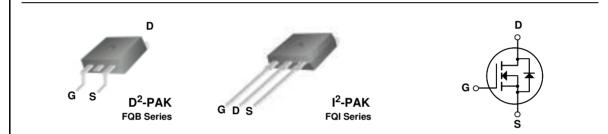


SEMICONDUCTOR

FQB12N60 / FQI12N60 600V N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

Features

- + 10.5A, 600V, $R_{DS(on)}$ = 0.7 Ω @ V_{GS} = 10 V + Low gate charge (typical 42 nC)
- Low Crss (typical 25 pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQB12N60 / FQI12N60	Units
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°	C)	10.5	А
	- Continuous (T _C = 100	°C)	6.7	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	42	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	790	mJ
I _{AR}	Avalanche Current	(Note 1)	10.5	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	18	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.13	W
	Power Dissipation $(T_C = 25^{\circ}C)$		180	W
	- Derate above 25°C		1.43	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

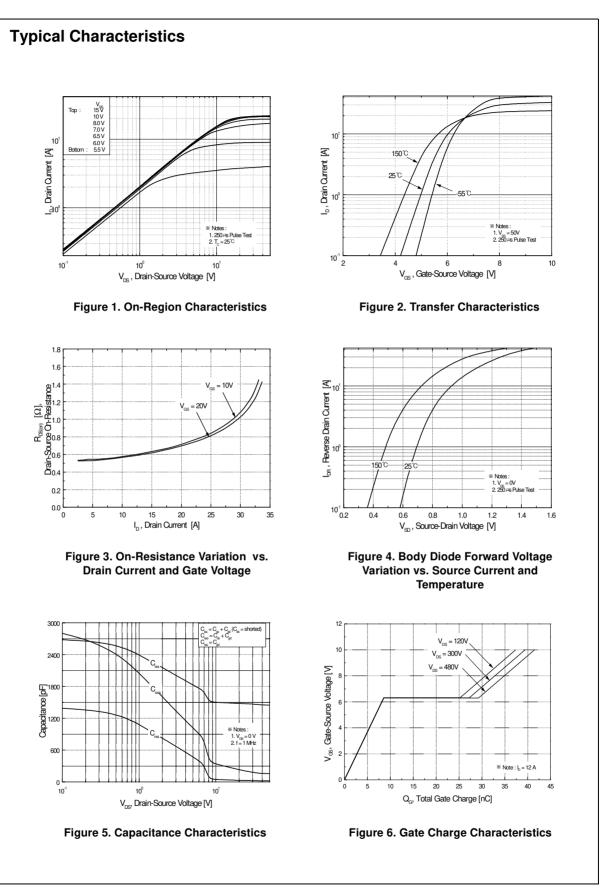
Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

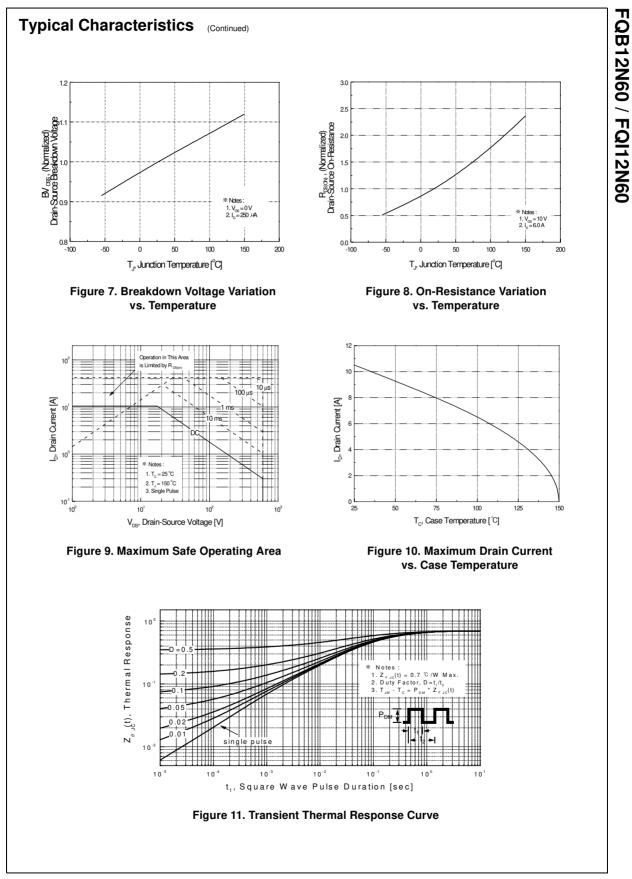
©2000 Fairchild Semiconductor International

TM

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	600			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		0.71		V/°C
I _{DSS}	Zarra Cata Maltana Drain Currant	$V_{DS} = 600 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			10	μA
	Zero Gate Voltage Drain Current $V_{DS} = 480 \text{ V}, T_C = 125^{\circ}\text{C}$				100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{\text{D}} = 5.3 \text{ A}$		0.55	0.7	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, I_D = 5.3 \text{ A}$ (Note 4)		10		S
				1480	1900	nF
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		1480 200 25	1900 270 35	pF pF pF
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	50 00				•
C _{oss} C _{rss} Switchi	Output Capacitance Reverse Transfer Capacitance ng Characteristics	f = 1.0 MHz		200 25	270 35	pF pF
C _{oss} C _{rss} Switchi	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time	f = 1.0 MHz V _{DD} = 300 V, I _D = 12 A,		200 25 30	270 35 70	pF pF ns
C_{oss} C_{rss} Switchi $t_{d(on)}$ t_r	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz		200 25 30 115	270 35 70 240	pF pF ns ns
C_{oss} C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time	f = 1.0 MHz V _{DD} = 300 V, I _D = 12 A,		200 25 30	270 35 70	pF pF ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz $V_{DD} = 300 \text{ V}, \text{ I}_D = 12 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5)	 	200 25 30 115 95	270 35 70 240 200 180	pF pF ns ns ns ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	f = 1.0 MHz $V_{DD} = 300 \text{ V}, \text{ I}_D = 12 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_D = 12 \text{ A},$	 	200 25 30 115 95 85	270 35 70 240 200	pF pF ns ns
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz $V_{DD} = 300 \text{ V}, \text{ I}_D = 12 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5)	 	200 25 30 115 95 85 42	270 35 70 240 200 180 54	pF pF ns ns ns ns nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \end{array}$	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 300 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	200 25 30 115 95 85 42 8.6	270 35 70 240 200 180 54 	pF pF ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ C_{rss} \end{array}$	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 300 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4, 5)	 	200 25 30 115 95 85 42 8.6	270 35 70 240 200 180 54 	pF pF ns ns ns nC nC
$\begin{array}{c} C_{oss} \\ C_{rss} \end{array} \\ \hline \begin{array}{c} \textbf{Switchi} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gg} \\ Q_{gd} \\ \hline \begin{array}{c} \textbf{Drain-S} \\ I_S \end{array} \end{array}$	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Diode	$f = 1.0 \text{ MHz}$ $V_{DD} = 300 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4,	 	200 25 30 115 95 85 42 8.6 21	270 35 70 240 200 180 54 10.5	pF pF ns ns ns nC nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \end{array} \\ \hline \begin{array}{c} \textbf{Switchi} \\ \hline t_{d(on)} \\ \hline t_r \\ \hline t_d(off) \\ \hline t_f \\ \hline \\ \hline \\ Q_g \\ \hline \\ Q_{gs} \\ \hline \\ Q_{gg} \\ \hline \\ Q_{gg} \\ \hline \\ \hline \\ Q_{gg} \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ $	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics au Maximum Continuous Drain-Source Diode F	$f = 1.0 \text{ MHz}$ $V_{DD} = 300 \text{ V}, \text{ I}_D = 12 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_D = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (N	 	200 25 30 115 95 85 42 8.6 21	270 35 70 240 200 180 54 	pF pF ns ns ns nC nC
$\begin{array}{c} C_{oss} \\ C_{rss} \end{array} \\ \hline \begin{array}{c} \textbf{Switchi} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gg} \\ Q_{gd} \\ \hline \begin{array}{c} \textbf{Drain-S} \\ I_S \end{array} \end{array}$	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Diode	$f = 1.0 \text{ MHz}$ $V_{DD} = 300 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 12 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4,	 	200 25 30 115 95 85 42 8.6 21 	270 35 70 240 200 180 54 10.5 42	pF pF ns ns ns nC nC nC A A

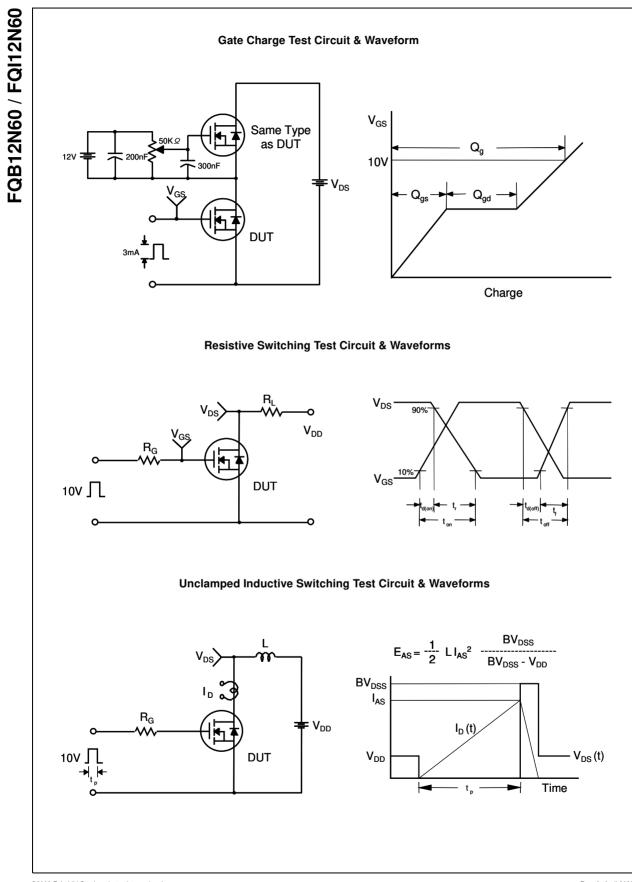

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 13mH, I_{AS} = 10.5A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} ≤ 12A, dl/dt ≤ 200A/µs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

©2000 Fairchild Semiconductor International

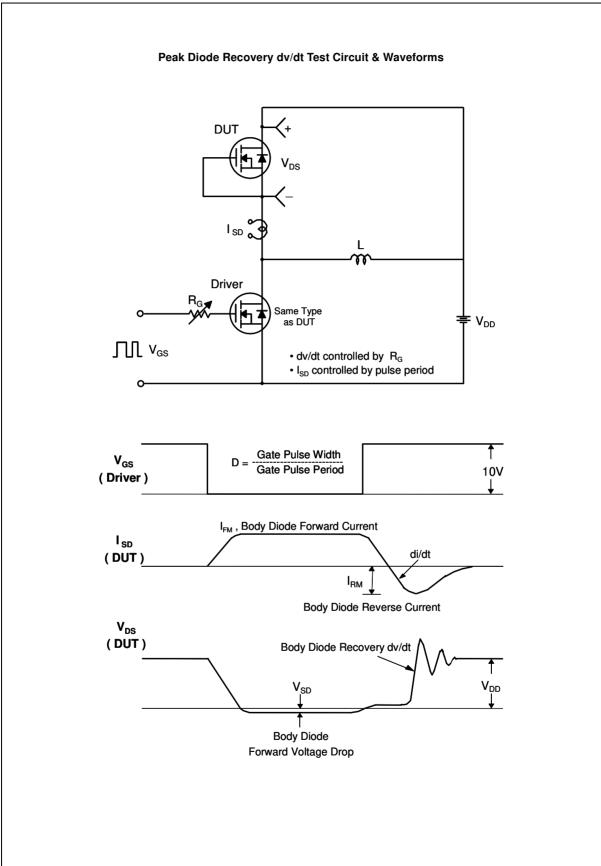

Rev. A, April 2000

FQB12N60 / FQI12N60

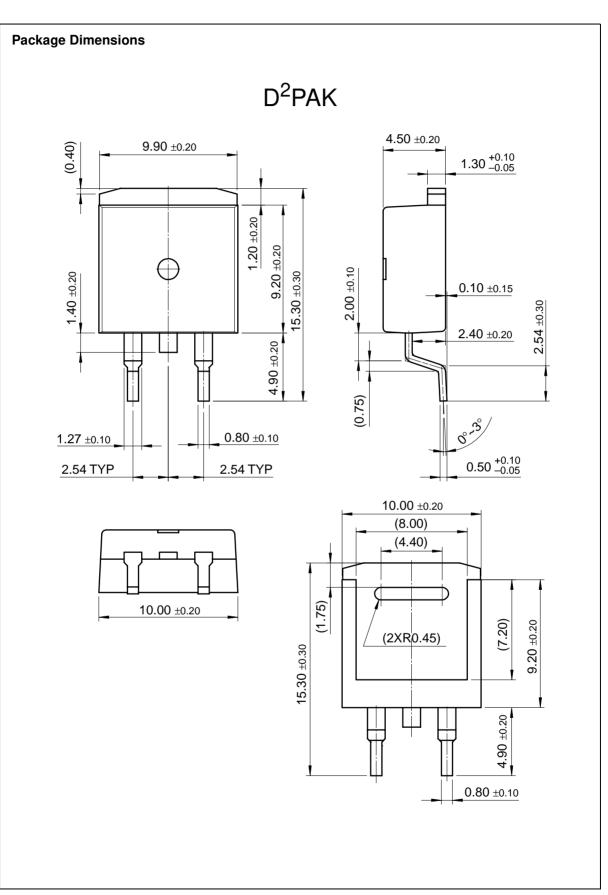
FQB12N60 / FQI12N60

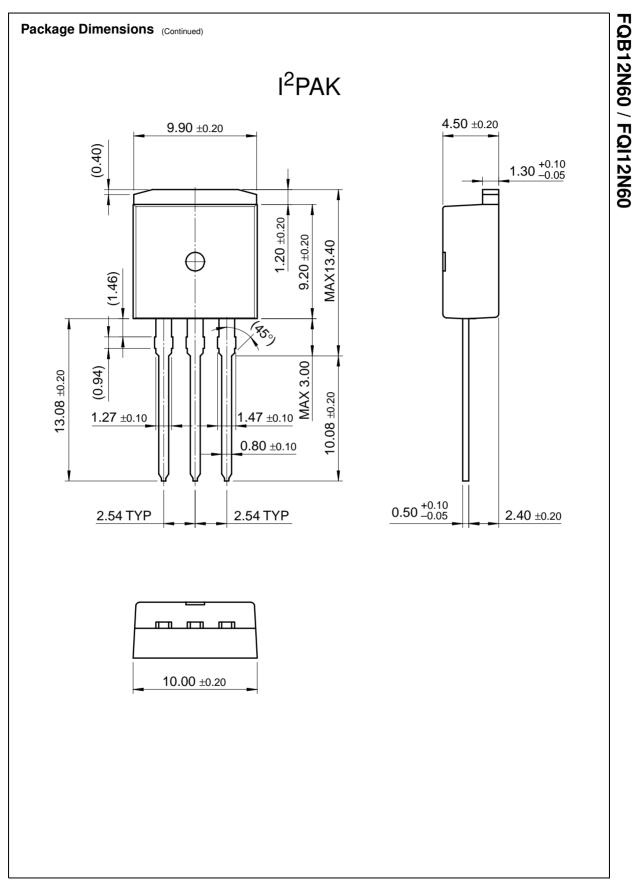


©2000 Fairchild Semiconductor International



Rev. A, April 2000


©2000 Fairchild Semiconductor International


Rev. A, April 2000

FQB12N60 / FQI12N60

©2000 Fairchild Semiconductor International

Rev. A, April 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

	Fairchild Semiconductor			etric Cross Reference 30 ct Folders and Applica
l	find products	Home >> Find products >>		
	Products groups	FQB12N60		Related Links
	Analog and Mixed Signal	600V N-Channel QFET		Request samples
	Discrete	Contents General description Features Product	Datasheet Download this	Dotted line How to order products
	Interface Logic	status/pricing/packaging Models	datasheet	Product Change Notices
	Microcontrollers		PDF	(PCNs) Dotted line
	<u>Non-Volatile</u> <u>Memory</u>	General description	e-mail this datasheet	Support Dotted line
	Optoelectronics		[E-	Distributor and field sales
	Markets and	T I		<u>representatives</u>

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

back to top

Features

applications

New products

Product selection and

parametric search

Cross-reference

technical information

search

buy products

my Fairchild

company

technical support

- 10.5A, 600V, $R_{DS(on)} = 0.7\Omega @V_{GS} = 10 V$
- Low gate charge (typical 42 nC)
- Low Crss (typical 25 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQB12N60TM	Full Production	\$1.90	TO-263(D2PAK)	2	TAPE REEL

Dotted line

Dotted li

Design tools

Quality and reliability

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-263(D2PAK)-2	Electrical/Thermal	-55°C to 150°C	9.2	Apr 24, 2001

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor

Fairchild Semiconductor			tric Cross Reference
find products	Home >> Find products >>		
Products groups Analog and Mixed	FQI12N60 600V N-Channel QFET		Related Links
<u>Signal</u> Discrete Interface	Contents <u>General description</u> <u>Features</u> <u>Product</u> status/pricing/packaging <u>Models</u>	Datasheet Download this datasheet	Dotted line How to order products Dotted line Product Change Notices
<u>Logic</u> <u>Microcontrollers</u> <u>Non-Volatile</u>	General description	PDF	(PCNs) Dotted line Support
<u>Memory</u> <u>Optoelectronics</u> <u>Markets and</u>	These N-Channel enhancement mode power	e-mail this datasheet	Dotted line Distributor and field sales representatives
applications New products Product selection and parametric search Cross-reference	field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance,	This page <u>Print version</u>	Dotted line Quality and reliability Dotted line Design tools

back to top

Features

supply.

search

buy products

my Fairchild

company

technical support

technical information

- 10.5A, 600V, $R_{DS(on)} = 0.7\Omega$ @V_{GS} = 10 V
- Low gate charge (typical 42 nC)

provide superior switching performance, and

withstand high energy pulse in the avalanche and commutation mode. These devices are well

suited for high efficiency switch mode power

- Low Crss (typical 25 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

I	oduct status	Pricing*	Package type	Leads	Packing method
FQI12N60TU Fu	ll Production	\$1.90	TO-262(I2PAK)	3	RAIL

.

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-262(I2PAK)-3	Electrical/Thermal	-55°C to 150°C	9.2	Apr 24, 2001

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor

SEARCH | Parametric | Cross Reference | Inventory

Find only: Product Folders and Datasheets App Notes

GO

Find Products

Products Analog and Mixed Signal Discrete Interface & Logic **Microcontrollers** Non-Volatile Memory **Optoelectronics** Power Markets and applications New products Product selection and parametric search Cross-reference search

- Technical Information
- Buy Products
- Support
- My Fairchild
- Global Fairchild
- Company

Home >> Product selection and parametric search >> Discrete >> MOSFET

Product Summary

FQB12N60

600V N-Channel QFET

- Download datasheet for FQB12N60
- View other related information for this product (Product folder)

Attribute		Value	UOM
Package		TO-263(D2PAK)	
Lead Count		2	
Configuration		Single	
Polarity		N	
V _{DS}		600	V
R _{DS(ON)} Max @ V _{GS} =	10V	.7	Ohms
Q _G (Note)		42	nC
I _D		10.5	A
P _D		180	W
Device Grade		Commercial	
Lead Free		Yes	

Related links

Product folder for FQB12N60

Request samples

How to order products

Product change notices (PCNs)

Support

Distributor and field sales representatives

Quality and reliability

Models and simulation tools

When using the information presented in Fairchild Semiconductor's parametric search tool, we recommend that you completely review our datasheets to confirm the device functionality and performance for your application. Fairchild Semiconductor is not responsible for any incorrect or incomplete information. No information provided herein shall be used in a manner which is adverse to Fairchild.

Home | Find products | Technical information | Buy products | Support | Company | Contact us | Site index | Privacy policy | Site Terms & Conditions

© Copyright 2003 Fairchild Semiconductor