ONSEMÍ,

<u>MOSFET</u> - Power, Single, N-Channel

40 V, 5.6 mΩ, 69 A

NVTFS005N04C

Features

- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVTFWS005N04C Wettable Flanks Product
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

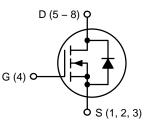
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

neter		Symbol	Value	Unit
Drain-to-Source Voltage				V
9		V _{GS}	±20	V
Steady State	$T_C = 25^{\circ}C$	۱ _D	69	А
Oldle	$T_{C} = 100^{\circ}C$		39	
	$T_C = 25^{\circ}C$	PD	50	W
	$T_{\rm C} = 100^{\circ}{\rm C}$		16	
Steady State	$T_A = 25^{\circ}C$	I _D	17	Α
Sidle	T _A = 100°C		12	
	$T_A = 25^{\circ}C$	PD	3.1	W
	$T_A = 100^{\circ}C$		1.6	
T _A = 25°	°C, t _p = 10 μs	I _{DM}	297	А
Operating Junction and Storage Temperature Range				°C
Source Current (Body Diode)				А
Single Pulse Drain–to–Source Avalanche Energy ($I_{L(pk)} = 4.6 \text{ A}$)				mJ
Lead Temperature for Soldering Purposes (1/8" from Case for 10 s)			260	°C
	e Steady State Steady State T _A = 25° Storage Te iode) Source Ava	e Steady State $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$ $T_{C} = 100^{\circ}C$ $T_{C} = 100^{\circ}C$ $T_{C} = 100^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 100^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{A} = 100^{\circ}C$ $T_{A} = 25^{\circ}C, t_{p} = 10 \mu s$ Storage Temperature iode) Source Avalanche oldering Purposes	e V_{DSS} Steady $T_C = 25^{\circ}C$ I_D $T_C = 100^{\circ}C$ $T_C = 100^{\circ}C$ $T_C = 25^{\circ}C$ P_D $T_C = 100^{\circ}C$ Steady $T_A = 25^{\circ}C$ I_D $T_A = 100^{\circ}C$ $T_A = 25^{\circ}C$ P_D $T_A = 100^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 10^{\circ}C$ $T_A = 10^{\circ}C$ $T_$	$ \begin{array}{c c c c c c c } e & & & V_{DSS} & 40 \\ \hline & & & V_{GS} & \pm 20 \\ \hline \\ Steady \\ State \\ \hline T_C = 25^\circ C & I_D & 69 \\ \hline T_C = 100^\circ C & & & & & & \\ \hline T_C = 25^\circ C & P_D & & & & & \\ \hline T_C = 100^\circ C & & & & & & & \\ \hline T_C = 100^\circ C & & & & & & & & \\ \hline T_C = 100^\circ C & & & & & & & & \\ \hline T_A = 25^\circ C & I_D & & & & & & & \\ \hline T_A = 25^\circ C & P_D & & & & & & & \\ \hline T_A = 25^\circ C & P_D & & & & & & & \\ \hline T_A = 100^\circ C & & & & & & & & \\ \hline T_A = 25^\circ C & P_D & & & & & & & \\ \hline T_A = 100^\circ C & & & & & & & & \\ \hline T_A = 25^\circ C & P_D & & & & & & & \\ \hline T_A = 100^\circ C & & & & & & & \\ \hline T_A = 25^\circ C & P_D & & & & & & & \\ \hline T_A = 25^\circ C & P_D & & & & & & & \\ \hline T_A = 100^\circ C & & & & & & & \\ \hline T_A = 100^\circ C & & & & & & & \\ \hline \end{array} $

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

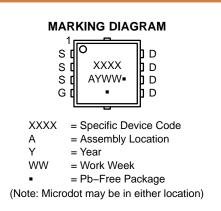
Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 3)	R_{\thetaJC}	3.0	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	47.7	


1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

 Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
 Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

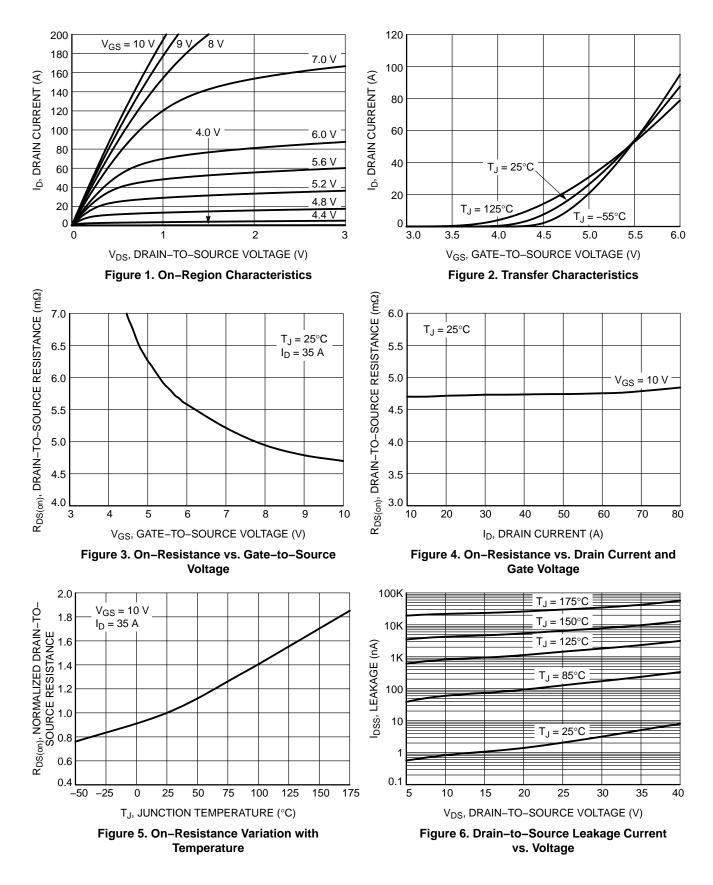
Sonace-modified on the board using a coordination, 2 or curpation.
 Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
40 V	5.6 mΩ @ 10 V	69 A


N-Channel

WDFNW8 3.3x3.3, 0.65P (Full-Cut µ8FL WF) CASE 515AN

ORDERING INFORMATION


See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40	-	_	V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$	-	-	10	μΑ
		$V_{DS} = 40 V$	T _J = 125°C	-	-	250	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 2$	D V	-	-	100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 40$	μΑ	2.5	-	3.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 35	A	-	4.7	5.6	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 35	A	-	53	-	S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	$V_{GS} = 0 V, f = 1.0 N$	1Hz,	-	1000	-	pF
Output Capacitance	C _{oss}	$V_{\rm DS} = 25$ V		-	530	_	1
Reverse Transfer Capacitance	C _{rss}			-	22	_	1
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} =	32 V, I _D = 35 A	-	3.2	_	nC
Gate-to-Source Charge	Q _{GS}	-		_	5.7	-	1
Gate-to-Drain Charge	Q _{GD}			_	2.7	-	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 35 A		-	16	-	nC
SWITCHING CHARACTERISTICS (No	te 6)						
Turn–On Delay Time	t _{d(on)}	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 10 \text{ V}$	32 V,	-	11	_	ns
Rise Time	t _r	I _D = 35 A		_	72	-	
Turn–Off Delay Time	t _{d(off)}	-		_	24	_	
Fall Time	t _f	1		_	8	_	
DRAIN-SOURCE DIODE CHARACTER	RISTICS	-					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$	-	0.87	1.2	V
		I _S = 35 A	T _J = 125°C	-	0.75	_	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, dI_S/dt = 100 A/\mu s,$ $I_S = 35 A$		-	36	_	ns
Charge Time	ta			_	17	_	1
Discharge Time	t _b			_	18	_	1
Reverse Recovery Charge	Q _{RR}			_	16	_	nC

5. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

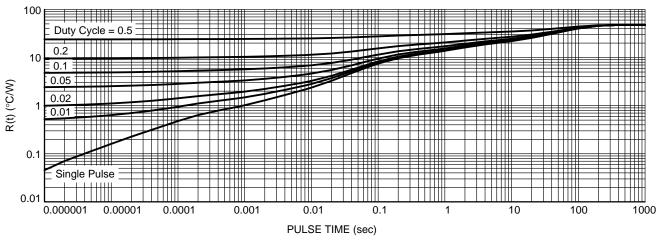
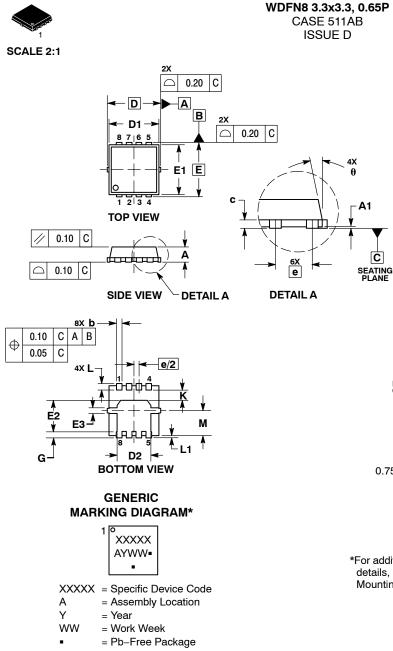


Figure 13. Thermal Characteristics


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVTFS005N04CTAG	05NC	WDFN8 3.3x3.3, 0.65P (Pb-Free)	1500 / Tape & Reel
NVTFWS005N04CTAG	05NW	WDFNW8 3.3x3.3, 0.65P (Full–Cut µ8FL WF) (Pb–Free, Wettable Flanks)	1500 / Tape & Reel

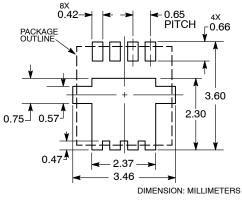
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DURSEM

DATE 23 APR 2012

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

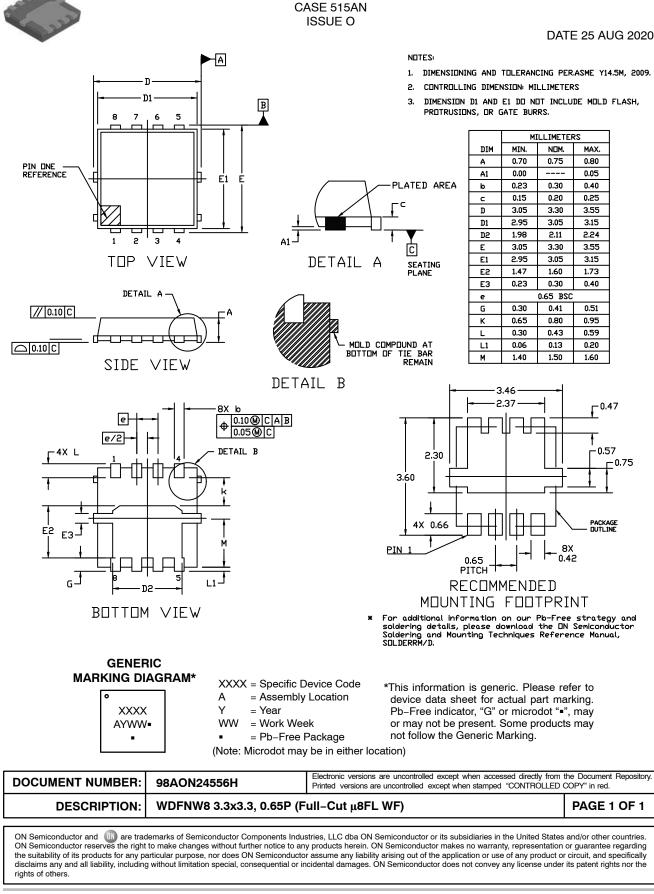
NOTES:


C

LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 1. 2.

3.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
c	0.15	0.20	0.25	0.006	0.008	0.010	
D	;	3.30 BSC		0	.130 BSC	~	
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
Е	;	3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е	0.65 BSC			0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
Г	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: WDFN8 3.3X3.3, 0.65P PAG			PAGE 1 OF 1			
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.						

WDFNW8 3.3x3.3, 0.65P (Full-Cut µ8FL WF)

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales