

DRV8702D-Q1, DRV8703D-Q1

SLVSDX8B-MARCH 2017-REVISED DECEMBER 2018

DRV870xD-Q1 Automotive Half-Bridge Gate Driver

Features

- AEC-Q100 Qualified for Automotive Applications
 - Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature
- Single Half-Bridge Gate Driver
 - Drives Two External N-Channel MOSFETs
 - Supports 100% PWM Duty Cycle
- 5.5 to 45-V Operating Supply-Voltage Range
- **PWM Control Interface**
- Serial Interface for Configuration (DRV8703D-Q1)
- Smart Gate Drive Architecture
 - Adjustable Slew-Rate Control
- Supports 1.8-V, 3.3-V, and 5-V logic inputs
- **Current-Shunt Amplifier**
- Integrated PWM Current Regulation
- Low-Power Sleep Mode
- **Protection Features**
 - Supply Undervoltage Lockout (UVLO)
 - Charge-Pump Undervoltage (CPUV) Lockout
 - Overcurrent Protection (OCP)
 - Gate-Driver Fault (GDF)
 - Thermal Shutdown (TSD)
 - Watchdog Timer (DRV8703D-Q1)
 - Fault-Condition Output (nFAULT)

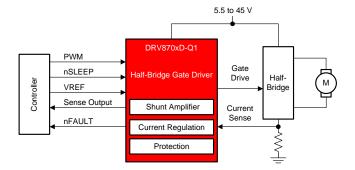
Applications

- **Fuel Pumps**
- Unidirectional Brushed DC Motors
- Relays or Solenoids
- Unipolar Loads

3 Description

The DRV870xD-Q1 devices are small half bridge gate drivers that use two external N-channel MOSFETs targeted to drive unidirectional brushed-DC motors or solenoid loads.

A PWM interface allows simple interfacing to controller circuits. An internal sense provides adjustable current control. Integrated Charge-Pump allows for 100% duty cycle support and can be used to drive external reverse battery switch. Independent Half Bridge mode allows sharing of half bridges to control multiple DC motors sequentially in a cost-efficient way. The gate driver includes circuitry to regulate the winding current using fixed off-time PWM current chopping.


The DRV870xD-Q1 devices include Smart Gate Drive technology to remove the need for any external gate components (resistors and Zener diodes) while protecting the external FETs. The Smart Gate Drive architecture optimizes dead time to avoid any shootthrough conditions, provides flexibility in reducing (EMI) electromagnetic interference programmable slew-rate control and protects against any gate-short conditions. Additionally, active and passive pulldowns are included to prevent any dv/dt gate turn on.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DRV8702D-Q1	VOEN (22)	5 00 mm
DRV8703D-Q1	VQFN (32)	5.00 mm × 5.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Features 1		7.5 Programming	39
2	Applications 1		7.6 Register Maps	41
3	Description 1	8	Application and Implementation	47
4	Revision History2		8.1 Application Information	47
5	Pin Configuration and Functions		8.2 Typical Application	
6	Specifications5	9	Power Supply Recommendations	
U	6.1 Absolute Maximum Ratings		9.1 Bulk Capacitance Sizing	51
	6.2 ESD Ratings	10	Layout	52
	6.3 Recommended Operating Conditions		10.1 Layout Guidelines	
	6.4 Thermal Information		10.2 Layout Example	52
	6.5 Electrical Characteristics 6	11	Device and Documentation Support	53
	6.6 SPI Timing Requirements		11.1 Documentation Support	53
	6.7 Switching Characteristics		11.2 Related Links	53
	6.8 Typical Characteristics		11.3 Receiving Notification of Documentation Updat	tes 53
7	Detailed Description		11.4 Community Resources	53
-	7.1 Overview		11.5 Trademarks	53
	7.2 Functional Block Diagram		11.6 Electrostatic Discharge Caution	53
	7.3 Feature Description		11.7 Glossary	54
	7.4 Device Functional Modes	12	Mechanical, Packaging, and Orderable Information	54

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision A (August 2018) to Revision B	Page
•	Changed front page to remove second description	1
•	Deleted Gate-Drive Current figure	1
•	Deleted MODE pulldown resistance	7
•	Added MODE typical pulldown resistance	7
•	Added MODE typical pullup resistance	7
•	Changed Wording in VDS Configuration section	49
_		

CI	nanges from Original (March 2017) to Revision A	Page
	Changed the Features and Descriptions sections	1
•	Deleted PH/EN from the PWM line in the Simplified Schematic	1
•	Changed Vvref description update	6
	Changed the V _{DS(OCP)} from 0.86 V to 0.96 V in the OCP Threshold Voltage graph	
•	Changed the I _(CHOP) equation in the Current Regulation and Current Chopping Configuration sections	24
•	Changed the current equation in the <i>Amplifier Output (SO)</i> section	24
•	Changed the description of the WD_EN bit in the IDRIVE and WD Field Descriptions table	44

Submit Documentation Feedback

5 Pin Configuration and Functions

Pin Functions

	PIN				
NAME	NO.		TYPE(1)	DESCRIPTION	
NAME	DRV8702D-Q1	DRV8703D-Q1			
AVDD	14	14	PWR	Analog regulator. This pin is the 5-V analog supply regulator. Bypass this pin to ground with a 6.3-V, 1- μ F ceramic capacitor.	
СРН	30	30	PWR	Charge-pump switching node. Connect a 0.1- μ F X7R capacitor rated for the supply voltage (VM) between the CPH and CPL pins.	
CPL	31	31	PWR	Charge-pump switching node. Connect a 0.1- μ F X7R capacitor rated for the supply voltage (VM) between the CPH and CPL pins.	
DVDD	12	12	PWR	Logic regulator. This pin is the regulator for the 3.3-V logic supply. Bypass this pin to ground with a 6.3-V, $1-\mu F$ ceramic capacitor.	
GH	18	18	0	High-side gate. Connect this pin to the high-side FET gate.	
GL	20	20	0	Low-side gate. Connect this pin to the low-side FET gate.	
GND	1	1	PWR	Device ground. Connect this pin to the system ground.	
GND	13	13	PWR	Device ground. Connect this pin to the system ground.	
GND	17	17	PWR	Device ground. Connect this pin to the system ground.	
GND	25	25	PWR	Device ground. Connect this pin to the system ground.	
GND	4	_	PWR	Device ground. Connect this pin to the system ground.	
GND	7	_	PWR	Device ground. Connect this pin to the system ground.	
GND	9	_	PWR	Device ground. Connect this pin to the system ground.	
IDRIVE	5	_	I	Current setting pin for the gate drive. The resistor value or voltage forced on this pin sets the gate-drive current. For more information see the IDRIVE Configuration section.	
IN1	2	2	1	Input control pins. The logic of this pin is dependent on the MODE pin. This pin is connected to an internal pulldown resistor.	

(1) I = input, O = output, PWR = power, NC = no connect, OD = open-drain output

Pin Functions (continued)

	PIN					
NAME	N	0.	TYPE(1)	DESCRIPTION		
NAME	DRV8702D-Q1	DRV8703D-Q1				
IN2	3	3	I	Input control pins. The logic of this pin is dependent on the MODE pin. This pin is connected to an internal pulldown resistor.		
MODE	11	11	I	Mode control pin. Pull this pin to logic high for half-bridge operation without internal current regulation. Leave this pin as no-connect for half-bridge operation with internal current regulation. Operation of this pin is latched on power up or when exiting sleep mode. This pin is connected to an internal pullup and pulldown resistor.		
NC	32	32	NC	No connect. No internal connection		
nFAULT	10	10	OD	Fault indication pin. This pin is pulled logic low when a fault condition occurs. This pin is an open-drain output that requires an external pullup resistor.		
nSCS	_	5	I	SPI chip select. This pin is the select and enable for SPI. This pin is active low. This pin is connected to an internal pulldown resistor.		
nSLEEP	8	8	I	Device sleep mode. Pull this pin to logic low to put device into a low-power sleep mode with the FETs in high impedance (Hi-Z). This pin is connected to an internal pulldown resistor.		
nWDFLT	_	9	OD	Watchdog fault indication pin. This pin is pulled logic low when a watchdog fault condition occurs. This pin is an open-drain output that requires an external pullup resistor.		
RSVD	26	26	RSVD	Reserved. Do not connect anything.		
RSVD	24	24	RSVD	Reserved. Do not connect anything.		
SCLK	_	7	I	SPI clock. This pin is for the SPI clock signal. This pin is connected to an internal pulldown resistor.		
SDI	_	6	1	SPI input. This pin is for the SPI input signal. This pin is connected to an internal pulldown resistor.		
SDO	_	4	OD	SPI output. This pin is for the SPI output signal. This pin is an open-drain output that requires an external pullup resistor.		
SH	19	19	I	High-side source. Connect this pin to the high-side FET source.		
SN	22	22	I	Shunt-amplifier negative input. Connect this pin to the current-sense resistor.		
so	16	16	0	Shunt-amplifier output. The voltage on this pin is equal to the SP voltage times A_V plus an offset. Place no more than 1 nF of capacitance on this pin.		
SP	21	21	I	Shunt-amplifier positive input. Connect this pin to the current-sense resistor.		
SP	23	23	I	Shunt-amplifier positive input. Connect this pin to the current-sense resistor.		
VCP	29	29	PWR	Charge-pump output. Connect a 16-V, 1-μF ceramic capacitor between this pin and the VM pin.		
VDRAIN	27	27	I	High-side FET drain connection. This pin is common for the half-bridge.		
VDS	6	_	I	VDS monitor setting pin. The resistor value or voltage forced on this pin sets the VDS monitor threshold. For more information see the <i>VDS Configuration</i> section.		
VM	28	28	PWR	Power supply. Connect this pin to the motor supply voltage. Bypass this pin to ground with a 0.1-μF ceramic plus a 10-μF (minimum) capacitor.		
VREF	15	15	1	Current set reference input. The voltage on this pin sets the driver chopping current.		

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Power supply voltage	VM	-0.3	47	V
Charge pump voltage	VCP, CPH	-0.3	V _{VM} + 12	V
Charge pump negative switching pin	CPL	-0.3	V_{VM}	V
Internal logic regulator voltage	DVDD	-0.3	3.8	V
Internal analog regulator voltage	AVDD	-0.3	5.7	V
Drain pin voltage	VDRAIN	-0.3	47	V
Voltage difference between supply and VDRAIN	VM – VDRAIN	-10	10	V
Control pin voltage	VIN1, IN2, nSLEEP, nFAULT, VREF, IDRIVE, VDS, MODE, nSCS, SCLK, SDI, SDO, nWDFLT	-0.3	5.75	V
High-side gate pin voltage	GH	-0.3	V _{VM} + 12	V
Low-side gate pin voltage	GL	-0.3	12	V
Continuous phase-node pin voltage	SH	-1.2	V _{VM} + 1.2	V
Pulsed 10-µs phase-node pin voltage	SH	-2	V _{VM} + 2	V
Continuous shunt amplifier input pin voltage	SP	-0.5	1.2	V
Continuous shunt ampillier input pin voltage	SN	-0.3	0.3	V
Pulsed 10-µs shunt amplifier input pin voltage	SP	-1	1.2	٧
Shunt amplifier output pin voltage	SO	-0.3	5.75	٧
Shunt amplifier output pin current	SO	0	5	mA
Maximum current, limit current with external series resistor	VDRAIN	-2	2	mA
Open-drain output current	nFAULT, SDO, nWDFLT	0	10	mA
Gate pin source current	GH, GL	0	250	mA
Gate pin sink current	GH, GL	0	500	mA
Operating junction temperature, T _J		-40	150	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
	FI	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 2		±2000	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	All pins	±500	V
V _(ESD)	u.coma.gc	CDM ESD Classification Level C4B	Corner pins (1, 8, 9, 16, 17, 24, 25, and 32)	±750	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Copyright © 2017–2018, Texas Instruments Incorporated

Product Folder Links: DRV8702D-Q1 DRV8703D-Q1

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V_{VM}	Power supply voltage	VM	5.5	45	V
V_{CC}	Logic-level input voltage	•	0	5.25	V
V_{VREF}	Current Shunt Amplifier Reference Voltage	VREF	0.3 ⁽¹⁾	3.6	V
f _(PWM)	Applied PWM signal (IN1/IN2)	IN1, IN2		100	kHz
I _{AVDD}	AVDD external load current	·		30 ⁽²⁾	mA
I _{DVDD}	DVDD external load current			30 ⁽²⁾	mA
I _{SO}	Shunt-amplifier output-current loading	SO		5	mA
T _A	Operating ambient temperature		-40	125	°C

 ⁽¹⁾ Operational at V_{VREF} = 0 to approximately 0.3 V, but accuracy is degraded.
 (2) Power dissipation and thermal limits must be observed.

6.4 Thermal Information

		DRV870xD-Q1	
	THERMAL METRIC ⁽¹⁾	RHB (VQFN)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	32.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	19.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	6.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	6.8	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	1.8	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application

6.5 Electrical Characteristics

Over recommended operating conditions unless otherwise noted. Typical limits apply for T_A = 25°C and V_{VM} = 13.5 V

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	UPPLIES (VM, AVDD, DVDD)				·	
V	V/M anavatina valtana	Gate drivers functional	5.5		45	V
V_{VM}	VM operating voltage	Logic functional	4.5		45	V
I _{VM}	VM operating supply current	V _{VM} = 13.5 V; nSLEEP=1	5.5	7.5	12	mA
	V/M along goods assessed assessed	nSLEEP = 0, V _{VM} = 13.5 V, T _A = 25°C			14	
I _(SLEEP)	VM sleep mode supply current	nSLEEP = 0, V _{VM} = 13.5 V, T _A = 125°C ⁽¹⁾			25	μΑ
	later and the site of a superior to the second	2-mA load	3	3.3	3.5	V
V_{DVDD}	Internal logic regulator voltage	30-mA load, V _{VM} = 13.5 V	2.9	3.2	3.5	V
M	later and the site of a superior to the second	2-mA load	4.7	5	5.3	V
V_{AVDD}	AVDD Internal logic regulator voltage	30-mA load, V _{VM} = 13.5 V	4.6	5	5.3	V
CHARGE	PUMP (VCP, CPH, CPL)				*	
		V _{VM} = 13.5 V; I _{VCP} = 0 to 12 mA	22.5	23.5	24.5	
V_{VCP}	VCP operating voltage	V _{VM} = 8 V; I _{VCP} = 0 to 10 mA	13.7	14	14.8	V
		V _{VM} = 5.5 V; I _{VCP} = 0 to 8 mA	8.9	9.1	9.5	
		V _{VM} > 13.5 V	12			
I _{VCP}	Charge-pump current capacity	8 V < V _{VM} < 13.5 V	10			mA
		5.5 V < V _{VM} < 8 V	8			
CONTROL	INPUTS (IN1, IN2, nSLEEP, MODE,	nSCS, SCLK, SDI)				
V _{IL}	Input logic-low voltage		0		8.0	V
V _{IH}	Input logic-high voltage		1.5		5.25	V

Ensured by design and characterization data.

Over recommended operating conditions unless otherwise noted. Typical limits apply for $T_A = 25$ °C and $V_{VM} = 13.5$ V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{hys}	Input logic hysteresis		100			mV
I _{IL}	Input logic-low current	V _{IN} = 0 V	– 5		5	μΑ
I _{IH}	Input logic-high current	V _{IN} = 5 V			70	μΑ
R _{PD}	Pulldown resistance	IN1, IN2, nSLEEP, nSCS, SCLK, SDI	64	100	173	kΩ
R _{PD}	Pulldown resistance	MODE		65		kΩ
R _{PU}	Pullup resistance	MODE		26		kΩ
CONTROL OL	JTPUTS (nFAULT, WDFAULT, SD	0)				
V _{OL}	Output logic-low voltage	I _O = 2 mA			0.1	V
l _{OZ}	Output high-impedance leakage	5V pullup voltage	-2		2	μΑ
FET GATE DE	RIVERS (GH1, GH2, SH1, SH2, GL	1, GL2)				
		V _{VM} > 13.5 V; V _{GSH} with respect to SH		10.5	11.5	
Vegsh	High-side V _{GS} gate drive (gate-to-source)	V _{VM} = 8 V; V _{GSH} with respect to SH	5.7		6.8	V
	to oddioc)	V _{VM} = 5.5 V; V _{GSH} with respect to SH	3.4		4	
	Low-side V _{GS} gate drive (gate-to-	V _{VM} > 10.5 V		10.5		
V _{GSL}	source)	V _{VM} < 10.5 V	$V_{VM}-2$			V
I _{DRIVE(SRC_HS)}	High-side neak source current	$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)		10		
		$R_{(IDRIVE)} = 33 \text{ k}\Omega \text{ to GND (DRV8702D) or } IDRIVE = 3'b001 (DRV8703D)}$		20		mA
		$R_{(IDRIVE)} = 200 \text{ k}\Omega \text{ to GND (DRV8702D)}$ or IDRIVE = 3'b010 (DRV8703D)		50		
		IDRIVE = 3'b011 (DRV8703D)		70		
I _{DRIVE} (SRC_HS)	(V _{VM} = 5.5V)	IDRIVE = 3'b100 (DRV8703D)		100		
	(SRC_HS) High-side peak source current $(V_{VM} = 5.5V)$	$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)		145		
		$R_{(IDRIVE)} = 68 \text{ k}\Omega \text{ to AVDD (DRV8702D)}$ or IDRIVE = 3'b110 (DRV8703D)		190		
		$R_{(IDRIVE)} = 1 \text{ k}\Omega \text{ to AVDD (DRV8702D) or } IDRIVE = 3'b111 (DRV8703D)}$		240		
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)		20		
		$R_{(IDRIVE)} = 33 \text{ k}\Omega \text{ to GND (DRV8702D) or } IDRIVE = 3'b001 (DRV8703D)}$		40		
		$R_{(IDRIVE)} = 200 \text{ k}\Omega \text{ to GND (DRV8702D)}$ or IDRIVE = 3'b010 (DRV8703D)		90		
	High-side peak sink current	IDRIVE = 3'b011 (DRV8703D)		120		_
I _{DRIVE} (SNK_HS)	$(V_{VM} = 5.5V)$	IDRIVE = 3'b100 (DRV8703D)		170		mA
		$R_{(IDRIVE)} > 2 M\Omega$ to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)		250		
		$R_{(IDRIVE)} = 68 \text{ k}\Omega \text{ to AVDD (DRV8702D)}$ or IDRIVE = 3'b110 (DRV8703D)		330		
		$R_{(IDRIVE)} = 1 \text{ k}\Omega \text{ to AVDD (DRV8702D) or }$ IDRIVE = 3'b111 (DRV8703D)		420		

Product Folder Links: DRV8702D-Q1 DRV8703D-Q1

Over recommended operating conditions unless otherwise noted. Typical limits apply for $T_A = 25$ °C and $V_{VM} = 13.5 \text{ V}$

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT		
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)	10			
		$R_{(IDRIVE)}$ = 33 k Ω to GND (DRV8702D) or IDRIVE = 3'b001 (DRV8703D)	20			
		$R_{(IDRIVE)} = 200 \text{ k}\Omega \text{ to GND (DRV8702D)}$ or IDRIVE = 3'b010 (DRV8703D)	40			
	Low-side peak source current	IDRIVE = 3'b011 (DRV8703D)	55	mΛ		
IDRIVE(SRC_LS)	$(V_{VM} = 5.5V)$	IDRIVE = 3'b100 (DRV8703D)	75	mA		
		$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)	115			
		$R_{(IDRIVE)}$ = 68 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b110 (DRV8703D)	145			
		$R_{(IDRIVE)}$ = 1 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b111 (DRV8703D)	190			
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)	20			
	Low-side peak sink current (V _{VM} = 5.5V)	$R_{(IDRIVE)} = 33 \text{ k}\Omega \text{ to GND (DRV8702D) or } IDRIVE = 3'b001 (DRV8703D)}$	40			
		$R_{(IDRIVE)}$ = 200 kΩ to GND (DRV8702D) or IDRIVE = 3'b010 (DRV8703D)	85			
		IDRIVE = 3'b011 (DRV8703D)	115	A		
IDRIVE(SNK_LS)		IDRIVE = 3'b100 (DRV8703D)	160	mA		
		$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)	235			
		$R_{(IDRIVE)} = 68 \text{ k}\Omega \text{ to AVDD (DRV8702D)}$ or IDRIVE = 3'b110 (DRV8703D)	300			
		$R_{(IDRIVE)}$ = 1 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b111 (DRV8703D)	360			
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)	10			
		$R_{(IDRIVE)} = 33 \text{ k}\Omega \text{ to GND (DRV8702D) or } IDRIVE = 3'b001 (DRV8703D)}$	20			
		$R_{(IDRIVE)}$ = 200 k Ω to GND (DRV8702D) or IDRIVE = 3'b010 (DRV8703D)	50			
1	High-side peak source current	IDRIVE = 3'b011 (DRV8703D)	70	mΛ		
IDRIVE(SRC_HS)	(V _{VM} = 13.5V)	IDRIVE = 3'b100 (DRV8703D)	105	mA		
		$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)	155			
		$R_{(IDRIVE)}$ = 68 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b110 (DRV8703D)	210			
		$R_{(IDRIVE)} = 1 \text{ k}\Omega \text{ to AVDD (DRV8702D) or } IDRIVE = 3'b111 (DRV8703D)}$	260			

Submit Documentation Feedback

Over recommended operating conditions unless otherwise noted. Typical limits apply for $T_A = 25$ °C and $V_{VM} = 13.5$ V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)		20			
		$R_{(IDRIVE)}$ = 33 k Ω to GND (DRV8702D) or IDRIVE = 3'b001 (DRV8703D)		40			
		$R_{(IDRIVE)}$ = 200 k Ω to GND (DRV8702D) or IDRIVE = 3'b010 (DRV8703D)		95			
	High-side peak sink current	IDRIVE = 3'b011 (DRV8703D)		130		Л	
DRIVE(SNK_HS)	$(V_{VM} = 13.5V)$	IDRIVE = 3'b100 (DRV8703D)		185		mA	
		$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)		265			
		$R_{(IDRIVE)}$ = 68 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b110 (DRV8703D)		350			
		$R_{(IDRIVE)} = 1 \text{ k}\Omega \text{ to AVDD (DRV8702D) or } IDRIVE = 3'b111 (DRV8703D)}$		440			
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)		10			
		$R_{(IDRIVE)}$ = 33 k Ω to GND (DRV8702D) or IDRIVE = 3'b001 (DRV8703D)		20			
		$R_{(IDRIVE)}$ = 200 k Ω to GND (DRV8702D) or IDRIVE = 3'b010 (DRV8703D)		45			
İ	Low-side peak source current (V _{VM} = 13.5V)	IDRIVE = 3'b011 (DRV8703D)		60		mA	
DRIVE(SRC_LS)		IDRIVE = 3'b100 (DRV8703D)		90			
		$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)		130			
		$R_{(IDRIVE)}$ = 68 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b110 (DRV8703D)		180			
		$R_{(IDRIVE)}$ = 1 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b111 (DRV8703D)		225			
		$R_{(IDRIVE)}$ < 1 k Ω to GND (DRV8702D) or IDRIVE = 3'b000 (DRV8703D)		20			
		$R_{(IDRIVE)}$ = 33 k Ω to GND (DRV8702D) or IDRIVE = 3'b001 (DRV8703D)		40			
		$R_{(IDRIVE)}$ = 200 k Ω to GND (DRV8702D) or IDRIVE = 3'b010 (DRV8703D)		95			
	Low-side peak sink current	IDRIVE = 3'b011 (DRV8703D)		125		mA	
DRIVE(SNK_LS)	$(V_{VM} = 13.5V)$	IDRIVE = 3'b100 (DRV8703D)		180		ША	
		$R_{(IDRIVE)}$ > 2 M Ω to GND (DRV8702D) or IDRIVE = 3'b101 (DRV8703D)		260			
		$R_{(IDRIVE)}$ = 68 k Ω to AVDD (DRV8702D) or IDRIVE = 3'b110 (DRV8703D)		350			
		$R_{(IDRIVE)} = 1 \text{ k}\Omega \text{ to AVDD (DRV8702D) or } IDRIVE = 3'b111 (DRV8703D)}$		430			
HOLD	FET holding current	Source current after t _{DRIVE}		10		mA	
HOLD	TET HORING CUITERS	Sink current after t _{DRIVE}		40		шА	
STRONG	FET holdoff strong pulldown	GH		750		mA	
SIKUNG	. 2. Holdon strong pulldown	GL		1000		111/1	
R _(OFF)	FET gate holdoff resistor	Pulldown GH to SH		150		kΩ	
. ,		Pulldown GL to GND	150			11.2.2	
URRENT SH	IUNT AMPLIFIER AND PWM CU	RRENT CONTROL (SP, SN, SO, VREF)					
$I_{ m VREF}$	VREF input rms voltage	For current internal chopping	0.3 (2)		3.6	V	

⁽²⁾ Operational at $V_{VREF} = 0$ to approximately 0.3 V, but accuracy is degraded.

Over recommended operating conditions unless otherwise noted. Typical limits apply for $T_A = 25$ °C and $V_{VM} = 13.5$ V

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Runss VREE input impedance		DRV8702D and DRV8703D VREF_SCL = 00 (100%)	1			ΜΩ	
R _{VREF}	VREF input impedance	DRV8703D VREF_SCL = 2'b01, 2'b10 or 2'b11		175		kΩ	
A _V	Amplifier gain (DRV8702D-Q1)	60 < V _{SP} < 225 mV; V _{SN} = GND	19.3	19.8	20.3	V/V	
		GAIN_CS = 00; 10 < V _{SP} < 450 mV; V _{SN} = GND	9.75	10	10.25		
		GAIN_CS = 01; 60 < V _{SP} < 225 mV; V _{SN} = GND	19.3	19.8	20.3		
A _V	Amplifier gain (DRV8703D-Q1)	GAIN_CS = 10; 10 < V _{SP} < 112 mV; V _{SN} = GND	38.4	39.4	40.4	V/V	
		$\begin{array}{l} \text{GAIN_CS} = 11; 10 < V_{SP} < 56 \text{mV}; V_{SN} = \\ \text{GND} \end{array}$	73	78	81		
V_{IO}	Input-referred offset	$V_{SP} = V_{SN} = GND$		5	10	mV	
$V_{IO(DRIFT)}$	Drift offset ⁽²⁾	$V_{SP} = V_{SN} = GND$		10		μV/°C	
I _{SP}	SP input current	$V_{SP} = 100 \text{ mV}; V_{SN} = \text{GND}$		-20		μΑ	
V_{SO}	SO pin output voltage range		$A_V \times Vio$		4.5	V	
C _(SO)	Allowable SO pin capacitance				1	nF	
PROTECTIO	N CIRCUITS				•		
V	VM underveltage leekent	VM falling; UVLO2 report		5.25	5.45	V	
$V_{(UVLO2)}$	VM undervoltage lockout	VM rising; UVLO2 recovery		5.4	5.65	V	
V _(UVLO1)	Logic undervoltage lockout				4.5	V	
V _{hys(UVLO)}	VM undervoltage hysteresis	Rising to falling threshold	100			mV	
	Oh a sa a marana a mada mada a sa	VCP falling; CPUV report		V _{VM} + 1.5		٧	
V _(CP_UV)	Charge pump undervoltage	VCP rising; CPUV recovery		V _{VM} + 1.55		V	
V _{hys(CP_UV)}	CP undervoltage hysteresis	Rising to falling threshold		50		mV	
		$R_{(VDS)}$ < 1 k Ω to GND		0.06			
	Overcurrent protection trip level,	$R_{(VDS)} = 33 \text{ k}\Omega \text{ to GND}$		0.12			
V	V _{DS} of each external FET (DRV8702D-Q1)	$R_{(VDS)} = 200 \text{ k}\Omega \text{ to GND}$		0.24		V	
$V_{DS(OCP)}$	High side FETs: VDRAIN – SH	$R_{(VDS)} > 2 M\Omega$ to GND		0.48		V	
	Low side FETs: SH – SP	$R_{(VDS)} = 68 \text{ k}\Omega \text{ to AVDD}$		0.96			
		$R_{(VDS)} < 1 \text{ k}\Omega \text{ to AVDD}$		Disabled			
		VDS_LEVEL = 3'b000		0.06			
		VDS_LEVEL = 3'b001		0.145			
	Overcurrent protection trip level,	VDS_LEVEL = 3'b010		0.17			
	V _{DS} of each external FET	VDS_LEVEL = 3'b011		0.2		.,	
$V_{DS(OCP)}$	(DRV8703D-Q1) High-side FETs: VDRAIN – SH	VDS_LEVEL = 3'b100		0.12		V	
	Low-side FETs: SH – SP	VDS_LEVEL = 3'b101		0.24			
		VDS_LEVEL = 3'b110		0.48			
		VDS_LEVEL = 3'b111		0.96			
V _{SP(OCP)}	Overcurrent protection trip level, measured by sense amplifier	V _{SP} with respect to GND	0.8	1	1.2	V	
T _(OTW)	Thermal warning temperature ⁽¹⁾	Die temperature T _J	120	135	145	°C	
T _{SD}	Thermal shutdown temperature ⁽¹⁾	Die temperature T _{.I}	150			°C	
T _{hys}	Thermal shutdown hysteresis ⁽¹⁾	Die temperature T _J		20		°C	
		Positive clamping voltage	16.3	17	17.8		
$V_{C(GS)}$	Gate-drive clamping voltage	Negative clamping voltage		-0.7	-0.5	V	

Submit Documentation Feedback

6.6 SPI Timing Requirements

		MIN	NOM MAX	UNIT
t _(CLK)	Minimum SPI clock period	100		ns
t _(CLKH)	Clock high time	50		ns
t _(CLKL)	Clock low time	50		ns
t _(SU_SDI)	SDI input data setup time	20		ns
t _(HD_SDI)	SDI input data hold time	30		ns
t _(HD_SDO)	SDO output hold time	40		ns
t _(SU_SCS)	SCS setup time	50		ns
t _(HD_SCS)	SCS hold time	50		ns
t _(HI SCS)	SCS minimum high time before SCS active low	400		ns

6.7 Switching Characteristics

Over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
POWER S	UPPLIES (VM, AVDD, DVDD)						
t _(SLEEP)	Sleep time	nSLEEP = low to sleep mode			100	μs	
t _(wu)	Wake-up time	nSLEEP = high to output change			1	ms	
t _{on}	Turn on time	VM > UVLO2 to output transition			1	ms	
CHARGE	PUMP (VCP, CPH, CPL)				·		
f _{S(VCP)}	Charge-pump switching frequency	VM > UVLO2	200	400	700	kHz	
CONTROL	INPUTS (IN1, IN2, nSLEEP, MODE, r	ISCS, SCLK, SDI, PH, EN)					
t _{pd}	Propagation delay	removed PH and EN pinsIN1, IN2 to GH or GL		500		ns	
FET GATE	DRIVERS (GH1, GH2, SH1, SH2, GL	I, GL2)					
t _(DEAD)	Output dead time (DRV8702D-Q1)	Observed t _(DEAD) depends on IDRIVE setting		240		ns	
t(DEAD)		TDEAD = 2'b00; Observed t _(DEAD) depends on IDRIVE setting		120			
	Output dead time (DRV8703D-Q1)	TDEAD = 2'b01; Observed t _(DEAD) depends on IDRIVE setting	240				
		TDEAD = 2'b10; Observed t _(DEAD) depends on IDRIVE setting		480		ns	
		TDEAD = 2'b11; Observed t _(DEAD) depends on IDRIVE setting	960				
t _(DRIVE)	Gate drive time			2.5		μs	
CURRENT	SHUNT AMPLIFIER AND PWM CURI	RENT CONTROL (SP, SN, SO, VREF)			·		
		$V_{SP} = V_{SN} = GND$ to $V_{SP} = 240$ mV, $V_{SN} = GND$, $A_{V} = 10$; $C_{(SO)} = 200$ pF			0.5		
	Settling time to ±1% ⁽¹⁾	$V_{SP} = V_{SN} = \text{GND to } V_{SP} = 120 \text{ mV},$ $V_{SN} = \text{GND, } A_{V} = 20; C_{(SO)} = 200 \text{ pF}$			1		
t _S	Settling time to ±1%	$V_{SP} = V_{SN} = GND$ to $V_{SP} = 60$ mV, $V_{SN} = GND$, $A_{V} = 40$; $C_{(SO)} = 200$ pF			2	μs	
		$V_{SP} = V_{SN} = \text{GND to } V_{SP} = 30 \text{ mV}, \ V_{SN} = \text{GND, } A_{V} = 80; C_{(SO)} = 200 \text{ pF}$			4		
t _{off}	PWM off-time (DRV8702D-Q1)			25		μs	
		TOFF = 00		25			
	DWM off time (DD)/9702D C1)	TOFF = 01		50		μs	
t _{off}	PWM off-time (DRV8703D-Q1)	TOFF = 10		100)		
		TOFF = 11		200			
t _(BLANK)	PWM blanking time			2		μs	

Product Folder Links: DRV8702D-Q1 DRV8703D-Q1

(1) Ensured by design

Switching Characteristics (continued)

Over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
PROTECTION CIRCUITS								
t _(UVLO)	VM UVLO falling deglitch time	VM falling; UVLO report		10		μs		
t _(OCP)	Overcurrent deglitch time		3.7	4	4.3	μs		
t _(RETRY)	Overcurrent retry time		2.8	3	3.2	ms		
		WD_DLY = 2'b00		10				
	Watchdog time out (DRV8703D-Q1)	WD_DLY = 2'b01		20				
$t_{(WD)}$		WD_DLY = 2'b10		50		ms		
		WD_DLY = 2'b11		100				
t _(RESET)	Watchdog timer reset period			64		μs		
SPI			1					
t _(SPI READY)	SPI read after power on	VM > VUVLO1		5	10	ms		
t _{d(SDO)}	SDO output data delay time, CLK high to SDO valid	C _L = 20 pF			30	ns		
ta	SCS access time, SCS low to SDO out of high impedance			10		ns		
t _{dis}	SCS disable time, SCS high to SDO high impedance			10		ns		

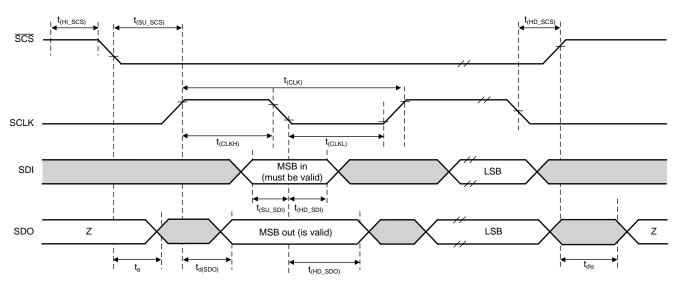
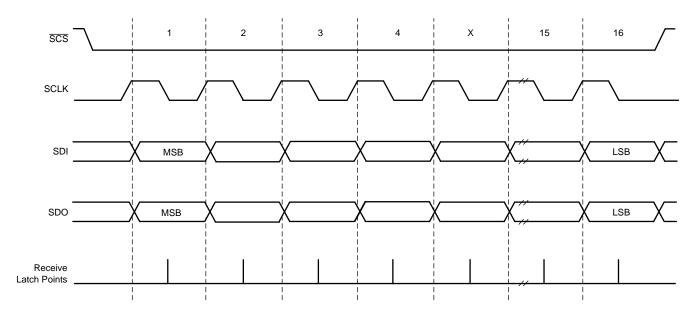
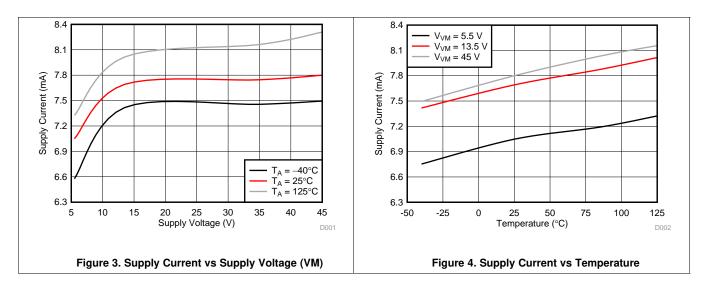
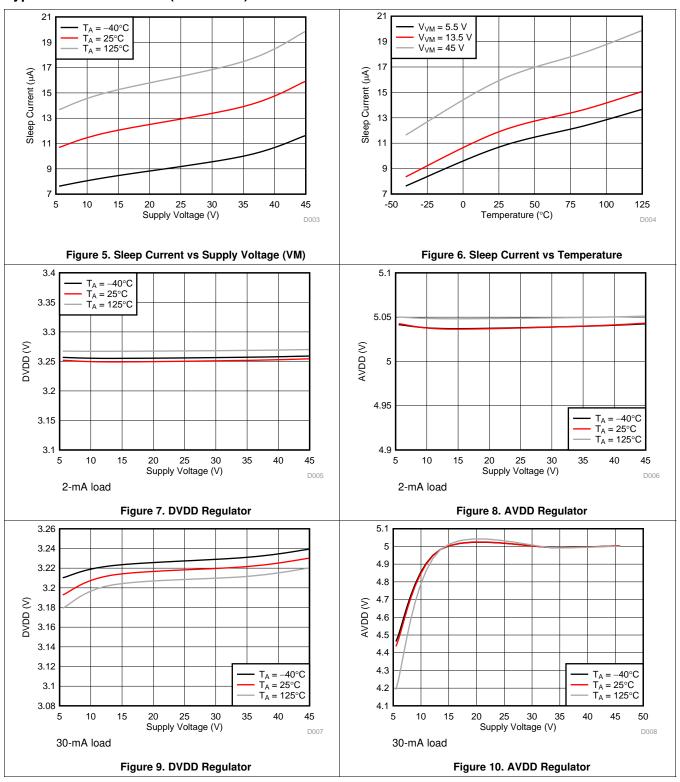


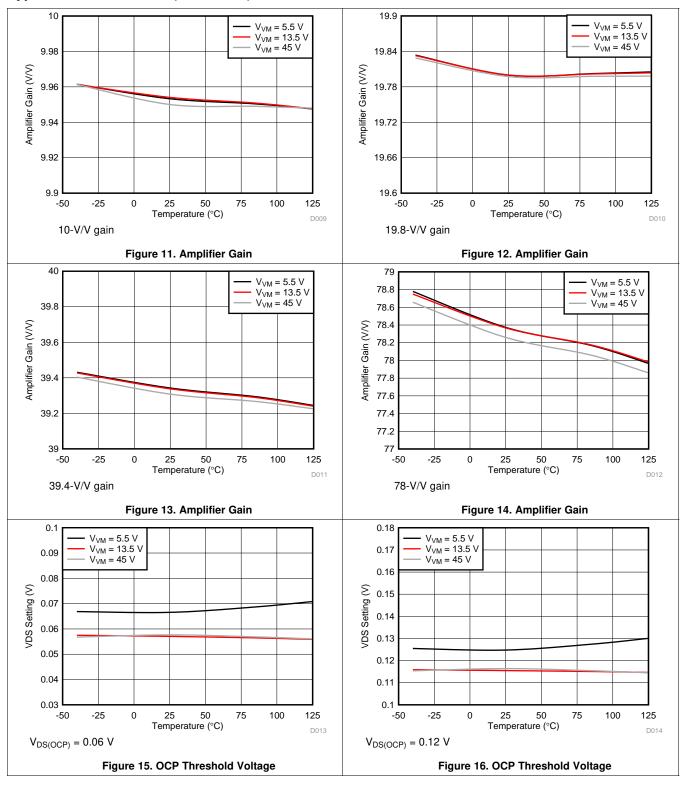
Figure 1. SPI Slave Mode Timing Definition

Submit Documentation Feedback

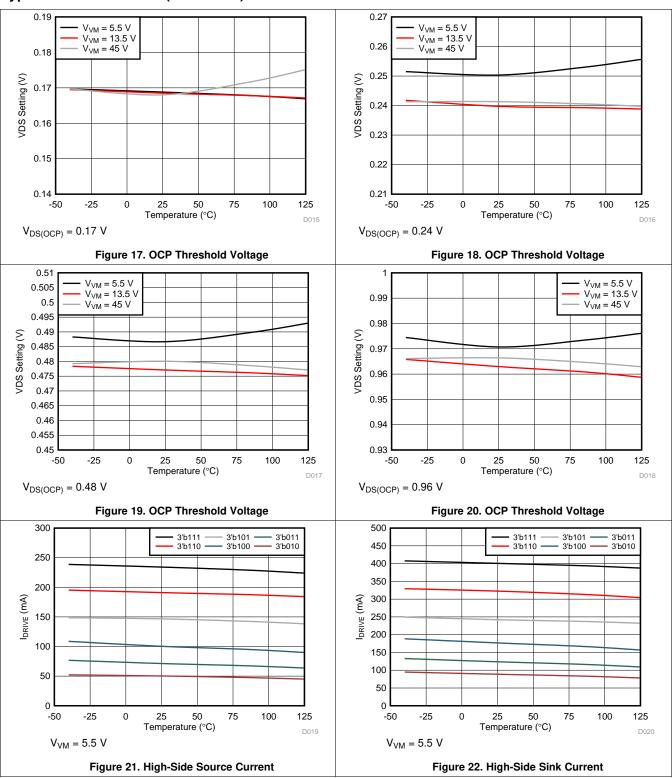




Figure 2. SPI Slave Mode Timing Diagram

6.8 Typical Characteristics

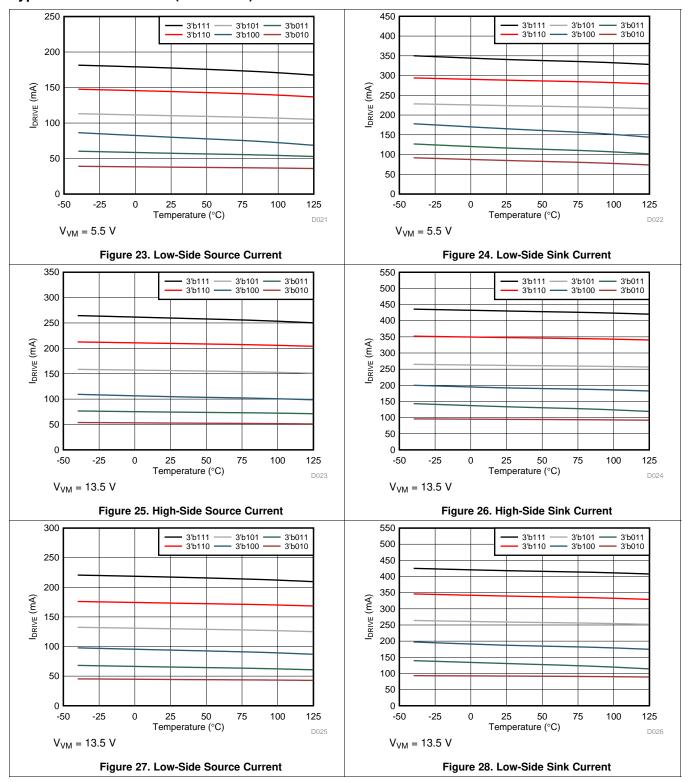

Typical Characteristics (continued)

Submit Documentation Feedback



Typical Characteristics (continued)

TEXAS INSTRUMENTS


Typical Characteristics (continued)

Submit Documentation Feedback

Typical Characteristics (continued)

7 Detailed Description

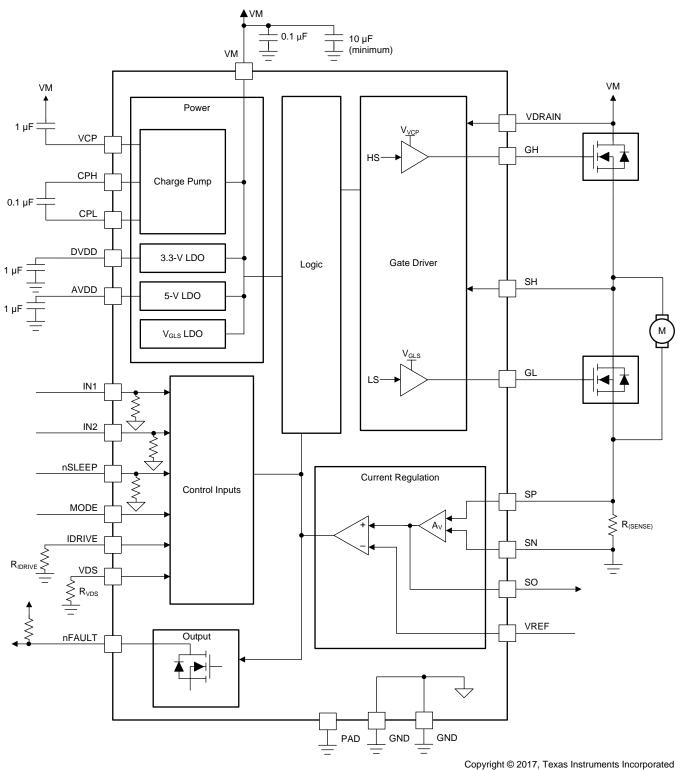
7.1 Overview

DRV87002D-Q1 and DRV87003D-Q1 are single half-bridge drivers, also referred to as gate controllers. The drivers control two external NMOS FETs used to drive a bi-directional brushed-DC motors. The devices can also operate in independent half bridge mode to drive two single directional brushed-DC motors.

The devices can support supply voltages from 5.5 V to 45 V and have a low power sleep mode enabled through the nSLEEP pin. There are three options for the interface modes including a configurable PH/EN, independent half-bridge control, or PWM interface. This allows easy interfacing to the controller circuit.

DRV87002D-Q1 and DRV87003D-Q1 include Smart Gate Drive technology which offers a combination of protection features and gate-drive configurability to improve design simplicity and bring a new level of intelligence to motor systems. The gate-drive strength, or gate-drive current can be adjusted through the driver itself to optimize for different FETs and applications without the need for external resistors. Smart Gate Drive significantly reduces the component count of discrete motor-driver systems by integrating the required FET drive circuitry into a single device. The peak current can be adjusted through the IDRIVE pin for DRV8702D-Q1 and through SPI for DRV8703D-Q1. Both the high-side and low-side FETs are driven with a gate source voltage (VGS) of 10.5 V (nominal) when the VM voltage is more than 13.5 V. At lower VM voltages, the VGS is reduced. The high-side gate drive voltage is generated using a doubler-architecture charge pump that regulates to the VM + 10.5 V.

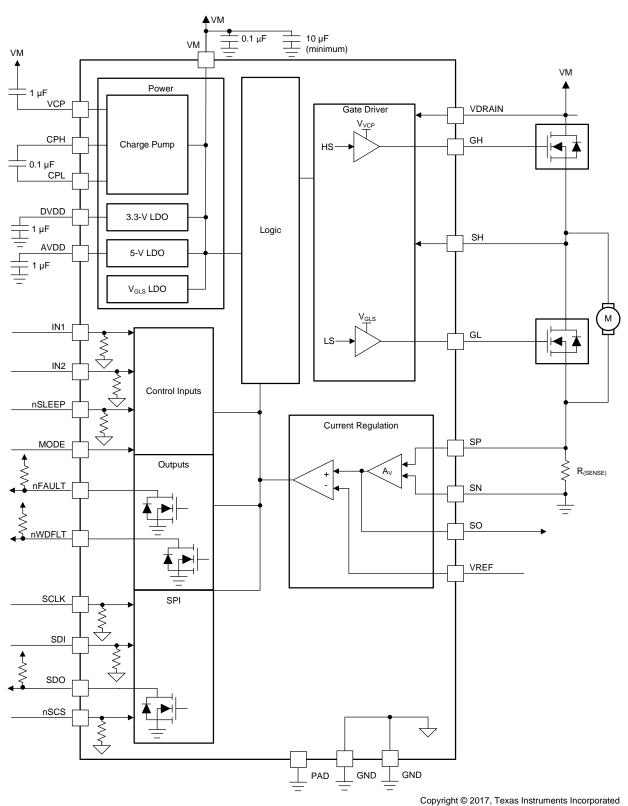
The inrush or start up current and running current can be limited through a built in fixed time-off current chopping scheme. The chopping current level is set through the sense resistor by setting a voltage on the VREF pin. See the current regulation section for more information. A shunt-amplifier is also included in the devices to provide accurate current measurements to the system controller. The SO pin outputs a voltage that is approximately 20 times the voltage across the sense resistor on the DRV8702D-Q1 device. For the DRV8703D-Q1, this gain is configurable.


The DRV870xD-Q1 device also has protection features beyond traditional discrete implementations including: undervoltage lockout (UVLO), overcurrent protection (OCP), gate driver faults, and thermal shutdown (TSD).

The device integrates a spread spectrum clocking feature for both the internal digital oscillator and internal charge pump. This feature combined with output slew rate control minimizes the radiated emissions from the device.

Submit Documentation Feedback

7.2 Functional Block Diagram



Copyright © 2017, Texas instruments incorporate

Figure 29. DRV8702D-Q1 Functional Block Diagram

Functional Block Diagram (continued)

Copyright © 2017, Texas institutions incorpora

Figure 30. DRV8703D-Q1 Functional Block Diagram

7.3 Feature Description

Table 1 and Table 2 list the recommended external components for the device.

Table 1. External Components

COMPONENT	PIN 1	PIN 2	RECOMMENDED
C _(VM1)	VM	GND	0.1-μF ceramic capacitor rated for VM
C _(VM2)	VM	GND	≥ 10-µF electrolytic capacitor rated for VM
C _(VCP)	VCP	VM	16-V, 1-μF ceramic capacitor
C _(SW)	СРН	CPL	0.1-μF X7R capacitor rated for VM
$C_{(DVDD)}$	DVDD	GND	6.3-V, 1-μF ceramic capacitor
C _(AVDD)	AVDD	GND	6.3-V, 1-μF ceramic capacitor
R _(IDRIVE)	IDRIVE	GND	For resistor sizing, see the <i>Typical Application</i> section
R _(VDS)	VDS	GND	For resistor sizing, see the <i>Typical Application</i> section
R _(nFAULT)	V _{CC} ⁽¹⁾	nFAULT	≥ 10 kΩ
R _(nWDFLT)	V _{CC} ⁽¹⁾	nWDFLT	≥ 10 kΩ
R _(SENSE)	SP	SN or GND	Optional low-side sense resistor
R _(VDRAIN) (2)	VDRAIN	VM	100- Ω series resistor

⁽¹⁾ The V_{CC} pin is not a pin on the DRV870xD-Q1, but a V_{CC} supply voltage pullup is required for open-drain outputs nFAULT. These pins can be pulled up to either AVDD or DVDD.

Table 2. External Gates

COMPONENT	GATE	DRAIN	SOURCE	RECOMMENDED
Q _(HS)	GH	VM	SH	Supports FETs up to 200 nC at 40 kHz PWM
Q _(LS)	GL	SH	SP or GND	For more information, see <i>Application</i> and <i>Implementation</i>

Product Folder Links: DRV8702D-Q1 DRV8703D-Q1

⁽²⁾ The R_(VDRAIN) resistor should be used between the VDRAIN and VM pins to minimize current to the VDRAIN pin if no external reverse battery protection is implemented on the VDRAIN pin.

7.3.1 Bridge Control

The DRV870xD-Q1 device is controlled using a configurable input interface. The Logic Tables section provides the half-bridge operation states. These tables do not consider the current control built into the DRV870xD-Q1 device. The logic operation set by the MODE pin is latched on power-up or when exiting sleep mode. Figure 31 shows the direction of the flow of current through the load when it is connected between the SH pin and GND, and between the SH pin and VM.

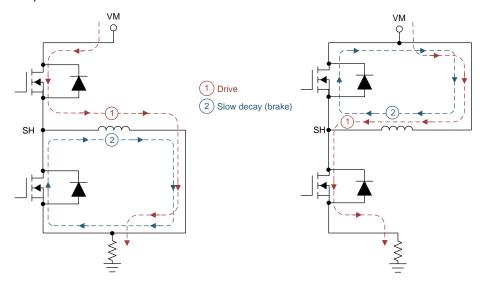


Figure 31. Bridge Control

7.3.1.1 Logic Tables

Table 3, and Table 4 are the device logic tables. An X denotes a don't care input or output.

NOTE

Any other input logic combinations, aside from the ones mentioned in Table 3 and Table 4, result in an error, and the device will trigger a fault.

Table 3. DRV870xD-Q1 PWM Control Interface Without Current Regulation (MODE = 1)

nSLEEP	IN1	IN2	GH	GL	SH	AVDD/DVDD	Description
0	X	X	X	X	Hi-Z	Disabled	Sleep mode 1/2-bridge disabled
1	0	0	0	1	L	Enabled	1/2-bridge low side on
1	1	0	1	0	Н	Enabled	½-bridge high side on

Table 4. DRV870xD-Q1 PWM Control Interface With Current Regulation (MODE = Hi-Z)

nSLEEP	IN1	IN2	GH	GL	SH	AVDD/DVDD	Description
0	X	X	X	X	Hi-Z	Disabled	Sleep mode 1/2-bridge disabled
1	0	0	0	0	Hi-Z	Enabled	½-bridge is in tri-state
1	1	0	1	0	Н	Enabled	½-bridge high-side on
1	1	1	0	1	L	Enabled	½-bridge low-side on

If MODE = Hi-Z is selected, the device performs current regulation (refer to the *Current Regulation* section). Having both the input (INx) pins high puts the motor in brake mode (low-side slow decay). If MODE = 1 is selected, current regulation is disabled and must be performed externally using a MCU. With MODE = 1, the load current recirculation occurs through the high-side FET as shown in Figure 31.

7.3.2 MODE Pin

The MODE pin of the device determines the control interface and latches on power-up or when exiting sleep mode. Figure 32 shows an overview of the internal circuit of the MODE pin.

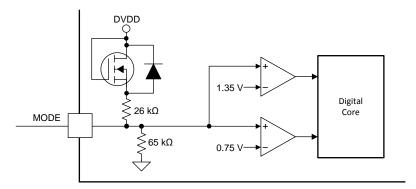


Figure 32. MODE Pin Block Diagram

Table 5 lists the different control interfaces that can be set via MODE pin at power-up or when exiting sleep mode.

Table 5. MODE Pin Configuration

MODE CONTROL INTERFACE					
1	PWM control interface without current regulation				
Hi-Z	PWM control interface with current regulation				

During the device power-up sequence, the DVDD pin is enabled first. Then the MODE pin latches. Finally the AVDD pin is enabled. For setting PWM control interface, TI does not recommended connecting the MODE pin to the AVDD pin. Instead the MODE pin should be connected to an external 5-V or 3.3-V supply or to the DVDD pin if not driven by an external microcontroller (MCU).

7.3.3 nFAULT Pin

The nFAULT pin has an open-drain output and should be pulled up to a 5-V or 3.3-V supply. When a fault is detected, the nFAULT line is logic low.

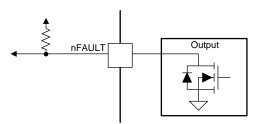


Figure 33. nFAULT Block Diagram

For a 3.3-V pullup the nFAULT pin can be tied to the DVDD pin with a resistor (refer to the *Application and Implementation* section). For a 5-V pullup an external 5-V supply should be used. TI does not recommended connecting the nFAULT pin to the AVDD pin.

7.3.4 Current Regulation

The maximum current through the motor winding is regulated by a fixed off-time PWM current regulation or current chopping. When an half-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. When the current hits the current chopping threshold, the bridge enters a brake (low-side slow decay) mode until the $t_{\rm off}$ time expires.

Copyright © 2017–2018, Texas Instruments Incorporated

NOTE

Immediately after the current is enabled, the voltage on the SP pin is ignored for a period $(t_{(RIANK)})$ before enabling the current-sense circuitry.

The PWM chopping current is set by a comparator that compares the voltage across a current-sense resistor connected to the SP pin, multiplied by a factor of A_V , with a reference voltage from the VREF pin. The factor A_V is the shunt-amplifier gain, which is 19.8 V/V for the DRV8702D-Q1 device or configurable to 10, 19.8, 39.4, or 78 V/V for the DRV8703D-Q1 device.

Use Equation 1 to calculate the chopping current (I_{CHOP}).

$$I_{(CHOP)} = \frac{V_{VREF} - V_{IO} \times A_{V}}{A_{V} \times R_{(SENSE)}}$$
(1)

For example, if a 50-m Ω sense resistor and a VREF value of 3.3 V are selected, the full-scale chopping current is 3.28 A. The A_V is 19.8 V/V and V_{IO} is assumed to be 50 mV in this example.

NOTE

If the load is connected between the SH pin and VM and current regulation is enabled (MODE pin is Hi-Z), the low-side FET is switched on when the current flowing through the load exceeds the ICHOP threshold. This result in an adverse effect by driving the load at 100% duty cycle because the maximum current flows through the load as the low-side FET remains switched on for the tope duration. Texas Instruments recommends using the PWM control interface without current regulation (MODE pin is 1) for this configuration to drive the load.

For DC motors, current regulation is used to limit the start-up and stall current of the motor. If the current regulation feature is not needed, it can be disabled by tying the VREF pin directly to the AVDD pin. If the PWM control-interface mode without current regulation (MODE pin is 1) is selected for operation, the device does not perform PWM current regulation or current chopping.

7.3.5 Amplifier Output (SO)

The SO pin on the DRV870xD-Q1 device outputs an analog voltage equal to the voltage across the SP and SN pins multiplied by A_V. The SO voltage is only valid for when the load is connected in the way shown in Figure 31. Use Equation 2 to calculate the approximate current for the half-bridge.

$$I = \frac{V_{SO} - V_{IO} \times A_{V}}{A_{V} \times R_{(SENSE)}}$$
 (2)

When the SP and SN voltages are 0 V, the SO pin outputs the amplifier offset voltage times the amplifier gain, V_{io} × Av. When SP minus SN is greater than 0 V, the SO pin outputs the sum of the amplifier offset voltage and the sense resist or voltage, times the amplifier gain, (V_{io} + V_{rsense}) × Av. No capacitor is required on the SO pin.

Submit Documentation Feedback

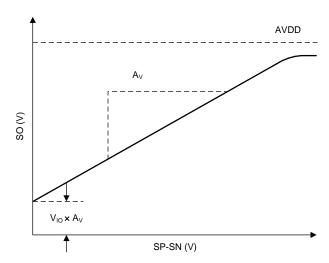


Figure 34. Current Sense Amplifier Output

If the voltage across the SP and SN pins exceeds 1 V, then the DRV870xD-Q1 device flags an overcurrent condition.

The SO pin can source up to 5 mA of current. If the pin is shorted to ground, or if this pin drives a higher current load, the output functions as a constant-current source. The output voltage is not representative of the half-bridge current in this state.

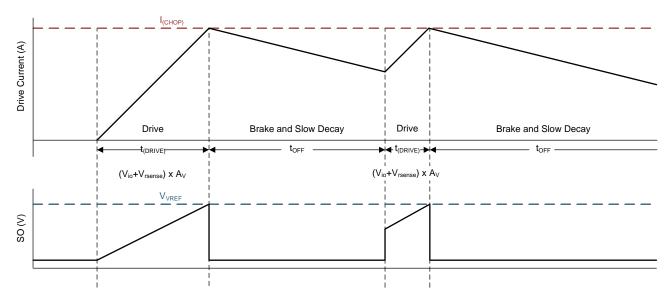


Figure 35. Current Sense Amplifier and Current Chopping Operation

During brake mode (slow decay), current is circulated through the low-side FET. Because current is not flowing through the sense resistor, the SO pin does not represent the motor current.

7.3.5.1 SO Sample and Hold Operation

The DRV8703D-Q1 device allows the shunt amplifier to operate in a sample and hold configuration. To enable this mode, set the SH_EN bit high through the SPI. In this mode, the shunt amplifier output is disabled to the Hi-Z state whenever the driver is in a brake mode. Place an external capacitor on this pin.

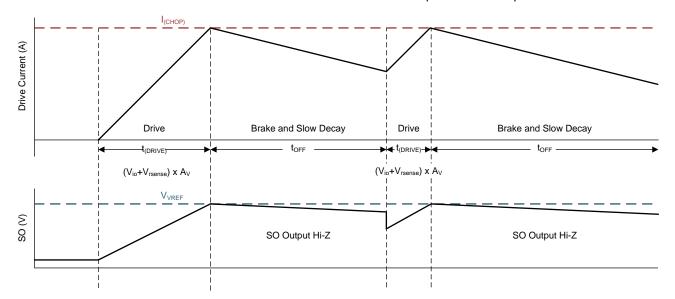


Figure 36. Sample and Hold Operation

7.3.6 PWM Motor Gate Drivers

The DRV870xD-Q1 device has gate drivers for a single half-bridge with external NMOS FETs. Figure 37 shows a block diagram of the predrive circuitry.

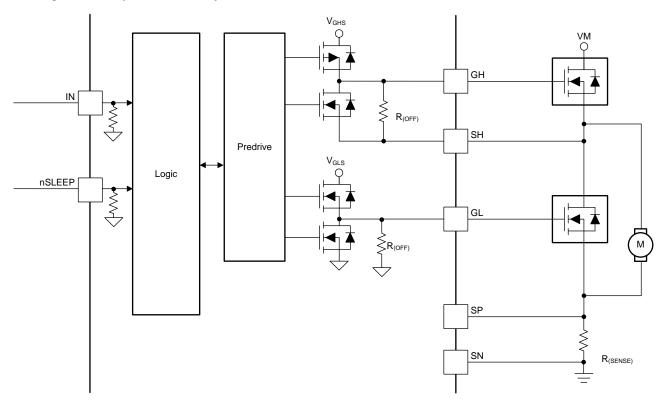


Figure 37. Predrive Block Diagram

Gate drivers inside the DRV870xD-Q1 device directly drive N-Channel MOSFETs, which drive the motor current. The high-side gate drive is supplied by the charge pump, while an internal regulator generates the low-side gate drive.

The peak drive current of the gate drivers is adjustable through the IDRIVE pin for DRV8702D-Q1 device or the IDRIVE register for the DRV8703D-Q1 device. Peak source currents can be set to the values listed in the FET gate drivers section of the *Electrical Characteristics* table. The peak sink current is approximately two times the peak source current. Adjusting the peak current changes the output slew rate, which also depends on the FET input capacitance and gate charge.

Fast switching times can cause extra noise on the VM and GND pins. This additional noise can occur specifically because of a relatively slow reverse-recovery time of the low-side body diode, when the body diode conducts reverse-bias momentarily, similar to shoot-through. Slow switching times can cause excessive power dissipation because the external FETs have a longer turn on and turn off time.

When changing the state of the output, the peak current (I_{DRIVE}) is applied for a short period $(t_{(DRIVE)})$, to charge the gate capacitance. After this time, a weak current source (I_{HOLD}) is used to keep the gate at the desired state. When selecting the gate drive strength for a given external FET, the selected current must be high enough to charge fully and discharge the gate during $t_{(DRIVE)}$, or excessive power is dissipated in the FET.

During high-side turn on, the low-side gate is pulled low with a strong pulldown (I_{STRONG}). This pulldown prevents the low-side FET Q_{GS} from charging and keeps the FET off, even when fast switching occurs at the outputs.

The gate-driver circuits include enforcement of a dead time in analog circuitry, which prevents the high-side and low-side FETs from conducting at the same time. When the switching FETs are on, this handshaking prevents the high-side or low-side FET from turning on until the opposite FET turns off.

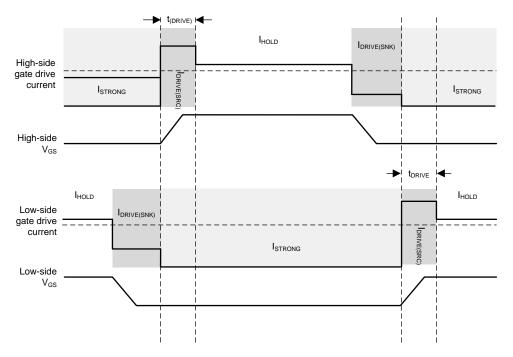


Figure 38. Gate Driver Output to Control External FETs

7.3.6.1 Miller Charge (Q_{GD})

When a FET gate turns on, the following capacitances must be charged:

- Gate-to-source charge, QGS
- Gate-to-drain charge, Q_{GD} (Miller charge)
- Remaining Q_G

The FET output is slewing primarily during the Q_{GD} charge.

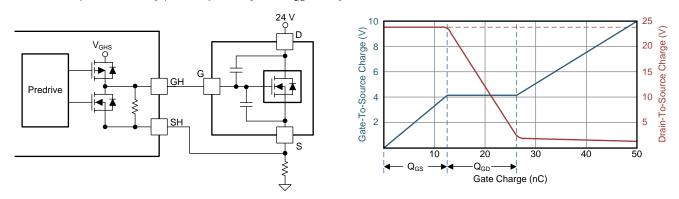


Figure 39. FET Gate Charging Profile

7.3.7 IDRIVE Pin (DRV8702D-Q1 Only)

The rise and fall times of the half-bridge output (SH pin) can be adjusted by setting the IDRIVE resistor value or forcing a voltage onto the IDRIVE pin. The FET gate voltage ramps faster if a higher IDRIVE setting is selected. The ramp of the FET gate directly affects the rise and fall times of the half-bridge output.

Tying the IDRIVE pin to ground selects the lowest drive setting of 10-mA source and 20-mA sink. Leaving this pin open selects the drive setting of 155-mA high side and 130-mA low side for source current, and 265-mA high side, 260-mA low side for sink current, at a VM voltage of 13.5 V. For a detailed list of IDRIVE configurations, see Table 6.

Figure 40. IDRIVE Pin Internal Circuitry

Copyright © 2017–2018, Texas Instruments Incorporated

Table 6. DRV8702D-Q1 IDRIVE Settings

IDRIVE	IDRIVE	SOURCE	CURRENT	SINK CL	JRRENT	
RESISTANCE	VOLTAGE	V _{VM} = 5.5 V	V _{VM} = 13.5 V	V _{VM} = 5.5 V	V _{VM} = 13.5 V	CIRCUIT
< 1 kΩ to GND	GND	High-side: 10 mA Low-side: 10 mA	High-side: 10 mA Low-side: 10 mA	High-side: 20 mA Low-side: 20 mA	High-side: 20 mA Low-side: 20 mA	IDRIVE
33 kΩ ± 5% to GND	0.7 V ± 5%	High-side: 20 mA Low-side: 20 mA	High-side: 20 mA Low-side: 20 mA	High-side: 40 mA Low-side: 40 mA	High-side: 40 mA Low-side: 40 mA	R _{IDRIVE}
200 k Ω ± 5% to GND	2 V ± 5%	High-side: 50 mA Low-side: 40 mA	High-side: 50 mA Low-side: 45 mA	High-side: 90 mA Low-side: 85 mA	High-side: 95 mA Low-side: 95 mA	R _{IDRIVE}
> 2 M Ω to GND, Hi-Z	3 V ± 5%	High-side: 145 mA Low-side: 115 mA	High-side: 155 mA Low-side: 130 mA	High-side: 250 mA Low-side: 235 mA	High-side: 265 mA Low-side: 260 mA	X IDRIVE
68 kΩ ± 5% to AVDD	4 V ± 5%	High-side: 190 mA Low-side: 145 mA	High-side: 210 mA Low-side: 180 mA	High-side: 330 mA Low-side: 300 mA	High-side: 350 mA Low-side: 350 mA	AVDD
< 1 kΩ to AVDD	AVDD	High-side: 240 mA Low-side: 190 mA	High-side: 260 mA Low-side: 225 mA	High-side: 420 mA Low-side: 360 mA	High-side: 440 mA Low-side:430 mA	AVDD

Submit Documentation Feedback

7.3.8 Dead Time

The dead time $(t_{(DEAD)})$ is measured as the time when the SH pin is in the Hi-Z state between turning off one of the half-bridge FETs and turning on the other. For example, the output is Hi-Z between turning off the high-side FET and turning on the low-side FET.

The dead time consists of an inserted digital dead time and FET gate slewing. The DRV8702D-Q1 device has a digital dead time of approximately 240 ns. The DRV8703D-Q1 device has programmable dead-time options of 120, 240, 480, 960 ns. In addition to this digital dead time, the output is Hi-Z as long as the voltage across the GL pin to ground or GH pin to SH pin is less than the FET threshold voltage.

The total dead time is dependent on the IDRIVE resistor setting because a portion of the FET gate ramp (GH and GL pins) includes the observable dead time.

7.3.9 Propagation Delay

The propagation delay time (t_{PD}) is measured as the time between an input edge to an output change. This time is composed of two parts: an input deglitcher and output slewing delay. The input deglitcher prevents noise on the input pins from affecting the output state.

The gate drive slew rate also contributes to the delay time. For the output to change state during normal operation, one FET must first be turned off. The FET gate is ramped down according to the IDRIVE resistor selection, and the observed propagation delay ends when the FET gate falls below the threshold voltage.

7.3.10 Overcurrent VDS Monitor

The gate-driver circuit monitors the VDS voltage of each external FET when it is driving current. When the voltage monitored is greater than the OCP threshold voltage ($V_{DS(OCP)}$) after the OCP deglitch time has expired, an OCP condition is detected. The $V_{DS(OCP)}$ voltage can be adjusted by changing the resistor (R_{VDS}) on the VDS pin of the DRV8702D-Q1 device. The DRV8703D-Q1 device provides $V_{DS(OCP)}$ voltage levels by setting the VDS register.

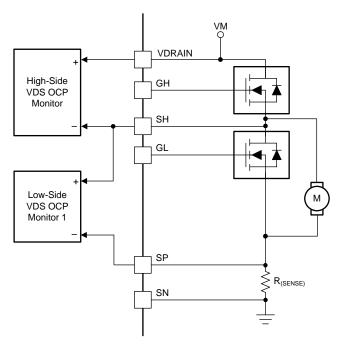


Figure 41. V_{DS(OCP)} Block Diagram

The VDS voltage on the high-side FET is measured across the VDRAIN to SH pin. The low-side VDS monitor measures the VDS voltage across the SH to SP pins. Ensure that the SP pin is always connected to the source of the low-side FET of half-bridge, even when the sense amplifier is not used.

Copyright © 2017–2018, Texas Instruments Incorporated

7.3.11 VDS Pin (DRV8702D-Q1 Only)

The VDS pin on the DRV8702D-Q1 device is used to select the VDS threshold voltage for overcurrent detection.

Tying the VDS pin to ground selects the lowest setting of 0.06 V. Leaving this pin open selects the setting of 0.48 V. Tying the VDS pin to the AVDD the pin disables the VDS monitor. For a detailed list of VDS configurations, see Table 7.

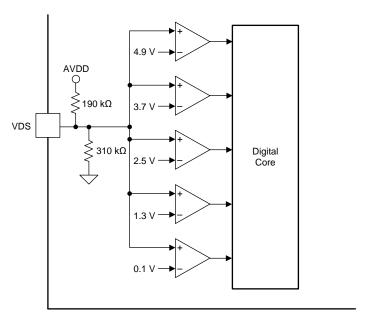


Figure 42. VDS Block Diagram

Table 7. VDS Pin Resistor Setting

VDS RESISTANCE	VDS VOLTAGE	OVERCURRENT TRIP LEVEL (V _{DS(OCP)})			
< 1 kΩ to GND	GND	0.06 V	VDS		
$33~\text{k}\Omega\pm5\%$ to GND	0.7 V ± 5%	0.12 V	R _{IDRIVE}		
200 k Ω ± 5% to GND	2 V ± 5%	0.24 V	R _{IDRIVE} VDS		
> 2 M Ω to GND, Hi-Z	3 V ± 5%	0.48 V	X VDS		
68 kΩ ± 5% to AVDD	4 V ± 5%	0.96 V	AVDD		
< 1 k Ω to AVDD	AVDD	Disabled	AVDD VDS		

7.3.12 Charge Pump

A charge pump is integrated to supply the gate drive voltage of a high-side NMOS (V_{GSH}). The charge pump requires a capacitor between the VM and VCP pins. Additionally, a low-ESR ceramic capacitor is required between the CPH and CPL pins. When the VM voltage is below 13.5 V, this charge pump functions as a doubler and generates a V_{VCP} equal to 2 × V_{VM} – 1.5 V if unloaded. When the VM voltage is more than 13.5 V, the charge pump regulates V_{VCP} such that it is equal to V_{VM} + 10.5 V.

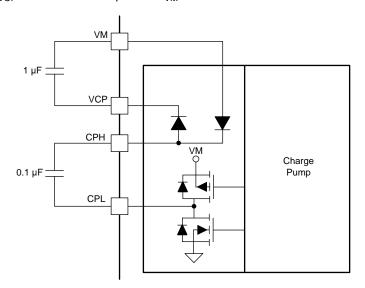


Figure 43. Charge Pump Block Diagram

7.3.13 Gate Drive Clamp

A clamping structure limits the gate-drive output voltage to the $V_{C(GS)}$ voltage to protect the power FETs from damage. The positive voltage clamp is realized using a series of diodes. The negative voltage clamp uses the body diodes of the internal predriver FET.

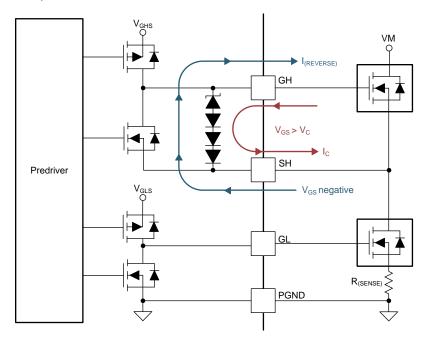


Figure 44. Gate Drive Clamp

Submit Documentation Feedback

7.3.14 Protection Circuits

The DRV870xD-Q1 device is protected against VM undervoltage, charge-pump undervoltage, overcurrent, gatedriver shorts, and overtemperature events.

7.3.14.1 VM Undervoltage Lockout (UVLO2)

If the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (V_{UVLO2}), both FETs in the half-bridge are disabled, the charge pump is disabled, and the nFAULT pin is driven low. The VM_UVFL bit of the DRV8703D-Q1 device is set. The operation resumes when the VM voltage rises above the UVLO2 threshold. The nFAULT pin is released after the operation resumes but the VM UVFL bit on the DRV8703D-Q1 device remains set until cleared by writing to the CLR FLT bit.

The SPI settings on the DRV8703D-Q1 device are not reset by this fault even though the output drivers are disabled. The settings are maintained and internal logic remains active until the VM voltage falls below the logic undervoltage threshold (VUVLO1).

7.3.14.2 Logic Undervoltage (UVLO1)

If the voltage on the VM pin falls below the logic undervoltage threshold voltage (V_{UVLO1}), the internal logic is reset. The operation resumes when the VM voltage rises above the UVLO1 threshold. The nFAULT pin is logic low during this state because it is pulled low when the VM undervoltage condition occurs. Decreasing the VM voltage below this undervoltage threshold resets the SPI settings.

7.3.14.3 VCP Undervoltage Lockout (CPUV)

If the voltage on the VCP pin falls below the threshold voltage of the charge-pump undervoltage (CPUV) lockout, both FETs in the half-bridge are disabled and the nFAULT pin is driven low. The DRV8703D-Q1 the VCP_UVFL bit is set. The operation resumes when the VCP voltage rises above the CPUV threshold. The nFAULT pin is released after the operation resumes but the VCP UVFL bit on the DRV8703D-Q1 device remains set until cleared by writing to the CLR FLT bit.

7.3.14.4 Overcurrent Protection (OCP)

Overcurrent is sensed by monitoring the VDS voltage drop across the external FETs. If the voltage across a driven FET exceeds the V_{DS(OCP)} level for longer than the OCP deglitch time, an OCP event is recognized. Both FETs in the half-bridge are disabled, and the nFAULT pin is driven low. The OCP bit of the DRV8703D-Q1 device is set. The drive re-enables after the t_(RETRY) time has passed. The nFAULT pin becomes high again after the retry time.

If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes and the nFAULT pin goes high. The OCP bit on the DRV8703D-Q1 remains set until cleared by writing to the CLR FLT bit. In addition to this FET VDS monitor, an overcurrent condition is detected if the voltage at the SP pin exceeds V_{SP(OCP)} and the nFAULT pin is driven low. The OCP bit in the DRV8703-Q1 device is set.

7.3.14.5 Gate Driver Fault (GDF)

The GH and GL pins are monitored such that if the voltage on the external FET gate does not increase or decrease after the t_(DRIVE) time, a gate driver fault is detected. This fault occurs if the GH or GL pins are shorted to the GND, SH, or VM pin. Additionally, a gate-driver fault occurs if the selected IDRIVE setting is not sufficient to turn on the external FET. Both FETs in the half-bridge are disabled, and the nFAULT pin is driven low. The GDF bit of the DRV8703D-Q1 device is set. The driver re-enables after the OCP retry period (t_(RETRY)) has passed. The nFAULT pin is released after the operation has resumed but the GDF bit on the DRV8703D-Q1 device remains set until cleared by writing to the CLR FLT bit.

7.3.14.6 Thermal Shutdown (TSD)

Copyright © 2017-2018, Texas Instruments Incorporated

If the die temperature exceeds the T_{SD} temperature, both FETs in the half-bridge are disabled, the charge pump shuts down, the AVDD regulator is disabled, and the nFAULT pin is driven low. The OTSD bit of the DRV8703D-Q1 device is set as well. After the die temperature falls below T_{SD} - T_{hys} temperature, device operation automatically resumes. The nFAULT pin is released after the operation resumes, but the OTSD bit on the DRV8703D-Q1 device remains set until cleared by writing to the CLR_FLT bit.

7.3.14.7 Watchdog Fault (WDFLT, DRV8703D-Q1 Only)

An MCU watchdog function can be enabled to ensure that the external controller that is instructing the DRV8703D-Q1 device is active and in a known state. The SPI watchdog must be enabled by writing a 1 to the WD_EN bit through the SPI (disabled by default, bit is 0). When the watchdog is enabled, an internal timer starts to count down to an interval set by the WD_DLY bits. The register address 0x00 must be read by the MCU within the interval set by the WD_DLY bit to reset the watchdog. If the timer is allowed to expire, the nWDFLT pin is enabled. When the nWDFLT pin is enabled the following occurs:

- The nWDFLT pin goes low for 64 μs.
- The nFAULT pin is asserted.
- · The WD EN bit is cleared.
- The drivers are disabled.

The WDFLT bit remains asserted, and operation is halted until the CLR_FLT bit has been written to 1.

Table 8 lists the fault responses of the device under the fault conditions.

Table 8. Fault Response

FAULT	CONDITION	HALF-BRIDGE	CHARGE PUMP	AVDD	DVDD	RECOVERY
VM undervoltage (UVLO)	$V_{VM} \le V_{(UVLOx)}$ (5.45 V, max)	Disabled	Disabled	Disabled	Operating	$V_{VM} \ge V_{(UVLOx)}$ (5.65 V, max)
VCP undervoltage (CPUV)	$V_{VCP} \le V_{(CP_UV)}$ $(V_{VM} + 1.5, typ)$	Disabled	Operating	Operating	Operating	$V_{VCP} \ge V_{(CP_UV)}$ $(V_{VM} + 1.5, typ)$
External FET overload (OCP)	$V_{DS} \ge V_{DS(OCP)}$ $V_{SP} - V_{SN} > 1 \text{ V}$	Disabled	Operating	Operating	Operating	t _(RETRY)
Gate driver fault (GDF)	Gate voltage unchanged after $t_{(DRIVE)}$	Disabled	Operating	Operating	Operating	t _(RETRY)
Watchdog fault (WDFLT)	Watchdog timer expires	Disabled	Operating	Operating	Operating	CLR_FLT bit
Thermal shutdown (TSD)	T _J ≥ T _{SD} (150°C, min)	Disabled	Disabled	Disabled	Operating	$T_{J} \le T_{SD} - T_{hys}$ $(T_{hys} \text{ is typically } 20^{\circ}\text{C})$

7.3.14.8 Reverse Supply Protection

The circuit in Figure 45 can be implemented to help protect the system from reverse supply conditions. This circuit requires the following additional components:

- NMOS FET
- NPN BJT
- Diode
- 10-kΩ resistor
- 43-kΩ resistor

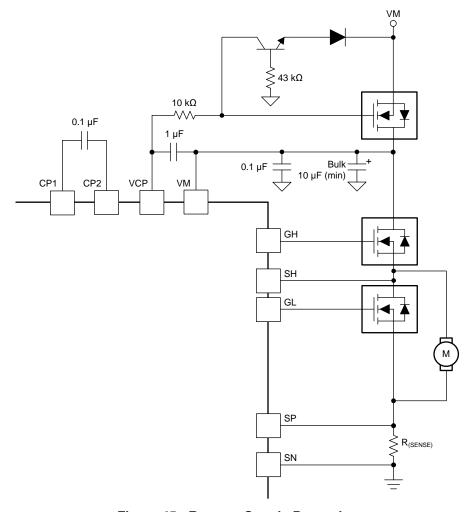


Figure 45. Reverse Supply Protection

7.3.15 Hardware Interface

The DRV8702D-Q1 hardware interface allows the device to be configured without a SPI, however not all of the functionality is configurable like the DRV8703D-Q1 device. The following configuration settings are fixed for the hardware-interface device option:

- The t_{off} value is set to 25 μs.
- · Current regulation is enabled
- The VREF pin voltage is not scaled internally (100%).
- The shunt amplifier has a fixed gain of 19.8 V/V.

7.3.15.1 IDRIVE (6-level input)

The voltage or resistance on the IDRIVE pin sets the peak source and peak sink IDRIVE setting as listed in Table 9.

Table 9. DRV8702D-Q1 IDRIVE Settings

IDRIVE	IDRIVE VOLTAGE	SOURCE	CURRENT	SINK (CURRENT
RESISTANCE	IDRIVE VOLTAGE	V _{VM} = 5.5 V	V _{VM} = 13.5 V	V _{VM} = 5.5 V	V _{VM} = 13.5 V
< 1 kΩ to GND	GND	High-side: 10 mA Low-side: 10 mA	High-side: 10 mA Low-side: 10 mA	High-side: 20 mA Low-side: 20 mA	High-side: 20 mA Low-side: 20 mA
33 kΩ ± 5% to	0.7 V ± 5%	High-side: 20 mA	High-side: 20 mA	High-side: 40 mA	High-side: 40 mA
GND		Low-side: 20 mA	Low-side: 20 mA	Low-side: 40 mA	Low-side: 40 mA
200 kΩ ± 5% to	2 V ± 5%	High-side: 50 mA	High-side: 50 mA	High-side: 90 mA	High-side: 95 mA
GND		Low-side: 40 mA	Low-side: 45 mA	Low-side: 85 mA	Low-side: 95 mA
> 2 MΩ to GND,	3 V ± 5%	High-side: 145 mA	High-side: 155 mA	High-side: 250 mA	High-side: 265 mA
Hi-Z		Low-side: 115 mA	Low-side: 130 mA	Low-side: 235 mA	Low-side: 260 mA
68 kΩ ± 5% to	4 V ± 5%	High-side: 190 mA	High-side: 210 mA	High-side: 330 mA	High-side: 350 mA
AVDD		Low-side: 145 mA	Low-side: 180 mA	Low-side: 300 mA	Low-side: 350 mA
< 1 kΩ to AVDD	AVDD	High-side: 240 mA Low-side: 190 mA	High-side: 260 mA Low-side: 225 mA	High-side: 420 mA Low-side: 360 mA	High-side: 440 mA Low-side:430 mA

7.3.15.2 VDS (6-Level Input)

This input controls the VDS monitor trip voltage as listed in Table 10.

Table 10. DRV8702D-Q1 VDS Settings

VDS RESISTANCE	VDS VOLTAGE	OVERCURRENT TRIP LEVEL (V _{DS(OCP)})
$<$ 1 k Ω to GND	GND	0.06 V
33 k Ω ± 5% to GND	0.7 V ± 5%	0.12 V
200 k Ω ± 5% to GND	2 V ± 5%	0.24 V
> 2 M Ω to GND, Hi-Z	3 V ± 5%	0.48 V
68 kΩ ± 5% to AVDD	4 V ± 5%	0.96 V
< 1 kΩ to AVDD	AVDD	Disabled

7.4 Device Functional Modes

The DRV870xD-Q1 device is active unless the nSLEEP pin is brought low. In sleep mode, the charge pump is disabled, the half-bridge FETs are disabled to the Hi-Z state, and the AVDD and DVDD regulators are disabled.

NOTE

The $t_{(SLEEP)}$ time must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The DRV870xD-Q1 device is brought out of sleep mode automatically if the nSLEEP pin is brought high.

The t_(WAKE) time must elapse before the outputs change state after wakeup.

On the DRV8703D-Q1 device, the SPI settings are reset when coming out of UVLO or exiting sleep mode.

While the nSLEEP pin is brought low, both external half-bridge FETs are disabled. The high-side gate pin, GH, are pulled to the output node, SH, by an internal resistor and the low-side gate pin, GL, are pulled to ground.

When the VM voltage is not applied and during the power-on time (t_{on}) the outputs are disabled using weak pulldown resistors between the GH and SH pins and the GL and GND pins.

NOTE

The MODE pin controls the device-logic operation for the PWM input mode. This operation is latched on power up or when exiting sleep mode.

7.5 Programming

7.5.1 SPI Communication

7.5.1.1 Serial Peripheral Interface (SPI)

The SPI (DRV8703D-Q1 only) is used to set device configurations, operating parameters, and read out diagnostic information. The DRV8703D-Q1 SPI operates in slave mode. The SPI input data (SDI) word consists of a 16-bit word, with a 5-bit command, 3 don't care bits, and 8 bits of data. The SPI output data (SDO) word consists of 8-bit register data and the first 8 bits are don't cares.

A valid frame has to meet following conditions:

- The clock polarity (CPOL) must be set to 0.
- The clock phase (CPHA) must be set to 0.
- The SCLK pin must be low when the nSCS pin goes low and when the nSCS pin goes high.
- No SCLK signal can occur when the nSCS signal is in transition.
- The SCLK pin must be low when the nSCS pin goes high.
- The nSCS pin should be taken high for at least 500 ns between frames.
- When the nSCS pin is asserted high, any signals at the SCLK and SDI pins are ignored, and the SDO pin is in the high impedance state.
- Full 16 SCLK cycles must occur.
- Data is captured on the falling edge of the clock and data is driven on the rising edge of the clock.
- The most-significant bit (MSB) is shifted in and out first
- For a write command, if the data word sent to the SDI pin is less than or more than 16 bits, a frame error
 occurs and the data word is ignored.
- For a write command, the existing data in the register being written to is shifted out on the SDO pin following the 5-bit command data

Programming (continued)

7.5.1.2 SPI Format

The SDI input-data word is 16 bits long and consists of the following format:

- 1 read or write bit, W (bit 15)
- 4 address bits, A (bits 14 through 11)
- 3 don't care bits, X (10 through 8)
- 8 data bits, D (7:0)

The SDO output-data word is 16 bits long and the first 8 bits are don't care bits. The data word is the content of the register being accessed.

For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being written to.

For a read command (W0 = 1), the response word is the data currently in the register being read.

Table 11. SDI Input Data Word Format

R/W	ADDRESS DON'T CARE						DA	TA							
B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	В3	B2	B1	В0
W0	A3	A2	A1	A0	Х	Х	Х	D7	D6	D5	D4	D3	D2	D1	D0

Table 12. SDO Output Data Word Format

	DON'T CARE										DA	TA			
B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	B5	B4	В3	B2	B1	В0
Х	Х	Х	Х	Х	Х	Х	Х	D7	D6	D5	D4	D3	D2	D1	D0

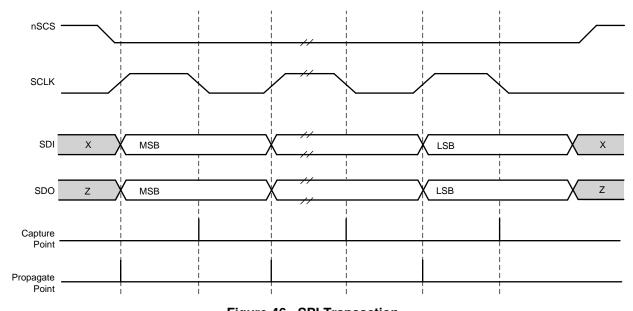


Figure 46. SPI Transaction

The SCLK pin should be low at power-up of the device for reliable SPI transaction. If the SCLK pin cannot be guaranteed to be low at power-up, TI recommends performing a dummy SPI-read transaction (of any register) after power-up to ensure reliable subsequent transactions. Data read from this dummy read transaction should be discarded.

Submit Documentation Feedback

7.6 Register Maps

DRV8703D-Q1 Memory Map

Register Name	7	6	5	4	3	2	1	0	Access Type	Address (Hex)
FAULT Status	FAULT	WDFLT	GDF	OCP	VM_UVFL	VCP_UVFL	OTSD	OTW	R	0
VDS and GDF	RESE	RVED	H_GDF	L_GDF	RESE	RVED	H_VDS	L_VDS	R	1
Main	RESE	RVED		LOCK	•	IN1	IN2	CLR_FLT	RW	2
IDRIVE and WD	TDE	EAD	WD_EN	WD	DLY	IDRIV			RW	3
VDS	SO_LIM		VDS	VDS		RVED	DIS_H_VDS	DIS_L_VDS	RW	4
Config	TC	FF	CHOP_IDS	VREF_SCL SH_EN GAIN_CS		RW	5			

Table 13. Access Type Codes

Access Type	Code	Description					
Read Type							
R	R	Read					
Write Type							
W	W	Write					

7.6.1 Status Registers

The status registers are used to report warning and fault conditions. Status registers are read only registers.

Table 14 lists the memory-mapped registers for the status registers. All register offset addresses not listed in Table 14 should be considered as reserved locations and the register contents should not be modified.

Table 14. Status Registers Summary Table

Address	Register Name	Section
0x00h	FAULT status	Go
0x01h	VDS and GDF status	Go

7.6.1.1 FAULT Status Register (address = 0x00h)

FAULT status is shown in Figure 47 and described in Table 15.

Return to Summary Table.

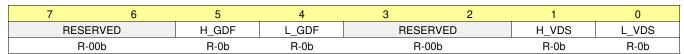
Read only

Figure 47. FAULT Status Register

7	6	5	4	3	2	1	0
FAULT	WDFLT	GDF	OCP	VM_UVFL	VCP_UVFL	OTSD	OTW
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

Table 15. FAULT Status Field Descriptions

Bit	Field	Туре	Default	Description
7	FAULT	R	0b	Logic OR of the FAULT status register excluding the OTW bit
6	WDFLT	R	0b	Watchdog time-out fault
5	GDF	R	0b	Indicates gate drive fault condition
4	OCP	R	0b	Indicates VDS monitor overcurrent fault condition
3	VM_UVFL	R	0b	Indicates VM undervoltage lockout fault condition
2	VCP_UVFL	R	0b	Indicates charge-pump undervoltage fault condition
1	OTSD	R	0b	Indicates overtemperature shutdown
0	OTW	R	0b	Indicates overtemperature warning


7.6.1.2 VDS and GDF Status Register Name (address = 0x01h)

VDS and GDF status is shown in Figure 48 and described in Table 16.

Return to Summary Table.

Read only

Figure 48. VDS and GDF Status Register

Table 16. VDS and GDF Status Field Descriptions

Bit	Field	Туре	Default	Description
7-6	RESERVED	R	00b	Reserved
5	H_GDF	R	0b	Indicates gate drive fault on the high-side FET of half-bridge
4	L_GDF	R	0b	Indicates gate drive fault on the low-side FET of half-bridge
3-2	RESERVED	R	00b	Reserved
1	H_VDS	R	0b	Indicates VDS monitor overcurrent fault on the high-side FET of half-bridge
0	L_VDS	R	0b	Indicates VDS monitor overcurrent fault on the low-side FET of half-bridge

7.6.2 Control Registers

The control registers are used to configure the device. Control registers are read and write capable.

Table 17 lists the memory-mapped registers for the status registers. All register offset addresses not listed in Table 17 should be considered as reserved locations and the register contents should not be modified.

Table 17. Status Registers Summary Table

Address	Register Name	Section
0x02h	Main control	Go
0x03h	IDRIVE and WD control	Go
0x04h	VDS control	Go
0x05h	Config control	Go

Submit Documentation Feedback

7.6.2.1 Main Control Register Name (address = 0x02h)

Main control is shown in Figure 49 and described in Table 18.

Return to Summary Table.

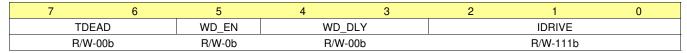
Read and write

Figure 49. Main Control Register

7	6	5	4	3	2	1	0
RESI	RVED LOCK			IN1	IN2	CLR_FLT	
R/V	R/W-00b R/W-011b			R/W-0b	R/W-0b	R/W-0b	

Table 18. Main Control Field Descriptions

Bit	Field	Туре	Default	Description
7-6	RESERVED	R/W	00b	Reserved
5-3	LOCK	R/W	011b	Write 110b to lock the settings by ignoring further register changes except to address 0x02h. Writing any sequence other than 110b has no effect when unlocked. Write 011b to this register to unlock all registers. Writing any sequence other than 011b has no effect when locked.
2	IN1	R/W	0b	This bit is ORed with the IN1 pin
1	IN2	R/W	0b	This bit is ORed with the IN2 pin
0	CLR_FLT	R/W	0b	Write a 1 to this bit to clear the fault bits


7.6.2.2 IDRIVE and WD Control Register Name (address = 0x03h)

IDRIVE and WD control is shown in Figure 50 and described in Table 19.

Return to Summary Table.

Read and write

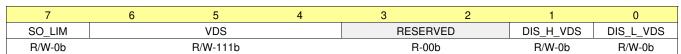
Figure 50. IDRIVE and WD Register

Table 19. IDRIVE and WD Field Descriptions

Bit	Field	Туре	Default	Description
7-6	TDEAD	R/W	00b	Dead time
				00b = 120 ns
				01b = 240 ns
				10b = 480 ns
				11b = 960 ns
5	WD_EN	R/W	0b	Enables or disables the watchdog time (disabled by default)
4-3	WD_DLY	R/W	00b	Watchdog timeout delay (if WD_EN = 1)
				00b = 10 ms
				01b = 20 ms
				10b = 50 ms
				11b = 100 ms
2-0	IDRIVE	R/W	111b	Sets the peak source current and peak sink current of the gate drive. Table 20 lists the bit settings.

Table 20. IDRIVE Bit Settings

Rit Value	Source	Current	Sink Current				
Bit Value	V _{VM} = 5.5 V	V _{VM} = 13.5 V	V _{VM} = 5.5 V	V _{VM} = 13.5 V			
000b	High-side: 10 mA	High-side: 10 mA	High-side: 20 mA	High-side: 20 mA			
	Low-side: 10 mA	Low-side: 10 mA	Low-side: 20 mA	Low-side: 20 mA			
001b	High-side: 20 mA	High-side: 20 mA	High-side: 40 mA	High-side: 40 mA			
	Low-side: 20 mA	Low-side: 20 mA	Low-side: 40 mA	Low-side: 40 mA			
010b	High-side: 50 mA	High-side: 50 mA	High-side: 90 mA	High-side: 95 mA			
	Low-side: 40 mA	Low-side: 45 mA	Low-side: 85 mA	Low-side: 95 mA			
011b	High-side: 70 mA	High-side: 70 mA	High-side: 120 mA	High-side: 130 mA			
	Low-side: 55 mA	Low-side: 60 mA	Low-side: 115 mA	Low-side: 125 mA			
100b	High-side: 100 mA	High-side: 105 mA	High-side: 170 mA	High-side: 185 mA			
	Low-side: 75 mA	Low-side: 90 mA	Low-side: 160 mA	Low-side: 180 mA			
101b	High-side: 145 mA	High-side: 155 mA	High-side: 250 mA	High-side: 265 mA			
	Low-side: 115 mA	Low-side: 130 mA	Low-side: 235 mA	Low-side: 260 mA			
110b	High-side: 190 mA	High-side: 210 mA	High-side: 330 mA	High-side: 350 mA			
	Low-side: 145 mA	Low-side: 180 mA	Low-side: 300 mA	Low-side: 350 mA			
111b	High-side: 240 mA	High-side: 260 mA	High-side: 420 mA	High-side: 440 mA			
	Low-side: 190 mA	Low-side: 225 mA	Low-side: 360 mA	Low-side: 430 mA			


7.6.2.3 VDS Control Register Name (address = 0x04h)

VDS control is shown in Figure 51 and described in Table 21.

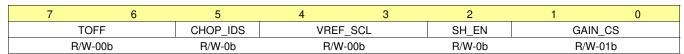
Return to Summary Table.

Read and write

Figure 51. VDS Control Register

Table 21. VDS Control Field Descriptions

Bit	Field	Туре	Default	Description
7	SO_LIM	R/W	0b	0b = Default operation 1b = SO output is voltage-limited to 3.6 V
6-4	VDS	R/W	111b	Sets the $V_{DS(OCP)}$ monitor for each FET $000b = 0.06 \text{ V}$ $001b = 0.145 \text{ V}$ $010b = 0.17 \text{ V}$ $011b = 0.2 \text{ V}$ $100b = 0.12 \text{ V}$ $101b = 0.24 \text{ V}$ $110b = 0.48 \text{ V}$ $111b = 0.96 \text{ V}$
3-2	RESERVED	R	00b	Reserved
1	DIS_H_VDS	R/W	0b	Disables the VDS monitor on the high-side FET of half-bridge (enabled by default)
0	DIS_L_VDS	R/W	0b	Disables the VDS monitor on the low-side FET of half-bridge (enabled by default)


7.6.2.4 Config Control Register Name (address = 0x05h)

Config control is shown in Figure 52 and described in Table 22.

Return to Summary Table.

Read and write

Figure 52. Config Control Register

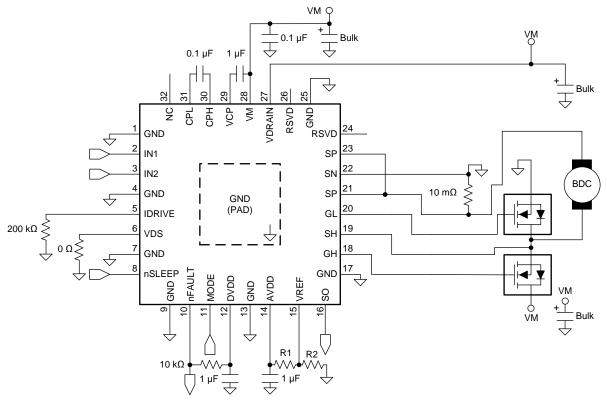
Table 22. Config Control Field Descriptions

Bit	Field	Туре	Default	Description
7-6	TOFF	R/W	00b	Off time for PWM current chopping $00b = 25 \ \mu s$ $01b = 50 \ \mu s$ $10b = 100 \ \mu s$ $11b = 200 \ \mu s$
5	CHOP_IDS	R/W	0b	Disables current regulation (enabled by default)
4-3	VREF_SCL	R/W	00b	Scale factor for the VREF input 00b = 100% 01b = 75% 10b = 50% 11b = 25%
2	SH_EN	R/W	0b	Enables sample and hold operation of the shunt amplifier (disabled by default)
1-0	GAIN_CS	R/W	01b	Shunt amplifier gain setting 00b = 10 V/V 01b = 19.8 V/V 10b = 39.4 V/V 11b = 78 V/V

6 Submit Documentation Feedback

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV870xD-Q1 device is used in brushed-DC, solenoid, or relay-control applications. The following typical application can be used to configure the DRV870xD-Q1 device.

8.2 Typical Application

This application features the DRV8702D-Q1 device.

Copyright © 2017, Texas Instruments Incorporated

Figure 53. DRV8702D-Q1 Typical Application Schematic

Typical Application (continued)

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 23 as the input parameters.

Table 23. Design Parameters

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE
Nominal supply voltage	\/A.4	14 V
Supply voltage range	- VM	7 V to 35 V
FET part number		CSD18502Q5B
FET total gate charge	Q_g	52 nC (typical)
FET gate-to-drain charge	Q_{gd}	8.4 nC (typical)
Target FET gate rise time	t _r	100 to 300 ns
Motor current chopping level	I _(CHOP)	15 A

8.2.2 Detailed Design Procedure

8.2.2.1 External FET Selection

The DRV8702D-Q1 FET support is based on the charge-pump capacity and PWM-output frequency. For a quick calculation of FET driving capacity, use Equation 3 when drive and brake (slow decay) are the primary modes of operation.

$$Q_g < \frac{I_{VCP}}{f_{(PWM)}}$$

where

- f_{PWM} is the maximum desired PWM frequency to be applied to the DRV8702D-Q1 inputs or the current chopping frequency, whichever is larger.
- I_{VCP} is the charge-pump capacity, which depends on the VM voltage. (3)

The internal current chopping frequency is at most equal to the PWM frequency as shown in Equation 4.

$$f_{(PWM)} < \frac{1}{t_{off} + t_{(BLANK)}}$$
(4)

For example, if the VM voltage of a system is 7 V (I_{VCP} = 8 mA) and uses a maximum PWM frequency of 40 kHz, then the DRV8702D-Q1 device will support FETs with a Q_a up to 200 nC.

If the application requires a forced fast decay (or alternating between drive and reverse drive), use Equation 5 to calculate the maximum FET driving capacity.

$$Q_{g} < \frac{I_{VCP}}{2 \times f_{(PWM)}}$$
 (5)

8.2.2.2 IDRIVE Configuration

The IDRIVE current is selected based on the gate charge of the FETs. The IDRIVE pin must be configured so that the FET gates are charged entirely during the t_(DRIVE) time. If the selected IDRIVE current is too low for a given FET, then the FET may not turn on completely. TI recommends adjusting these values in-system with the required external FETs and motor to determine the best possible setting for any application.

For FETs with a known gate-to-drain charge (Q_{od}) and desired rise time (t_r), the IDRIVE current can be selected based on the Equation 6.

$$I_{DRIVE} > \frac{Q_{gd}}{t_r} \tag{6}$$

Submit Documentation Feedback

Copyright © 2017-2018, Texas Instruments Incorporated

If the gate-to-drain charge is 2.3 nC and the desired rise time is around 100 to 300 ns, use Equation 7 to calculate the minimum IDRIVE (I_{DRIVE1}) and Equation 8 to calculate the maximum IDRIVE (I_{DRIVE2}).

$$I_{DRIVE1} = 8.4 \text{ nC} / 100 \text{ ns} = 84 \text{ mA}$$
 (7)

$$I_{DRIVE2} = 8.4 \text{ nC} / 300 \text{ ns} = 28 \text{ mA}$$
 (8)

Select a value for IDRIVE between 28 and 84 mA. An IDRIVE value of approximately 50 mA for the source (approximately 100 mA sink) was selected for this application. This value requires a 200-k Ω resistor from the IDRIVE pin to ground.

8.2.2.3 VDS Configuration

The VDS monitor threshold voltage, $V_{DS(OCP)}$, is configured based on the maximum current, I_{VDS} , and $R_{DS(on)}$ of the FETs. The drain to source voltage, V_{DSFET} , is the maximum current, I_{VDS} , multiplied by the $R_{DS(on)}$ of the FET.

The VDS pin of the DRV8702D-Q1 selects the VDS monitor trip threshold, $V_{DS(OCP)}$. The VDS bits in the VDS register of the DRV8703D-Q1 selects the $V_{DS(OCP)}$ voltage. Use Equation 9 to calculate the trip current.

$$I_{VDS} > \frac{V_{DSFET}}{R_{DS(on)}} \tag{9}$$

If the $R_{DS(on)}$ of the FET is 1.8 m Ω and the desired maximum current is less than 100 A, the V_{DSFET} voltage is equal to 180 mV as shown in Equation 10.

For this example, select a value for the $V_{DS(OCP)}$ that is less than 180 mV. A $V_{DS(OCP)}$ value of 0.12 V was selected for this application.

To set the $V_{DS(OCP)}$ to 0.12 V, use the SPI (DRV8703D-Q1 Only) or place a 33k resistor at the VDS pin to ground (DRV8702D-Q1 Only).

The VDS pin can configured to select other $V_{DS(OCP)}$ threshold voltages. See the VDS Pin (DRV8702D-Q1 Only) section for more information on VDS operation.

$$V_{DSFET} = I_{VDS} \times R_{DS(on)} = 100 \text{ A} \times 1.8 \text{ m}\Omega = 180 \text{ mV}$$
 (10)

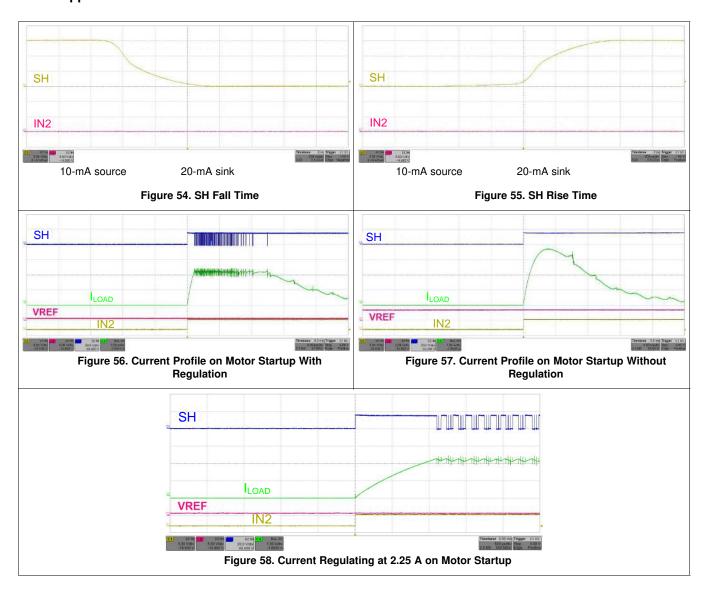
8.2.2.4 Current Chopping Configuration

The chopping current is set based on the sense resistor value and the analog voltage at the VREF pin. Use Equation 11 to calculate the current ($I_{(CHOP)}$). The amplifier gain, A_V , is 19.8 V/V for the DRV8702D-Q1 and V_{IO} is typically 5 mV (input referred).

$$I_{(CHOP)} = \frac{V_{VREF} - V_{IO} \times A_{V}}{A_{V} \times R_{(SENSE)}}$$
(11)

For example, if the desired chopping current is 15 A, select a value of 10 m Ω for R_(SENSE). The value of V_{VREF} must therefore be 2.975 V. Add a resistor divider from the AVDD (5 V) pin to set the V_{VREF} at approximately 2.975 V. Select a value of 13 k Ω for R2 and 19.1 k Ω for R1 (the VREF resistor).

If current chopping is not required, the sense resistor can be removed and the source of the low side FET can be connected to ground.


SN and SP should be connected to the source of the low side FET and VREF should be connected to AVDD

Copyright © 2017–2018, Texas Instruments Incorporated

Submit Documentation Feedback

8.2.3 Application Curves

Submit Documentation Feedback

9 Power Supply Recommendations

The DRV8702D-Q1 device is designed to operate with an input voltage supply (VM) rangefrom 5.5 V to 45 V. A 0.1- μ F ceramic capacitor rated for VM must be placed as close to the DRV8702D-Q1 device as possible. Also, a bulk capacitor valued at least 10 μ F must be placed on the VM pin.

Additional bulk capacitance is required to bypass the external half-bridge FETs.

9.1 Bulk Capacitance Sizing

Bulk capacitance sizing is an important factor in motor drive system design. It is beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors including:

- The highest current required by the motor system.
- The capacitance of the power supply and the ability of the power supply to source current.
- The amount of parasitic inductance between the power supply and motor system.
- · The acceptable voltage ripple.
- The type of motor used (brushed DC, brushless DC, and stepper).
- The motor braking method.

The inductance between the power supply and motor drive system limits the rate that current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When sufficient bulk capacitance is used, the motor voltage remains stable, and high current can be quickly supplied.

The data sheet provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

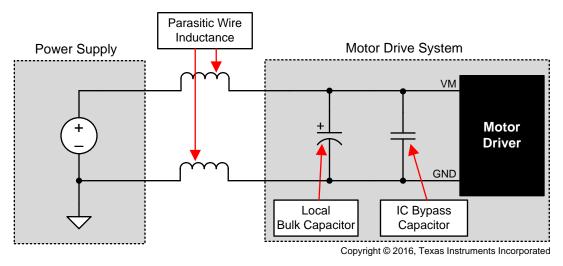


Figure 59. Example Setup of Motor Drive System With External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage to provide a margin for cases when the motor transfers energy to the supply.

Copyright © 2017–2018, Texas Instruments Incorporated

10 Layout

10.1 Layout Guidelines

The VM pin should be bypassed to ground using a low-ESR ceramic bypass capacitor with a recommended value of 0.1 μ F rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace or ground-plane connection to the GND pin of the device. The VM pin must also be bypassed to ground using a bulk capacitor rated for VM. This capacitor can be electrolytic and must be at least 10 μ F.

A low-ESR ceramic capacitor must be placed between the CPL and CPH pins. A value of 0.1 μ F rated for VM is recommended. Place this capacitor as close to the pins as possible. A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 1 μ F rated for 16 V is recommended. Place this component as close to the pins as possible.

Bypass the AVDD and DVDD pins to ground with ceramic capacitors rated for 6.3 V. Place these bypassing capacitors as close to the pins as possible.

Use separate traces to connect the SP and SN pins to the $R_{(SENSE)}$ resistor.

10.2 Layout Example

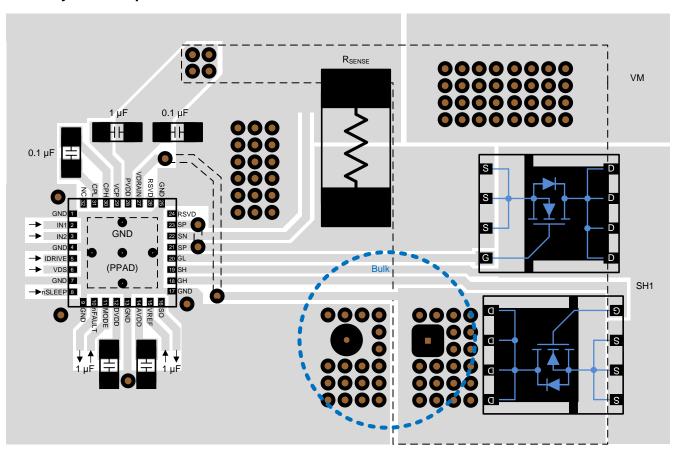


Figure 60. DRV8702D-Q1 Layout Example

52 Submit L

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, DRV8702-Q1 EVM User's Guide
- Texas Instruments, DRV8703-Q1 EVM User's Guide
- Texas Instruments, Small Footprint Motor Driver Sunroof Module Design Guide
- Texas Instruments, Motor Drive Protection With TI Smart Gate Drive TI TechNote
- Texas Instruments. Reduce Motor Drive BOM and PCB Area with TI Smart Gate Drive TI TechNote
- Texas Instruments, Reducing EMI Radiated Emissions with TI Smart Gate Drive TI TechNote
- Texas Instruments, Relay Replacement for Brushed DC Motor Drive in Automotive Applications application report
- Texas Instruments, Understanding IDRIVE and TDRIVE in TI Smart Gate Drivers

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 24. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
DRV8702D-Q1	Click here	Click here	Click here	Click here	Click here	
DRV8703D-Q1	Click here	Click here	Click here	Click here	Click here	

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary

SLYZ022 — TI Glossary.

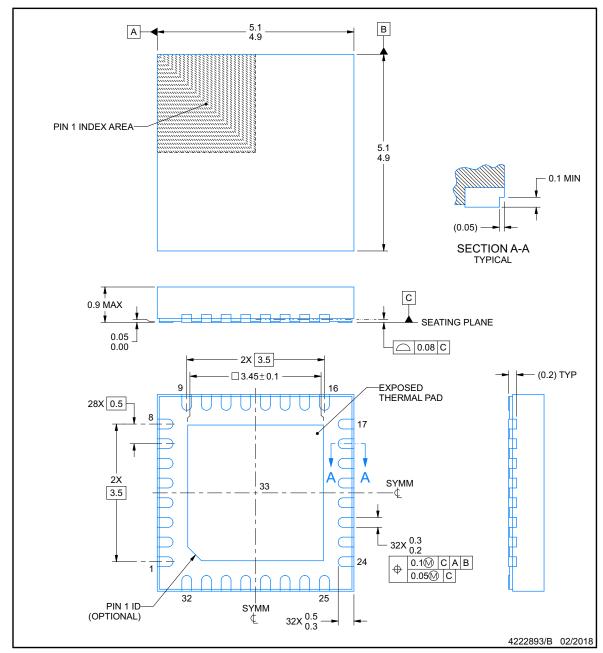
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated



RHB0032N

PACKAGE OUTLINE

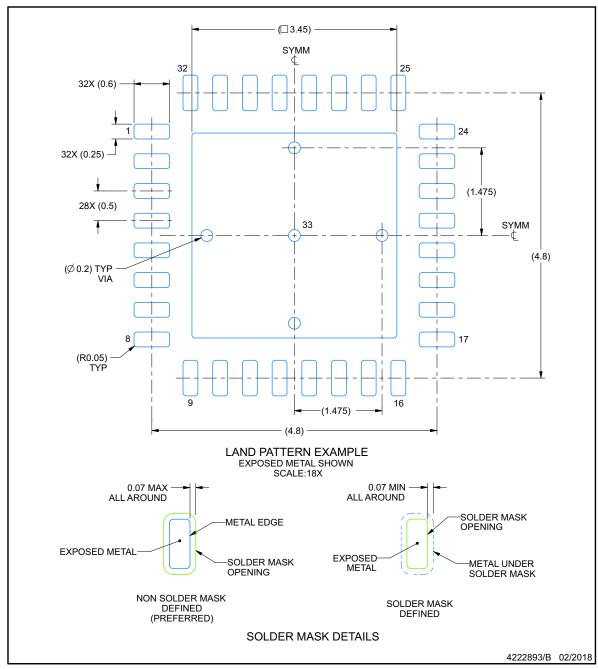
VQFN - 0.9 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

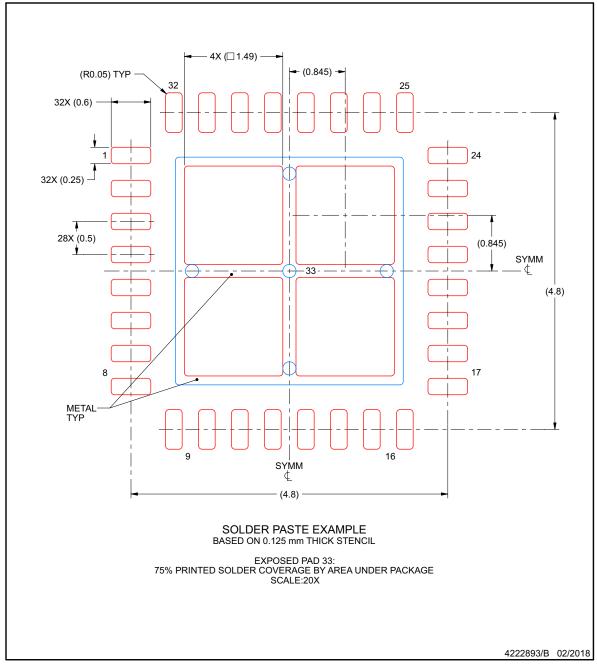
RHB0032N

VQFN - 0.9 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RHB0032N

VQFN - 0.9 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com 23-Jun-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DRV8702DQRHBRQ1	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	(6) NIPDAU SN	Level-3-260C-168 HR	-40 to 125	8702D	Samples
DRV8702DQRHBTQ1	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU SN	Level-3-260C-168 HR	-40 to 125	8702D	
DRV8703DQRHBRQ1	ACTIVE	VQFN	RHB	32		RoHS & Green	NIPDAU SN	Level-3-260C-168 HR	-40 to 125	8703D	Samples
							<u>'</u>				Samples
DRV8703DQRHBTQ1	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU SN	Level-3-260C-168 HR	-40 to 125	8703D	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

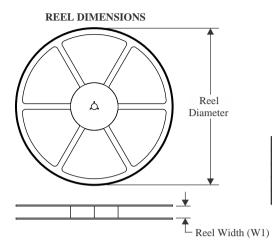
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

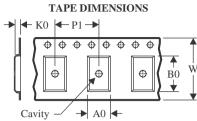
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

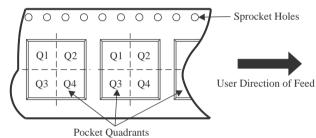
PACKAGE OPTION ADDENDUM


www.ti.com 23-Jun-2023


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

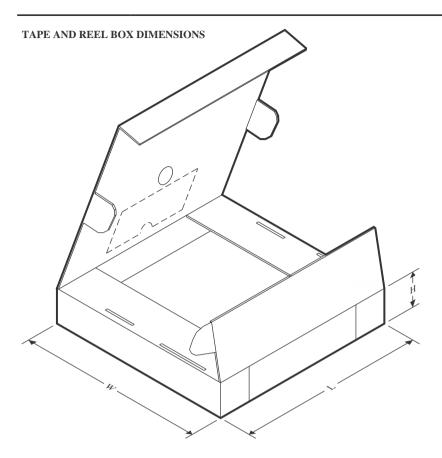
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 20-Apr-2023


TAPE AND REEL INFORMATION

	<u> </u>
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

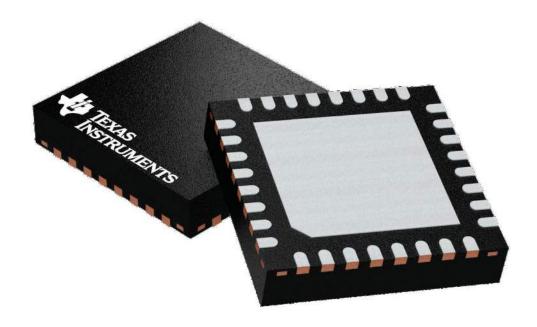
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8702DQRHBRQ1	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DRV8702DQRHBTQ1	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DRV8703DQRHBRQ1	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
DRV8703DQRHBTQ1	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 20-Apr-2023

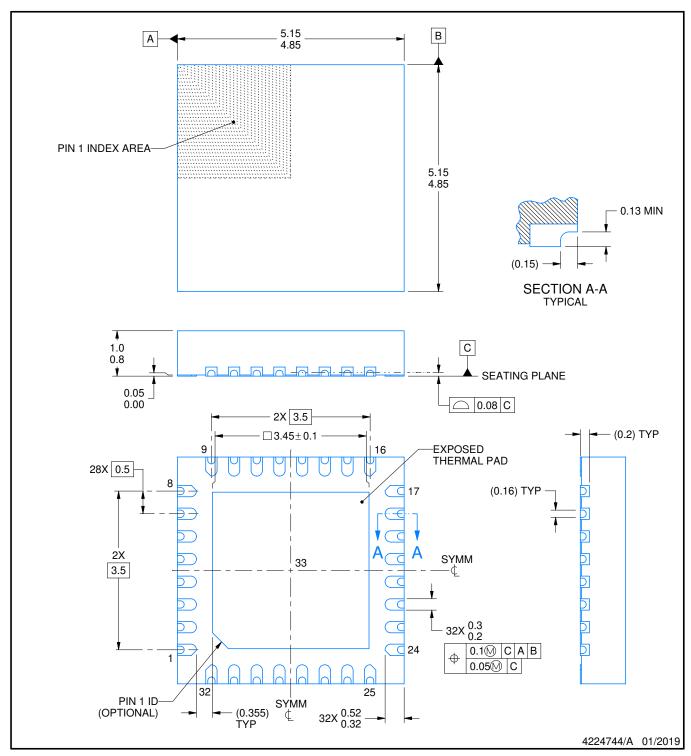


*All dimensions are nominal

7 til dillionorio di o mominar							
Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV8702DQRHBRQ1	VQFN	RHB	32	3000	367.0	367.0	35.0
DRV8702DQRHBTQ1	VQFN	RHB	32	250	210.0	185.0	35.0
DRV8703DQRHBRQ1	VQFN	RHB	32	3000	367.0	367.0	35.0
DRV8703DQRHBTQ1	VQFN	RHB	32	250	210.0	185.0	35.0

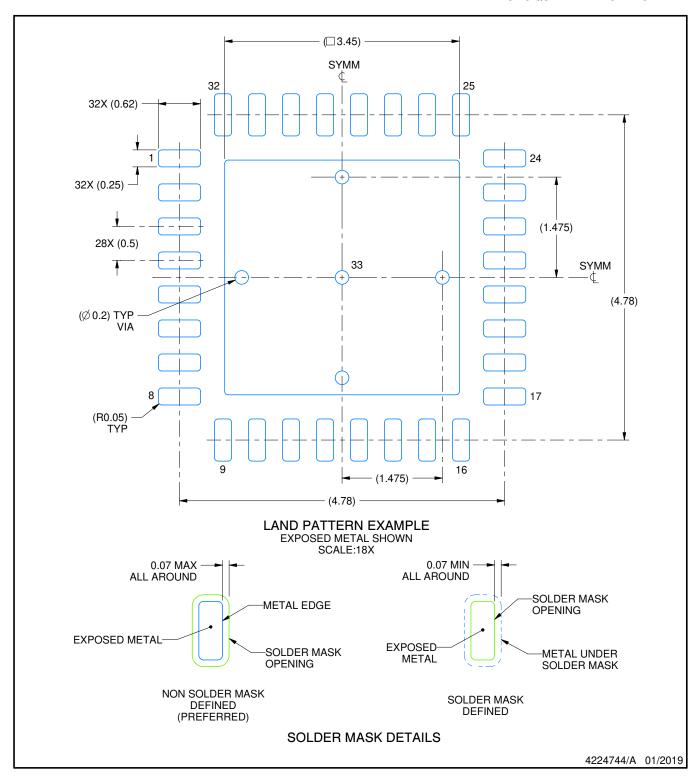
5 x 5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD



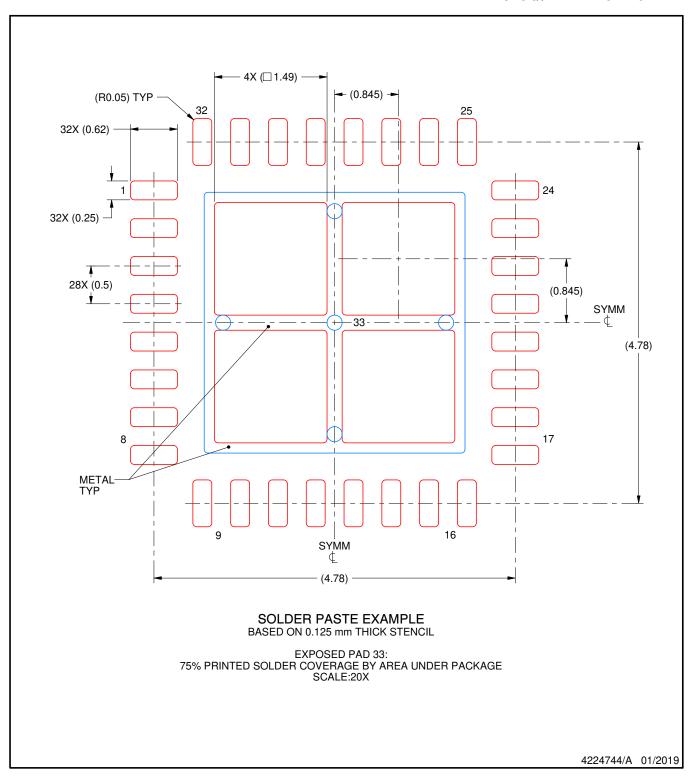
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A



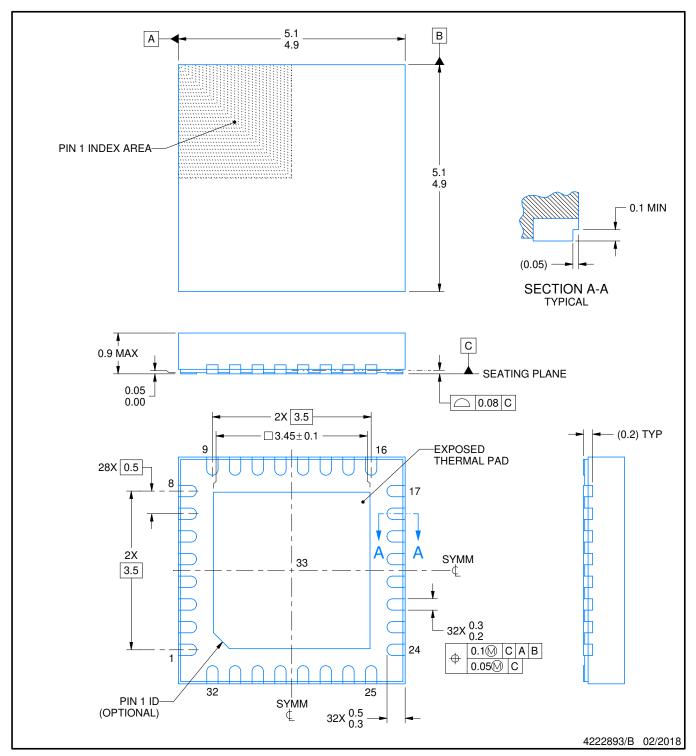
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



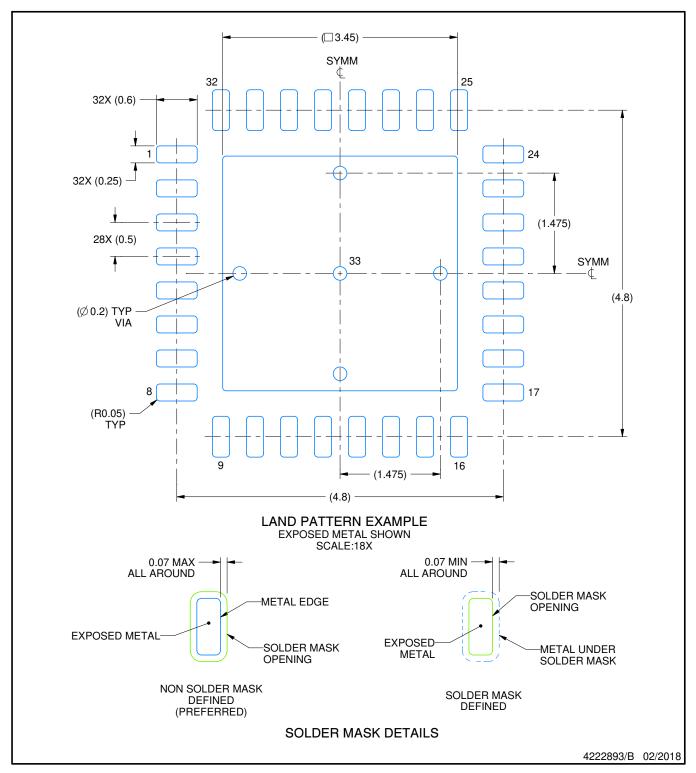
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



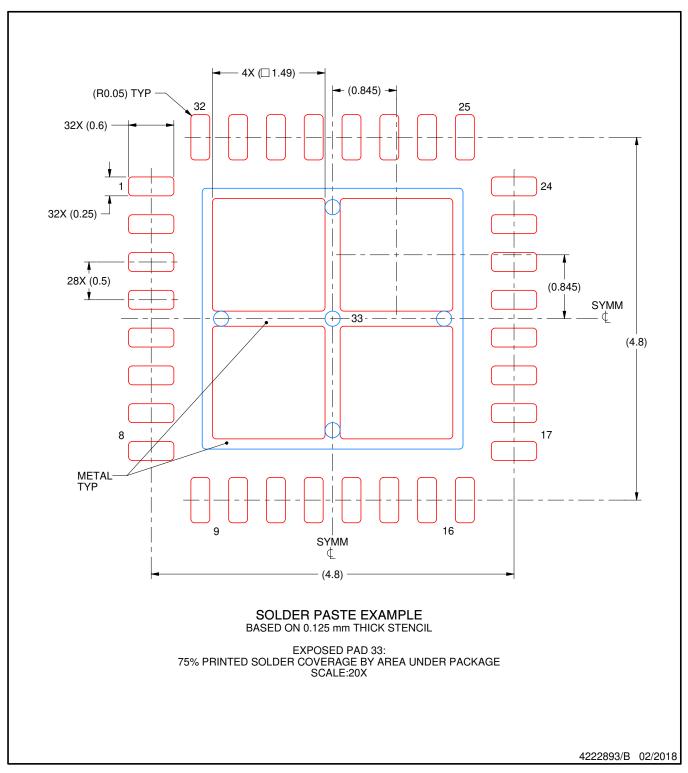
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated