Power MOSFET 30 V, 26 A, Single N-Channel, µ8FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

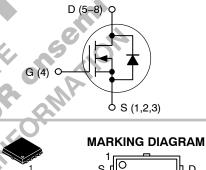
- DC–DC Converters
- · Point of Load
- · Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Param	neter		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	ID	7.3 5.3	A
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	PD	2.2	w
Continuous Drain Current R _{θJA} ≤ 10 s (Note 1)	Steady State	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	lD	10.3 7.5	A
Power Dissipation $R_{\theta JA} \le 10 \text{ s}$ (Note 1)		T _A = 25°C	PD	4.4	W
Continuous Drain Current $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	1 _D	4.6 3.3	A
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	PD	0.84	W
Continuous Drain Current $R_{\theta JC}$ (Note 1)		$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 85^{\circ}{\rm C}$	I _D	26 19	A
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	27.8	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	77	Α
Operating Junction and S	storage Ten	nperature	T _J , T _{stg}	–55 to +150	°C
Source Current (Body Die	ode)		۱ _S	23	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
$ \begin{array}{l} \mbox{Single Pulse Drain-to-So} \\ \mbox{(T}_J = 25^\circ C, \ V_{DD} = 50 \ V, \ V_{L} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	/ _{GS} = 10 V,	0,	E _{AS}	16.7	mJ
Lead Temperature for So (1/8" from case for 10 s)	Idering Pur	poses	ΤL	260	°C

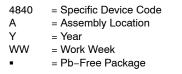
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
20 M	24 mΩ @ 10 V	26 A
30 V	36 mΩ @ 4.5 V	20 A

N-Channel MOSFET

WDFN8 (µ8FL) CASE 511AB

S C S C S C G C	O 4840 AYWW= •	
L		<u> </u>

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4840NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4840NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.5	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	57.5	
Junction-to-Ambient - Steady State (Note 4)	R_{\thetaJA}	149.2	
Junction-to-Ambient – (t \leq 10 s) (Note 3)	R_{\thetaJA}	28.7	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
OFF CHARACTERISTICS	•	•		•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J			17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$			1.0	μΑ
		$V_{\rm DS} = 24 \text{ V}$ $T_{\rm J} = 125^{\circ}\text{C}$			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA
ON CHARACTERISTICS (Note 5)			. 6	2		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.5		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			5.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V to } 11.5 \text{ V}$ $I_D = 20 \text{ A}$		15	24	mΩ
		$v_{GS} = 10 \text{ V to 11.3 V}$ $I_D = 10 \text{ A}$		15		

Forward Transconductance **g**FS

CHARGES AND CAPACITANCES

Input Capacitance	C _{iss}	0	580	pF
Output Capacitance	C _{oss}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V	140	
Reverse Transfer Capacitance	C _{rss}		80	
Total Gate Charge	Q _{G(TOT)}		5.5	nC
Threshold Gate Charge	Q _{G(TH)}		0.75	
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 20 A	2.2	
Gate-to-Drain Charge	Q _{GD}		2.8	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_D = 20 A	10.8	nC

 $V_{GS} = 4.5$

 $V_{DS} = 1.5 \text{ V}, \text{ I}_{D} = 20 \text{ A}$

I_D = 20 A

 I_{D}

= 10 A

28

25

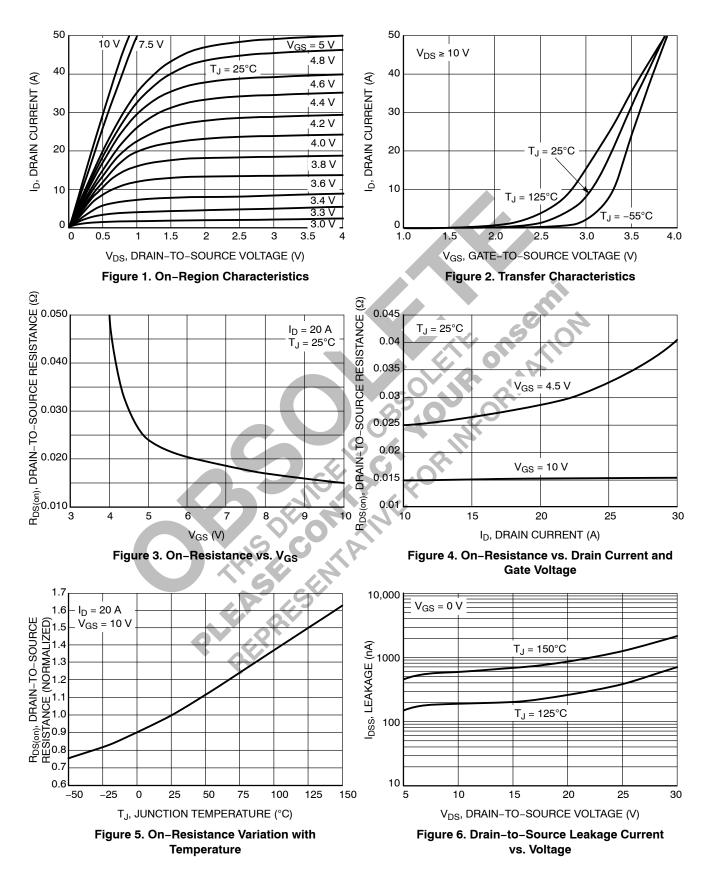
22

36

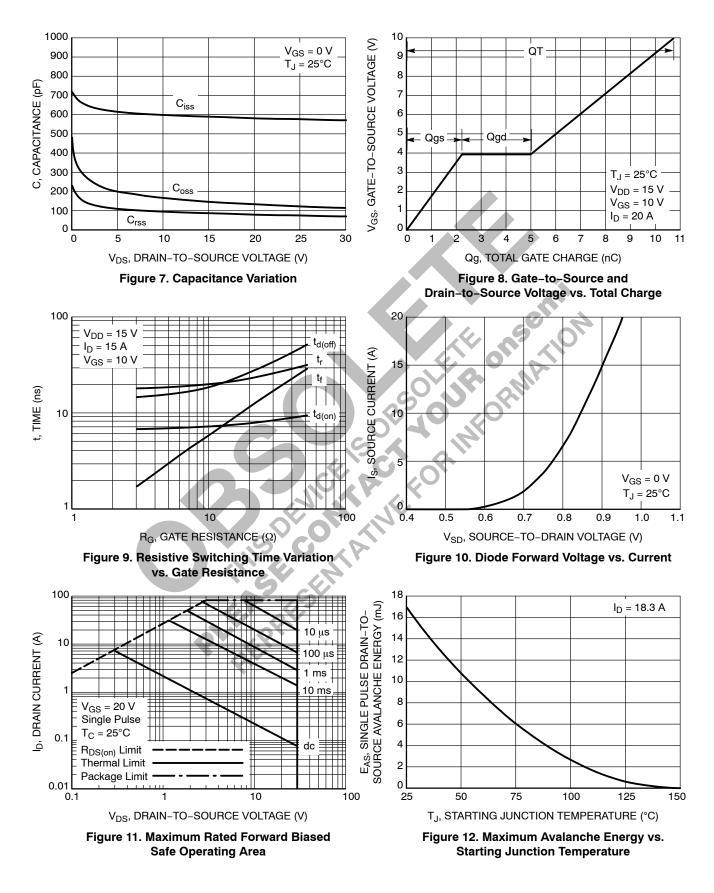
S

SWITCHING CHARACTERISTICS (Note 6)

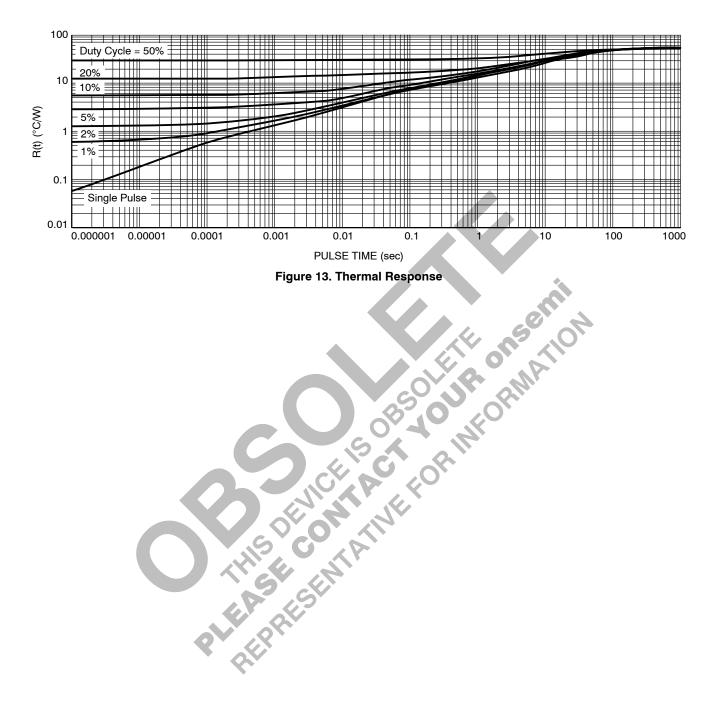
Turn-On Delay Time	t _{d(on)}		10.5	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	38.2	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D}$ = 15 A, $R_{\rm G}$ = 3.0 Ω	11.5	
Fall Time	t _f		2.6	


5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.

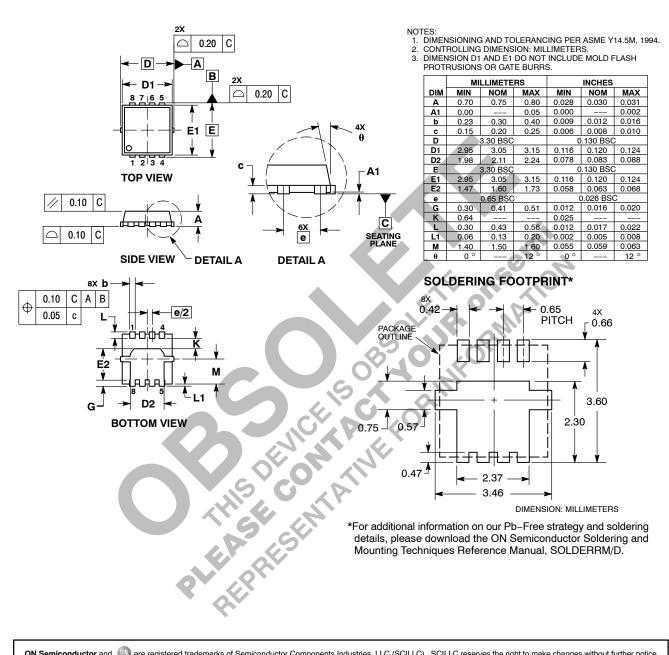
6. Switching characteristics are independent of operating junction temperatures.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

SWITCHING CHARACTERISTICS	Symbol	Test Cond	ition	Min	Тур	Max	Unit
	(Note 6)						
Turn-On Delay Time	t _{d(on)}				6.3		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			19.4		
Turn-Off Delay Time	t _{d(off)}				15.8		
Fall Time	t _f				1.7		
DRAIN-SOURCE DIODE CHARA	CTERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$			0.96	1.2	V
		$I_{\rm S} = 20 {\rm A}$ $T_{\rm J} = 125^{\circ}{\rm C}$		0.87			
Reverse Recovery Time	t _{RR}				12.5		ns
Charge Time	t _a	$V_{CC} = 0 V_{c} d_{1C}/d_{1}$	= 100 A/us.		7.7		
Discharge Time	t _b	$V_{GS} = 0 \text{ V}, \text{ d}_{IS}/\text{d}_t$ $I_S = 20$	Α		4.8		
Reverse Recovery Charge	Q _{RR}				4.4		nC
PACKAGE PARASITIC VALUES	_						
Source Inductance	L _S				0.66		nH
Drain Inductance	L _D				0.20	>	
Gate Inductance	L _G	T _A = 25°	С		1.5		
Gate Resistance	R _G			0	2.0	3.0	Ω
	L_{G} L_{G} R_{G} s, duty cycle $\leq 2\%$. dependent of operations of the second s	ICE IS	FORIN	,O`			


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB-01 **ISSUE B**

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local