will be pulled down to V_{EE} and the \overline{Q} input will be biased to $V_{CC}/2$. This condition will force the Q output low.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.


Features

- 300 ps Propagation Delay
- High Bandwidth Output Transitions
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.8 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -3.0 V$ to -3.8 V
- Internal Input Pulldown Resistors on D, Pullup and Pulldown Resistors on D
- Q Output will Default LOW with Inputs Open or at V_{EE}
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D, D Q, Q V _{BB} V _{CC} V _{EE} NC EP	ECL Data Inputs ECL Data Outputs Reference Voltage Output Positive Supply Negative Supply No Connect (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Figure 1. Logic Diagram and Pinout Assignment

Table 2. ATTRIBUTES

Characteris	Value						
Internal Input Pulldown Resistor	75 kΩ						
Internal Input Pullup Resistor		75 kΩ					
ESD Protection	> 4 KV > 400 V > 2 kV						
Moisture Sensitivity, Indefinite Time Pb–Free Packages (Note 1)	out of Drypack, SOIC-8 TSSOP-8 DFN8	Level 1 Level 3 Level 1					
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in					
Transistor Count		79					
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

1. Refer to Application Note AND8003/D for additional information.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8 to 0	V
VI	PECL Mode Input Voltage	V _{EE} = 0 V	$V_{I} \leq V_{CC}$	6 to 0	V
	NECL Mode Input Voltage	$V_{CC} = 0 V$	$V_{I}\!\geq\!V_{EE}$	-6 to 0	V
I _{out}	Output Current	Continuous		50	mA
		Surge		100	mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM	SO-8	190	°C/W
		500 LFPM	SO-8	130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	SO-8	41 to 44 \pm 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM	TSSOP-8	185	°C/W
		500 LFPM	TSSOP-8	140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to $44 \pm 5\%$	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm	DFN8	129	°C/W
		500 lfpm	DFN8	84	°C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

		–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 4)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 4)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single–Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single–Ended)	1490		1825	1490		1825	1490		1825	mV
V_{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 5) Vpp < 500 mV Vpp ≧ 500 mV	1.2 1.5		2.9 2.9	1.1 1.4		2.9 2.9	1.1 1.4		2.9 2.9	v v
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -600			0.5 600			0.5 -600			μΑ μΑ

Table 4. LVPECL DC CHARACTERISTICS V_{CC} = 3.3 V; V_{EE} = 0.0 V (Note 3)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ±0.3 V.
 Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V.
 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single–Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single–Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 8) Vpp < 500 mV Vpp ≧ 500 mV	-2.1 -1.8		-0.4 -0.4	-2.2 -1.9		-0.4 -0.4	-2.2 -1.9		-0.4 -0.4	v v
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current D D	0.5 -600			0.5 -600			0.5 -600			μΑ μΑ

Table 5. LVNECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.3 \text{ V}$ (Note 6)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V. 7. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V. 8. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

			–40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		1.75			1.75			1.75		GHz
t _{PLH} t _{PHL}	Propagation Delay to Output Differential Single-Ended	150 100	275 275	400 450	225 175	300 300	375 425	240 190	315 315	390 440	ps
t _{SKEW}	Duty Cycle Skew (Differential) (Note 10)		5	30		5	20		5	20	ps
t _{JITTER}	Random Clock Jitter (RMS)		0.7			0.7			0.7		ps
V _{PP}	Input Swing (Note 11)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	120	220	320	120	220	320	120	220	320	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 9. V_{EE} can vary ±0.3 V.

10. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.
 11. V_{PP(}min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.

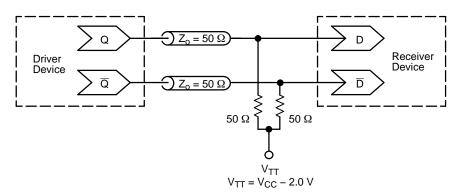
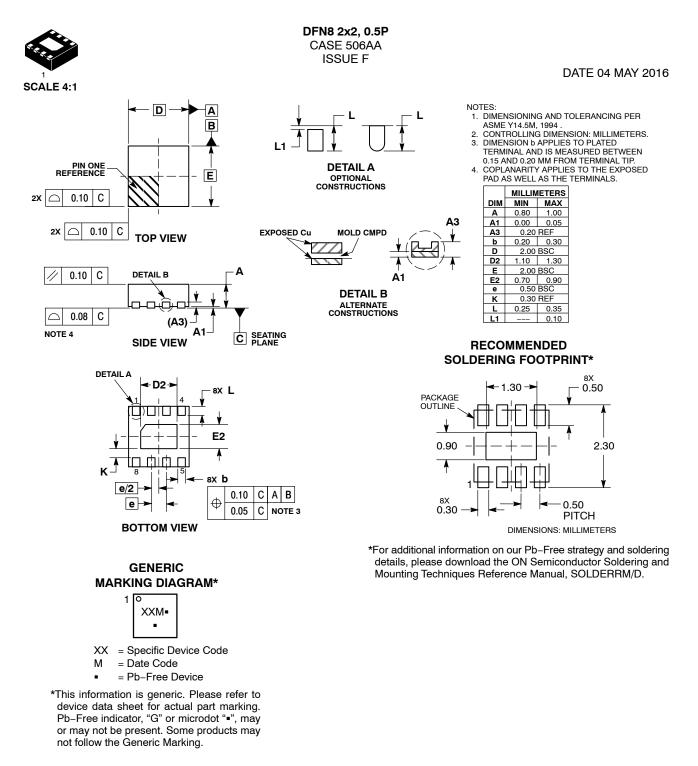


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

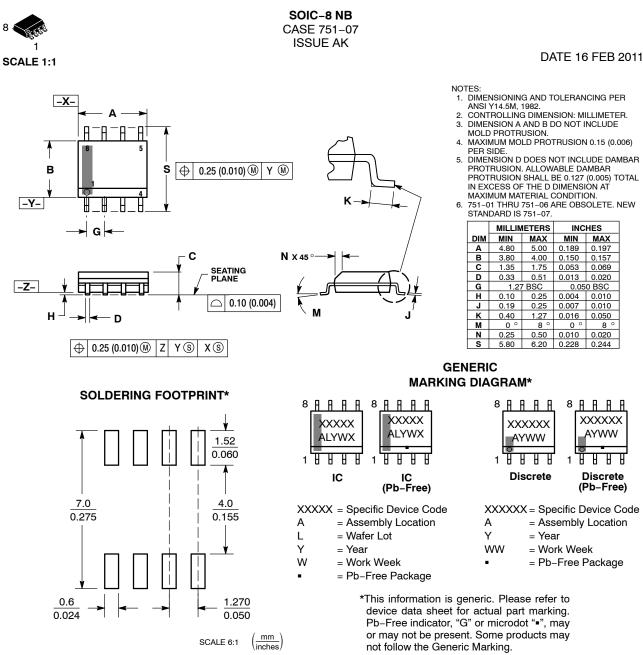
ORDERING INFORMATION

Device	Package	Shipping [†]
MC100LVEL16DG	SO-8 (Pb-Free)	98 Units / Rail
MC100LVEL16DR2G	SO–8 (Pb–Free)	2500 Tape & Reel
MC100LVEL16DTG	TSSOP–8 (Pb–Free)	100 Units / Rail
MC100LVEL16DTR2G	TSSOP–8 (Pb–Free)	2500 Tape & Reel
MC100LVEL16MNR4G	DFN8 (Pb–Free)	1000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices


ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ONSEM¹.

DOCUMENT NUMBER:	98AON18658D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DFN8, 2.0X2.0, 0.5MM PITC	PAGE 1 OF 1				
the right to make changes without furth purpose, nor does onsemi assume as	ner notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular			

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DESCRIPTION: SOIC-8 NB PAGE					
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours on owarranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, incl e under its patent rights nor the rights of others.	oducts for any particular			

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. COLLECTOR, #2 4 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

7.

8. GATE 1

SOURCE 1/DRAIN 2

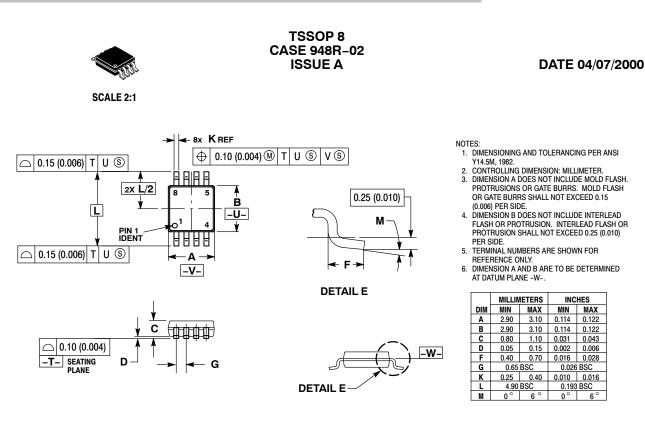
STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. 5. GATE, #2 SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3 ANODE 1 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2 OVI 0 З. UVLO 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE PIN 1. ANODE 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. COLLECTOR/ANODE 8. STYLE 28: 11. SW_TO_GND 2. DASIC OFF PIN 1. DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


7.

8

COLLECTOR, #1

COLLECTOR, #1

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patter rights nor the			

[©] Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales