Order number: MC100ES6130 Rev 1, 5/2004 SEMICONDUCTOR TECHNICAL DATA

2.5/3.3V 1:4 PECL Clock Driver with 2:1 Input MUX

The MC100ES6130 is a 2.5 GHz differential PECL 1:4 fanout buffer. The ES6130 offers a wide operating range of 2.5 V and 3.3 V and also features a 2:1 input MUX which is ideal for redundant clock switchover applications. This device also includes a synchronous enable pin that forces the outputs into a fixed logic state. Enable or disable state is initiated only after the outputs are in a LOW state to eliminate the possibility of a runt clock pulse.

Features

- 2 GHz maximum output frequency
- 25 ps maximum output-to-output skew
- 150 ps part-to-part skew
- 350 ps typical propagation delay
- 2:1 differential MUX input
- 2.5 / 3.3 V operating range
- LVPECL and HSTL input compatible
- 16-lead TSSOP package
- Temperature range -40°C to +85°C

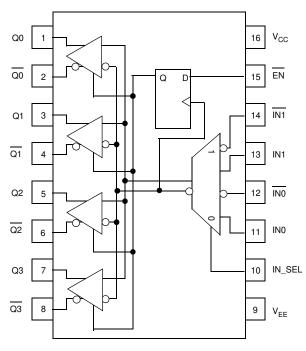


Figure 1. 16-Lead Pinout (Top View) and Logic Diagram

MC100ES6130

ORDERING INFORMATION

Device	Package
MC100ES6130DT	TSSOP-16
MC100ES6130DTR2	TSSOP-16

Freescale Semiconductor, Inc.

MC100ES6130

Table 1. Pin Description

Number	Name	Description
1, 2, 3, 4, 5, 6, 7, 8	Q0 to Q3 Q0 to Q3	LVPECL differential outputs: Terminate with 50Ω to V_{CC} -2V. For single-ended applications, terminate the unused output with 50Ω to V_{CC} -2V.
9	V _{EE}	Negative power supply: For LVPECL applications, connect to GND.
10	IN_SEL	LVPECL compatible 2:1 mux input signal select: When IN_SEL is LOW, the IN0 input pair is selected. When IN_SEL is HIGH, the IN1 input pair is selected. Includes a $75k\Omega$ pulldown. Default state is LOW and IN0 is selected.
11, 12, 13, 14	IN0, <u>IN0</u> IN1, <u>IN1</u>	LVPECL, HSTL clock or data inputs. Internal 75k Ω pulldown resistors on IN0 and IN1. Internal 75k Ω pullup and 75k Ω pulldown resistors on IN0, IN1. IN0, IN1 default condition is V _{CC} /2 when left floating. IN0, IN1 default condition is LOW when left floating.
15	ĒN	LVPECL compatible synchronous enable: When $\overline{\text{EN}}$ goes HIGH, Q_{OUT} will go LOW and $\overline{Q}_{\text{OUT}}$ will go HIGH on the next LOW input clock transition. Includes a 75k Ω pulldown. Default state is LOW when left floating. The internal latch is clocked on the falling edge of the input (IN0, IN1).
16	V _{CC}	Positive power supply: Bypass with 0.1μF//0.01μF low ESR capacitors.

Table 2. Truth Table¹

IN0	IN1	IN_SEL	EN	Q
L	Х	L	L	L
Н	Х	L	L	Н
Х	L	Н	L	L
Х	Н	Н	L	L
Z	Х	L	Н	L
Х	Z	Н	Н	L

^{1.} Z = HIGH to LOW Transition X = Don't Care

Table 3. General Specifications

-				
Character	Value			
Internal Input Pulldown Resistor	75 kΩ			
Internal Input Pullup Resistor	75 kΩ			
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2000 V > 200 V > 1500 V		
θ_{JA} Thermal Resistance (Junction-to-Ambient)	0 LFPM, 16 TSSOP 500 LFPM, 16 TSSOP	138°C/W 108°C/W		

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 4. Absolute Maximum Ratings¹

Symbol	Rating	Conditions	Rating	Units	
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V	
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} - 0.3	V V	
l _{out}	Output Current	Continuous Surge	50 100	mA mA	
T _A	Operating Temperature Range		-40 to +85	°C	
T _{STG}	Storage Temperature Range		-65 to +150	°C	

^{1.} Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not

Table 5. DC Characteristics ($V_{CC} = 0 \text{ V}$, $V_{EE} = -2.5 \text{ V} \pm 5\%$ or $V_{CC} = 2.5 \text{ V} \pm 5\%$, $V_{EE} = 0 \text{ V}$)

Symbol	Characteristic		−40°C			Unit		
	Characteristic	Min	Тур	Max	Min	Тур	Max	Onit
I _{EE}	Power Supply Current		45	70		45	70	mA
V _{OH}	Output HIGH Voltage ¹	V _{CC} – 1250	V _{CC} – 990	V _{CC} – 800	V _{CC} – 1200	V _{CC} – 960	V _{CC} – 750	mV
V _{OL}	Output LOW Voltage ¹	V _{CC} – 2000	V _{CC} – 1550	V _{CC} – 1150	V _{CC} – 1925	V _{CC} – 1630	V _{CC} – 1200	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} – 1165		V _{CC} – 880	V _{CC} – 1165		V _{CC} – 880	mV
V _{IL}	Input LOW Voltage	V _{CC} – 1810		V _{CC} – 1475	V _{CC} – 1810		V _{CC} – 1475	mV
V _{PP}	Differential Input Voltage ²	0.12		1.3	0.12		1.3	٧
V _{CMR}	Differential Cross Point Voltage ³	V _{EE} + 0.2		V _{CC} – 1.0	V _{EE} + 0.2		V _{CC} – 1.0	٧
I _{IN}	Input Current			±150			±150	μА

- Output termination voltage $V_{TT} = 0 \text{ V}$ for $V_{CC} = 2.5 \text{ V}$ operation is supported but the power consumption of the device will increase. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

Table 6. DC Characteristics ($V_{CC} = 0 \text{ V}$, $V_{EE} = -3.8 \text{ to } 3.135 \text{ V}$ or $V_{CC} = 3.135 \text{ to } 3.8 \text{ V}$, $V_{EE} = 0 \text{ V}$)

Symbol	Characteristic		−40°C					
Syllibol		Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		48	70		48	70	mA
V _{OH}	Output HIGH Voltage ¹	V _{CC} – 1150	V _{CC} – 1020	V _{CC} – 800	V _{CC} – 1200	V _{CC} – 970	V _{CC} – 750	mV
V _{OL}	Output LOW Voltage ¹	V _{CC} - 1950	V _{CC} – 1620	V _{CC} – 1250	V _{CC} – 2000	V _{CC} – 1680	V _{CC} – 1300	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} – 1165		V _{CC} – 880	V _{CC} – 1165		V _{CC} – 880	mV
V _{IL}	Input LOW Voltage	V _{CC} – 1810		V _{CC} – 1475	V _{CC} – 1810		V _{CC} – 1475	mV
V _{PP}	Differential Input Voltage ²	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ³	V _{EE} + 0.2		V _{CC} - 1.1	V _{EE} + 0.2		V _{CC} – 1.1	V
I _{IN}	Input Current			±150			±150	μΑ

- Output termination voltage $V_{TT} = 0 \text{ V}$ for $V_{CC} = 2.5 \text{ V}$ operation is supported but the power consumption of the device will increase. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.
- V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the VPP (DC) specification.

V_{CMR} (DC) is the cross point of the differential input signal. Functional operation is obtained when the cross point is within the V_{CMR} (DC) range and the input swing lies within the $V_{\mbox{\footnotesize{PP}}}$ (DC) specification.

Freescale Semiconductor, Inc.

MC100ES6130

Table 7. AC Characteristics ($V_{CC} = 0 \text{ V}, V_{EE} = -3.8 \text{ V} \text{ to } -2.375 \text{ V}; V_{CC} = 2.375 \text{ to } 3.8 \text{ V}, V_{EE} = 0 \text{ V}$)¹

Symbol		−40°C			25°C			85°C			
	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency	2			2			2			GHz
t _{PLH} / t _{PHL}	Propagation Delay to Output Differential CLK to Q, Q	300	340	450	300	350	450	300	350	475	ps
t _{SKEW}	Skew ² output-to-output part-to-part		15	25 125		15	25 150		15	25 150	ps ps
t _{JITTER}	Cycle-to-Cycle Jitter RMS (1σ)			1			1			1	ps
V_{PP}	Minimum Input Swing	200		1200	200		1200	200		1200	mV
V _{CMR}	Differential Cross Point Voltage	V _{EE} + 0.2		V _{CC} – 1.2	V _{EE} + 0.2		V _{CC} – 1.2	V _{EE} + 0.2		V _{CC} – 1.2	٧
t _r / t _f	Output Rise/Fall Times (20% – 80% @ 50 MHz)	70		225	70		250	70		275	ps

- . Measured using a 750 mV source, 50% Duty Cycle clock source. All loading with 50 ohms to V_{CC} –2.0V.
- 2. Skew is measured between outputs under identical transitions.

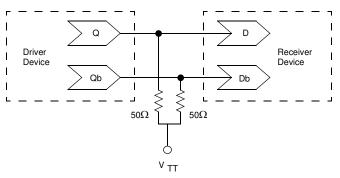
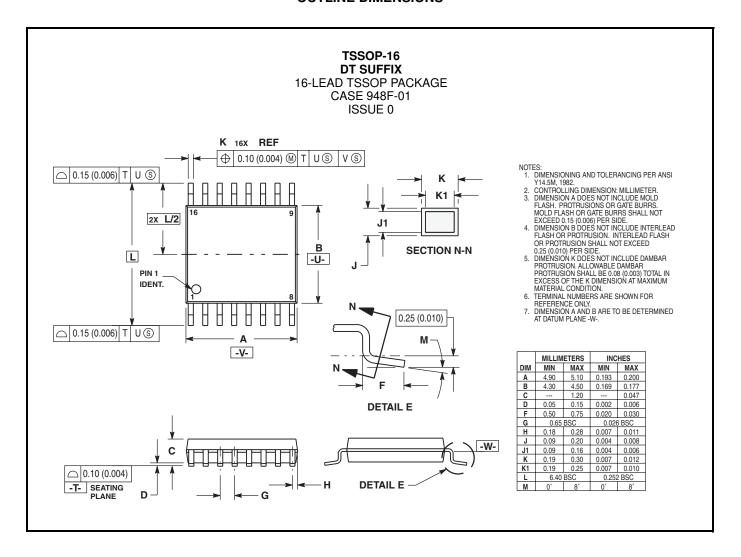



Figure 2. Typical Termination for Output Driver and Device Evaluation

OUTLINE DIMENSIONS

NOTES

NOTES

Freescale Semiconductor, Inc.

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners.

© Motorola, Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

MC100ES6130