

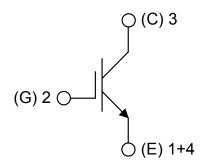
XPT IGBT

1200 V

100A

V_{CE(sat)} = 1.8V

Single IGBT


Part number

IXA70I1200NA

Backside: isolated

Features / Advantages:

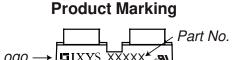
- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
- low EMI
- square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipmentSwitched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outlineRoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling
- Either emitter terminal can be used as main or Kelvin emitter



IGBT	ВТ			Ratings				
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{VJ} = 25^{\circ}C$			1200	V
V _{GES}	max. DC gate voltage						±20	V
V_{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_{\rm C} = 25^{\circ}{\rm C}$			100	Α
I _{C80}				$T_C = 80^{\circ}C$			65	Α
P _{tot}	total power dissipation			$T_{\rm C} = 25^{\circ}{\rm C}$			350	W
V _{CE(sat)}	collector emitter saturation voltage		I_{c} = 50A; V_{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.8	2.1	V
				$T_{VJ} = 125$ °C		2.1		V
$V_{GE(th)}$	gate emitter threshold voltage		I_C = 2mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
I _{CES}	collector emitter leakage current		$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.1	mΑ
				$T_{VJ} = 125$ °C		0.1		mA
I _{GES}	gate emitter leakage current	-	$V_{GE} = \pm 20 \text{ V}$				500	nA
Q _{G(on)}	total gate charge		$V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$	50 A		190		nC
t _{d(on)}	turn-on delay time	7				70		ns
t _r	current rise time		2. I C I I	T 40500		40		ns
$t_{d(off)}$	turn-off delay time		inductive load	$T_{VJ} = 125^{\circ}C$		250		ns
t _f	current fall time	٦	$V_{CE} = 600 \text{ V}; I_C = 50 \text{ A}$			100		ns
E _{on}	turn-on energy per pulse		$V_{GE} = \pm 15 \text{ V}; R_G = 15 \Omega$			4.5		mJ
E_{off}	turn-off energy per pulse	ノ				5.5		mJ
RBSOA	reverse bias safe operating area	٦	$V_{GE} = \pm 15 \text{ V}; R_{G} = 15 \Omega$	T _{VJ} = 125°C				
I _{CM}			$V_{CEmax} = 1200V$				150	Α
SCSOA	short circuit safe operating area	7	V _{CEmax} = 1200 V					
tsc	short circuit duration	>	$V_{CE} = 900 V; V_{GE} = \pm 15 V$	$T_{VJ} = 125^{\circ}C$			10	μs
I _{sc}	short circuit current	J	R_G = 15 Ω ; non-repetitive			200		Α
R _{thJC}	thermal resistance junction to case	-					0.35	K/W
R _{thCH}	thermal resistance case to heatsink					0.10		K/W

Package SOT-227B (minibloc)				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal 1)					150	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{\mathbf{T}}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	terminal to termin				3.2			mm
d _{Spb/Apb}	creepage distance on surface striking distance through air		terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second			3000			V
	t = 1 minute		50/60 Hz, RMS; IISOL ≤ 1 mA		2500			V

¹⁾ l_{nusc} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Logo → IXYS XXXXX AND Part No.

Assembly Line ↑

DateCode Assembly Code

Part description

I = IGBT

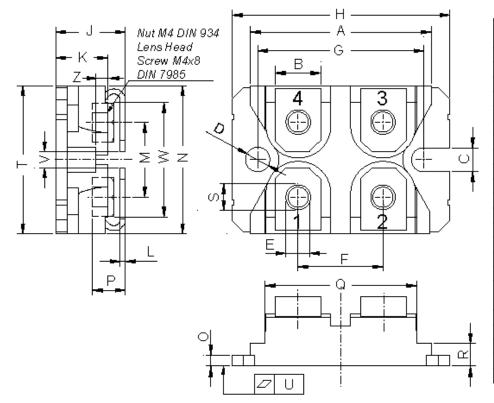
X = XPT IGBT

A = Gen 1 / std

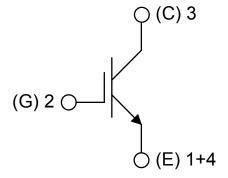
70 = Current Rating [A]

I = Single IGBT

1200 = Reverse Voltage [V] NA = SOT-227B (minibloc)


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA70I1200NA	IXA70I1200NA	Tube	10	511265

Similar Part	Package	Voltage class
IXA60IF1200NA	SOT-227B (minibloc)	1200


Equiv	alent Circuits for Simulation	* on die level	T _{VJ} = 150 °C
$I \rightarrow V_0$	R_0	IGBT	
V _{0 max}	threshold voltage	1.1	V
$R_{0\text{max}}$	slope resistance *	28	$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millir	meter	Inches	
טוm.	min	max	min	max
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
Е	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
0	1.95	2.13	0.077	0.084
Р	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
Т	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Ζ	2.50	2.70	0.098	0.106

IGBT

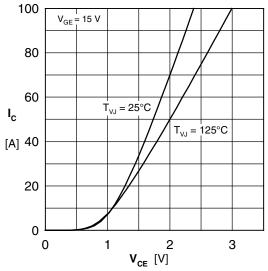


Fig. 1 Typ. output characteristics

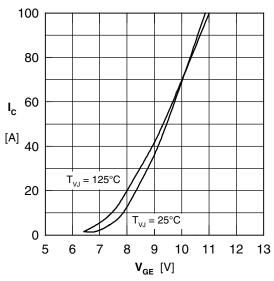


Fig. 3 Typ. tranfer characteristics

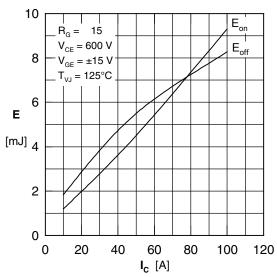


Fig. 5 Typ. switching energy vs. collector current

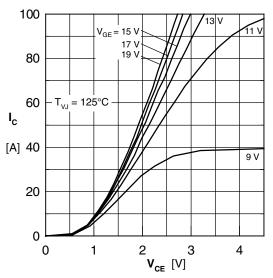


Fig. 2 Typ. output characteristics

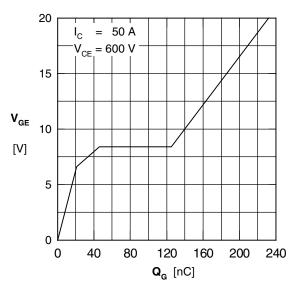


Fig. 4 Typ. turn-on gate charge

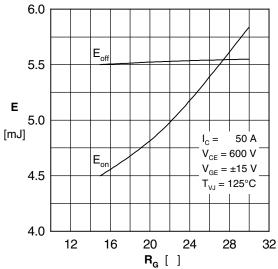


Fig. 6 Typ. switching energy vs. gate resistance

