

## **EVQ8633B-LE-00A** High Efficiency, 16V, 20A Synchronous Step-Down Converter Evaluation Board

## DESCRIPTION

The EVQ8633B-LE-00A is an evaluation board for the MPQ8633B, a high-efficiency, monolithic, synchronous, step-down converter.

This EVB can deliver 20A of continuous load current over a wide operating input range. High efficiency can be achieved over a wide output current load range.

The MPQ8633B adopts internally compensated constant-on-time (COT) control mode that provides fast transient response and eases loop stabilization.

This EVB can be turned on or off via a remote on/off input (EN) referenced to ground. This input is compatible with popular logic devices.

## **ELECTRICAL SPECIFICATION**

| Parameter      | Symbol           | Value  | Units |
|----------------|------------------|--------|-------|
| Input voltage  | V <sub>IN</sub>  | 8 - 16 | V     |
| Output voltage | V <sub>OUT</sub> | 1      | V     |
| Output current | Іоит             | 20     | А     |

## FEATURES

- Wide Input Voltage Range from 2.7V:
  - 2.7V to 16V with External 3.3V VCC Bias
  - 4V to 16V with Internal VCC Bias or External 3.3V VCC Bias
- Differential Output Voltage Remote Sense
- Programmable Accurate Current Limit Level
- 20A Output Current
- Low R<sub>DS(ON)</sub> Integrated Power MOSFETs
- Proprietary Switching Loss Reduction Technique

- Adaptive Constant-on-Time (COT) Control for Ultrafast Transient Response
- Stable with Zero-ESR Output Capacitor 0.5% Reference Voltage Over 0°C to +70°C Junction Temperature Range 1% Reference Voltage Over -40°C to +125°C Junction Temperature Range Selectable Pulse-Skip Mode or Forced CCM Operation
- Excellent Load Regulation
- Output Voltage Tracking
- Output Voltage Discharge
- PGOOD Active Clamped Low Level during Power Failure
- Programmable Soft Start Time from 1ms
- Pre-Bias Start-Up
- Selectable Switching Frequency of 600kHz, 800kHz, or 1000kHz
- Non-Latch OCP, UVP, UVLO, Thermal Shutdown, and Latch-Off for OVP
- Output Adjustable from 0.6V to 90%\*Vin, Up to 5.5V Max
- Available in a QFN (3mmx4mm) Package

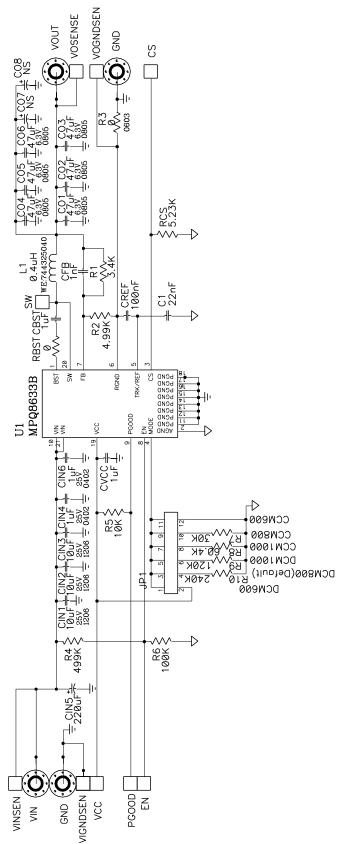
#### **APPLICATIONS**

- Telecom and Networking Systems
- Servers, Cloud-Computing, Storage
- Base Stations
- General Purpose Point-of-Load (PoL)
- 12V Distribution Power Systems
- High-End TVs
- Game Consoles and Graphic Cards

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.



## **EVQ8633B-LE-00A EVALUATION BOARD**




(L x W x H) 81.3mm x 77.5mm x 1.6 mm

| Board Number    | MPS IC Number |  |
|-----------------|---------------|--|
| EVQ8633B-LE-00A | MPQ8633BGLE   |  |



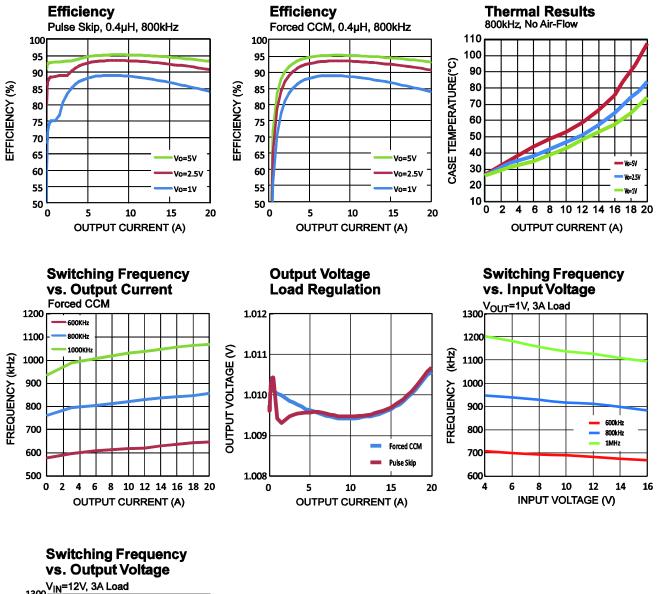
# **EVALUATION BOARD SCHEMATIC**

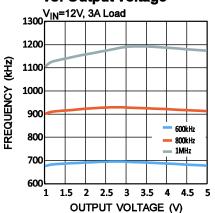


EVQ8633B-LE-00A Rev. 1.1 11/9/2018 MPS Pr

-00A Rev. 1.1 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.



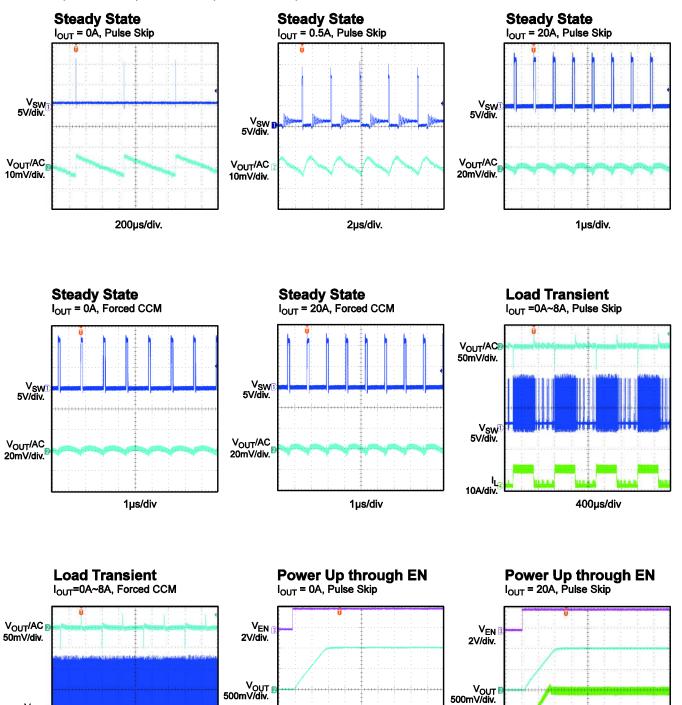

## EVQ8633B-LE-00A BILL OF MATERIALS


| Qty | Ref                                         | Value          | Description                       | Package         | Manufacturer            | Part Number        |
|-----|---------------------------------------------|----------------|-----------------------------------|-----------------|-------------------------|--------------------|
| 1   | C1                                          | 22nF           | CAP, 25V, 10%, X7R                | CAP0603         | Generic                 |                    |
| 2   | CBST,<br>CVCC                               | 1µF            | CAP CER 1µF 6.3V<br>10% X7R 0603  | CAP0603         | Generic                 |                    |
| 1   | CFB                                         | 1nF            | CAP, 50V, 10%, X7R                | CAP0603         | Generic                 |                    |
| 3   | CIN1,<br>CIN2,<br>CIN3                      | 10µF           | Capacitor, 25V, X7R,<br>10%       | CAP1206         | Murata or<br>Generic    | GRM31CR71E106KA12L |
| 2   | CIN4,<br>CIN6                               | 1µF/25V        | CAP CER 1µF 25V 10%<br>X6S 0402   | CAP0402         | Murata or<br>Generic    | GRM155C81E105KE11D |
| 1   | CIN5                                        | 220µF          | 220µF, 25V, 16mOhm<br>ESR         | D8P3.5mm        | Chemi-Con or<br>Generic | APSG250ELL221MHB5S |
| 6   | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5,<br>CO6 | 47µF           | CAP, 6.3V, X5R, 20%               | CAP0805         | Murata or<br>Generic    | GRM21BR60J476ME15L |
| 1   | CO7                                         | NS             |                                   | D2              |                         |                    |
| 1   | CO8                                         | NS             |                                   | D8P3.5mm        |                         |                    |
| 1   | CREF                                        | 100nF          | CAP CER 0.1µF 25V<br>10% X7R 0603 | CAP0603         | Generic                 |                    |
| 1   | L1                                          | 0.4µH          | Inductor                          | 10x10mm         | Wurth or<br>Generic     | WE-744325040       |
| 1   | R1                                          | 3.4k           | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R2                                          | 4.99k          | Film Res., 1%                     | 0603            | Generic                 |                    |
| 2   | R3,<br>RBST                                 | 0              | Film Res., 5%                     | 0603            | Generic                 |                    |
| 1   | R4                                          | 499k           | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R5                                          | 10k            | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R6                                          | 100k           | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R7                                          | 30k            | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R8                                          | 60.4k          | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R9                                          | 120k           | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | R10                                         | 240k           | Film Res., 1%                     |                 | Generic                 |                    |
| 1   | RCS                                         | 5.23k          | Film Res., 1%                     | 0603            | Generic                 |                    |
| 1   | U1                                          | MQ8633<br>BGLE | 16V/20A Step Down<br>Convert      | QFN21-<br>3x4mm | MPS                     | MQ8633BGLE         |



#### **EVB TEST RESULTS**

Performance waveforms are tested on the EVQ8633B-LE-00A evaluation board.  $V_{IN} = 12V$ ,  $V_{OUT} = 1V$ , L = 400nH,  $T_A = +25$ °C, unless otherwise noted.








#### EVB TEST RESULTS (continued)

Performance waveforms are tested on the EVQ8633B-LE-00A evaluation board.  $V_{IN} = 12V$ ,  $V_{OUT} = 1V$ , L = 400nH,  $T_A = +25$ °C, unless otherwise noted.



EVQ8633B-LE-00A Rev. 1.1 11/9/2018 MPS Proprie

400µs/div

V<sub>SW</sub> 5V/div.

10A/div

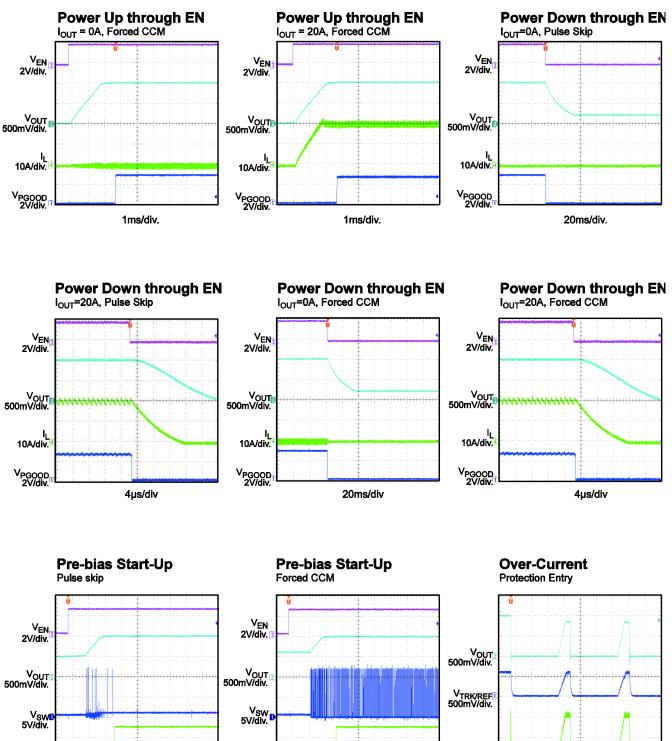
Rev. 1.1 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.

1ms/div

10A/div

V<sub>PGOOD</sub> 2V/div. ΙL

10A/div.


V<sub>PGOOD</sub> 2V/div.

1ms/div



# EVB TEST RESULTS (continued)

Performance waveforms are tested on the EVQ8633B-LE-00A evaluation board.  $V_{IN} = 12V$ ,  $V_{OUT} = 1V$ , L = 400nH,  $T_A = +25^{\circ}C$ , unless otherwise noted.

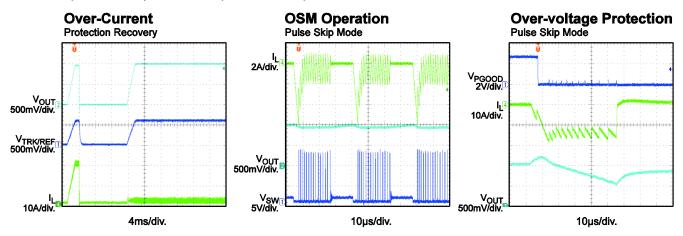


1ms/div

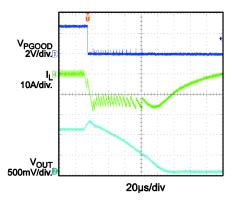
V<sub>PGOOD</sub> 2V/div.

1ms/div

10A/div


V<sub>PGOOD</sub> 2V/div.

4ms/div




#### EVB TEST RESULTS (continued)

Performance waveforms are tested on the EVQ8633B-LE-00A evaluation board.  $V_{IN} = 12V$ ,  $V_{OUT} = 1V$ , L = 400nH,  $T_A = +25$ °C, unless otherwise noted.



Over-voltage Protection Forced CCM





# PRINTED CIRCUIT BOARD LAYOUT

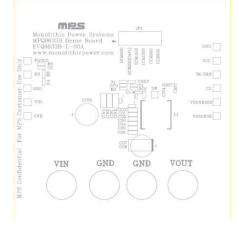



Figure 1: Top Silk Layer

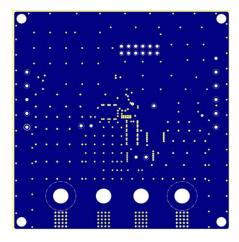



Figure 3: Inner Layer 1

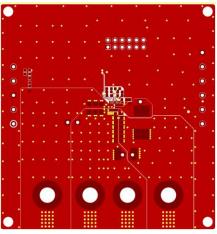



Figure 2: Top Layer

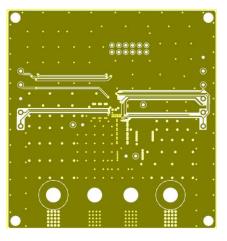



Figure 4: Inner Layer 2

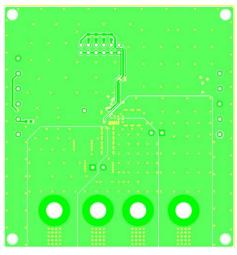



Figure 5: Bottom Layer



## **QUICK-START GUIDE**

The input voltage of the evaluation board can range from 8V to 16V. The minimum 8V input voltage is limited by the EN signal, which is derived from VIN through a resistor divider (R4 and R6). A lower input voltage (as low as 2.7V) can be set by fine-tuning the resistor divider values or by over-driving EN with an external control signal. The following is the procedure to turn on the evaluation board.

- 1. Connect the positive and negative terminals of the load to the VOUT and GND pins, respectively.
- 2. Preset the power supply output voltage between 8V and 16V and then turn the power supply off.
- 3. Connect the positive and negative terminals of the power supply output to the VIN and GND pins, respectively. Ensure that the power supply has a high enough current limit to supply the power.
- 4. Turn the power supply on. The EVQ8633B-LE-00A will start up automatically.
- 5. To use the enable function, apply a digital input to the EN pin. Drive EN above 1.5V to turn on the regulator. Drive EN below 1V to turn off the regulator.
- 6. Use R1 and R2 to set the output voltage with  $V_{FB} = 0.6V$ . Follow the Application Information section in the device datasheet to select the proper values for R1, R2, the inductor, and the output capacitor when the output voltage is changed.
- 7. The JP1 jumper can be used to select the operating frequency (600kHz, 800kHz, or 1000kHz) and light-load operation mode (pulse-skip mode, discontinuous conduction mode, or continuous conduction mode).

**NOTICE:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.