

http://onsemi.com

# N-Channel IGBT 600V, 20A, VCE(sat);1.45V TO-3PF-3L with Low VF Switching Diode

#### **Features**

- IGBT V<sub>CE</sub>(sat)=1.45V typ. (I<sub>C</sub>=20A, V<sub>GE</sub>=15V)
- IGBT t<sub>f</sub>=67ns typ.
- Diode  $V_F=1.5V$  typ. ( $I_F=20A$ )
- Diode  $t_{rr}$ =70ns typ.

- Adaption of full isolation type package
- Enhansment type
- Maxium junction temperature Tj=175°C

#### **Applications**

• Power factor correction of white goods appliance

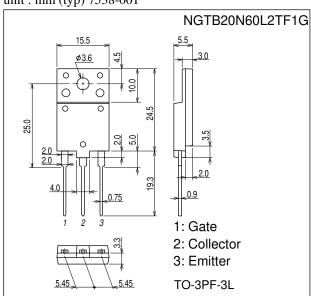
• General purpose inverter

#### **Specifications**

**Absolute Maximum Ratings** at Ta = 25°C, Unless otherwise specified

| Parameter                    | Symbol           | Conditions                                        |               | Ratings | Unit |
|------------------------------|------------------|---------------------------------------------------|---------------|---------|------|
| Collector to Emitter Voltage | VCES             |                                                   |               | 600     | V    |
| Gate to Emitter Voltage      | V <sub>GES</sub> |                                                   |               | ±20     | V    |
| Collector Current (DC)       | 1 +4             | Limited by Tjmax                                  | @ Tc=25°C *2  | 40      | Α    |
|                              | IC*1             |                                                   | @ Tc=100°C *2 | 20      | Α    |
| Collector Current (Pulse)    | ICP              | Pulse width Limited by Tjmax                      |               | 80      | Α    |
| Diode Average Output Current | lo               |                                                   |               | 20      | Α    |
| Allowable Power Dissipation  | PD               | Tc=25°C (Our ideal heat dissipation condition) *2 |               | 64      | W    |

Note: \*1 Collector Current is calculated from the following formula.


 $I_{\mathbf{C}}(\mathsf{Tc}) = \frac{\mathsf{Tjmax} - \mathsf{Tc}}{\mathsf{Tc}}$ 

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminium.

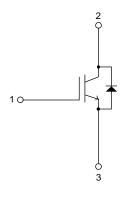
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### **Package Dimensions**

unit: mm (typ) 7538-001



#### **Ordering & Package Information**


| Device          | Package            | Shipping          | note    |
|-----------------|--------------------|-------------------|---------|
| NGTB20N60L2TF1G | TO-3PF-3L<br>SC-94 | 30<br>pcs. / tube | Pb-Free |

#### Marking



#### **Electrical Connection**

Continued on next page.



<sup>\*2</sup> Our condition is radiation from backside.

Continued from preceding page.

| Parameter            | Symbol | Conditions | Ratings      | Unit |
|----------------------|--------|------------|--------------|------|
| Junction Temperature | Tj     |            | 175          | °C   |
| Storage Temperature  | Tstg   |            | - 55 to +175 | °C   |

# **Electrical Characteristics** at Ta = 25°C, Unless otherwise specified

| Parameter                               | Symbol               | Conditions                                                                                                                           | Ratings |      | Unit |       |
|-----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|-------|
| Parameter                               | Symbol               | Conditions                                                                                                                           | min     | typ  | max  | Utill |
| Collector to Emitter Breakdown Voltage  | V(BR)CES             | I <sub>C</sub> =500μA, V <sub>GE</sub> =0V                                                                                           | 600     |      |      | V     |
| Collector to Emitter Cut off Current    | ICES                 | V <sub>CE</sub> =600V, V <sub>GE</sub> =0V T <sub>c</sub> =25°C T <sub>c</sub> =150°C                                                |         |      | 10   | μΑ    |
| Collector to Emitter Cut on Current     |                      |                                                                                                                                      |         |      | 1    | mA    |
| Gate to Emitter Leakage Current         | IGES                 | V <sub>GE</sub> =±20V, V <sub>CE</sub> =0V                                                                                           |         |      | ±100 | nA    |
| Gate to Emitter Threshold Voltage       | V <sub>GE</sub> (th) | V <sub>CE</sub> =20V, I <sub>C</sub> =250μA                                                                                          | 4.5     |      | 6.5  | ٧     |
| Collector to Emitter Seturation Valtage |                      | V <sub>GE</sub> =15V, I <sub>C</sub> =20A Tc=25°C                                                                                    |         | 1.45 | 1.65 | ٧     |
| Collector to Emitter Saturation Voltage | VCE (sat)            | Tc=150°C                                                                                                                             |         | 1.8  |      | ٧     |
| Diode Forward Voltage                   | VF                   | IF=20A                                                                                                                               |         | 1.5  |      | ٧     |
| Input Capacitance                       | Cies                 | V <sub>CE</sub> =20V,f=1MHz                                                                                                          |         | 2000 |      | pF    |
| Output Capacitance                      | Coes                 |                                                                                                                                      |         | 60   |      | pF    |
| Reverse Transfer Capacitance            | Cres                 |                                                                                                                                      |         | 50   |      | pF    |
| Turn-ON Delay Time                      | t <sub>d</sub> (on)  |                                                                                                                                      |         | 60   |      | ns    |
| Rise Time                               | t <sub>r</sub>       | V <sub>CC</sub> =300V,I <sub>C</sub> =20A<br>R <sub>G</sub> =30Ω,L=200μH<br>V <sub>GE</sub> =0V/15V, Vclamp=400V<br>See Fig.1, Fig.2 |         | 37   |      | ns    |
| Turn-ON Time                            | ton                  |                                                                                                                                      |         | 400  |      | ns    |
| Turn-OFF Delay Time                     | t <sub>d</sub> (off) |                                                                                                                                      |         | 193  |      | ns    |
| Fall Time                               | tf                   |                                                                                                                                      |         | 67   |      | ns    |
| Turn-OFF Time                           | toff                 |                                                                                                                                      |         | 281  |      | ns    |
| Total Gate Charge                       | Qg                   | V <sub>CE</sub> =300V, V <sub>GE</sub> =15V, I <sub>C</sub> =20A                                                                     |         | 84   |      | nC    |
| Gate to Emitter Charge                  | Qge                  |                                                                                                                                      |         | 16   |      | nC    |
| Gate to Collector "Miller" Charge       | Qgc                  |                                                                                                                                      |         | 37   |      | nC    |
| Diode Reverse Recovery Time             | t <sub>rr</sub>      | $I_F=10A$ , $di/dt=100A/\mu s$ , $V_{CC}=50V$ See Fig.3                                                                              |         | 70   |      | ns    |

# Thermal Characteristics at Ta = 25°C, Unless otherwise specified

| Parameter                                 | Symbol          | Conditions                                       | Ratings | Unit  |
|-------------------------------------------|-----------------|--------------------------------------------------|---------|-------|
| Thermal Resistance IGBT (junction- case)  | Rth(j-c)(IGBT)  | Tc=25°C (our ideal heat dissipation condition)*2 | 2.33    | °C /W |
| Thermal Resistance Diode (junction- case) | Rth(j-c)(Diode) | Tc=25°C (our ideal heat dissipation condition)*2 | 2.36    | °C /W |
| Thermal Resistance (junction- atmosphere) | Rth(j-a)        |                                                  | 47.5    | °C /W |

Fig.1 Switching Time Test Circuit

Clamp Di
200µH
DUT
VCC

**Fig.2 Timing Chart** 

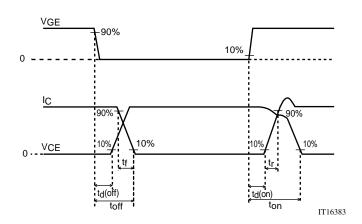
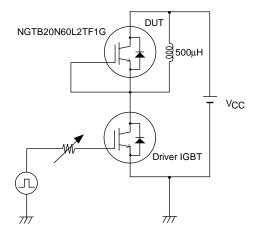
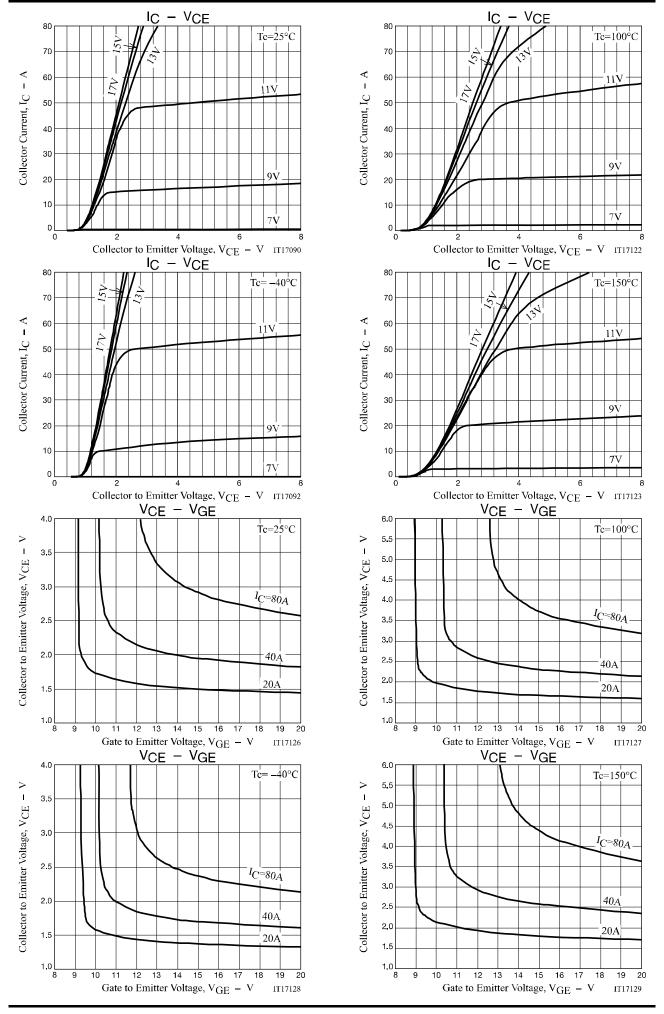
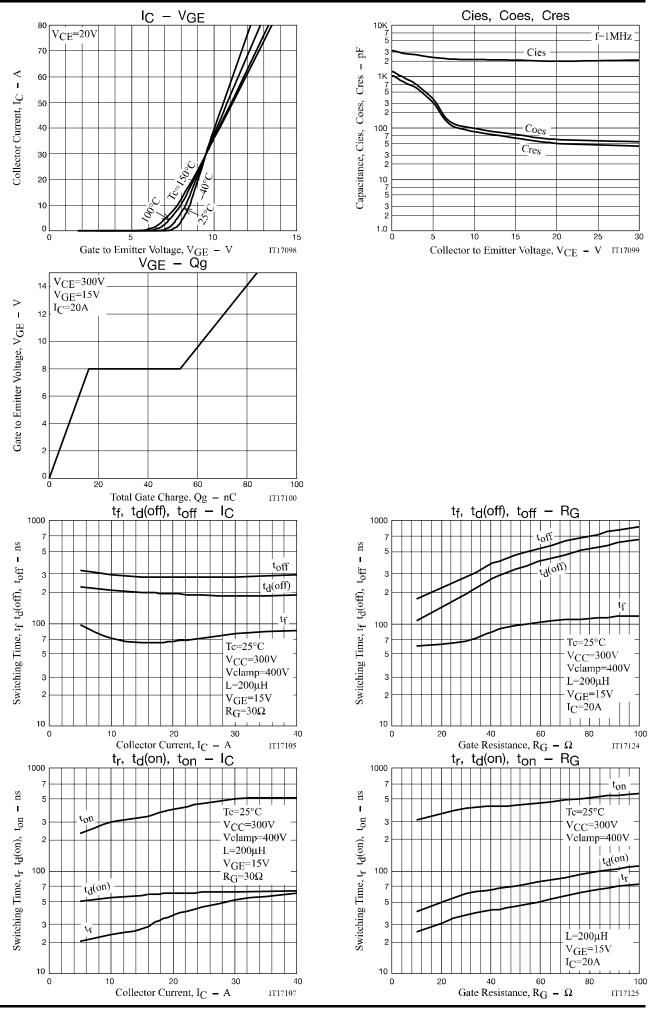
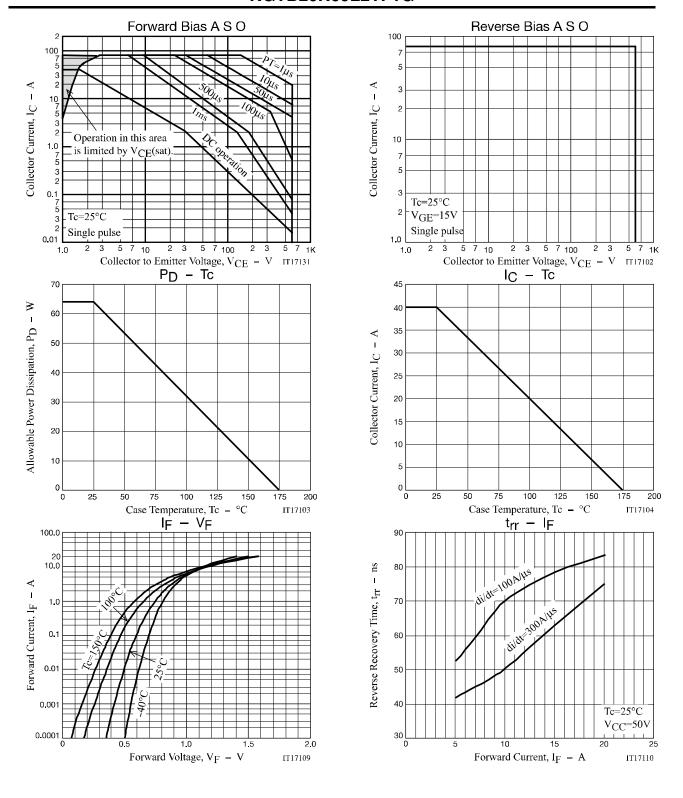
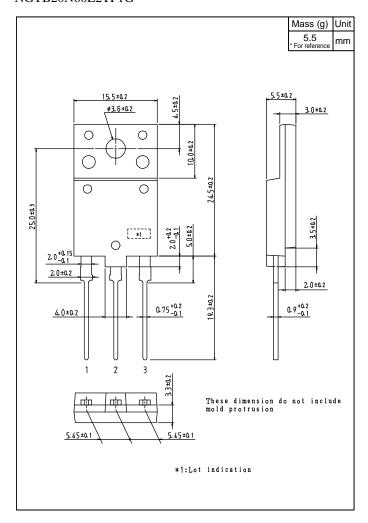







Fig.3 Reverse Recovery Time Test Circuit










#### **Outline Drawing**

NGTB20N60L2TF1G



ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa