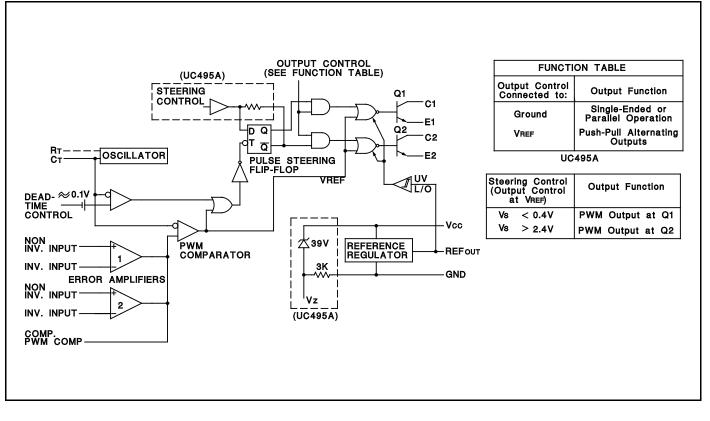


Advanced Regulating Pulse Width Modulators

FEATURES

- Dual Uncommitted 40V, 200mA Output Transistors
- 1% Accurate 5V Reference
- Dual Error Amplifiers
- Wide Range, Variable Deadtime
- Single-ended or Push-pull Operation
- Under-voltage Lockout With
 Hysteresis
- Double Pulse Protection
- Master or Slave Oscillator
 Operation
- UC495A: Internal 39V Zener Diode
- UC495A: Buffered Steering Control

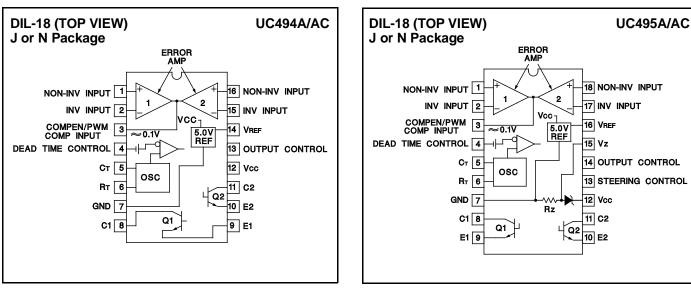

BLOCK DIAGRAM

DESCRIPTION

This entire series of PWM modulators each provide a complete pulse width modulation system in a single monolithic integrated circuit. These devices include a 5V reference accurate to $\pm 1\%$, two independent amplifiers usable for both voltage and current sensing, an externally synchronizable oscillator with its linear ramp generator, and two uncommitted transistor output switches. These two outputs may be operated either in parallel for single-ended operation or alternating for push-pull applications with an externally controlled dead-band. These units are internally protected against double-pulsing of a single output or from extraneous output signals when the input supply voltage is below minimum.

The UC495A contains an on-chip 39V zener diode for high-voltage applications where Vcc would be greater than 40V, and a buffered output steering control that overrides the internal control of the pulse steering flip-flop.

The UC494A is packaged in a 16-pin DIP, while the UC495A is packaged in an 18 pin DIP. The UC494A, UC495A are specified for operation over the full military temperature range of -55°C to +125°C, while the UC494AC, UC495AC are designed for industrial applications from 0°C to +70°C.


ABSOLUTE MAXIMUM RATINGS (Note 1, 2, 3)

Supply Voltage, Vcc (Note 2) 45V
Amplifier Input Voltages Vcc + 0.3V
Collector Output Voltage 41V
Collector Output Current
Continuous Total Dissipation
@ (or below) 25°C free air temperature range (Note 3)
Storage Temperature Range
Lead Temperature 1/16" (1.6mm) from case for 60 seconds,
J Package 300°C
Lead Temperature 1/16" (1.6mm) from case for 10 seconds,
N Package
Note 1: Over operating free air temperature range unless
otherwise noted.
Note 2: All voltage values are with respect to network
ground terminal 3.

ground terminal 3. Note 3: Consult Packaging Section of Databook regarding thermal specifications and limitations of packages.

RECOMMENDED OPERATING CONDITIONS

CONNECTION DIAGRAMS

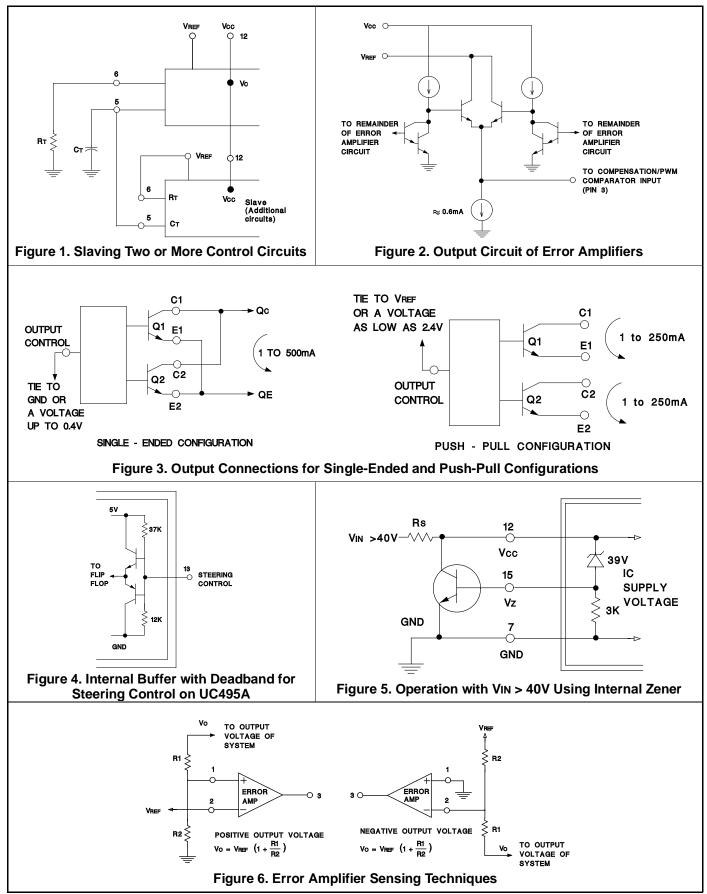
ELECTRICAL CHARACTERISTICS: Unless otherwise stated, over recommended operating free-air temperature range, Vcc = 15V, f = 10kHz, TA = TJ.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reference Section					•
Output Voltage VREF	Io = 1mA, TA = 25°C	4.95	5	5.05	V
Input Regulation	Vcc = 7V to $40V$		2	25	mV
Output Regulation	Io = 1mA to 10mA		1	15	mV
Output Voltage Over Temperature	$\Delta TA = Min. to Max.$	4.90		5.10	V
Short Circuit Output Current	10	35	50	mA	
Oscillator Section					
Frequency (Note 2)	Frequency (Note 2) $CT = 0.01 \mu F, RT = 12 k\Omega$				kHz
Standard Deviation Of Frequency (Note 3)	All Values of Vcc, CT, RT, TA Constant		10		%
Frequency Change With Voltage	Vcc = 7V to 40V, TA = 25° C		0.1		%
Frequency Change With Temperature			2	%	
Deadtime Control Section (Output Control Co	onnected to VREF)				
Input Bias Current (Pin 4)		-2	-10	μA	
Maximum Duty-Cycle (Each Output)	V(PIN 4) = 0V	45			%

UC494A/AC UC495A/AC

ELECTRICAL CHARACTERISTICS:	Unless otherwise stated, over recommended operating free-air temperature range,

PARAMETER		Vcc = 15V, f = 10kHz, TA = TJ. TEST CONDITION			TYP	MAX	UNITS
Deadtime Control Se	ction (cont.) (Output	Control Connected to VREF)		•			-
Input Threshold Voltage (Pin 4)		Zero Duty-Cycle			3	3.3	V
		Maximum Duty-Cycle		0			V
Amplifier Section				•			-
Input Offset Voltage		VO (PIN 3) = 2.5V			2	10	mV
Input Offset Current		VO (PIN 3) =2.5V			25	250	nA
Input Bias Current		VO (PIN 3) = 2.5V			-0.2	-1	μA
Common-Mode Input Voltage Range		Vcc = 7V to $40V$.03 to Vcc -2			V	
Open Loop Voltage	Gain	$\Delta Vo = 3V$, $Vo = 0.5V$ to 3.5 V		70	95		dB
Unity Gain Bandwidt	th				800		kHz
Common-Mode Reje	ection Ratio	Vcc = 40V, TA = 25°C		65	80		dB
Output Sink Current	(Pin 3)	VID = -15mV to $-5V$, $V(PIN 3) = 0.7V$		0.3	0.7		mA
Output Source Curre	ent (Pin 3)	VID = 15mV to 5V, $V(PIN 3) = 3.5V$		-2			mA
Output Section							
Collector Off-State C	Current	VCE = 40V, VCC = 40V			2	100	μΑ
Emitter Off-State Cu	rrent	Vcc = Vc = 40V, VE = 0				-100	μA
Collector - Emitter	Common-Emitter	VE = 0, IC = 200mA		1.1	1.3	V	
Saturation Voltage Emitter-Follower Vc = 15V, IE = -200mA				1.5	2.5	V	
Output Control Input Current		VI = VREF				3.5	mA
PWM Comparator Se	ection						
Input Threshold Voltage (Pin 3)		Zero Duty-Cycle			4	4.5	V
Input Sink Current (Pin 3)		V(PIN 3) = 0.7V			0.7		mA
Steering Control (UC-	495A, See Function	Table)				1	
Input Current		V(PIN 13) = 0.4V, Q1 ACTIVE			-200	μΑ	
		V(PIN 13) = 2.4V, Q2 ACTIVE				300	μΑ
Deadband					500		mV
Zener Diode Circuit (JC495A)					1	
Breakdown Voltage		Vcc = 45V, Iz = 2mA			39	45	V
Sink Current		V(PIN 15) = 1V			0.3	0.6	mA
Total Device			T			1	
Standby Supply Current		Pin 6 at VREF, All other inputs and	Vcc = 15V		6	10	mA
		outputs open	Vcc = 40V		9	15	mA
Under Voltage Lockout				3.5		6.5	V
Hysteresis				300		mV	
Switching Characteri				1		1	T
Output Voltage Rise Time		Common-Emitter Configuration			100	200	ns
Output Voltage Fall Time		$RL = 68\Omega$, $CL = 15pF$			25	100	ns
Output Voltage Rise		Emitter-Follower Configuration			100	200	ns
Output Voltage Fall Time		$RL = 68\Omega$, $CL = 15pF$		40	100	ns	


Note 1: Duration of the short circuit should not exceed one second.

Note 2: Frequency for other values of CT and RT is approximately $f = \frac{1.1}{RTCT}$

Note 3: Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

$$\sigma = \sqrt{\frac{n}{\sum (X_n - X)^2}}{\frac{n = 1}{n - 1}}.$$

UC494A/AC UC495A/AC

UNITRODE INTEGRATED CIRCUITS 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603) 424-3460

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UC494ACJ	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI
UC494ACN	OBSOLETE	PDIP	Ν	16	TBD	Call TI	Call TI
UC494AJ	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI
UC494AJ883B	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI
UC494AN	OBSOLETE	PDIP	Ν	16	TBD	Call TI	Call TI
UC495ACN	OBSOLETE	PDIP	Ν	18	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated