

Q28-100GP4-BXU2733-10-I-C

MSA and TAA 100GBase-BX QSFP28 Transceiver Single Lambda (SMF, 1271nmTx/1331nmRx, 10km w/FEC, LC, DOM, -40 to 85C)

Features:

- Compliant with 100G Lambda MSA 100G-LR Specifications
- Compliant with SFF-8636
- Single 3.3V Power Supply
- Single-mode Fiber
- Bidi LC Connectors
- Industrial Temperature -40 to 85 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 100GBase Ethernet
- Datacenter

Product Description

This MSA Compliant QSFP28 transceiver provides 100GBase-BX throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1271nmTx/1331nmRx via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4.
- ESD to the LC Receptacle: compatible with IEC 61000-4-3.
- EMI/EMC: compatible with FCC Part 15 Subpart B Rules, EN55022:2010.
- Laser Eye Safety: compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1, 2.
- RoHS: compliant with EU RoHS 2.0 directive 2015/863/EU.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0		3.6	V	
Data Input Voltage		-0.3		3.6	V	
Control Input Voltage		-0.3		4	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity	RH	5		85	%	
Data Rate	BR		53.125		GBd	
Bit Error Rate	BER			2.4x10 ⁻⁴		1
Supported Link Length on 9/125μm SMF, 53.125GBd	L		10		km	2

Notes:

- 1. Tested with a PRBS31Q test pattern for 53.125 GBd operation.
- 2. Distances are based on FC-PI-6 Rev. 3.1 and IEEE 802.3 standards with FEC.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Power Supply Voltage	Vcc	3.135	3.3	3.465	V			
Module Supply Current	Icc			1212	mA			
Power Dissipation	P _{DISS}			4000	mW			
Transmitter								
Differential Data Input Swing	VIN,pp	90	100	110	mVp-p			
Differential Input Impedance	ZIN	90	100	110	Ω			
Receiver								
Differential Data Output Swing	VOUT,pp	300		900	mVp-p			
Differential Output Impedance	ZOUT	90	100	110	Ω			

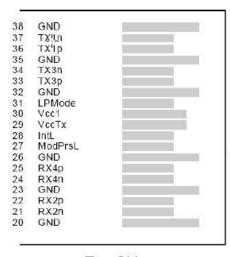
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes			
Transmitter									
Center Wavelength	λC	1264.5	1271	1277.5	nm				
Extinction Ratio	ER	3.5			dB				
Launch Optical Power (Average)	Pavg	-1.4		4.5	dBm	1			
Launch Optical Power (OMA)	POMA	0.7		4.7	dBm				
Transmitter and Dispersion Penalty Eye Closure for PAM4	TDECQ			3.4	dB				
RIN17.10MA (Maximum)	RIN			-136	dB/Hz				
Optical Return Loss Tolerance	ORLT			15.6	dB				
POUT @ Tx_Disable Asserted	Poff			-30	dBm				
Receiver									
Center Wavelength	λC	1324.5	1331	1337.5	nm				
Receiver Sensitivity (OMA)	RxSENS			-6.1	dBm	2			
Receiver Overload (Pavg)	POL	4.5			dBm				
Receiver Reflectance				-26	dB				
LOS De-Assert	LOSD			-12	dBm				
LOS Assert	LOSA	-18			dBm				
LOS Hysteresis		0.5			dB				

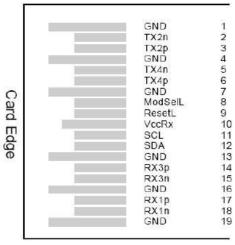
Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 2. Measured with PRBS31Q test pattern, 53.125GBd, and BER<2.4 \times 10⁻⁴.

Pin Descriptions

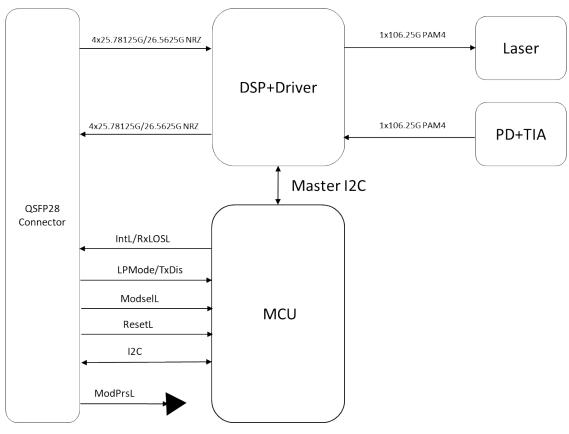

Pin Desc Pin	Logic	Symbol	Name/Description	Note
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Output.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Output.	
7		GND	Module Ground.	1
8	LVTLL-I	ModSelL	Module Select.	
9	LVTLL-I	ResetL	Module Reset.	
10		VccRx	+3.3V Receiver Power Supply.	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
13		GND	Module Ground.	
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1
21	CML-O	Rx2-	Receiver Inverted Data Output.	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	1
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27	LVTTL-O	ModPrsL	Module Present.	
28	LVTTL-O	IntL	Interrupt.	
29		VccTx	+3.3V Transmitter Power Supply.	2
30		Vcc1	+3.3V Power Supply.	2
31	LVTTL-I	LPMode	Low-Power Mode.	
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Output.	
35		GND	Module Ground.	1

36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Output.	
38		GND	Module Ground.	1

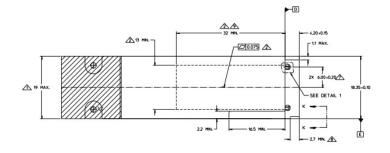

Notes:

- 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1, and VccTx are the receiver and transmitter power supplies and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1, and VccTx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Electrical Pin-Out Details



Top Side Viewed from Top



Bottom Side Viewed from Bottom

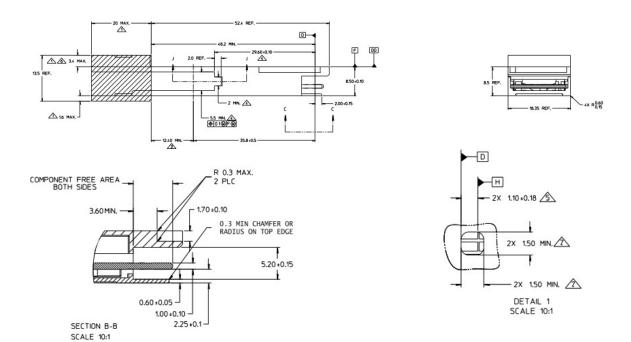
Block Diagram

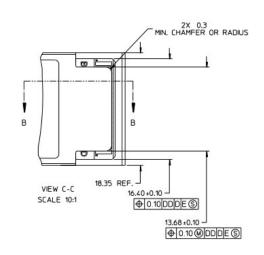
Mechanical Specifications

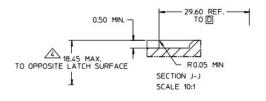
- 1. NOCATED DIRECTIONS DEFINE ENLARGED SECTION OF TRANSCEIVER THAT EXTENDS DUTSINE OF CACE TO ACCHOOLITE HATING PLUG AND ACTUATION BECOMEN.

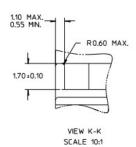
 A FLATHESS APPLIES FOR HOCATED LENGTH AND A PIN WOTH OF 19HH SUPPLACE TO DE THERMALY. CONDUCTIVE

 A HOCATED SURPACES NALL 4 SDESS TO BE CONDUCTIVE FOR CONNECTION TO CHASE GROUND.


 DIRECTION OF CHASE GROUND CONNECTION OF THE EDGE OF THE MODULE BOARD PAID. DATUM H. COMPACTS 21. 22. 25. AND 37 ARE VISIBLE.


 A HOCATED DIRECTION OF THE CONTACTS 21. 22. 25. AND 37 ARE VISIBLE.


 A HOCATED DIRECTION OF THE CONTACTS 21. 22. 25. AND 37 ARE VISIBLE.


 A HOCATED DIRECTION APPLY TO DEPARKS IN HOUSING.

 A HOCATED DIRECTION APPLY TO DEPARKS IN HOUSING.

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600