

SINGLE CHANNEL 0.7V DIFFERENTIAL-TO-LVTTL TRANSCEIVER

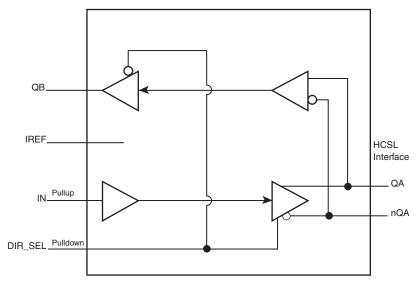
ICS8512061I

General Description

The ICS8512061I is a transceiver which can interchange data across multipoint data bus structures.

The device has an LVTTL driver and one HCSL receiver driver. It translates between LVTTL signals

and HCSL signals.


Applications

Backplane Transmission
Telecommunication System
Data Communications
ATCA Clock Distribution

Features

- One HCSL output pair and one LVCMOS/LVTTL output
- One single-ended LVCMOS/LVTTL signal input
- LVTTL I/O signal: up to 250MHz
- HCSL interface pins in high impedance state when the device is powered down
- Power-up and power-down glitch-free
- Additive Phase Jitter, RMS: 0.23ps (typical)
- Full 3.3V operating supply
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

ICS8512061I
8 Lead TSSOP
4.40mm x 3.0mm x 0.925mm package body
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Туре		Description
1	GND	Power		Power supply ground.
2	QB	Output		Single-ended output. LVCMOS/LVTTL interface levels.
3	DIR_SEL	Input	Pulldown	HCSL receiver and driver direction select pin. When HIGH, selects the IN-to-QA/nQA path. When LOW, selects the QA/nQA-to-QB path. LVCMOS/LVTTL interface levels.
4	IN	Input	Pullup	Single-ended signal input. LVCMOS/LVTTL interface levels.
5	IREF	Input		An external fixed precision resistor (475 Ω) from this pin to ground provides a reference current used for differential current-mode QA/nQA outputs.
6	V_{DD}	Power		Power supply pin.
7, 8	nQA, QA	Output		Differential transceiver pair. HCSL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4		pF
C _{PD}	Power Dissipation		V _{DD} = 3.6V		8		pF
R _{PULLUP}	Input Pullup Resistor				51		kΩ
R _{PULLDOWN}	Input Pulldown Resisto	or			51		kΩ
R _{OUT}	Output Impedance	QB			20		Ω

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, V _O	-0.5V to V _{DD} + 0.5V	
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.0	3.3	3.6	V
I _{DD}	Power Supply Current				20	mA

Table 3B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 0.3V, \, T_A = -40^{\circ} C$ to $85^{\circ} C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
	Input High Current	IN	$V_{DD} = V_{IN} = 3.6V$			5	μΑ
IН	Input High Current	DIR_SEL	$V_{DD} = V_{IN} = 3.6V$			150	μΑ
1	Input Low Current	IN	$V_{DD} = 3.6V, V_{IN} = 0V$	-150			μΑ
I _{IL}	Input Low Current	DIR_SEL	$V_{DD} = 3.6V, V_{IN} = 0V$	-5			μA
V _{OH}	Output High Voltage; NOTE 1	QB	V _{DD} = 3.6V	2.6			V
V _{OL}	Output Low Voltage; NOTE 1	QB	V _{DD} = 3.6V			0.5	V

NOTE: Outputs terminated with 50Ω to $V_{DD}/2$. See Parameter Measurement Information Section, Output Load Test Circuit diagram.

Table 3C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{PP}	Peak-to-Peak Voltage; NOTE 1	DIR_SEL = 0	0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2	DIR_SEL = 0	GND + 0.5		$V_{DD} - 0.85$	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as $V_{\mbox{\scriptsize IH}}.$

AC Electrical Characteristics

Table 4A. LVTTL (QB) Output Mode, Receiver AC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
F _{MAX}	Output Frequency				250	MHz
t _{PD}	Propagation Delay, NOTE 1	QA/nQA to QB	1.7		2.5	ns
<i>t</i> jit	Buffer Additive Phase Jitter, RMS	100MHz, Integration Range: 12kHz - 20MHz		0.23		ps
t _R /t _F	Output Rise/Fall Time	20% - 80%	200		700	ps
odc	Output Duty Cycle		40		60	%

NOTE 1: Measured from $V_{DD}/2$ input cross point to the output at $V_{DD}/2$.

Table 4B. HCSL (QA/nQA) AC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				250	MHz
tjit	Buffer Additive Phase Jitter, RMS	100MHz, Integration Range: 12kHz – 20MHz		0.29		ps
t _{PD}	Propagation Delay, NOTE 1	IN to QA/nQA	1.1		1.7	ns
Rise Edge Rate	Rising Edge Rate; NOTE 2, 3		0.6		4.0	V/ns
Fall Edge Rate	Falling Edge Rate; NOTE 2, 3		0.6		4.0	V/ns
V_{rb}	Ringback Voltage; NOTE 2, 4		-100		100	V
V _{MAX}	Absolute Max Output Voltage; NOTE 5, 6				1150	mV
V _{MIN}	Absolute Min Output Voltage; NOTE 5, 7		-300			mV
V _{CROSS}	Absolute Crossing Voltage; NOTE 5, 8, 9		250		550	mV
ΔV_{CROSS}	Total Variation of V _{CROSS} over all edges; NOTE 5, 8, 10				140	mV
odc	Output Duty Cycle; NOTE 11		45		55	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

- NOTE 1: Measured from V_{DD}/2 input cross point to the differential output crossing point.
- NOTE 2: Measurement taken from differential waveform.

NOTE 3: Measurement from -150mV to +150mV on the differential waveform (derived from QA minus nQA). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

NOTE 4: T_{STABLE} is the time the differential clock must maintain a minimum ± 150 mV differential voltage after rising/falling edges before it is allowed to drop back into the V_{BB} ± 100 differential range. See Parameter Measurement Information Section.

- NOTE 5: Measurement taken from single-ended waveform.
- NOTE 6: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.
- NOTE 7: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.
- NOTE 8: Measured at crossing point where the instantaneous voltage value of the rising edge of QA equals the Falling edge of nQA.

See Parameter Measurement Information Section

NOTE 9: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Parameter Measurement Information Section.

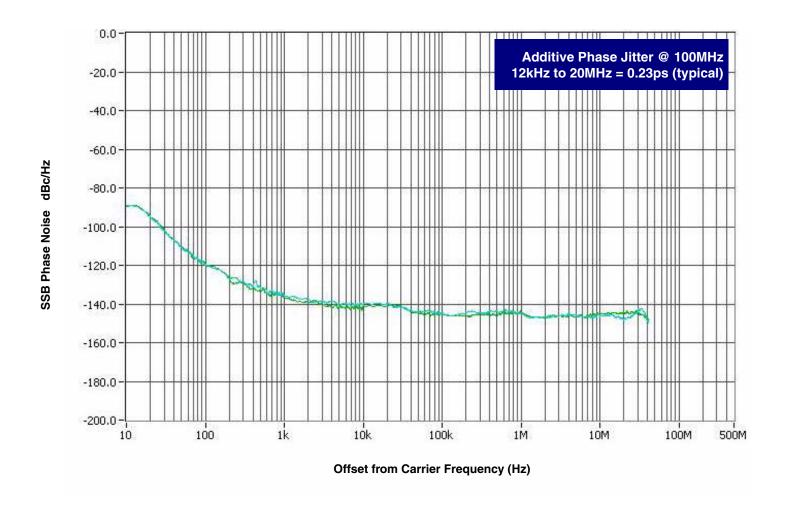

NOTE 10: Defined as the total variation of all crossing voltage of Rising QA and Falling nQA. This is the maximum allowed variance in the V_{CROSS} for any particular system. See Parameter Measurement Information Section.

NOTE 11: Input duty cycle must be 50%.

Additive Phase Jitter (HCSL)

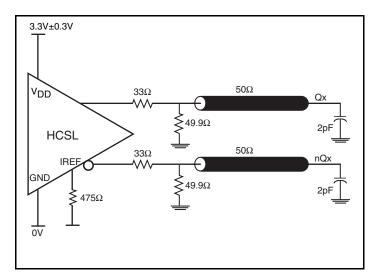
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

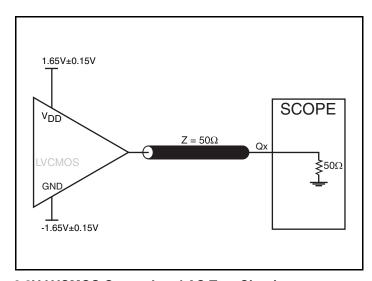

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the

device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

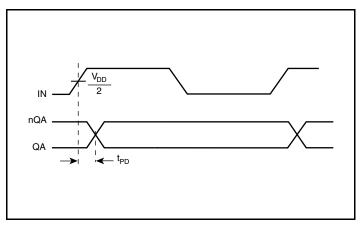
Additive Phase Jitter (LVCMOS)

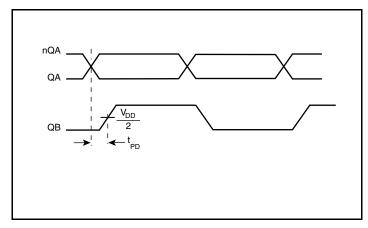

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

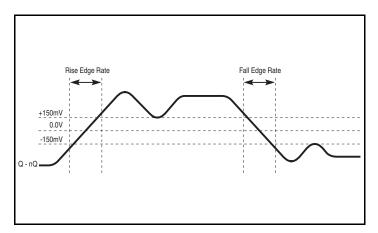
to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

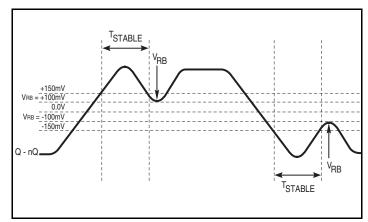


As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

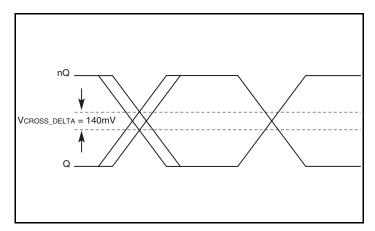

Parameter Measurement Information


3.3V HCSL Output Load AC Test Circuit

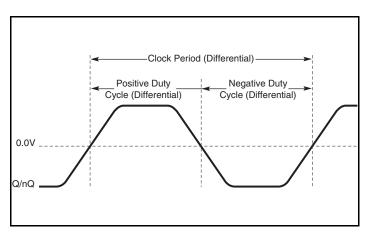

3.3V LVCMOS Output Load AC Test Circuit


Differential Propagation Delay

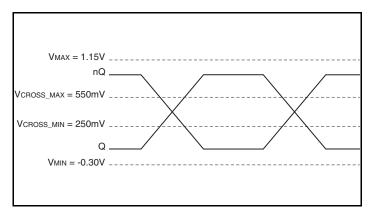
LVCMOS Propagation Delay



Differential Measurement Points for Rise/Fall Time



Differential Measurement Points for Ringback


Parameter Measurement Information, continued

Single-ended Measurement Points for Delta Cross Point

Differential Measurement Points for Duty Cycle/Period

Single-ended Measurement Points for Absolute Cross Point/Swing

Application Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins has internal pull-ups; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

Differential Outputs

All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

LVCMOSOutput

All unused LVCMOS output can be left floating. There should be no trace attached.

Recommended Termination

Figure 1A is the recommended termination for applications which require the receiver and driver to be on a separate PCB. All traces should be 50Ω impedance.

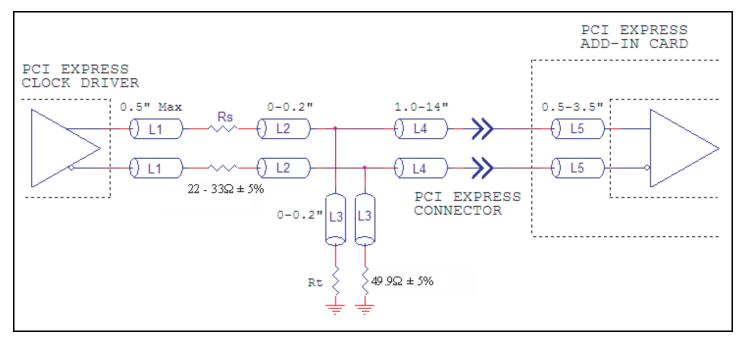


Figure 1A. Recommended Termination

Figure 1B is the recommended termination for applications which require a point to point connection and contain the driver and receiver on the same PCB. All traces should all be 50Ω impedance.

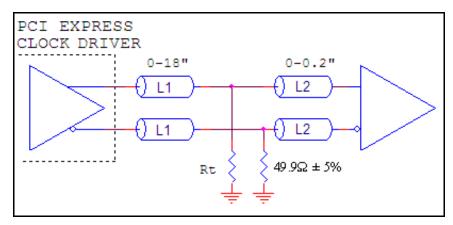


Figure 1B. Recommended Termination

Power Considerations (HCSL Outputs)

This section provides information on power dissipation and junction temperature for the ICS8512061I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8512061I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 0.3V = 3.6V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 3.6V *20mA = **72mW**
- Power (outputs)_{MAX} = 46.8mW/Loaded Output pair

Total Power_MAX = 72mW + 46.8mW =**118.8mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 5A below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.119\text{W} * 129.5^{\circ}\text{C/W} = 100.4^{\circ}\text{C}$. This is well below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 5A. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5	123.5	

3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.

HCSL output driver circuit and termination are shown in Figure 2.

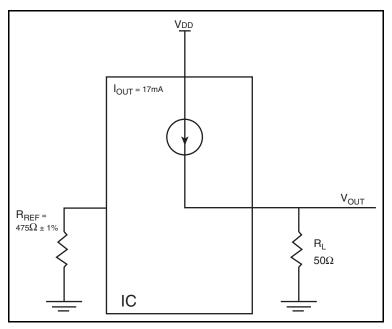


Figure 2. HCSL Driver Circuit and Termination

HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground.

The highest power dissipation occurs when V_{DD_MAX} .

Power =
$$(V_{DD_MAX} - V_{OUT}) * I_{OUT}$$
, since $V_{OUT} - I_{OUT} * R_L$
= $(V_{DD_MAX} - I_{OUT} * R_L) * I_{OUT}$
= $(3.6V - 17mA * 50\Omega) * 17mA$

Total Power Dissipation per output pair = 46.8mW

Power Considerations (LVCMOS Outputs)

This section provides information on power dissipation and junction temperature for the ICS8512061I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8512061I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 0.3V = 3.6V$, which gives worst case results.

- Power (core)_{MAX} = V_{DD MAX} * I_{DD MAX} = 3.6V *20mA = **72mW**
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DD}/2$ Output Current $I_{OUT} = V_{DD~MAX} / [2 * (50\Omega + R_{OUT})] = 3.6V / [2 * (50\Omega + 20\Omega)] = 25.7mA$
- Power Dissipation on the R_{OUT} per LVCMOS output Power (R_{OUT}) = R_{OUT} * (I_{OUT})² = 20Ω * (25.7mA)² = **13.2mW per output**

Dynamic Power Dissipation at 250MHz

Power (250MHz) =
$$C_{PD}$$
 * Frequency * $(V_{DD})^2$ = 8pF * 250MHz * $(3.6V)^2$ = **25.9mW per output**

Total Power

- = Power (core)_{MAX} + Power (R_{OUT}) + Power (250MHz)
- = 72mW + 13.2mW + 25.9mW
- = 111.1mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 5B below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.111\text{W} *129.5^{\circ}\text{C/W} = 99.4^{\circ}\text{C}$. This is well below the limit of 125°C .

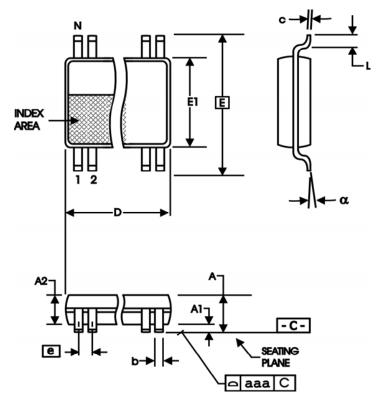
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 5B. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

	θ_{JA} by Velocity		
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5	123.5

Reliability Information

Table 6. $\theta_{\mbox{\scriptsize JA}}$ vs. Air Flow Table for a 8 Lead TSSOP


θ_{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5	123.5	

Transistor Count

The transistor count for ICS8512061I is: 294

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 7. Package Dimensions

All Dimensions in Millimeters					
Symbol	Minimum Maximu				
N		3			
Α		1.20			
A1	0.5	0.15			
A2	0.80	1.05			
b	0.19	0.30			
С	0.09	0.20			
D	2.90	3.10			
E	6.40	Basic			
E1	4.30	4.50			
е	0.65	Basic			
L	0.45	0.75			
α	0°	8°			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8512061AGILF	61AIL	"Lead-Free" 8 Lead TSSOP	Tube	-40°C to 85°C
8512061AGILFT	61AIL	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
В	T3C	3	Added Differential DC Characteristics Table.	11/19/08

Contact Information:

www.IDT.com

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

