

Double Balanced Mixer

MDB-73H+

Level 15 (LO Power 15dBm) 2200-7000 MHz

THE BIG DEAL

- · Wide bandwidth 2200 to 7000 MHz
- High L-I Isolation, 46 dB typ. at 4 GHz
- Useable as Up & Down Converter
- Small Size 4 mm x 4mm x 1mm
- Aqueous washable
- Footprint Compatible with Hittite HMC129LC4^{a,b}

CASE STYLE: DG1847

Generic photo used for illustration purposes only

+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Satellite up and down converters
- · Defense radar & communication
- VSAT

PRODUCT OVERVIEW

MDB-73H+ is an advanced wideband frequency mixer fabricated using InGap HBT technology with inte-grated LO and RF Baluns. It has repeatable performance making it suitable for volume production. It is packaged in tiny 4 mm x 4mm x 1mm $MCLP^{TM}$ Package having Tin Silver Nickel finish passing tin whisker test.

KEY FEATURES

Feature	Advantages
Double Balanced	Results in excellent LO-RF (34-39 dB typical) & LO-IF (33-55 dB typical) Isolations mini-mizing need for external filtering
Wide Bandwidth, 2.2 to 7 GHz	Useful in wideband systems or in in several narrowband systems. Reducing inventory
Wide IF Bandwidth DC-1600 MHz	Usable in first (high IF~860 MHz)) and second down (low IF~70 MHz) converter applica-tions. IF as low as DC enables use in phase detector applications.
Low Thermal Resistance Tj=88°C typical at 85°C ground lead temperature & LO=+15 dBm	Extremely High Reliability improving overall system reliability
4 mm x 4 mm, 24 lead MCLP Package	Low Inductance, repeatable transitions, excellent thermal contact to PCB

Notes:

a. Suitability for model replacement within a particular system must be determined by and is solely the responsibility of the customer based on, among other things, electrical performance criteria, stimulus conditions, application, compatibility with other components and environmental conditions and stresses.
b. The Hittite HMC129LC4 part number is used for identification and comparison purposes only.

REV. C ECO-009182 MDB-73H+ MCL NY 210820

MMIC SURFACE MOUNT WIDEBAND Double Balanced Mixer MDB-73H+

ELECTRICAL SPECIFICATIONS¹ AT 25°C, UNLESS NOTED

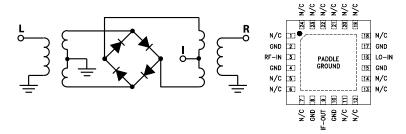
Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
RF Frequency Range	-	2.2	-	7.0	GHz
LO Frequency Range	-	2.2	-	7.0	GHz
IF Frequency Range	-	DC	-	1.6	GHz
LO Power	-	+15			dBm
	2.2	-	8.8	-	
	3.0	-	7.4	-	
Conversion Loss (at IF=0.03 GHz)	4.0	-	8.2	-	dB
Conversion Loss (at Ir-0.03 GHZ)	5.0	-	8.7	-	aB
	6.0	-	9.3	-	
	7.0	-	8.9	9.8	
	2.2	-	38	-	
	3.0	-	35	-	
LO DE La la Fac	4.0	34	39	-	dB
LO-RF Isolation	5.0	-	39	-	
	6.0	-	35	-	
	7.0	-	34		
	2.2	-	36	-	
	3.0	-	42	-	
10/51 17	4.0	35	46	-	dB
LO-IF Isolation	5.0	-	55	-	
	6.0	-	46	-	
	7.0	-	33		
	2.2	-	8	-	
	3.0	-	13	-	
DE IEL LUI	4.0	-	17	-	dB
RF-IF Isolation	5.0	-	15	-	
	6.0	-	13	-	
	7.0	-	12	-	
Input at 1dB Compression	2.2-7.0	-	10	-	dBm
Naire Figure	2.2	-	8.9	-	dB
Noise Figure	4.0	-	9.0	-	
Thermal Resistance (junction-to-ground lead)			105		°C/W

Measured on Mini-Circuits Characterization test board TB-746+. See Characterization Test Circuit Figure 1

MAXIMUM RATINGS²

m, building to the trace		
Parameter	Ratings	
Operating Temperature	-40°C to 85°C	
Storage Temperature	-65°C to 150°C	
RF Power	21 dBm	
LO Power	21 dBm	
IF Current	30 mA	

Permanent damage may occur if any of these limits are exceeded.
 Electrical maximum ratings are not intended for continuous normal operation.



MMIC SURFACE MOUNT WIDEBAND

Oouble Balanced Mixer MDB-73H+

SIMPLIFIED SCHEMATIC AND BONDING PAD DESCRIPTION

PAD CONNECTIONS

Function	tion Pad Number Description	
RF-IN	3	RF input
LO-IN	16	LO input
IF-OUT	9	IF input
GND	2,4,8,10,15,17, Paddle	Connect to Ground
NC	1, 5-7, 11-14, 18-24	No connection, not used

CHARACTERIZATION TEST CIRCUITS

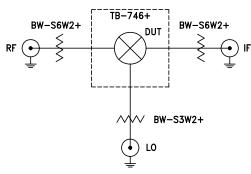
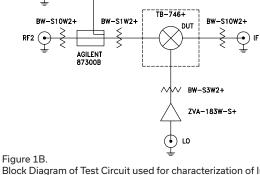
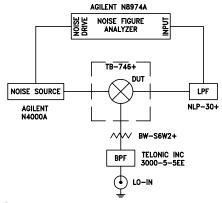
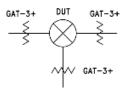




Figure 1A. Block Diagram of Test Circuit used for characterization of Conversion Loss, Isolations (LO-RF, LO-IF, RF-IF) and Return Loss (LO, RF, IF)

Block Diagram of Test Circuit used for characterization of Input IP3

Block Diagram of Test Circuit used for characterization of Noise Figure.

Figure 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-746+). Conversion Loss, Isolations; L-R, L-I & R-I are measured using R&S ZVA 24 microwave network analyzer. Input IP3 is measured Agilent MXA N9020A spectrum Analyzer and PSG E8257D Signal Generators. NF is measured using Agilent's N8975A NF Analyzer


Conditions (Down Converter):

- 1. Conversion Loss, Isolations (L-R, L-I & R-I): RF= 0 dBm, LO=+15 dBm, IF=30 MHz
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. Noise Figure: LO=+15 dBm

PRODUCT MARKING

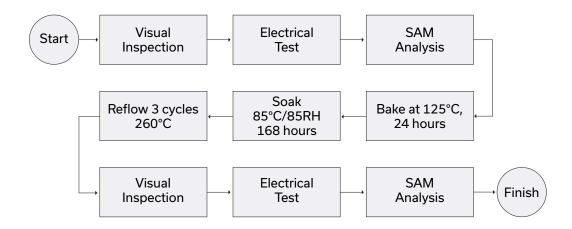
APPLICATION CIRCUIT

MMIC SURFACE MOUNT WIDEBAND Double Balanced Mixer MDB-73H+

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

	Data Table	
Performance Data	Swept Graphs	
	S-Parameter (S1P Files) Data Set (.zip file)	
Case Style	DG1847 Plastic package, exposed paddle, lead finish: tin/silver/nickel	
Tape & Reel Standard quantities available on reel	F68 7" reels with 20, 50, 100, 200, 500 or 1K devices 13" Reels with 2K, 3K, 4K devices	
Suggested Layout for PCB Design	PL-413	
Evaluation Board	TB-746+	
Environmental Ratings	ENV08T1	

ESD RATING


Human Body Model (HBM): Class 1B (500 to <1000V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M3 (200 to <400V) in accordance with ANSI/ESD STM5.2-1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp