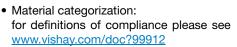
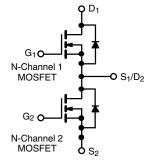
Vishay Siliconix


Dual N-Channel 30 V (D-S) MOSFET

PRODUCT SUMMARY								
	CHANNEL-1	CHANNEL-2						
V _{DS} (V)	30	30						
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.0120	0.0064						
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.0145	0.0083						
Q _g typ. (nC)	6.8	21						
I _D (A) ^a	16	16						
Configuration	Dual							

FEATURES

- TrenchFET® power MOSFET
- 100 % R_g and UIS tested



ROHS COMPLIANT HALOGEN FREE

APPLICATIONS

- Notebook system power
- POL
- Synchronous buck converter

ORDERING INFORMATION	
Package	PowerPAIR 6 x 5
Lead (Pb)-free and halogen-free	SiZ902DT-T1-GE3

PARAMETER	SYMBOL	CHANNEL-1	CHANNEL-2	UNIT	
Drain-source voltage		V _{DS}	30	30	V
Gate-source voltage		V _{GS}	± 20	± 20	v
	T _C = 25 °C		16 ^a	16 a	
Continues during surrout (T. 150 °C)	T _C = 70 °C		16 ^a	16 ^a	
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	I _D	14.3 b, c	16 ^{a, b, c}	
	T _A = 70 °C		11.4 ^{b, c}	16 ^{a, b, c}	_
Pulsed drain current (t = 300 μs)		I _{DM}	50	80	A .
Oction and the design of the second	T _C = 25 °C		16 a	16 ^a	
Continuous source-drain diode current	T _A = 25 °C	I _S	3.4 b, c	4.1 b, c	
Single pulse avalanche current	1 0111	I _{AS}	18	30	
Single pulse avalanche energy			16	45	mJ
	T _C = 25 °C		29	66	
Mandan and a sure disciplation	T _C = 70 °C		18	42	14/
Maximum power dissipation	T _A = 25 °C	P _D	4.2 b, c	5 b, c	W
	T _A = 70 °C		2.7 b, c	3.2 b, c	
Operating junction and storage temperature range		T _J , T _{stg}	-55 to	°C	
Soldering recommendations (peak temper		260			

THERMAL RESISTANCE RATINGS									
PARAMETER		SYMBOL	CHAN	NEL-1	CHAN	NEL-2	UNIT		
		STIVIDUL	TYP.	MAX.	TYP.	MAX.	UNIT		
Maximum junction-to-ambient b, f	t ≤ 10 s	R _{thJA}	24	30	20	25	°C/W		
Maximum junction-to-case (drain)	Steady state	R _{thJC}	3.4	4.3	1.5	1.9	C/VV		

Notes

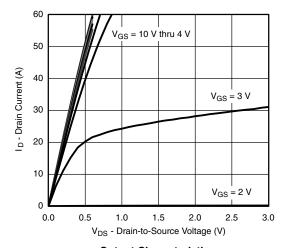
- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 10 s
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 65 °C/W for channel-1 and 57 °C/W for channel-2

Vishay Siliconix

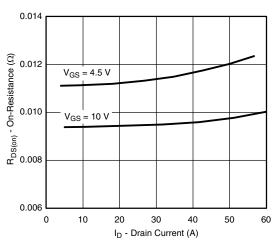
ARAMETER SYMBOL TEST CONDITIONS					TYP.	MAX.	UNIT	
Static								
Drain-source breakdown voltage	V	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	Ch-1	30	-	-	V	
Drain-source breakdown voltage	V_{DS}	V _{GS} = 0 V, I _D = 250 μA	Ch-2	30	-	-	V	
V _{DS} temperature coefficient	AV /T		Ch-1	-	33	-		
VDS temperature coemicient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2	1	33	-	mV/°0	
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	10 – 200 μΑ	Ch-1	ı	-5	-	IIIV/ C	
VGS(th) temperature coefficient	△VGS(th)/ 1J		Ch-2	-	-4.6	-		
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-1	1	-	2.2	V	
date source in esticia voltage	▼GS(tn)	V _{DS} = V _{GS} , i _D = 200 μ/ (Ch-2	1	-	2.2	•	
Sate-source leakage I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = 0 \text{ V}$	$V_{DS} = 0 \text{ V}, V_{GS} = +20 \text{ V}$	Ch-1	-	=	± 100	nA		
and source roundge	1655	105 - 5 V, VGS - 125 V	Ch-2	-	-	± 100		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1	-	-	1		
Zero gate voltage drain current	I _{DSS}		Ch-2	-	-	1	μA	
_oro gate veriage aram carrent	.033	V _{DS} = 30 V, V _{GS} = 0 V, T _J = 55 °C	Ch-1	-	-	5	μ/.	
		103 00 1, 103 0 1, 1, 00 0	Ch-2	-	-	5		
On-state drain current ^b	ID(an)	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20	=	-	A	
	I _{D(on)}		Ch-2	20	-	-		
Drain-source on-state resistance ^b	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 13.8 \text{ A}$	Ch-1	-	0.0100	0.0120	Ω	
		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	0.0053	0.0064		
		$V_{GS} = 4.5 \text{ V}, I_D = 12.6 \text{ A}$	Ch-1	-	0.0120	0.0145		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	0.0068	0.0083		
Forward transconductance b	Q.	V _{DS} = 10 V, I _D = 13.8 A		-	47	-	s	
Torward transconductance	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	63	-	0	
Dynamic ^a			r		T	ı	1	
Input capacitance	C _{iss}	Channel-1	Ch-1	-	790	-		
	- 155	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2	-	2600	-	_	
Output capacitance	C _{oss}		Ch-1	-	190	-	pF	
	Ooss	Channel-2	Ch-2	-	485	-	ρ.	
Reverse transfer capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1	-	76	-		
	0155		Ch-2	-	215	-		
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 13.8 \text{ A}$	Ch-1	-	14	21		
Total gate charge	Q_g	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	43	65		
Total gate charge	₩g	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 13.8 \text{ A}$	Ch-1	-	6.8	11		
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2	-	21	32	nC	
Gate-source charge	Q _{gs}	Channel-1	Ch-1	-	2.6	-		
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 13.8 \text{ A}$	Ch-2	-	8.1	-		
0		Channel-2	Ch-1	-	1.9	-		
Gate-drain charge	Q_{gd}	V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 20 A		-	6.5	-	1	
Gate resistance	R_g	£ 4.441	Ch-1	0.4	2	-	_	
		f = 1 MHz	Ch-2	0.3	1.5	-	Ω	

www.vishay.com

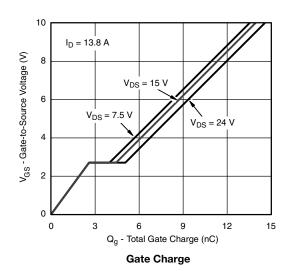
Vishay Siliconix

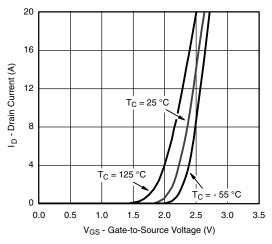

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Dynamic ^a							
Turn-on delay time	+ >		Ch-1	-	15	30	
Turr-on delay time	t _{d(on)}	Channel-1 $V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega,$	Ch-2	-	23	50	
Rise time	t _r	$V_{DD} = 13 \text{ V, } R_L = 1.3 \Omega,$ $I_D \cong 10 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_q = 1 \Omega$	Ch-1	-	12	20	
THIS LITTE	-r	b v aliv v g	Ch-2	-	20	40	
Turn-off delay time	t _{d(off)}	Channel-2	Ch-1	-	20	40	
Turn on delay lime	- a(on)	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega,$	Ch-2	-	35	70	
Fall time	t _f	$I_D\cong 10$ A, $V_{GEN}=4.5$ V, $R_g=1~\Omega$	Ch-1	-	10	20	
T dir dirito	4		Ch-2	-	10	20	ns
Turn-on delay time	t _{d(on)}		Ch-1	-	10	20	
Tam on dolay amo	-a(on)	Channel-1 $V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega,$	Ch-2	-	22	25	
Rise time	t _r	$I_D \cong 10 \text{ A}, N_C = 1.3 \Omega$ $I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_q = 1 \Omega$	Ch-1	-	12	20	
11100 11110	4	D / GEN / g	Ch-2	-	10	20	
Turn-off delay time	t _{d(off)}	Channel-2	Ch-1	-	20 40	40	
Turn on delay time	ч а(оп)	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega,$	Ch-2	-	35	70	
Fall time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1	-	10	20	
Tun time	4		Ch-2	-	10	20	
Drain-Source Body Diode Characteri	stics						
Continuous source-drain diode current	Is	T _C = 25 °C	Ch-1	-	-	16	A
Communication and Communications	'5		Ch-2	-	-	16	
Pulse diode forward current ^a	I _{SM}		Ch-1	-	-	50	
Talse aloge forward current	IOIVI		Ch-2	-	-	80	
Body diode voltage	V_{SD}	$I_S = 10 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-1	-	0.85	1.2	V
	- 30		Ch-2	-	0.8	1.2	_
Body diode reverse recovery time	t _{rr}		Ch-1	-	20	40	ns
Dody aloue reverse receivery time	٠rr	Channel-1 I _F = 10 A, di/dt = 100 A/μs,	Ch-2	-	25	50	110
Body diode reverse recovery charge	Q _{rr}	$T_{ij} = 25 ^{\circ}\text{C}$	Ch-1	-	10	20	nC
Dody aloue foreign recovery charge	ζ _{II}	ů	Ch-2	-	13	25	
Reverse recovery fall time	t _a	Channel-2	Ch-1	-	11	-	
	*a	$I_F = 10 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	Ch-2	-	12	-	ns
Reverse recovery rise time	t _b	T _J = 25 °C		-	9	-] "10
Tievered todovery floo timo	٠b			-	13	-	

Notes

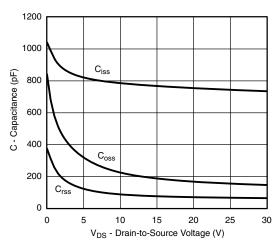

- a. Guaranteed by design, not subject to production testing
- b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

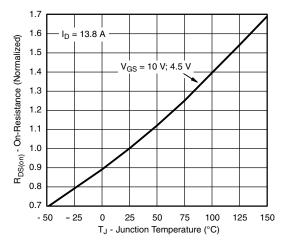




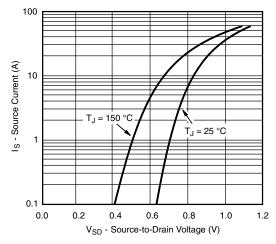
Output Characteristics



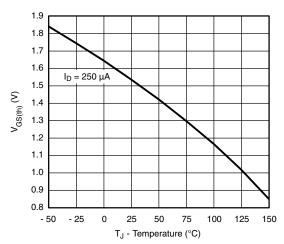
On-Resistance vs. Drain Current



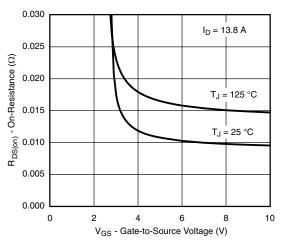
Transfer Characteristics

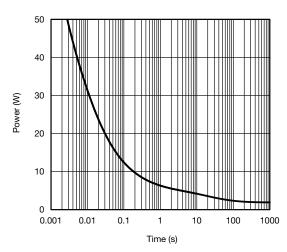


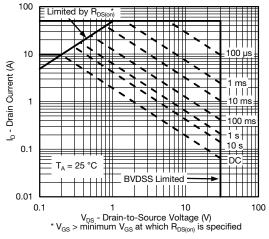
Capacitance



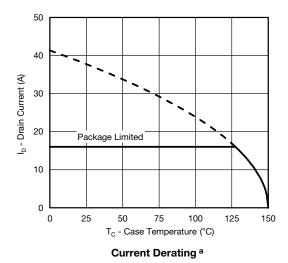
On-Resistance vs. Junction Temperature

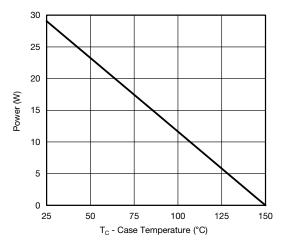



Source-Drain Diode Forward Voltage

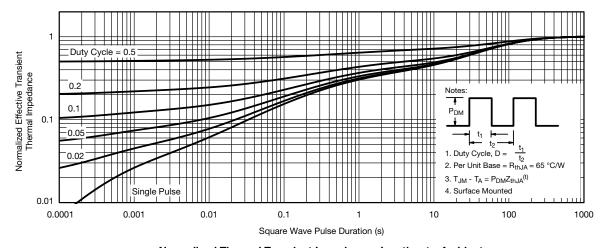

Threshold Voltage

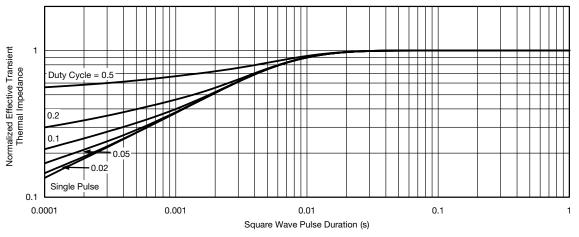
On-Resistance vs. Gate-to-Source Voltage



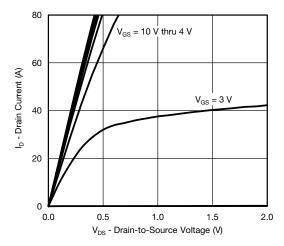

Single Pulse Power

Safe Operating Area, Junction-to-Ambient

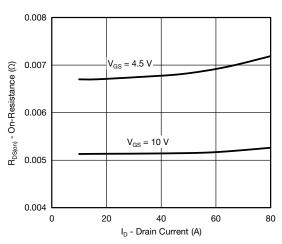



Power, Junction-to-Case

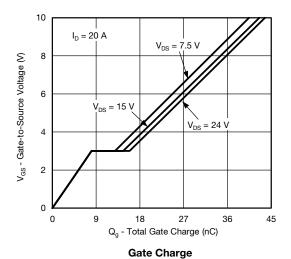
a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit



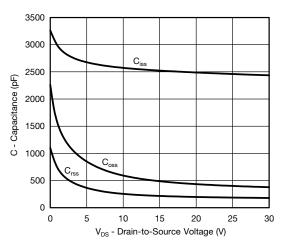
Normalized Thermal Transient Impedance, Junction-to-Ambient



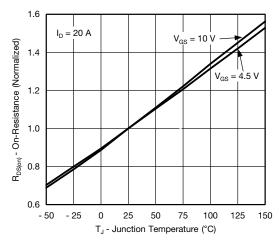
Normalized Thermal Transient Impedance, Junction-to-Case



Output Characteristics



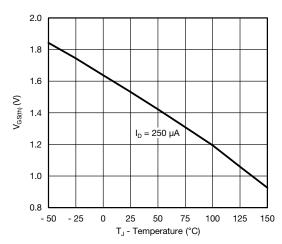
On-Resistance vs. Drain Current



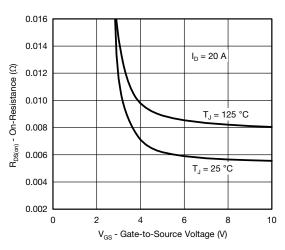
20 16 I_D - Drain Current (A) 12 = 25 8 T_C = 125 °C 55 °C 0.0 0.5 1.0 2.0 3.0 1.5 2.5 V_{GS} - Gate-to-Source Voltage (V)

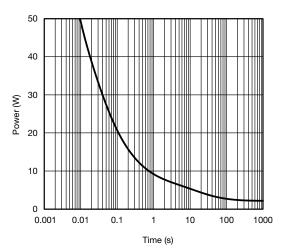
Transfer Characteristics

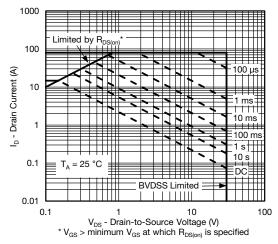
Capacitance



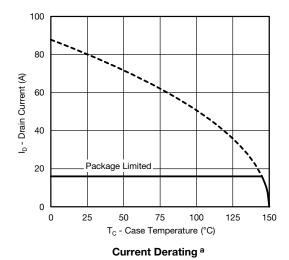
On-Resistance vs. Junction Temperature

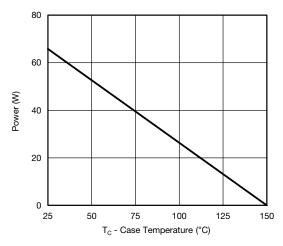



Source-Drain Diode Forward Voltage


Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

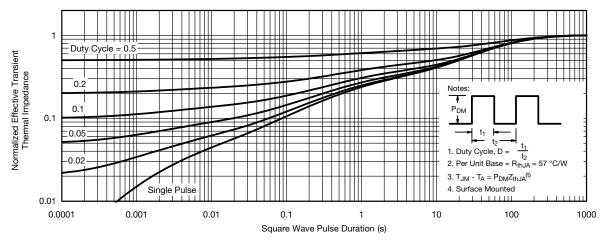

Single Pulse Power



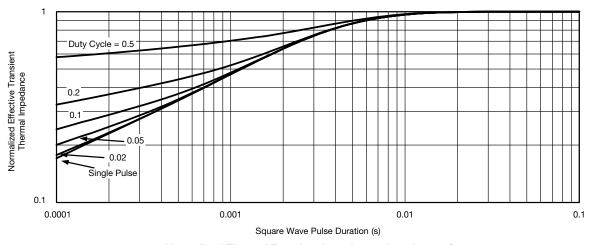
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

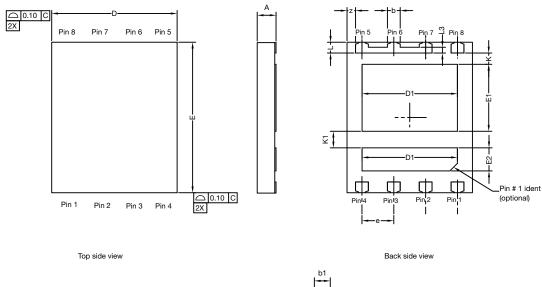


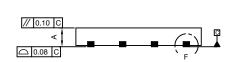
Power, Junction-to-Case

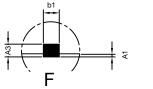

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

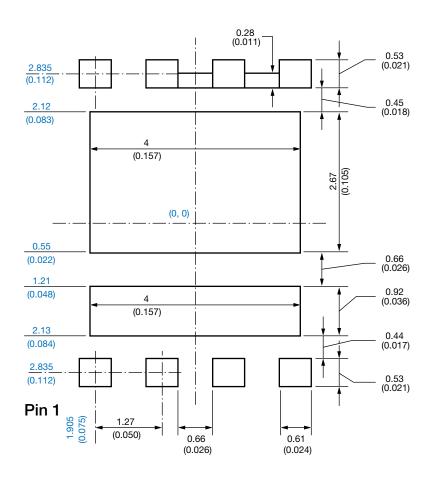
Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63465.

PowerPAIR® 6 x 5 Case Outline



	MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	0.028	0.030	0.032	
A1	0.00	-	0.10	0.000	-	0.004	
A3	0.15	0.20	0.25	0.006	0.007	0.009	
b	0.43	0.51	0.61	0.017	0.020	0.024	
b1		0.25 BSC			0.010 BSC		
D	4.90	5.00	5.10	0.192	0.196	0.200	
D1	3.75	3.80	3.85	0.148	0.150	0.152	
E	5.90	6.00	6.10	0.232	0.236	0.240	
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107	
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099	
E2	0.87	0.92	0.97	0.034	0.036	0.038	
е		1.27 BSC			0.050 BSC		
K Option AA (for W/B)	0.45 typ.				0.018 typ.		
K Option AB (for BWL)		0.65 typ.			0.025 typ.		
K1		0.66 typ.			0.025 typ.		
L	0.33	0.43	0.53	0.013	0.017	0.020	
L3	0.23 BSC 0.009 BSC						
Z	0.34 BSC 0.013 BSC						
ECN: T14-0782-Rev. C, 22-Dec- DWG: 6005	-14						

Revision: 22-Dec-14 1 Document Number: 63656

Recommended Minimum PAD for PowerPAIR® 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.