

Vishay Siliconix

COMPLIANT

HALOGEN FREE

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	-60			
R _{DS(on)} (Ω)	$V_{GS} = -10 \text{ V}$	0.50		
Q _g max. (nC)	12			
Q _{gs} (nC)	3.8			
Q _{gd} (nC)	5.1			
Configuration	Sin	gle		

FEATURES

- Dynamic dV/dt rating
- · Repetitive avalanche rated
- Surface mount (IRFR9014, SiHFR9014)
- Straight lead (IRFU9014, SiHFU9014)
- Available in tape and reel
- P-channel
- · Fast switching
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The DPAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU, SiHFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 W are possible in typical surface-mount applications.

ORDERING INFORMATION					
Package	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	IPAK (TO-251)	
Lood (Dh) free and balagen free	SiHFR9014-GE3	SiHFR9014TRL-GE3 a	SiHFR9014TR-GE3 a	SiHFU9014-GE3	
Lead (Pb)-free and halogen-free	IRFR9014PbF-BE3	IRFR9014TRLPbF-BE3	IRFR9014TRPbF-BE3	-	
Lead (Pb)-free	IRFR9014PbF	IRFR9014TRLPbF ^a	IRFR9014TRPbF ^a	IRFU9014PbF	

Note

a. See device orientation

PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		V_{DS}	-60	V
Gate-source voltage		V_{GS}	± 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Continuous drain current	V_{GS} at 5 V $T_C = 25 \degree C$ $T_C = 100 \degree C$	I-	-5.1	
Continuous drain current	l _D	-3.2	Α	
Pulsed drain current ^a	I _{DM}	-20		
Linear derating factor		0.20	W/°C	
Linear derating factor (PCB mount) e		0.020	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Single pulse avalanche energy ^b		E _{AS}	140	mJ
Repetitive avalanche current a		I _{AR}	-5.1	Α
Repetitive avalanche energy ^a		E _{AR}	2.5	mJ
Maximum power dissipation	T _C = 25 °C	25	25	,,,
Maximum power dissipation (PCB mount) e	P_{D}	2.5	W	
Peak diode recovery dV/dt ^c	dV/dt	-4.5	V/ns	
Operating junction and storage temperature range	T _J , T _{stg}	-55 to +150	°C	
Soldering recommendations (peak temperature) d	For 10 s	_	260	7

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. $V_{DD} = -25 \text{ V}$, starting $T_J = 25 \,^{\circ}\text{C}$, $L = 6.3 \,^{\circ}\text{mH}$, $R_q = 25 \,^{\circ}\Omega$, $I_{AS} = -5.1 \,^{\circ}\text{A}$ (see fig. 12)
- c. $I_{SD} \le$ 6.7 A, $dI/dt \le$ 90 A/ μ s, $V_{DD} \le V_{DS}$, $T_J \le$ 150 °C
- d. 1.6 mm from case
- e. When mounted on 1" square PCB (FR-4 or G-10 material)

Document Number: 91277

IRFR9014, IRFU9014, SiHFR9014, SiHFU9014

www.vishay.com

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Maximum junction-to-ambient	R _{thJA}	-	-	110		
Maximum junction-to-ambient (PCB mount) ^a	R _{thJA}	-	-	50	°C/W	
Maximum junction-to-case (drain)	R _{thJC}	-	-	5.0		

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material)

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							,
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D =$	= - 250 μΑ	-60	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Reference to	25 °C, I _D = -1 mA	-	-0.059	-	V/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D}$	= -250 μΑ	-2.0	-	-4.0	V
Gate-source leakage	I _{GSS}	$V_{GS} = \pm 20 \text{ V}$		-	-	± 100	nA
Zero gate voltage drain current	I _{DSS}	$V_{DS} = -60 \text{ V}, \text{ V}_{DS} = -48 \text{ V}, \text{ V}_{D$	V _{GS} = 0 V V _{GS} = 0 V, T _J = 125 °C	-	-	-100 -500	μA
Drain-source on-state resistance	R _{DS(on)}		I _D = -3.1 A ^b	_	_	0.50	Ω
Forward transconductance	9fs	$V_{DS} = -25 \text{ V, I}_{I}$		1.4	_	-	S
Dynamic	915	1 1 1 2 2 2 1 1 1	J				
Input capacitance	C _{iss}			_	270	_	
Output capacitance	Coss	$V_{GS} = 0 \text{ V},$ $V_{DS} = -25 \text{ V},$		-	170	-	pF
Reverse transfer capacitance	C _{rss}	f = 1.0 MHz, see fig. 5		_	31	-	۴.
Total gate charge	Qg			-	-	12	
Gate-source charge	Q _{gs}	$V_{GS} = -10 \text{ V}$ $I_D = -6.7 \text{ A, } V_{DS} = -48 \text{ V,}$ see fig. 6 and 13 b		-	-	3.8	nC
Gate-drain charge	Q _{gd}			-	-	5.1	
Turn-on delay time	t _{d(on)}		•	-	11	-	
Rise time	t _r	V_{DD} = -30 V, I_{D} = -6.7 A, R_{g} = 24 Ω , R_{D} = 4.0 Ω , see fig. 10 ^b		-	63	-	
Turn-off delay time	t _{d(off)}			-	9.6	-	ns
Fall time	t _f	1	1		31	-	
Internal drain inductance	L _D	Between lead	,	-	4.5	-	
Internal source inductance	L _S	6 mm (0.25") from package and center of die contact c		-	7.5	-	nH
Drain-Source Body Diode Characteristic	es						
Continuous source-drain diode current	I _S	MOSFET sym	bol	-	-	-5.1	
Pulsed diode forward current ^a	I _{SM}	showing the integral reverse p - n junction diode		-	-	-20	А
Body diode voltage	V _{SD}	T _J = 25 °C, I _S	= -5.1 A, V _{GS} = 0 V ^b	-	-	-5.5	V
Body diode reverse recovery time	t _{rr}			-	80	160	ns
Body diode reverse recovery charge	Q_{rr}	$T_J = 25 ^{\circ}\text{C}$, $I_F = -6.7 \text{A}$, $dI/dt = 100 \text{A}/\mu \text{s}^{ \text{b}}$		-	0.096	0.19	μC
Forward turn-on time	t _{on}	Intrinsic turn-on time is negligible (turn-		-on is dor	ninated b	v I e and	[D)

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. Pulse width \leq 300 µs; duty cycle \leq 2 %

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

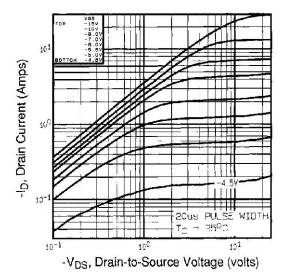


Fig. 1 - Typical Output Characteristics, T_C = 25 °C

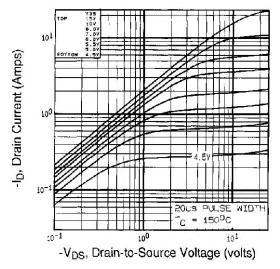


Fig. 2 - Typical Output Characteristics, T_C = 150 °C

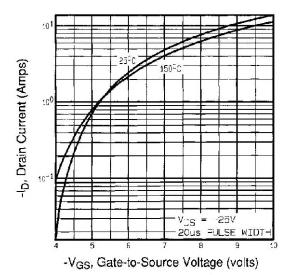


Fig. 3 - Typical Transfer Characteristics

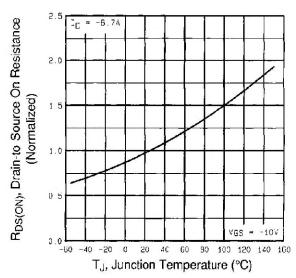


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

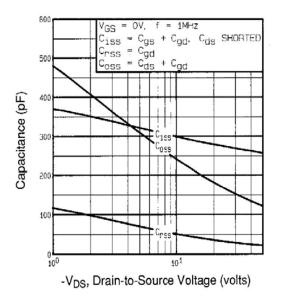


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

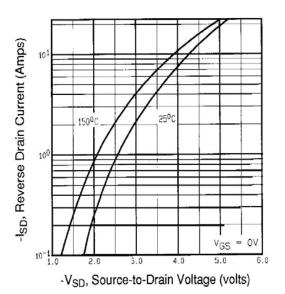


Fig. 7 - Typical Source-Drain Diode Forward Voltage

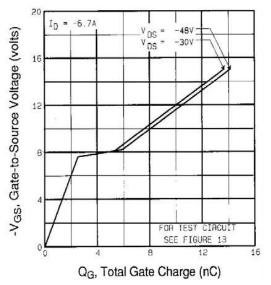


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

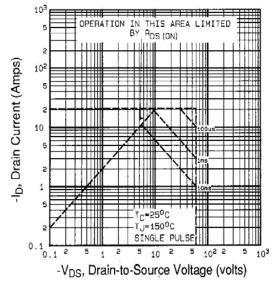


Fig. 8 - Maximum Safe Operating Area

Vishay Siliconix

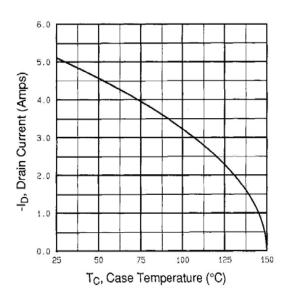


Fig. 9 - Maximum Drain Current vs. Case Temperature

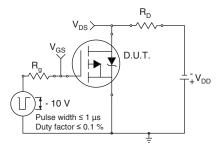


Fig. 10a - Switching Time Test Circuit

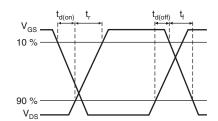


Fig. 10b - Switching Time Waveforms

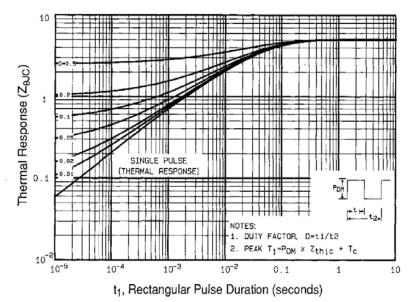


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

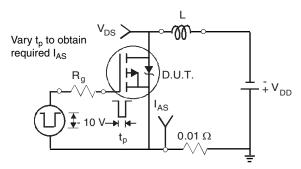


Fig. 12a - Unclamped Inductive Test Circuit

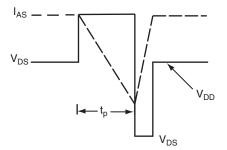


Fig. 12b - Unclamped Inductive Waveforms

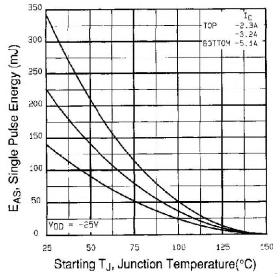


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

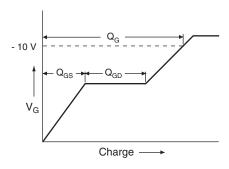


Fig. 13a - Basic Gate Charge Waveform

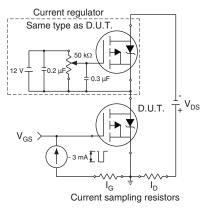
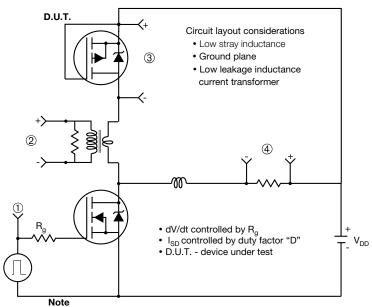
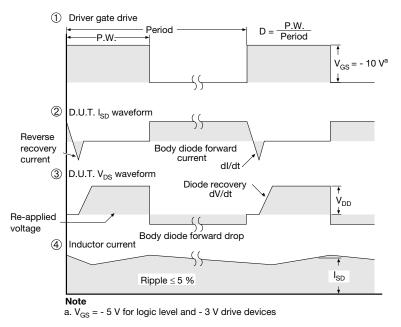



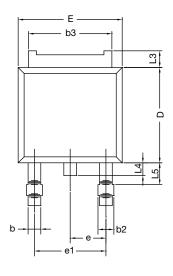
Fig. 13b - Gate Charge Test Circuit

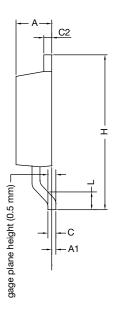
Vishay Siliconix

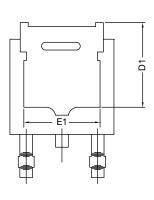
Peak Diode Recovery dV/dt Test Circuit

• Compliment N-Channel of D.U.T. for driver



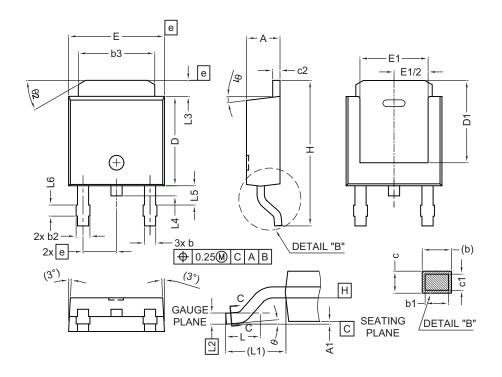

Fig. 14 - For P-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91277.



TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y


	MILLIMETERS		
DIM.	MIN.	MAX.	
Α	2.18	2.38	
A1	-	0.127	
b	0.64	0.88	
b2	0.76	1.14	
b3	4.95	5.46	
С	0.46	0.61	
C2	0.46	0.89	
D	5.97	6.22	
D1	4.10	-	
Е	6.35	6.73	
E1	4.32	-	
Н	9.40	10.41	
е	2.28	BSC	
e1	4.56	BSC	
L	1.40	1.78	
L3	0.89	1.27	
L4	-	1.02	
L5	1.01	1.52	

Note

• Dimension L3 is for reference only

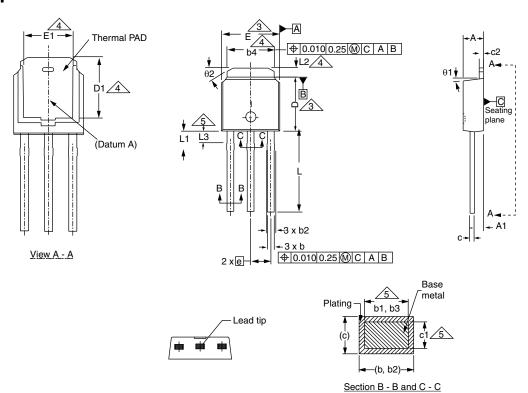
VERSION 2: FACILITY CODE = N

	MILLIMETERS			
DIM.	MIN.	MAX.		
Α	2.18	2.39		
A1	-	0.13		
b	0.65	0.89		
b1	0.64	0.79		
b2	0.76	1.13		
b3	4.95	5.46		
С	0.46	0.61		
c1	0.41	0.56		
c2	0.46	0.60		
D	5.97	6.22		
D1	5.21	=		
Е	6.35	6.73		
E1	4.32	=		
е	2.29 BSC			
Н	9.94	10.34		

	MILLIMETERS			
DIM.	MIN.	MAX.		
L	1.50	1.78		
L1	2.74	ref.		
L2	0.51	BSC		
L3	0.89	1.27		
L4	-	1.02		
L5	1.14	1.49		
L6	0.65	0.85		
θ	0°	10°		
θ1	0°	15°		
θ2	25°	35°		

Notes

- Dimensioning and tolerance confirm to ASME Y14.5M-1994
- All dimensions are in millimeters. Angles are in degrees
- Heat sink side flash is max. 0.8 mm
- · Radius on terminal is optional


ECN: E22-0399-Rev. R, 03-Oct-2022

DWG: 5347

Vishay Siliconix

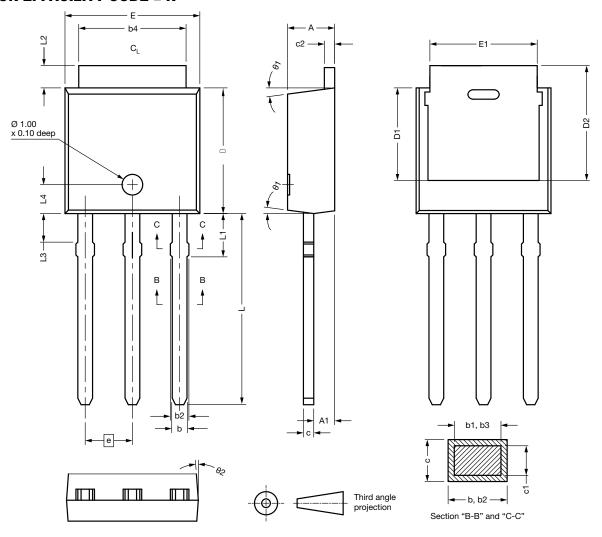
Case Outline for TO-251AA (High Voltage)

OPTION 1:

	MILLIMETERS		INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
Α	2.18	2.39	0.086	0.094
A1	0.89	1.14	0.035	0.045
b	0.64	0.89	0.025	0.035
b1	0.65	0.79	0.026	0.031
b2	0.76	1.14	0.030	0.045
b3	0.76	1.04	0.030	0.041
b4	4.95	5.46	0.195	0.215
С	0.46	0.61	0.018	0.024
c1	0.41	0.56	0.016	0.022
c2	0.46	0.86	0.018	0.034
D	5.97	6.22	0.235	0.245

	MILLIM	MILLIMETERS		HES
DIM.	MIN.	MAX.	MIN.	MAX.
D1	5.21	-	0.205	-
Е	6.35	6.73	0.250	0.265
E1	4.32	-	0.170	-
е	2.29	BSC	2.29	BSC
L	8.89	9.65	0.350	0.380
L1	1.91	2.29	0.075	0.090
L2	0.89	1.27	0.035	0.050
L3	1.14	1.52	0.045	0.060
θ1	0'	15'	0'	15'
θ2	25'	35'	25'	35'

ECN: E21-0682-Rev. C, 27-Dec-2021


DWG: 5968

Notes

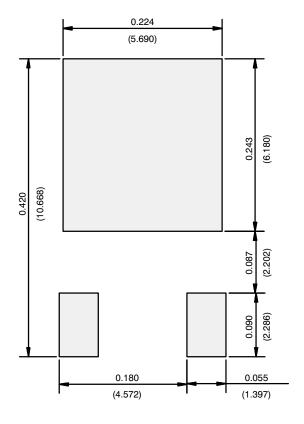
- Dimensioning and tolerancing per ASME Y14.5M-1994
- Dimension are shown in inches and millimeters
- Dimension D and E do not include mold flash. Mold flash shall not exceed 0.13 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- Thermal pad contour optional with dimensions b4, L2, E1 and D1
- Lead dimension uncontrolled in L3
- Dimension b1, b3 and c1 apply to base metal only
- Outline conforms to JEDEC® outline TO-251AA

OPTION 2: FACILITY CODE = N

DIM.	MIN.	NOM.	MAX.
Α	2.180	2.285	2.390
A1	0.890	1.015	1.140
b	0.640	0.765	0.890
b1	0.640	0.715	0.790
b2	0.760	0.950	1.140
b3	0.760	0.900	1.040
b4	4.950	5.205	5.460
С	0.460	-	0.610
c1	0.410	-	0.560
c2	0.460	-	0.610
D	5.970	6.095	6.220
D1	4.300	-	-

DIM.	MIN.	NOM.	MAX.
D2	5.380	-	-
E	6.350	6.540	6.730
E1	4.32	-	-
е	2.29	BSC	
L	8.890	9.270	9.650
L1	1.910	2.100	2.290
L2	0.890	1.080	1.270
L3	1.140	1.330	1.520
L4	1.300	1.400	1.500
θ1	0°	7.5°	15°
θ2	4°	-	-

ECN: E21-0682-Rev. C, 27-Dec-2021


DWG: 5968

Notes

- Dimensioning and tolerancing per ASME Y14.5M-1994
- All dimension are in millimeters, angles are in degrees
- Heat sink side flash is max. 0.8 mm

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.