

ZXMN6A25N8 60V SO8 N-channel enhancement mode MOSFET

Summary

V _{(BR)DSS}	R _{DS(on)} (Ω)	I _D (A)
60	0.050 @ V _{GS} =10V	7.0
	0.070 @ V _{GS} =4.5V	

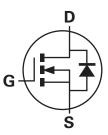
Description

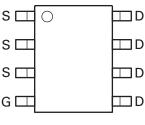
This new generation Trench MOSFET from Zetex features low on-resistance and fast switching, making it ideal for high efficiency power management applications.

Features

- Low on-resistance
- Fast switching speed
- Low gate drive
- SO8 package

Applications


- DC-DC Converters
- Power management functions
- Disconnect switches
- Motor control


Ordering information

Device	Reel size	Tape width	Quantity
	(inches)	(mm)	per reel
ZXMN6A25N8TA	7	12	500

Device marking

ZXMN6A25

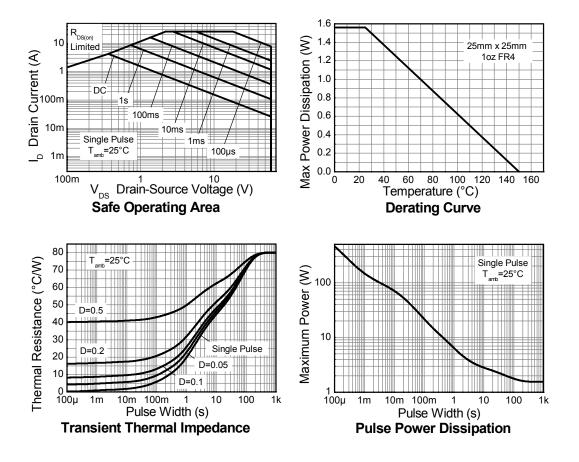
Top view

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Drain-Source voltage	V _{DSS}	60	V
Gate-Source voltage	V _{GS}	± 20	V
Continuous Drain current @ V_{GS} = 10V; T _A =25°C (b)	Ι _D	5.7	А
@ V _{GS} = 10V; T _A =70°C ^(D)		4.5	
@ V _{GS} = 10V; T _A =25°C ^(a)		4.3	
@ V _{GS} = 10V; T _L =25°C ^{(a)(d)}		7.0	
Pulsed Drain current ^(C)	I _{DM}	25.7	А
Continuous Source current (Body diode) ^(b)	I _S	4.1	А
Pulsed Source current (Body diode) (c)	I _{SM}	25.7	А
Power dissipation at $T_A = 25^{\circ}C^{(a)}$	PD	1.56	W
Linear derating factor		12.5	mW/°C
Power dissipation at T _A =25°C ^(b) Linear derating factor	PD	2.8 22.2	W mW/°C
Power dissipation at T _L =25°C ^(d) Linear derating factor	PD	4.14 33.1	W mW/°C
Operating and storage temperature range	Tj, T _{stg}	-55 to 150	°C

Thermal resistance

Parameter	Symbol	Value	Unit
Junction to ambient (a)	$R_{\theta JA}$	80	°C/W
Junction to ambient ^(b)	R _{0JA}	45	°C/W
Junction to lead ^(d)	$R_{ ext{ heta}JL}$	30.2	°C/W

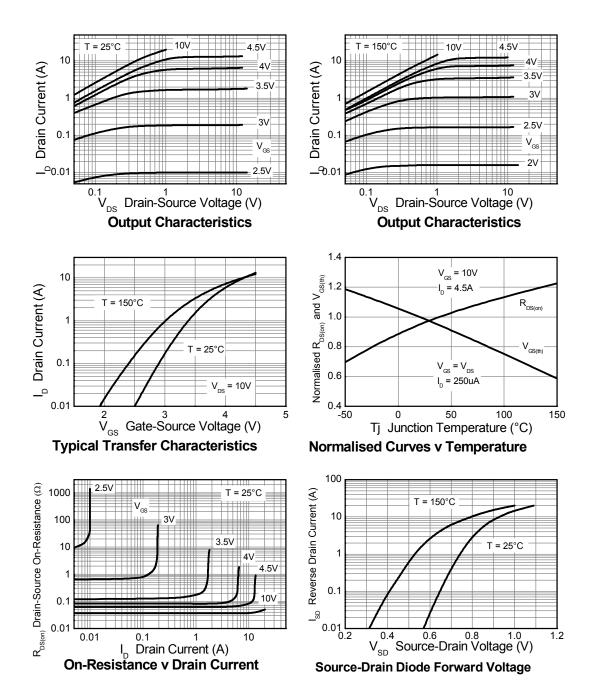

NOTES:

(a) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

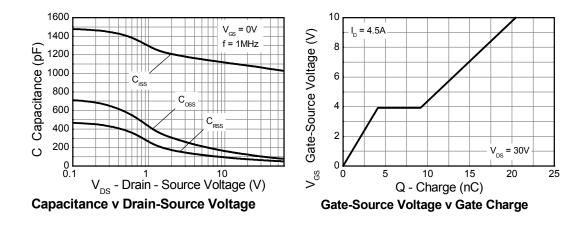
(b) Mounted on FR4 PCB measured at t ≤ 10 sec.
(c) Repetitive rating on 25mm x 25mm FR4 PCB, D=0.02, pulse width 300us – pulse width limited by maximum junction temperature.
(d) Thereacted is the second se

(d) Thermal resistance from junction to solder-point (at the end of the drain lead).

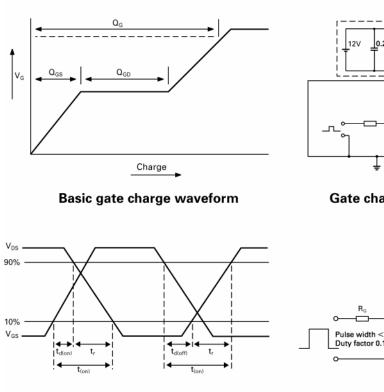
Thermal characteristics

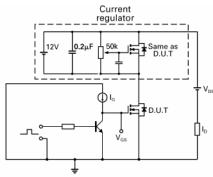

Symbol	Min.	Тур.	Max.	Unit	Conditions
• •					-
V _{(BR)DSS}	60			V	I _D =250μΑ, V _{GS} =0V
I _{DSS}			1.0	μA	V _{DS} =60V, V _{GS} =0V
I _{GSS}			100	nA	V _{GS} =±20V, V _{DS} =0V
V _{GS(th)}	1		3	V	$I_D=250\mu A, V_{DS}=V_{GS}$
R _{DS(on)}			0.050 0.070	Ω	V _{GS} = 10V, I _D = 3.6A V _{GS} = 4.5V, I _D = 3.0A
g _{fs}		10.2		S	V _{DS} = 15V, I _D = 4.5A
C _{iss}		1063		pF	
C _{oss}		104		pF	V _{DS} = 30V, V _{GS} =0V
C _{rss}		64		pF	f=1MHz
t _{d(on)}		3.8		ns	
tr		4.0		ns	V _{DD} = 30V, V _{GS} = 10V
t _{d(off)}		26.2		ns	I _D = 1A R _G ≅ 6.0Ω,
t _f		10.6		ns	$-R_{\rm G} = 0.022,$
Qg		11.0		nC	V _{DS} = 30V, V _{GS} = 5V I _D = 4.5A
Qg		20.4		nC	
		4.1		nC	V _{DS} = 30V, V _{GS} = 10V
Q _{gd}		5.1		nC	I _D = 4.5A
				<u>I</u>	J
V _{SD}		0.85	0.95	V	I _S = 5.5A,V _{GS} =0V
t _{rr}		22.0		ns	I _S = 2.2A,di/dt=100A/μs
	V(BR)DSS IDSS IDSS IGSS VGS(th) RDS(on) Gfs Ciss Coss Crss Crss td(on) tr td(off) tf Qg Qg Qg Qg Qg VSD	V(BR)DSS 60 IDSS 1 IGSS 1 VGS(th) 1 RDS(on) 1 Øfs 1 Ciss 1 Coss 1 Coss 1 Vd(on) 1 td(on) 1 tr 1 Qg 1 Qg 1 Qg 1 Qg 1 VSD 1	V(BR)DSS 60 IDSS - IGSS - VGS(th) 1 RDS(on) - gfs 10.2 Ciss 1063 Coss 104 Crss 64 td(on) 3.8 tr 4.0 td(off) 26.2 tf 10.6 Qg 20.4 Qgs 4.1 Qgd 5.1	V(BR)DSS 60 1.0 IDSS 1.0 1.0 IGSS 100 0.050 VGS(th) 1 3 RDS(on) 0.050 0.070 9fs 10.2 0.050 Ciss 1063 0.050 Coss 104 0.050 Crss 64 0.050 td(on) 3.8 0.050 tr 4.0 0.050 tqg 11.0 0.050 Qg 26.2 0.000 tq 10.6 0.000 Qg 20.4 0.000 Qg 20.4 0.000 Qg 5.1 0.000 VSD 0.85 0.95	$\begin{array}{ c c c c c c } V_{(BR)DSS} & 60 & & & V \\ \hline V_{(BR)DSS} & 60 & & & 1.0 & \mu A \\ \hline I_{DSS} & & & 100 & nA \\ \hline V_{GS}(th) & 1 & & 3 & V \\ \hline R_{DS}(on) & & & 0.050 & \Omega \\ 0.070 & & 0.070 & \Omega \\ \hline gfs & & 10.2 & & S \\ \hline C_{iss} & & 1063 & & pF \\ \hline C_{oss} & & 104 & & pF \\ \hline C_{rss} & & 64 & & pF \\ \hline C_{rss} & & 64 & & pF \\ \hline t_{d}(on) & & 3.8 & & ns \\ t_r & & 4.0 & & ns \\ t_f & & 10.6 & & ns \\ t_f & & 10.6 & & ns \\ Q_g & & 11.0 & & nC \\ \hline Q_{gs} & & 4.1 & & nC \\ \hline Q_{gd} & & 5.1 & & nC \\ \hline V_{SD} & & 0.85 & 0.95 & V \\ \hline \end{array}$

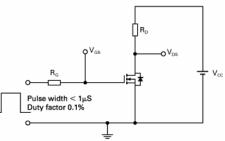
Electrical characteristics (at T_{amb} = 25°C unless otherwise stated)


NOTES:

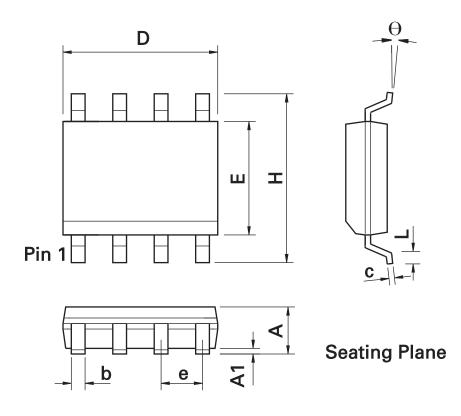
(*) Measured under pulsed conditions. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$. (†)Switching characteristics are independent of operating junction temperature. (‡)For design aid only, not subject to production testing


Typical characteristics


Typical characteristics


Test circuits

Switching time waveforms



Gate charge test circuit

Switching time test circuit

Package outline SO8

SO8 Package Information

DIM	Inc	hes	Millin	neters	DIM	Inches		Inches Millimeters		neters
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.	
А	0.053	0.069	1.35	1.75	е	0.050	BSC	1.27	BSC	
A1	0.004	0.010	0.10	0.25	b	0.013	0.020	0.33	0.51	
D	0.189	0.197	4.80	5.00	с	0.008	0.010	0.19	0.25	
н	0.228	0.244	5.80	6.20	U	0°	8°	0°	8°	
E	0.150	0.157	3.80	4.00	h	0.010	0.020	0.25	0.50	
L	0.016	0.050	0.40	1.27	-	-	-	-	-	

Note: Controlling dimensions are in inches. Approximate dimensions are provided in millimeters

Definitions

Product change

Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer

The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support

Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:

- A. Life support devices or systems are devices or systems which:
- 1. are intended to implant into the body
- or

В.

2. support or sustain life and whose failure to perform when properly used in accordance with instructions

for use provided in the labeling can be reasonably expected to result in significant injury to the user.

A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to

cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction

The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions

All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office.

Quality of product

Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.

To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork

Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels. ESD (Electrostatic discharge)

Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance

Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:							
"Preview"	Future device intended for pro	Future device intended for production at some point. Samples may be available					
"Active"	Product status recommended	Product status recommended for new designs					
"Last time buy (LTB)"	Device will be discontinued ar	nd last time buy period and deliver	y is in effect				
"Not recommended for new design	ns" Device is still in production to	support existing designs and prod	uction				
"Obsolete"	Production has been discontir	Production has been discontinued					
Datasheet status key:							
"Draft version"	This term denotes a very early	v datasheet version and contains I	highly provisional				
	information, which may chang	e in any manner without notice.					
"Provisional version"	This term denotes a pre-release	This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance.					
	However, changes to the test	conditions and specifications may	occur, at any time and without notice.				
"Issue"	This term denotes an issued of	latasheet containing finalized spe	cifications. However, changes to				
	specifications may occur, at a	ny time and without notice.					
Zetex sales offices							
Europe	Americas	Asia Pacific	Corporate Headquarters				
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc				
Kustermann-Park	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton				
Balanstraße 59	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL				
	USA	Hong Kong	United Kingdom				
_							
Germany			Childer Hilgdon				
	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444				
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222	0	5				

© 2008 Published by Zetex Semiconductors plc