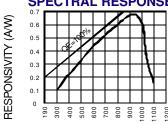

PHOTONIC Silicon Photodiode, Blue Enhanced Photoconductive **DETECTORS INC. Isolated Type PDB-C104-I**

FEATURES

- High speed
- Low capacitance
- Blue enhanced
- Low dark current

DESCRIPTION

The PDB-C104-I is a silicon, PIN planar diffused, blue enhanced photodiode. Ideal for high speed photoconductive applications. Packaged in a hermetic TO-18 metal can with a flat window and isolated ground lead.


APPLICATIONS

- Instrumentation
- Character recognition
- Laser detection
- Fiber optic

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

		MIN		
SYMBOL	OL PARAMETER		MAX	UNITS
$V_{_{BR}}$	Reverse Voltage		100	V
T _{stg}	Storage Temperature		+150	°C
T _o	Operating Temperature Range	-40	+125	°C
T _s	Soldering Temperature*		+240	°C
I _L	Light Current		0.5	mA

SPECTRAL RESPONSE

WAVELENGTH (nm)

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

	(17, 25 6 4.1107.12 6 1.1107.10 (17, 25 6 4.1107.1106 1.1107.1107.1107.1107.1107.1107.1107.11								
SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS			
I _{sc}	Short Circuit Current	H = 100 fc, 2850 K	40	45		m A			
ID	Dark Current	$H = 0, V_{R} = 10 V$.15	1.0	nA			
R _{SH}	Shunt Resistance	$H = 0, V_{R} = 10 \text{ mV}$.5	1.0		GΩ			
TC R _{SH}	RSH Temp. Coefficient	$H = 0, V_{R} = 10 \text{ mV}$		-8		%/℃			
C _J	Junction Capacitance	$H = 0, V_{R} = 10 V^{**}$		10		pF			
λrange	Spectral Application Range	Spot Scan	350		1100	nm			
λр	Spectral Response - Peak	Spot Scan		950		nm			
V _{BR}	Breakdown Voltage	I = 10 m A	70	100		V			
N EP	Noise Equivalent Power	V _R = 10 V @ Peak		1.5x10 ⁻¹⁴		W/ √ Hz			
tr	Response Time	$RL = 1 K\Omega V_{R} = 50 V$		10		nS			

Information in this technical data sheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. ** f = 1 MHz