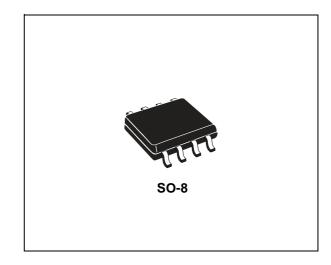
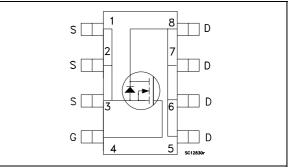


N-CHANNEL 60V - 0.017 Ω - 7.5A SO-8 STripFET™ II POWER MOSFET

TYPE	V _{DSS}	V _{DSS} R _{DS(on)}	
STS7NF60L	60 V	< 0.0195 Ω	7.5 A


- TYPICAL R_{DS}(on) = 0.017 Ω
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE

DESCRIPTION


This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- DC MOTOR DRIVE
- DC-DC CONVERTERS
- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT
- POWER MANAGEMENT IN PORTABLE/DESKTOP PCs

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60	V
V _{GS}	Gate- source Voltage	± 16	V
Ι _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	7.5	A
Ι _D	Drain Current (continuous) at $T_C = 100^{\circ}C$	4.7	A
I _{DM} (●)	Drain Current (pulsed)	30	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	2.5	W
E _{AS} (1)	Single Pulse Avalanche Energy	350	mJ
(•) Pulse width	limited by safe operating area.	(1) Starting $T_j = 25 \text{ °C}$, $I_D = 7.5 \text{ A } V_{DD} = 30 \text{ V}$	•

April 2002

THERMAL DATA

Rthj-amb(#)	Thermal Resistance Junction-ambient Max	50	۰C/W
T _j	Maximum Operating Junction Temperature	150	°C
T _{stg}	Storage Temperature	-55 to 150	°C

(#) When Mounted on 1 inch² FR-4 board, 2 oz of Cu and $t \leq$ 10 sec.

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 5 V	I _D = 3.5 A I _D = 3.5 A		0.017 0.019	0.0195 0.0215	Ω Ω

DYNAMIC

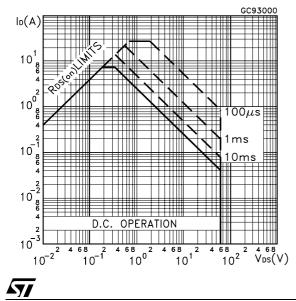
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	$V_{DS} = 15 V$ $I_{D} = 3.5 A$		13		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		1700 300 100		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

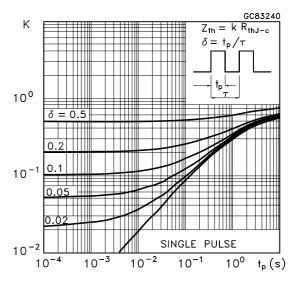
SWITCHING ON (*)

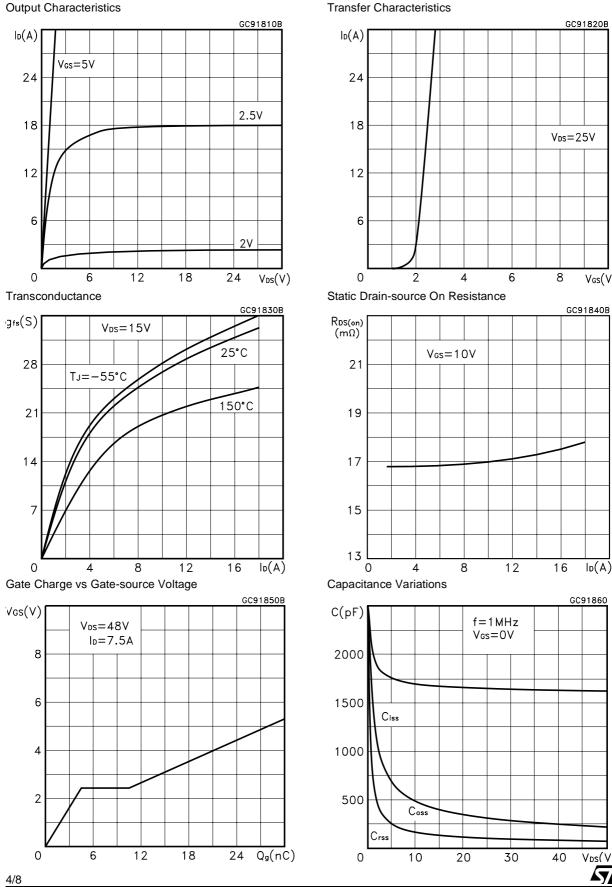
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$ \begin{array}{ll} V_{DD}=30 \ V & I_{D}=3.5 \ A \\ R_{G}=4.7 \ \Omega & V_{GS}=4.5 \ V \\ (\text{Resistive Load, Figure 1}) \end{array} $		15 27		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 48V I _D 7.5A V _{GS} =4.5V (see test circuit, Figure 2)		25 4.5 7	34	nC nC nC

SWITCHING OFF (*)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	V_{DD} = 30 V R _G = 4.7 Ω , (Resistive Load, Fig	I _D = 3.5 A V _{GS} = 4.5 V jure 1)		47 20		ns ns

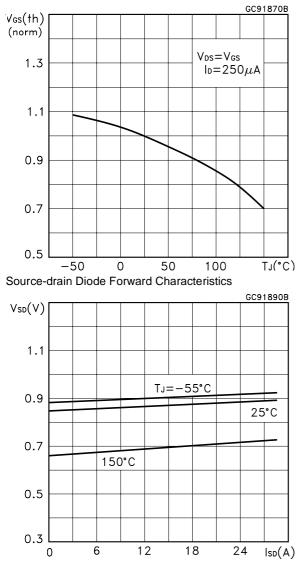
SOURCE DRAIN DIODE (*)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)					7.5 30	A A
V _{SD}	Forward On Voltage	I _{SD} = 7.5 A	$V_{GS} = 0$			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} =7.5 A V _{DD} = 20 V (see test circu	di/dt = 100A/µs T _j = 150°C it, Figure 3)		55 110 3.9		ns nC A


(*) Pulse width \leq 300 µs, duty cycle 1.5 %. (•)Pulse width limited by safe operating area.

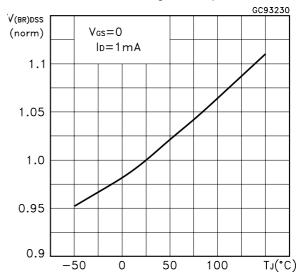
Safe Operating Area

Thermal Impedance

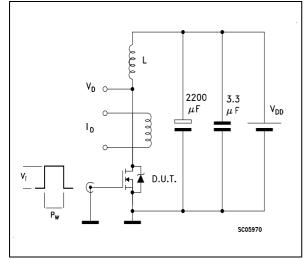


 $V_{GS}(V)$

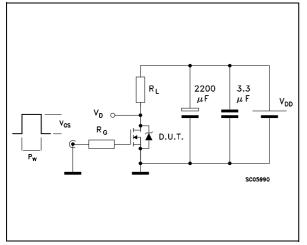
lo(A)


Vps(V) 57

Normalized Gate Threshold Voltage vs Temperature



Normalized Breakdown Voltage vs Temperature




57

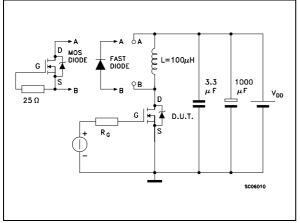
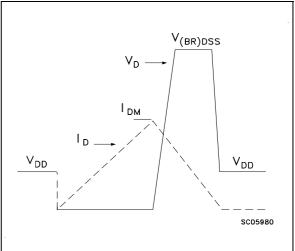
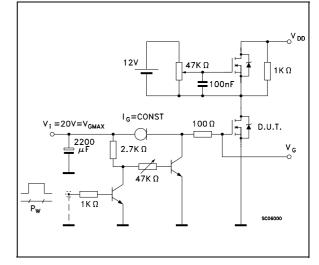
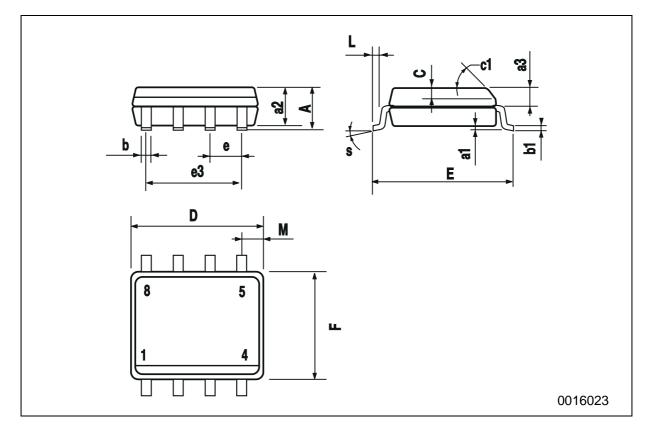

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

57

DIM.		mm			inch	
Dilai.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (r	nax.)		

SO-8 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

8/8

