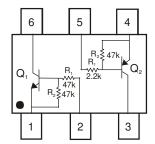


DUAL NPN/PNP PRE-BIASED TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Surface Mount Package Suited for Automated Assembly
- Simplifies Circuit Design and Reduces Board Space
- Lead Free/RoHS Compliant (Note 1)
- "Green" Device (Note 2)


Mechanical Data

- Case: SOT-563
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish Matte Tin Finish annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 4 Ordering Information: See Page 4
- Weight: 0.005 grams (approximate)

Reference	Device Type	R1(Nom)	R2(Nom)
Q ₁	NPN	47kΩ	47kΩ
Q ₂	PNP	2.2 kΩ	47kΩ

SOT-563

Maximum Ratings, Total Device @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3)	P_{D}	300	mW
Thermal Resistance, Junction to Ambient Air (Note 3)	$R_{ hetaJA}$	417	°C/W
Operating and Storage Temperature Range	T_j , T_{STG}	-55 to +150	°C

Maximum Ratings, Pre-Biased NPN Transistor, Q₁ @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	50	V
Emitter-Base Voltage	V_{EBO}	10	V
Input Voltage	V _{IN}	-10 to +40	V
Output Current (DC)	Io	100	mA
Peak Collector Current	I _{CM}	100	mA

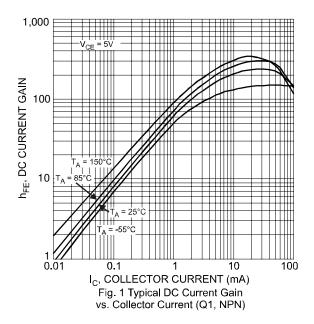
Maximum Ratings, Pre-Biased PNP Transistor, Q₂ @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage	V _{CEO}	-50	V
Emitter-Base Voltage	V _{EBO}	-10	V
Input Voltage	V _{IN}	-12 to +5	V
Output Current (DC)	I _O	-100	mA
Peak Collector Current	I _{CM}	-100	mA

Notes:

- No purposefully added lead.
- Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.

 Device mounted on FR-4 PCB; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.



Electrical Characteristics, Pre-Biased NPN Transistor, Q₁ @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Cut-Off Current	I _{CBO}	-	-	100	nA	$V_{CB} = 50V, I_{E} = 0A$
Collector-Emitter Cut-Off Current	I _{CEO}	1	1	1 50	μΑ	$V_{CE} = 30V, I_{B} = 0A$ $V_{CE} = 30V, I_{B} = 0A, T_{A} = 150^{\circ}C$
Emitter-Base Cut-Off Current	I _{EBO}	-	-	90	μΑ	$V_{EB} = 5V$, $I_C = 0A$
Input Voltage	$V_{I(off)}$	-	1.2	0.8	V	$V_{CE} = 5V, I_{O} = 100 \mu A$
Imput voltage	$V_{I(on)}$	3	1.6	-	V	$V_{CE} = 0.3V, I_{O} = 2mA$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	-	-	0.15	٧	$I_C/I_B = 10mA/0.5mA$
DC Current Gain	h _{FE}	80	-	-	-	$V_{CE} = 5V$, $I_C = 5mA$
Input Resistance	R ₁	33	47	61	kΩ	-
Resistance Ratio	R ₂ /R ₁	8.0	1	1.2	-	-
Collector Capacitance	Cc	-	-	2.5	pF	$V_{CB} = 10V, I_{E} = 0, f = 1MHz$

Electrical Characteristics, Pre-Biased PNP Transistor, Q₂ @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Cut-Off Current	I _{CBO}		-	-100	nA	$V_{CB} = -50V, I_{E} = 0A$
Collector-Emitter Cut-Off Current	I _{CEO}	-	-	-1 -50	μΑ	$V_{CE} = -30V, I_{B} = 0A$ $V_{CE} = -30V, I_{B} = 0A, T_{A} = 150^{\circ}C$
Emitter-Base Cut-Off Current	I _{EBO}	-	-	-180	μΑ	$V_{EB} = -5V, I_{C} = 0A$
Input Voltage	$V_{I(off)}$	-	-0.6	-0.5	V	$V_{CC} = -5V$, $I_{O} = -100 \mu A$
input voitage	$V_{I(on)}$	-1.1	-0.75	-	V	$V_0 = -0.3V, I_0 = -5mA$
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	-	-	-0.1	V	$I_{C}/I_{B} = -5mA/-0.25mA$
DC Current Gain	h _{FE}	100	-	-	-	$V_{CE} = -5V, I_{C} = -10mA$
Input Resistance	R₁	1.54	2.2	2.86	kΩ	-
Resistance Ratio	R ₂ /R ₁	17	21	26	-	-
Collector Capacitance	Cc	-	-	3.0	pF	$V_{CB} = -10V$, $I_{E} = 0$, $f = 1MHz$

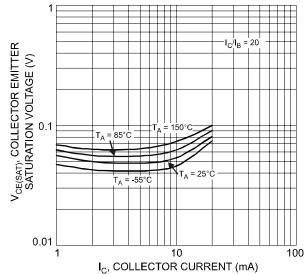
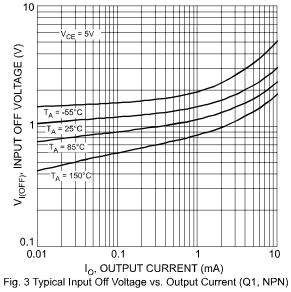
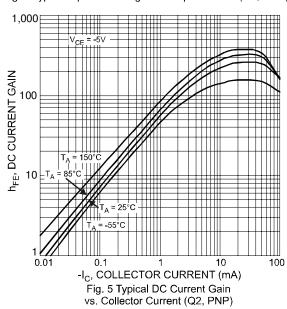




Fig. 2 Typical Collector-Emitter Saturation Voltage vs. Collector Current (Q1, NPN)

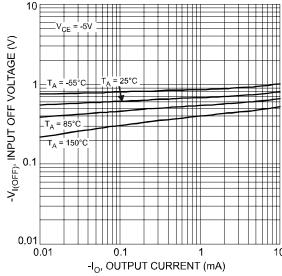


Fig. 7 Typical Input Off Voltage vs. Output Current (Q2, PNP)

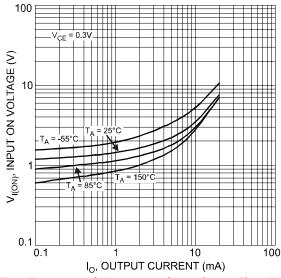


Fig. 4 Typical Input ON Voltage vs. Output Current (Q1, NPN)

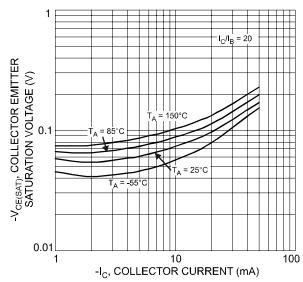


Fig. 6 Typical Collector-Emitter Saturation Voltage vs. Collector Current (Q2, PNP)

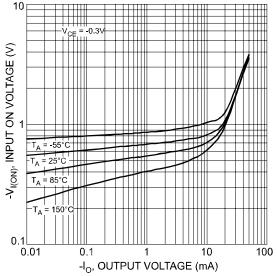
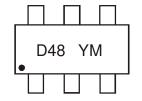


Fig. 8 Typical Input ON Voltage vs. Output Current (Q2, PNP)



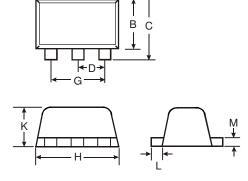
Ordering Information (Note 4)

Device	Packaging	Shipping
DEMD48-7	SOT-563	3000/Tape & Reel

4. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

D48 = Product Type Marking Code YM = Date Code Marking


Y = Year ex: U = 2007 M = Month ex: 9 = September

Date Code Kev

- and dodd . no						
Year	2007	2008	2009	2010	2011	2012
Code	U	V	W	Χ	Υ	Z

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Package Outline Dimensions

SOT-563							
Dim	Min	Max	Тур				
Α	0.15	0.30	0.20				
В	1.10	1.25	1.20				
C	1.55	1.70	1.60				
D	-	-	0.50				
G	0.90	1.10	1.00				
Η	1.50	1.70	1.60				
K	0.55	0.60	0.60				
L	0.10	0.30	0.20				
М	0.10	0.18	0.11				
All	Dimens	ions in	mm				

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.