

USB2IO manual

 USB2IO manual

Document version: 1.2.6 2

Table of content

What this device can do? ... 4

Internal structure .. 6

Interface pinout and possible functionality .. 7

Default FPGA firmware description ... 11

Waveform generator (WFG) .. 13

SPI Master (SPIM) ... 15

General purpose IO (GPIO) ..18

Step motor controller (SMC) ..18

Serial ADC LTC2500 controller ... 19

IIC master (I2C) .. 20

Pin mux block ... 20

USB2IO command list .. 22

Setting external connector voltage .. 22

External connector pinmux .. 22

Binary data buffer in SDRAM ... 23

I2С bus ... 23

SPI bus ... 27

I2S bus (Audio interface) .. 30

MDIO bus ... 33

Frequency generator (Si570 PLL) .. 34

General purpose I/O (GPIO) ... 35

Camera interface (parallel camera interface) ... 36

Waveform generator (WFG) ... 37

FPGA SPI Master (SPIM) ... 39

Step motor controller (SMC) ... 41

CAN-bus interface (with FDCAN capability) ... 43

Serial interface UART (Universal Asynchronous Receiver/Transmitter) ... 46

RS-485 serial bus .. 49

External Trigger .. 52

Timers (with PWM and encoder functionality) ... 53

Service functions ... 55

Usecases .. 56

I2C bus usecases .. 56

SPI bus usecase .. 58

I2S (Audio) bus usecases ... 59

Camera usecases ... 59

RS485, CAN 2.0 (FD) and RS232 usecases ... 61

Digital microphone usecase ... 62

Digital PDM microphone usecase .. 63

Fiber optic transceiver usage usecase .. 64

 USB2IO manual

Document version: 1.2.6 3

Regulatory .. 65

Operating temperature .. 65

Dimensions .. 65

Weight ... 65

Order code ..66

Legal .. 67

 USB2IO manual

Document version: 1.2.6 4

What this device can do?

USB2IO – is a multifunctional interface allows to work with various electronics

devices using common electronic industry interfaces.

Features of USB2IO device:

• Communication with electronics using I2C/SPI/I2S/USART/CAN

FD/MDIO and other interfaces;

• 16-channel pattern generator;

• 16-pin GPIO interface;

• 8-LVDS pairs available;

• 1A max programmable LDO with voltage range 1.8V – 3.3V designed for:

o Powering external (customer’s) device;
o Same voltage used for powering IO interface;

• Automatic electronic functional testing (USB2IO able to play various

scenarios);

• Communication with Host PC using USB HID device (Virtual COM port);

o Transmitting data possible using ASCII or RAW protocol;

• Upgradable firmware for control modules (FPGA, MCU);

• Failsafe bootloader for safe firmware upgrade;

• Python and C++ SDKs for developer’s support;

• OS supported: Microsoft Windows OS, MacOS and Linux;

• Device powered by USB-C cable from Host PC.

Description

Functionality depends on FPGA image + STM32H7 firmware. System have

default FPGA image and bootloader + application on STM32H7 MCU.

After power up – using USB HID VCOM port and ASCII commands – possible

to upload new FPGA image and STM32H7 code (and run it).

STM32H7 has internal watchdog and able to fall back into bootloader mode.

 USB2IO manual

Document version: 1.2.6 5

Usecases

• I2C read/write/scan

o Master mode only for now

• SPI read/write

o Master mode only for now

• USART send/receive

o RS485 support using TI SN75HVD11D transceiver

• Digital microphone data acquisition (audio I2S interface)

o As example we are using Knowles SPH0645LM4H MEMS

microphone

• I2S audio codec playback and audio record

o Using AKM4954 codec on Microchip AC324954 board we can do:

▪ Record audio stream from onboard microphone

▪ Stream audio data to Headphone output

▪ Record audio steam from Headphone input

• PDM (Pulse Density Modulation) interface for digital microphones

o Up to 4 digital microphone pairs can be connected in parallel

• CAN 2.0B bus logger/Communication

o As example we are using TI TCAN337G transceiver

• Stepper motor control

o As example we are using TI DRV8711EVM kit

• Color camera (RGB/Bayer/JPEG) supported

o As example we are using Omnivision OV5640 camera

▪ Set resolution to be taken

▪ Get single frame

• Management Data Input/Output (MDIO) interface controller (IEEE

802.3)

o Only Master mode

o Can read/write data

• GPIO 16-bit port

• 16x I/O pattern generator

Technical specification

External memory 32MBytes, SDRAM

Additional logic FPGA-based

Supported logic levels 1.8V – 3.3V, LVDS 2.5V

Max I/O speed 300 MHz

Programmable PLL (connected to FPGA)

frequency range

10 MHz – 250 MHz

USB Type 2.0 High speed (USB-C connector)

Power Using USB interface (5V @ 1.5A max)

Dimensions 100 x 65 x 20 mm

Weight 80 g

Certification CE

 USB2IO manual

Document version: 1.2.6 6

Internal structure

Figure 1: Internal structure of USB2IO device

Internal structure description:

1. MCU - STM32H743 ARM Cortex-M7 based microcontroller with 480MHz

CPU clock frequency:

a. External 32MB SDRAM memory for storing captured data or data

waiting to be send;

b. External 64MB QSPI Flash for extra FPGA code storage;

c. External USB2.0 High speed PHY;

2. FPGA - Intel Cyclone 10LP (10CL040) with external components:

a. 32MB SDRAM memory;

b. Si570 programmable PLL (10MHz … 945MHz);
c. 50MHz oscillator;

d. Programmable LDO supplies power for External IO FPGA bank;

e. Depends on FPGA firmware – possible to select 16x GPIO mode

(single-ended), 8x LVDS pair mode or mix of two modes.

Interface with Host PC – USB 2.0 High speed (USB-C connector);

External IO connector – 20-pin connector (2-raw, 2.54mm pin pitch).

 USB2IO manual

Document version: 1.2.6 7

Interface pinout and possible functionality

External connector:

WARNING:

HW I2C bus, pin 17 and 18 have always 3.3V levels.

 !

 USB2IO manual

Document version: 1.2.6 8

External connector pin multiplication possibilities (based on default FPGA

firmware image):

External

connector

Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6

Data pin D0 D1 D2 D3 D4 D5
FPGA pin IO_B26n IO_B26p IO_B13n IO_B13p IO_B7n IO_B7p
Function 0 GPIO0_IN0 GPIO0_IN1 GPIO0_IN2 GPIO0_IN3 GPIO0_IN4 GPIO0_IN5
Function 1 Logic “0” Logic “0” Logic “0” Logic “0” Logic “0” Logic “0”
Function 2 Logic “1” Logic “1” Logic “1” Logic “1” Logic “1” Logic “1”
Function 3 GPIO0_OUT0 GPIO0_OUT1 GPIO0_OUT2 GPIO0_OUT3 GPIO0_OUT4 GPIO0_OUT5
Function 4 GEN_OUT0 GEN_OUT1 GEN_OUT2 GEN_OUT3 GEN_OUT4 GEN_OUT5
Function 5 50 MHZ
Function 6 Si570 PLL
Function 7 SPI_NCS SPI_MISO SPI_CLK SPI_MOSI
Function 8 UART4_CTS UART4_RXD UART4_TXD UART4_RTS
Function 9
Function 10 SPIM_NCS SPIM_MISO SPIM_CLK SPIM_MOSI
Function 11 MII_MDC MII_MDIO
Function 12 CAM_D0 CAM_D1 CAM_D2 CAM_D3 CAM_D4 CAM_D5
Function 13 MOTOR1_STEP MOTOR1_DIR
Function 14
Function 15
Function 16
Function 17 RS485_nRE RS485_RXD RS485_TXD RS485_DE
Function 19 SAI2_SD_A SAI2_FS_A
Function 20
Function 21

External

connector

Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12

Data pin D6 D7 D8 D9 D10 D11
FPGA pin IO_B1n IO_B1p IO_B27n IO_B27p IO_B21n IO_B21p
Function 0 GPIO0_IN6 GPIO0_IN7 GPIO0_IN8 GPIO0_IN9 GPIO0_IN10 GPIO0_IN11
Function 1 Logic “0” Logic “0” Logic “0” Logic “0” Logic “0” Logic “0”
Function 2 Logic “1” Logic “1” Logic “1” Logic “1” Logic “1” Logic “1”
Function 3 GPIO0_OUT6 GPIO0_OUT7 GPIO0_OUT8 GPIO0_OUT9 GPIO0_OUT10 GPIO0_OUT11
Function 4 GEN_OUT6 GEN_OUT7 GEN_OUT8 GEN_OUT9 GEN_OUT10 GEN_OUT11
Function 5
Function 6
Function 7
Function 8
Function 9 CAN_TX CAN_TX CAN_RX CAN_RX CAN_TX
Function 10
Function 11
Function 12 CAM_D6 CAM_D7 CAM_D8 CAM_D9 CAM_D10 CAM_D11
Function 13
Function 14
Function 15
Function 16
Function 17
Function 18 UART1_RX UART1_TX
Function 19 SAI2_SCK_A SAI2_SD_B SAI2_FS_B SAI2_SCK_B SAI2_MCLK_B SAI4_CK1
Function 20
Function 21

 USB2IO manual

Document version: 1.2.6 9

External

connector

Pin 13 Pin 14 Pin 15 Pin 16

Data pin D12 D13 D14 D15
FPGA pin IO_B18n IO_B18p IO_B14n IO_B14p
Function 0 GPIO0_IN12 GPIO0_IN13 GPIO0_IN14 GPIO0_IN15
Function 1 Logic “0” Logic “0” Logic “0” Logic “0”
Function 2 Logic “1” Logic “1” Logic “1” Logic “1”
Function 3 GPIO0_OUT12 GPIO0_OUT13 GPIO0_OUT14 GPIO0_OUT15
Function 4 GEN_OUT12 GEN_OUT13 GEN_OUT14 GEN_OUT15
Function 5
Function 6 Si570 PLL
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12 CAM_VSYNC CAM_PIXCLK CAM_HSYNC
Function 13
Function 14 TIM5_CH1_OUT TIM5_CH2_OUT TIM5_CH3_OUT TIM2_CH1_IN
Function 15
Function 16 MOTOR2_STEP MOTOR2_DIR
Function 17
Function 18 UART1_RTS UART1_CTS
Function 19 SAI4_D1
Function 20 IIC_SCL IIC_SDA
Function 21 Encoder_In1 Encoder_In2

Description:

GPIO0_INx – GPIO inputs;

GPIO0_OUTx – GPIO outputs;

GEN_OUTx – Waveform generator outputs;

50 MHZ – 50MHz output;

Si570 PLL – Frequency generator: 10MHz to 300MHz programmable output;

SPI_NCS, SPI_MISO,

SPI_CLK, SPI_MOSI – SPI interface (connected to STM32 MCU);

UART4_CTS,

UART4_RXD,

UART4_TXD,

UART4_RTS – UART (Universal asynchronous receiver-transmitter) interface

 (connected to STM32 MCU);

CAN_RX, CAN_TX – CAN 2.0 FD bus (external physical transceiver required, like TI TCAN337 or

similar) (connected to STM32 MCU);

SPIM_NCS, SPIM_MISO,

SPIM_CLK, SPIM_MOSI – SPI Master (in FPGA);

MII_MDC, MII_MDIO – Management Data Input/Output (MDIO) interface (IEEE 802.3)

 (connected to STM32 MCU);

CAM_Dx – 12-bit (10-bit and 8-bit) parallel CMOS camera interface (connected to STM32

 MCU);

MOTOR1_STEP,

MOTOR1_DIR – Step motor controller 1 outputs

 (controller implemented in FPGA);

MOTOR2_STEP,

MOTOR2_DIR – Step motor controller 2 outputs

 (controller implemented in FPGA);

 USB2IO manual

Document version: 1.2.6 10

TIM1_CH1_OUT,

TIM1_CH2_OUT,

TIM1_CH3_OUT – 32-bit timer with 3 outputs (PWM mode, output compare mode)

 (connected to STM32 MCU);

TIM2_CH1_IN – 16-bit timer input (capture mode) (connected to STM32 MCU);

UART1_CTS,

UART1_RXD,

UART1_TXD,

UART1_RTS – UART (Universal asynchronous receiver-transmitter) interface

 (connected to STM32 MCU);

RS485_nRE,

RS485_RXD,

RS485_TXD,

RS485_DE – RS485 interface (TTL levels, external physical transceiver required, like TI

 SN75HVD11D or similar) (connected to STM32 MCU);

SAI2_SD_A (data line),

SAI2_FS_A (frame sync),

SAI2_SCK_A (clock) – Serial Audio interface (block A) (connected to STM32 MCU);

SAI2_MCLK_B (master clock output),

SAI2_SD_B (data line),

SAI2_FS_B (frame sync),

SAI2_SCK_B (clock) – Serial Audio interface (block B) (connected to STM32 MCU);

SAI4_CK1 (clock),

SAI4_D1 (data) – Serial Audio interface dedicated for PDM microphones

 (connected to STM32 MCU);

IIC_SDA (data),

IIC_SCL (clock) – I2C master interface (Implemented in FPGA);

Encoder_In1,

Encoder_In2 – Encoder input lanes (connected to STM32 MCU timer 5);

 USB2IO manual

Document version: 1.2.6 11

Default FPGA firmware description

FPGA logic can be divided into several subsystems:

• Clocking

• Interface and control

• Periphery functions

• Pin mux

Clocking subsystem

A 50 MHz clock generator is used as primary clock source for FPGA. Its output

is fed into embedded PLL, which produces clock for internal logic. In most

cases 200MHz used as internal clock provided by PLL.

Interface and control

The FPGA works under control of MCU. 16-bit parallel bus is used for MCU-

FPGA communication.

The FPGA has a set of registers (register map), which control all functionality

of the FPGA. These registers are accessible by MCU.

 USB2IO manual

Document version: 1.2.6 12

Periphery functions

The main task of FPGA is to realize peripheral functions, which are not

realized or not accessible in MCU. Each function is represented as a separate

unit inside the FPGA. At the moment next functions are implemented:

• Waveform generator

• SPI master

• General purpose IO

• Step motor controller

• Serial ADC LTC2500 controller

This list will be expanded according to user needs.

Note, that peripheral functions can work in parallel if they do not share same

pins of external connector (see Pin Mux section).

 USB2IO manual

Document version: 1.2.6 13

Waveform generator (WFG)

This list will be expanded according to user needs.

This function allows to generate arbitrary logic waveforms on up to 16 lanes.

“Logic waveform” means, that each lane can be in one of two states – ”High”
or “Low”. “Low” is a 0-volt level, “High” is configurable in the range 1.8V – 3.3V.

WFG has internal memory for storing waveform data. The memory

organization is 16K x 16 bits. Each 16-bit words is called “sample”.

The sample represents the state of all 16 lanes of generator: bit 0 – lane 0, bit 1

– lane 1, and more.

Let assume, you generate 0x8F0B sample after 0x0000 sample:

During generation the samples are sequentially read from memory and

placed to external connector pins. The chunk of data words, which should be

sequentially outputted (generated) is called “segment”. Maximum segment
size is equal to memory size (16K).

There are two modes of generation: single segment, cyclic. In single segment

mode when all samples are generated, the WFG is stopped and the last

 USB2IO manual

Document version: 1.2.6 14

sample remains on output pins. In cyclic mode a segment is repeated directly

after previous segment is generated.

For example, you have a segment of 4 samples: {0x1111, 0x9999, 0xAAAA,

0x19AF}.

In single segment mode the waveform will look like:

In cyclic mode you’ll get:

It is possible to “preload” output lanes with initial sample, which will be held
on lines until “start” command is applied. For example, initial = 0x1234, the
segment is same, mode is cyclic:

During generation the samples are read from memory in user defined time

intervals – sample rate. The sample rate is multiply of FPGA main clock period

(5 nanoseconds). Minimal value is 5 ns, maximal is 2(32 – 1) * 5 ns.

Example 1.

Need to generate 100MHz meander signal on all 16 channels:

 USB2IO manual

Document version: 1.2.6 15

Choose fastest sample rate, segment size = 2, data samples = {0x0000,

0xFFFF} and cyclic mode.

Example 2.

Lane 0 – 1 – differential 100MHz, lane 2 – 3 differential 50MHz, lane 15 – 20 ns

pulse every 50 ns:

Choose fastest sample rate, segment size = 10, data samples = {0x000A,

0x8009, 0x8006, 0x8005, 0x800A, 0x0009, 0x0006, 0x0005, 0x000A, 0x0009}

and cyclic mode.

SPI Master (SPIM)

In comparison to MCU SPI master unit, FPGA offers more flexible solution for

SPI master.

SPIM transmits data word to / from slave device. CS signal is asserted during

transmission of single word.

The unit has internal memory with 16K x 16-bit organization for transmission

and the same memory for reception. The data for transmission are

 USB2IO manual

Document version: 1.2.6 16

sequentially fetched from the memory. Received data are stored to the

memory in the same approach.

SPI clock period is configurable in 20 ns steps and can be in range 20ns – 2(16 –

1) * 20 ns. Clock polarity can be inverted.

Bit width of data word is configurable and can be set to a value in range from

1 to 16. Data is sent/received MSB first. Note, that if used bit width is smaller

than 16, the data word for transmission should be left-aligned. For example, if

8-bit width is used, and you want to transmit 0xFE, you have to store 0xFExx

word. As well, received data with bit width smaller than 16, should be

recovered by shifting right in appropriate number of bits. For example, with

bit width = 6, the received word 0x8C00 become 0x23 (right shift by 10).

There are three modes of operation:

• Single word

• Single segment

• Cyclic

In single word mode, the SPIM transmits a single data word over SPI and

stops. This is most simple mode.

Two other modes work with sequence of data words called segment. Data

words are transmitted with user specified period – sample rate. The sample

rate is multiply of 5 ns and can be as slow as 2(24 –1) * 5 ns.

In single segment mode the SPIM transmits a segment until segment end is

reached. During transmission it is possible to add new data to segment end,

expanding segment length. There is an option called “stop when empty”. If
this option is set, the transmission is stopped after last data word is sent. If

this option is not set, the very last data word is continuously transmitted with

the same sample rate, as previous data words.

Example 1.

Transmission is started with segment of 4 words {0x1111, 0x2222, 0x3333,

0x4444}. During transmission a 5-th word 0x5555 is added by MCU, “stop
when empty” is set:

Example 2.

Transmission is started with segment of 4 words {0x1111, 0x2222, 0x3333,

0x4444}, “stop when empty” is cleared. When all four words are transmitted,
the last one (0x4444) is retransmitted again. Then a 5-th word 0x5555 is

 USB2IO manual

Document version: 1.2.6 17

added by MCU. The SPIM starts to continuously transmit 0x5555 word until

next word is received from MCU:

In cyclic mode the SPIM transmits a segment until segment end is reached.

Then the segments are transmitted again. It is not possible to add new data

words during transmission.

Example 1.

Transmission is started with segment of 4 words {0x1111, 0x2222, 0x3333,

0x4444}:

During transmission in all modes, MISO lane is captured and received data

words are stored in internal memory. The memory works in FIFO mode. The

data is accessible as soon as new word is received. There is no need to wait for

transmission complete. Due to this fact, amount of received data could be

bigger, than memory depth, because read data are removed from FIFO.

 USB2IO manual

Document version: 1.2.6 18

General purpose IO (GPIO)

The user has direct access to pins of external connector. There are two

registers implemented in FPGA – output register and input register.

Data written to output register are fed to external pins, while input register

reflects actual state of these pins.

This function can be used for constant signals driving/capture, bit-bang

mode end etc.

Note, that it is not necessary to drive all 16 output pins by output register.

Driven pins can be individually selected. For details see pin mux description.

Step motor controller (SMC)

This function generates control signals for step motor driver (like TI DRV8711)
– Step and Direction. There are two independent SMC channels. Both
channels are equal.

Usually, is not possible to start motor at maximum speed. Instead you have to
start from minimal acceptable speed (this parameter is motor specific) and
then speed up with constant acceleration. Similar to start, it is not allowed to
stop motor immediately. You have to slow down with constants acceleration.

The main task of SMC module to speedup/slowdown motor by specified
number of steps in a shortest time in respect to motor specifications.

As input parameters the user have to specify direction of rotation, minimal
frequency of Step pulses, maximal frequency of Step pulses, acceleration rate
and number of steps.

Minimal frequency of Step pulses corresponds to motor starting speed and
motor stopping speed. The whole process starts and ends with this speed.

Maximal frequency of Step pulses corresponds to motor target speed. When
SMC reaches this speed, it will keep it until slowing down:

 USB2IO manual

Document version: 1.2.6 19

In some cases, the target speed is unreachable. For example, if number of steps is
low, or when acceleration rate is to slow. In this case, form of the trapeze on the
picture above became a triangle with highest corner < target speed.

Used formula:

 Tnext=T0 * (1 + T0At)

Where:

Tnext – step time;

T0 – initial step time;

t – current step time;

A – acceleration.

Minimal and maximal frequencies should be in range 1Hz – 250 KHz. Acceleration
speed range is 1 – 50KHz / s. Number of pulses should be in range: 1 – 2(24 – 1).

Serial ADC LTC2500 controller

This function allows to configure serial ADC LTC2500 and capture data from

it.

To configure the ADC, you have to specify filter type and down sampling

factor:

Filter type Value
SINC1 1
SINC2 2
SINC3 3
SINC4 4
SSINC 5
FLAT PASSBAND 6
AVERAGING 7

Downsampling factor Value
2 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14

 USB2IO manual

Document version: 1.2.6 20

For detailed description of LTC2500 configuration refer to LTC2500 datasheet.

LTC2500 function captures data from ADC with user defined sample rate.

Sample rate is in steps of 5 ns and should be in range 1000 ns – 2(24 – 1) * 5 ns.

Captured data are stored in external SDRAM. Each sample is 32 bit wide.

Count of samples can be set to a value in range 1 – 8 * 1024 * 1024.

Acquisition process can be started in three ways:

By applying Start command from PC;

By rising edge on external connector pin 8;

By falling edge on external connector pin 8.

In last two cases a Start command should be applied. After it the function

starts for edge detection. When selected edge in detected, acquisition

process starts.

IIC master (I2C)

IIC Master implemented in FPGA for communication with various IIC slave

devices. II2C FPGA Master has next features:

• 3 baud rate options: 100kHz, 400kHz and 1MHz;

• 7-bit slave address;

Pin mux block

Main goal of this unit is to connect pins of external connector to peripheral

functions, to MCU periphery or to other FPGA signals.

Peripheral functions are described above. MCU periphery can be SPI2, UART4,

FDCan1, MDIO, DCMI.

“Other FPGA signals” mean clock sources, static levels.

To avoid redundant complexity, each pin has a set of sources to which it can

be connected.

 USB2IO manual

Document version: 1.2.6 21

All sources are divided on groups by types:
Group
number

 Type Description

0 GPIO function Pin is an input, connected to input register of
GPIO.

1 Static ‘0‘ Pin is output, driving static ‘0’.
2 Static ‘1‘ Pin is output, driving static ‘1’.
3 GPIO function Pin is an output, connected to output register of

GPIO.
4 WFG function Pin is output, connected to WFG function
5 Clock source Pin is output, generating 50Mhz signal
6 Clock source Pin is output, connected to onboard clock

synthesizer
7 MCU SPI2 Pin is connected to SPI2 pins of MCU
8 MCU UART4 Pin is connected to UART4 pins of MCU
9 MCU FDCAN1 Pin is connected to FDCAN1 pins of MCU
10 SPIM function Pin is output, connected to SPIM function
11 MCU MDIO Pin is connected to MDIO pins of MCU
12 MCU DCMI Pin is connected to DCMI pins (Camera) of MCU
13 SMC function Pin is output, connected to SMC function (block

1)
14 MCU timer

function
Pin is input, connected to MCU timer function

15 LTC2500
function

Pin is output, connected to LTC2500 function

16 Stepper motor
controller

Pin is output, connected to stepper motor
controller function

17 SMC function Pin is output, connected to SMC function (block
2)

18 USART1 Pin is connected to USART1 pins (Camera) of
MCU

19 SAI Pin is connected to SAI (Serial Audio interface)
pins of MCU

20 FPGA I2C Pin is input, connected to FPGA I2C block
21 Encoder inputs Pin is connected to Timer5 pins of MCU

 USB2IO manual

Document version: 1.2.6 22

USB2IO command list

NOTE: All commands should end with <CR><LF> (like AT-commands).

Setting external connector voltage

expv write a

a - Voltage in millivolts (possible values are: 3300, 2500, 1800, 0) for IO port.

WARNING:

Before connecting any external hardware, we recommend to turn

off external voltage on IO connector.

Example:

expv write 0

Turns off external voltage.

expv write 3300

Device will provide 3.3V @ 1.0A.

External connector pinmux

Configure pinmux:

gpio configure a,b

a - pin No. Can be 0-15, 255. 255 means all pins.

b - function code.

 Each of 16 IO pins on external connector can be individually programmed for specific function.

 Default value for every pin is "GP input". See “External connector pin multiplication possibilities”
 section for function codes.

 !

 USB2IO manual

Document version: 1.2.6 23

Example:

gpio configure 0,5

Configures pin 1 to 50MHz clock output.

Binary data buffer in SDRAM

SDRAM capacity is 32Mbytes. Upper 2Kbytes are used by firmware. The rest space is available as data

buffer. Its size is 32Mbytes – 2Kbytes = 32766Kbytes. The buffer is accessible for read and write

operations. There set of commands, which use buffer as data source or storage. Normally these

commands have “buffer” in the name, like “spi write buffer”.

Get raw data from SDRAM buffer:

get buffer

This command will be acknowledged with “READY”, if USB2IO device is ready to execute this
command.
After successful acknowledgement, 8 bytes (2x 32-bit words) have to be sent:

32-bit word Description
0 Requested buffer size (in bytes)
1 0

When bytes will be sent, USB2IO device will return byte array (with requested size). Requested size
should not exceed size of available SDRAM buffer.
A the end of data OK or FAIL will be sent.

Upload raw data to SDRAM buffer:

put buffer

This command will be acknowledged with “READY”, if USB2IO device is ready to execute this
command.
After successful acknowledgement, 8 bytes (2x 32-bit words) have to be sent:

32-bit word Description
0 Buffer size to be sent (in bytes)
1 CRC32 % 0x100000000

CRC32 is calculated on buffer data only. ZLIB.crc32 is used.
When 8 bytes will be sent, data bytes need to be sent to USB2IO device with exact size provided earlier.
Buffer size should not exceed size of available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

I2С bus

I2C bus master has next features:

• 3 baud rates (100kHz, 400kHz and 1MHz);

• 7-bit slave address support;

• SMBus (system management bus) and PMBus (power management bus) compatible;

• I2C master in MCU;

• I2C master in FPGA.

 USB2IO manual

Document version: 1.2.6 24

MCU I2C pinout:

FPGA I2C pinout:

Configure I2C bus:

i2c configure a,b

a – I2C channel [1 – STM32, 2 - FPGA]

b - I2С baud rate [0 - 100KHz, 1 - 400KHz, 2 - 1MHz].

When STM32 channel is used, two dedicated pins if external connector are used: 17 – SCL, 18 – SDA.,

voltage level is fixed to 3.3V.

When FPGA channel is used, pin 15 is SCL and pin 16 is SDA, voltage level can be set with “expv write a”
command.

Make sure, that GPIOs are configured to I2C function.

Command returns: OK in case of success, FAIL in case of error.

Example:

i2c configure 1, 0

Will configure STM32 I2C channel with 100KHz baud rate.

 USB2IO manual

Document version: 1.2.6 25

I2C scan command:

i2c scan a

a – I2C channel [1 – STM32, 2 - FPGA]

Return: OK, <List of slave address of I2C devices>

Example:
i2c scan 2

Scans slave devices using FPGA channel.

Write to I2C device

i2c write a,b,c…

a – I2C channel [1 – STM32, 2 - FPGA]
b – Slave address;
c – comma separated array of data to be sent. Size of array should not exceed 255 bytes.

Send bytes over I2C bus to specific slave address:

Command returns: OK in case of success, FAIL in case of error

Example:

i2c write 1, 0x40,0x10,0x11,0x12
Send 0x10,0x11,0x12 bytes to device with slave address 0x40, use STM32 channel.

Read from I2C device

i2c read a,b, c…

a – I2C channel [1 – STM32, 2 - FPGA]
b – Slave address;
c – count of bytes to receive

Receives bytes over I2C bus from specific slave address. Count of bytes should not exceed 256.

Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
i2c read 2, 0x40, 3

Receive 3 bytes from I2C address 0x40, use FPGA channel.

 USB2IO manual

Document version: 1.2.6 26

Write I2C data from SDRAM buffer:

i2c writebuffer a, b, c

a – I2C channel [1 – STM32, 2 - FPGA]
b – Packet length
c – Packet size

The data from SDRAM buffer are sent by packets. First byte of the packet is I2C slave address, the rest
bytes in the packet are data, will be sent to that slave address. The data should be placed to SDRAM
with “put buffer” command.
Total number of bytes to write should not exceed size of available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

Example:

i2c writebuffer 1, 5, 10
Send 10 packets with 4 bytes of data in each. Use STM32 channel.

Write I2C data from SDRAM buffer synchronously:

i2c writebuffersync a, b, c

a – I2C channel [1 – STM32, 2 - FPGA]
b – Packet length
c – Packet size
d – Trigger timeout

This function is similar to “i2c writebuffer”. The only difference is: each packet is sent when trigger event
occurs. USB2IO device waits for trigger event not more than “timeout” miliseconds.
Trigger should be configured with “trigger configure" command.

Command returns: OK in case of success, FAIL in case of error.

Example:

i2c writebuffersync 1, 5, 10,1000
Send 10 packets with 4 bytes of data in each. Use STM32 channel. Wait for trigger not longer than 1000
ms.

 USB2IO manual

Document version: 1.2.6 27

SPI bus

SPI bus pinout:

Configure spi bus:

spi configure a,b,c,d,e,f

a - SPI Channel [1],

b - Chip select polarity [0 – Active low, 1 – Active high],

c - Clock polarity [0 - Low, 1 - High],

d - Clock phase [0 - 1st edge, 1 - 2nd edge],

e - Clock frequency in Hz

f - First bit [0 - MSB, 1 - LSB]

Command returns: OK in case of success, FAIL in case of error.

Example:
spi configure 1,0,0,0,12000000,0

SPI clock polarity low, chip select active low, 1st clock edge, 12MHz clock, first bit – MSB.

Direct write SPI data:

spi write a,b…

a - SPI Channel [1],
b – comma separated array of data to be sent. Size of array should not exceed 256 bytes.

Command returns: OK in case of success, FAIL in case of error.

Example:
spi write 1,0xAA,0x55,0x01,0x22

Send 4 bytes: 0xAA 0x55 0x01 0x22

Direct read SPI data:

spi read a,b…

 USB2IO manual

Document version: 1.2.6 28

a - SPI Channel [1],
b – Number of bytes to read. Requested number should not exceed 256 bytes.

Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
spi read 1, 4

Read 4 bytes.

Direct read and write SPI data simultaneously (using both MISO and MOSI, read same amount of

data as sent):

spi wread a,b…

a - SPI Channel [1],
b – comma separated array of data to be sent. Size of array should not exceed 256 bytes.

Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
spi wread 1, 4, 5, 6, 7

Send 4 bytes (4, 5, 6, 7) and receive 4 bytes.

Write SPI data from SDRAM buffer:

spi writebuffer a, b, c

a - SPI Channel [1],
b – Packet length,
c – Packets count

The data from SDRAM buffer are sent by packets. All bytes inside the packet are sent with CS signal
constantly active. CS goes active before first byte of the packet, and goes inactive after all bytes of the
packet are sent.
The data should be placed to SDRAM with “put buffer” command.
Toltal number of bytes to write should not exceed size of available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

Example:
spi writebuffer 1, 4, 10

Send 10 packets, each of 4 bytes.

Write SPI data from SDRAM buffer synchronously:

spi writebuffersync a, b, c, d

a - SPI Channel [1],
b – Packet length,

 USB2IO manual

Document version: 1.2.6 29

c – Packets count
d – Timeout in milliseconds

This function does the same as “spi writebuffer”, but a packet transmission is started when
trigger signal is received from FPGA. Trigger event is waited for "timeout" milliseconds.
Trigger should be configured with “trigger configure" command.
The data should be placed to SDRAM with “put buffer” command.
Toltal number of bytes to write should not exceed size of available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

Example:
spi writebuffersync 1, 4, 10, 1000

Send 10 packets, each of 4 bytes, wait for trigger event not more than 1000 ms.

 USB2IO manual

Document version: 1.2.6 30

I2S bus (Audio interface)

I2S is using same pins as SPI:

SPI_CLK = I2S_CK;

SPI_NCS = I2S_WS;

SPI_MISO = I2S_SDI;

SPI_MOSI = I2S_SDO.

Configure I2C bus:

i2s configure a,b,c,d,e,f,g,h

a - I2S Channel [1],
b - Audio standard [0 - Philips audio, 1 - I2S MSB, 2 - I2S LSB, 3 - PCM Short, 4 - PCM Long],
c - Audio data format [0 - 16-bit data, 1 - 16-bit extended data, 2 - 24-bit data, 3 - 32-bit data],
d - Audio frequency [0 - 8KHz, 1 - 11KHz, 2 - 16KHz, 3 - 22KHz, 4 - 32KHz, 5 - 44KHz, 6 - 48KHz, 7 - 96KHz, 8
- 192KHz]
e - Clock polarity [0 - Clock low, 1 - Clock high]
f - First bit [0 - MSB, 1 - LSB]
g - Frame sync inversion [0 - No inversion, 1 - Enable inversion]
h - 24bit frame alignment[0 - 24-bit alignment right, 1 - 24-bit alignment left]

Pins of external connector should be configured to SPI function (7).
Command returns: OK in case of success, FAIL in case of error.

Example:
i2s configure 1,1,3,4,0,0,0,0

I2S audio MSB, 32-bit data, 32KHz audio, clock polarity low, no frame sync inversion, 24-bit alignment
right (not used)

Direct write I2S data:

i2s write a, b…

a - I2S Channel [1],
b – comma saparated array of audio data samples. Size of array should not exceed 256 bytes.

Even samples are sent to left channel, odd – to rigth. Each sample should be 2 or 4 bytes wide
depending on I2S configuration.
Command returns: OK in case of success, FAIL in case of error.

Example:
i2s write 1,0x0100,0x2000,0x0101,0x2001

Send to seft channel: 0x100, 0x101
Send to right channel: 0x2000, 0x2001

Direct read I2S data:

i2s read a, b…

 USB2IO manual

Document version: 1.2.6 31

a - I2S Channel [1],
b - count of audio samples to capture. Requested count should not exceed 256 bytes.

Capture b samples (b/2 left + b/2 right) via I2S channel a.
Each sample should be 2 or 4 bytes wide depending on I2S configuration.
Even samples belongs to left channel, odd – to rigth.

Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
i2s read 1,64

Read 32 samples from left channel and 32 samples from rigth.

Write I2S data from SDRAM buffer:

i2s writebuffer a,b

a – I2S Channel [1],
b – Data size to be sent.

The data should be placed to SDRAM with “put buffer” command. Data size should not exceed size of
available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

Example:
i2s writebuffer 1, 64

Write 64 samples from SDRAM buffer (32 to left channel. 32 to rigth).

Read I2S data to SDRAM buffer:

i2s readbuf a,b

a – I2S Channel [1],
b – Data size to be read.

Received data are placed to SDRAM and are available with “get buffer” command. Requested data size
should not exceed size of available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

Example:
i2s readbuf 1, 64

Receives 32 samples from right channel and 32 from left.

Write and read I2S data from/to SDRAM buffer (write data will be replaced with received data):

i2s wreadbuf a,b

a – I2S Channel [1],
b – Data size to be sent/read.

 USB2IO manual

Document version: 1.2.6 32

Send data should be placed to SDRAM with “put buffer” command, received data are available with
“get buffer” command. Data size should not exceed size of available SDRAM buffer.

Command returns: OK in case of success, FAIL in case of error.

Example:
i2s wreadbuf 1, 64

Sends 32 samples to right channel, 32 samples to left, while receiving 32 samples from right channel
and 32 from left.

 USB2IO manual

Document version: 1.2.6 33

MDIO bus

MDIO bus pinout:

MDIO read register:

mdio read a,b

a - PHY address;
b - Register address;

Reads 16-bit register in specified PHY.
Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
mdio read 1, 10

Read register 10 in PHY 1.

MDIO write register:

mdio write a,b,c

a - PHY address
b - Register address
c - Data value to be written

Writes 16-bit value to PHY’s register.

Command returns: OK in case of success, FAIL in case of error.

Example:
mdio write 1, 10, 0xCAFE

Write 0xCAFE to register 10 in PHY 1.

 USB2IO manual

Document version: 1.2.6 34

Frequency generator (Si570 PLL)

Frequency generator pinout:

Set PLL output frequency:

pll setfreq a

a – Frequency in Hz.

PLL able to work in range from 10MHz to 945MHz (limited to 350MHz).

Command returns: OK in case of success, FAIL in case of error.

Example:
pll setfreq 50000000

Set pll output to 50MHz

Get current PLL frequency:

pll getfreq

Requests current value of output frequency in Hz.

Command returns: OK, <data> in case of success, FAIL in case of error.

Reset PLL:

pll reset

Resets PLL to default state.

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 35

General purpose I/O (GPIO)

GPIO pinout:

Set GPIO value:

gpio write a

a – 16-bit value (16-pins).

Writes constant value directly to output pins of external connector. Note, that pin function should be
set to GPIO_OUT.

Command returns: OK in case of success, FAIL in case of error.

Example:
gpio write 0xFF00

Write “1” to upper 8 pins, “0” to lower 8.

Get GPIO value:

gpio read

Reads state on external connector pins. Note, that the value represents pins state regardless of pins
functions.

Command returns: OK,<data> in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 36

Camera interface (parallel camera interface)

Camera interface pinout:

Setup CMOS camera interface and start capture process:

camera start a,b,c,d,e

a – Pixel clock polarity (1 - Rising, 0 – Falling),
b – HSYNC line polarity (1 - HSYNC polarity high, 0 - HSYNC polarity low),
c – VSYNC line polarity (1 - VSYNC polarity high, 0 - VSYNC polarity low),
d – Frame size in quadwords (4 bytes),
e – 0 - single snapshot, 1 - continuous mode.

Captured frame will be stored in SDRAM.

Command returns: OK in case of success, FAIL in case of error.

Example:
camera start 1, 1, 1, 10000, 0

Capture single frame with rising pixel clock, positive HSYNC and VSYNC, frame size = 10000,

Stop frame capture process:

camera stop

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 37

Waveform generator (WFG)

Waveform generator pinout:

Configure WFG:

waveform gen configure

Settings and waveform data should be placed to SDRAM with "put buffer" command.

The structure is (offset in bytes, LITTLE_ENDIAN):

0 - 3 : sample rate in nanoseconds. Should be multiply of 5ns
4 - 7 : segment length in 16-bit words
8 - 11 : flags

flags[1 : 0] - sync mode.

00 - SW
01 - external rising edge
10 - external falling edge

flags[2] - cycle mode

0 - waveform is repeated continuously
1 - waveform is generated only once. In external sync mode, the waveform is started
again in next trig edge

12 - 15: initial value

[15 : 0] - initial value, which is placed to IO lines before generation begins

16 - 19 : Reserved
20 - 23 : Reserved
24 - 27 : Reserved
28 - 31 : Reserved
32 - .. waveform data - array of 16-bit words. Each bit feeds corresponding bit in external connector,
configured to function "Waveform generator".
See description of WFG for parameters range.

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 38

Start WFG:

Waveform gen start

When configured, WFG can be start with this command. It can be repeated without re-configuration.

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 39

FPGA SPI Master (SPIM)

SPI master (FPGA-based) bus pinout:

Configure SPIM:

spimaster configure

Settings and SPI data should be placed to SDRAM with "put buffer" command.

The structure is (offset in bytes, LITTLE_ENDIAN):

0 - 3 : SCLK period in nanoseconds[31 : 0]. Should be multiply of 20ns
4 - 7 : SPI transactions rate in nanoseconds [31 : 0]. Should be multiply of 5ns
8 - 11 : Config[31 : 0]

Config[0] - Mode.

1 - Cyclic mode. All data are placed to memory before "spimaster start" command. After
"spimaster start" they are transmitted
 over SPI. The buffer starts from beginning after all data are transmitted.
 It is not possible to add new data after "start" command.
0 - FIFO mode. Data can be placed to memory before "spimaster start". During
transmission, new data can be added to
 buffer.

Config[1] - Stop when empty.

0 - If buffer is empty, the very last word is repeated
1 - If buffer is empty, the transmission stops

Config[12 : 8] - bit count in SPI transaction
Config[15] - SCLK polarity

12 - 15 : data count (in 16 bit words)
16 - 19 : Reserved
20 - 23 : Reserved
24 - 27 : Reserved

 USB2IO manual

Document version: 1.2.6 40

28 - 31 : Reserved
32 - .. SPI data, if exist.

See description of SPIM for parameters range.
This command should be executed before using FPGA SPI Master.

Command returns: OK in case of success, FAIL in case of error.

Start SPIM:

spimaster start

FPGA SPI Master starts transmission with parameters set with "spimaster configure" command. It can

be repeated without re-configuration.

External connector pins should be configured to "SPI Master".

Command returns: OK in case of success, FAIL in case of error.

Add to SPIM buffer:

spimaster write buffer a

a - data word is inserted to buffer for transmission.

Used when SPI Master works in FIFO mode.

Command returns: OK in case of success, FAIL in case of error.

Send single word over SPIM:

spimaster send single a

a - data word

SPI settings should be done by "spimaster configure" command.

"Mode" and "Stop when empty" parameters are temporary set to 0 and 1 respectively

External connector pins should be configured to "SPI Master".

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 41

Step motor controller (SMC)

SMC interface pinout:

Configure SMC

stepmotor configure a, b, c, d, e, f

a - channel. 0 - all, 1 - 1, 2 - 2

b - min pulses speed (frequency) in Hz (1Hz min);

c - max pulses speed (frequency) in Hz (250 Khz max);

d - acceleration (speed change);

e - total pulses count. Motor will be moved by this count of steps;

f - direction. 1 - CW, 0 – CCW.

Configures step motor controllers. Both controllers can be configured at the same time with channel
parameter = 0.

Command returns: OK in case of success, FAIL in case of error.

Example:
stepmotor configure 1, 100, 500, 100, 1000, 1

Configure SMC to start from 100 Hz, raise speed to 500 Hz with 100Hz/s rate, then work with constant
speed 500Hz and finally slow down to 100Hz with 100Hz/s rate. Total number of steps is 1000, CW
direction.

Start SMC

stepmotor start a

a - channel. 0 - all, 1 - 1, 2 - 2

 USB2IO manual

Document version: 1.2.6 42

Command returns: OK in case of success, FAIL in case of error.

Example:
stepmotor start 0

Starts both channels simultaneously with parameters, specified by “step motor configure”.

 USB2IO manual

Document version: 1.2.6 43

CAN-bus interface (with FDCAN capability)

CAN module in USB2IO are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part

A, B) and CAN FD protocol specification version 1.0.

CAN-bus interface pinout:

Configure CAN interface

fdcan configure a, b

a – baud rate

b – reserved, 0

Configures fdcan with baud rate;.

Command returns: OK in case of success, FAIL in case of error.

Example:

fdcan configure 50000, 0

Configures with 50Kbit rate.

Send message over CAN-bus

fdcan send type id, data

type – ‘std’ or ‘ext’ identifier type (standard or extended)
id – message identifier,
data – comma separated array of message data.

Message id and data count should match type of the message.

Command returns: OK in case of success, FAIL in case of error.

Example:
fdcan sent ext 0x1BAC1234, 10, 12, 13

Sends extended frame with 0x1BAC1234 id and {10, 12, 13} message

 USB2IO manual

Document version: 1.2.6 44

Read single message from CAN-bus (without timeout)

fdcan recv single

Command returns: “type:id message” in case of success, FAIL in case of error.

Example:
fdcan read

>STD: 123 00 02

Receiving message with standard identifier 0x123 and message data [0x00, 0x02].

After timeout time, device will send DONE message.

Read message from CAN-bus within timeout

fdcan recv single timeout a

a - timeout

Requests one message from receive queue. USB2io device should wait for message no longer than ‘a’
milliseconds.

Command returns: “type:id message” in case of success, FAIL in case of error.

Example:
fdcan read timeout 1000

>STD: 123 00 02

Receiving message with standard identifier 0x123 and message data [0x00, 0x02].

Write/Read messages from SDRAM buffer over FDCAN

fdcan buffer a, b

a – count of messages in SDRAM buffer
b - timeout

Sends specified number of messages from SDRAM buffer. USB2IO device must finish transmission in

“b” milliseconds, otherwise the function will fail. In parallel, incoming messages are stored in SDRAM

buffer and are available after command execution with “get buffer” command.

Messages in SDRAM buffer should have following structure:

 0xC0 - start marker

 0x00 or 0x01 - type (0 - std, 1 - extended)

 ID - identifier. 2 bytes for std, 4 bytes for ext

 NN - data count

 DT – payload

The should be places to SDRAM with ‘put buffer’ command.

Received messages have slightly different structure in SDRAM buffer:

 USB2IO manual

Document version: 1.2.6 45

0x0C -start marker

time stamp, 4 bytes

ID type (0 - std, 1 - extended)

ID - identifier. 2 bytes for std, 4 bytes for ext

data count (0 - 64)

message data

Command returns: OK.<bytes_count_in_buffer> in case of success, FAIL in case of error.

Example:
fdcan buffer 4, 1000

>OK.24

Send 4 messages from buffer for time not longer than 1000 ms. 24 bytes are in buffer with received
messages.

Write/Read messages from SDRAM buffer over FDCAN synchronously

fdcan writebuffersync a, b

a – count of messages in a packet
b – count of packets is SDRAM buffer
c – trigger timeout

Sends CAN messages from SDRAM as packets of messages. Each packet is sent as soon as trigger
event is received.
Messages are placed to SDRAM buffer with “put buffer” command. The structure is the same as with
“fdcan buffer” command.
Trigger should be configured with “trigger configure" command.

Command returns: OK in case of success, FAIL in case of error.

Example:
fdcan writebuffersync 4, 10, 1000

Send 10 packets with 4 messages each. Wait for trigger event not longer than 1000 ms.

 USB2IO manual

Document version: 1.2.6 46

Serial interface UART (Universal Asynchronous Receiver/Transmitter)

Serial interface UART pinout:

Configure UART

uart configure a, b, c, d, e

a – channel
b – baud rate
c – word length
d – stop bits count
e - parity

Configures uart channel with specified parameters.

There are two available channels for UART communication: 1 and 4.

Word length defines bit count in data word. Possible values are 7, 8, 9.

Stop bits count parameter could be 0 - 0.5 stop bit, 1 – 1 stop bit, 2 – 1.5 sop bits, 3 – 2 stop bits.

Parity 0 – no parity, 1 – even, 2 – odd.

Command returns: OK in case of success, FAIL in case of error.

Example:
uart configure 1, 50000, 8, 1, 0

Configure channel 1 with 50Kbaud, 8 bit word, 1 stop bit without parity.

Direct write UART data

uart write a, b

a – UART channel
b – data word

Send one word over selected UART channel.

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 47

Example:
uart write 1, 0xAA

Direct read UART data

uart read a, b

a – UART channel
b – timeout

Reads one data word from receive queue of selected channel. USB2IO device waits for receive data not

longer that “b” milliseconds.

Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
uart read 4, 1000
>OK, 1F

Write UART data from buffer

uart writebuffer a, b

a – UART channel [1];

b – words count.

Sends to selected channel ‘b’ words from SDRAM buffer. Data should be places to SDRAM with ‘put
buffer’ command.

Command returns: OK in case of success, FAIL in case of error.

Example:

uart writebuffer 1, 100

Send 100 words from SDRAM buffer over channel 1.

Write UART data from buffer and read to buffer simultaneously

uart wreadbuffer a, b

a – UART channel;

b – words count

Sends to selected channel ‘b’ words from SDRAM buffer. Data should be places to SDRAM with ‘put
buffer’ command. While sending, receive queue is checked and received messages are stored in

SDRAM buffer. After transmission finish, received data are available with “get_buffer” command.

Command returns: OK,<rx_count> in case of success, FAIL in case of error.

rx_count – count of received words.

Example:

uart wreadbuffer 1, 100

 USB2IO manual

Document version: 1.2.6 48

>OK,20

Send 100 words from SDRAM buffer over channel 1. 20 words are received.

Write UART data from buffer synchronously

uart writebuffersync a, b, c, d

a – UART channel
b – packet length
c – packet count
d – trigger timeout

Data are sent to selected channel in packets with ‘b’ length. ‘c’ is a count of packets. Each packet is sent
when trigger event occurs.
Data should be places to SDRAM with ‘put buffer’ command.
Trigger should be configured with “trigger configure" command.
USB2IO device waits for trigger event for time not longer than ‘d’ milliseconds.

Command returns: OK in case of success, FAIL in case of error.

Example:
uart writebuffersync 1, 4, 10, 1000

Send 10 packets with 4 words each from SDRAM buffer over channel 1. Wait for trigger not longer than
1000 ms.

Read UART data to buffer:

uart readbuffer a, b, c

a – UART channel
b – words count
c - timeout

Received words are placed to SDRAM buffer. They are available with ‘get buffer’ command.
USB2IO device collects data not longer than ‘c’ milliseconds.

Command returns: OK in case of success, FAIL in case of error.

Example:

uart readbuffer 1, 40, 1000

Reads 40 bytes over channel 1

 USB2IO manual

Document version: 1.2.6 49

RS-485 serial bus

RS0485 interface pinout:

Configure RS-485

rs485 configure a, b, c, d, e

a – channel [4];

b – baud rate;

c – word length;

d – stop bits count;

e – parity.

Configures uart channel with specified parameters.

RS-485 interface is available on channel 4 only. All commands to RS-485 unit should use this channel.

Word length defines bit count in data word. Possible values are 7, 8, 9.

Stop bits count parameter could be 0 - 0.5 stop bit, 1 – 1 stop bit, 2 – 1.5 sop bits, 3 – 2 stop bits.

Parity 0 – no parity, 1 – even, 2 – odd.

Command returns: OK in case of success, FAIL in case of error.

Example:

rs485 configure 4, 50000, 8, 1, 0

Configure with 50Kbaud, 8 bit word, 1 stop bit without parity.

Direct write RS-485 data

Rs485 write a, b

a – channel [4];

b – data word.

 USB2IO manual

Document version: 1.2.6 50

Send one word over RS-485 channel.

Command returns: OK in case of success, FAIL in case of error.

Example:

rs485 write 4, 0xAA

Direct read RS-485 data

rs485 read a, b

a – channel [4]
b – timeout

Reads one data word from receive queue. USB2IO device waits for data not longer that “b” milliseconds.

Command returns: OK, <data> in case of success, FAIL in case of error.

Example:
rs485 read 4, 1000
>OK, 1F

Write RS-485 data from buffer

rs485 writebuffer a, b

a – channel [4];

b – words count

Sends to channel ‘b’ words from SDRAM buffer. Data should be places to SDRAM with ‘put buffer’
command.

Command returns: OK in case of success, FAIL in case of error.

Example:

rs485 writebuffer 4, 100

Send 100 words from SDRAM buffer.

Write RS-485 data from buffer and read to buffer simultaneously

rs485 wreadbuffer a, b

a – channel [4];

b – words count

Sends to selected channel ‘b’ words from SDRAM buffer. Data should be places to SDRAM with ‘put
buffer’ command. While sending, receive queue is checked and reveived messages are stored in

SDRAM buffer. After transmission finish, received data are available with “get_buffer” command.

Command returns: OK,<rx_count> in case of success, FAIL in case of error.

rx_count – count of received words.

 USB2IO manual

Document version: 1.2.6 51

Example:

rs485 wreadbuffer 4, 100

>OK,20

Send 100 words from SDRAM buffer. 20 words are received.

Write RS-485 data from buffer synchronously

rs485 writebuffersync a, b, c, d

a – channel[4];

b – packet length;

c – packet count;

d – trigger timeout.

Data are sent to channel in packets with ‘b’ length. ‘c’ is a count of packets. Each packet is sent when
trigger event occurs.

Data should be places to SDRAM with ‘put buffer’ command.
Trigger should be configured with “trigger configure" command.

USB2IO device waits for trigger event for time not longer than ‘d’ milliseconds.

Command returns: OK in case of success, FAIL in case of error.

Example:

rs485 writebuffersync 4, 4, 10, 1000

Send 10 packets with 4 words each from SDRAM buffer. Wait for trigger not longer than 1000 ms.

Read RS-485 data to buffer:

rs485 readbuffer a, b, c

a – channel[4];

b – words count;

c – timeout.

Received words are placed to SDRAM buffer. They are available with ‘get buffer’ command.
USB2IO device collects data not longer than ‘c’ milliseconds.

Command returns: OK in case of success, FAIL in case of error.

Example:

rs485 readbuffer 4, 40, 1000

Reads 40 bytes over rs-485 channel.

 USB2IO manual

Document version: 1.2.6 52

External Trigger

Trigger configure:

trigger configure a

a – GPIO lane

Some commands rely on trigger events during execution.

It is possible to assign source of the trigger signal to any of 16 external connector GPIO lanes.

If certain lane is selected as trigger source, it is linked to trigger input of STM32 processor and rising

edge generates trigger event.

Signal from GPIO lane is fed to STM32 regardless of function of corresponding GPIO pin. For example,

pin function can be set to WFG output, and waveform on that WFG output will define trigger events.

Command returns: OK in case of success, FAIL in case of error.

Example:

trigger configure 9

Sets GPIO9 (pin10) as trigger source.

 USB2IO manual

Document version: 1.2.6 53

Timers (with PWM and encoder functionality)

Timer pinout:

PWM generation on timer 5:

tim5 pwm start a, b, c

a – channel (1 - 3);

b – frequency;

c – duty cycle (0 – 100%).

Timer5 has 3 outputs (1 - 3) which are fed to external connector. It is possible to generate pwm signals

on these channels. Important: all signals have the same frequency, because they are derived from the

same counter.

Duty cycle specifies relationship between ‘’0”and ‘1’ parts of the signal. 0 – means constant ‘0’, 100 –

constant ‘1’, 50 – same width of ‘0’ and ‘1’.
The USB2IO device tries to find frequency closer to requested frequency first, and then sets up duty

cycle. That’s why in some situations the duty cycle will be inaccurate.

Command returns: OK in case of success, FAIL in case of error.

 USB2IO manual

Document version: 1.2.6 54

Example:

tim5 pwm start 1, 10000, 50

Starts PWM generation on channel 1 with 10KHz frequency and 50% duty cycle.

Enable encoder on timer 5:

tim5 encoder start a

a – mode

Timer5 can be used to count pulses from external encoder. 2 lanes are used.

There are 3 modes of operation:

0 – pulses on lane A are counted, direction of count is set by lane B

1 – pulses on lane B are counted, direction of count is set by lane A

2 – pulses on lane A and on lane B are counted, direction depends on state of opposite lane.

Command returns: OK in case of success, FAIL in case of error.

Example:

tim5 encoder start 2

Starts encoder in mode 2.

Get state of encoder on timer 5:

tim5 encoder get

Requests current state of encoder counter and direction of count.

Command returns: OK,<counter>, <direction> in case of success, FAIL in case of error.

Example:
tim5 encoder get
>OK, 1000, Up

Counter value is 1000, encoder counts up.

 USB2IO manual

Document version: 1.2.6 55

Service functions

Firmware version and link test:

hello

Command returns string with uC version, FPGA version and communication test result, like :

USB2IO, uC Ver 1.36.0 Aug 9 2020, FPGA Ver 0x16, IF test: Passed

Reboot the device

reboot

Command does not return anything.

 USB2IO manual

Document version: 1.2.6 56

Usecases

I2C bus usecases

Communication with temperature sensor TMP117 over STM32 channel:

In terminal:

Scan i2c bus, type:
i2c scan 1<Enter>
Response from USB2IO
OK,0x48,0x5D
Ok, 0x48 is TMP117. Let’s read RAW temperature value from register 0.
For that need set register to 0
i2c write 1, 0x48,0<Enter>
Response:
OK
Means device ACKed our write request
Now ready to read back RAW value (16-bit = 2 bytes):
i2c read 1, 0x48,2<Enter>
Response from TMP117:
OK,0x0F,0x13

 USB2IO manual

Document version: 1.2.6 57

Python (2.7) script (i2c_tmp117.py):

(Python script required Python 2.7 and PySerial package to be preinstalled):

#===
TMP116 functional test

#===
import os
import sys
import time
import serial
import select
import ctypes as ct
from usb2io import usb2io_sendcmd

COM_PORT_ENG = 'COM7'

TMP117_SLAVE_ID = 0x48

TMP117_TEMP_RESULT = 0x00
TMP117_CONFIGURATION = 0x01,
TMP117_T_HIGH_LIMIT = 0X02,
TMP117_T_LOW_LIMIT = 0X03,
TMP117_EEPROM_UL = 0X04,
TMP117_EEPROM1 = 0X05,
TMP117_EEPROM2 = 0X06,
TMP117_TEMP_OFFSET = 0X07,
TMP117_EEPROM3 = 0X08,
TMP117_DEVICE_ID = 0X0F

#---- Application ---
print "===================================="
print "* Temp Reading"
print "===================================="

local_com_port = sys.argv[1] if (len(sys.argv) > 1) else COM_PORT_ENG

def tmp117_reg_read(ser, reg):
 strx = "i2c write 1, " + hex(TMP117_SLAVE_ID) + "," + hex(reg & 0xFF) + "\r\n"
 wro = ser.write(strx)
 time.sleep(0.02)
 rrd = ser.readline()
 if (rrd.find('FAIL') != -1):
 return (rrd)
 strx = "i2c read 1, " + hex(TMP117_SLAVE_ID) + ",2\r\n"
 wro = ser.write(strx)
 time.sleep(0.02)
 rrd = ser.readline()
 return (rrd)

def tmp117_reg_write(ser, reg, value):
 strx = "i2c write 1, " + hex(TMP117_SLAVE_ID) + "," + hex(reg & 0xFF) + "," + hex(reg >> 8) + "," + hex(reg & 0xFF) + "\r\n"
 wro = ser.write(strx)
 time.sleep(0.02)
 rrd = ser.readline()

def tmp117_reg_temperature(ser):
 str_ret = tmp117_reg_read(ser, TMP117_TEMP_RESULT)
 if (str_ret.find('FAIL') != -1):
 return (0)
 ba1 = [int(i,16) for i in str_ret.replace('OK,', '').split(',')]
 dtemp = (ba1[0] << 8) | ba1[1]
 temp_res_d = ct.c_int16(dtemp)
 temp_res_f = float(temp_res_d.value) * 0.0078125
 return (temp_res_f)

Open serial port
print "Open serial port " + local_com_port
try:
 ser = serial.Serial(local_com_port, 115200, timeout=3)
 print "COM port OK"
except:
 print "Error COM port"
 sys.exit(0)

print "Temp: "
print(tmp117_reg_temperature(ser))

Close serial port
ser.close()

 USB2IO manual

Document version: 1.2.6 58

SPI bus usecase

Example of reading data from SPI Flash memory chip:

 USB2IO manual

Document version: 1.2.6 59

I2S (Audio) bus usecases

Playing music with AK4954 codec:

Camera usecases

Capturing RAW12 images using OV2640 camera:

 USB2IO manual

Document version: 1.2.6 60

 USB2IO manual

Document version: 1.2.6 61

RS485, CAN 2.0 (FD) and RS232 usecases

Example of communication over RS485 bus, CAN 2.0 (FD) bus and RS232 interface:

 USB2IO manual

Document version: 1.2.6 62

Digital microphone usecase

Example of recording data from digital I2S microphone:

 USB2IO manual

Document version: 1.2.6 63

Digital PDM microphone usecase

Example of recording data from digital PDM microphone:

 USB2IO manual

Document version: 1.2.6 64

Fiber optic transceiver usage usecase

Example of data exchange over PoF fiber using Broadcom transciever:

 USB2IO manual

Document version: 1.2.6 65

Regulatory

USB2IO device has been passed tests according EN 61326-1:2013 standard.

Enclosure Port Radiated Emission EN 55011:2009 + A1:2010 (30MHz-1GHz, Class A) – passed.

Enclosure Port Electrostatic Discharge EN 61000-4-2:2009 – passed.

Radiated Immunity EN 61000-4-3:2006 + A1:2008 + A2:2010 – passed.

Operating temperature

USB2IO has commercial operation temperature grade: 0 °C .. +70 °C .

Dimensions

USB2IO device has dimensions: 100x64x18 mm.

Box has dimensions: 150x100x50 mm.

Weight

USB2IO device weight (without cables): 60 grams.

Box weight: 200 grams.

 USB2IO manual

Document version: 1.2.6 66

Order code

Order code
DAB-001001 USB2IO device

GTIN: 05419980085405

 USB2IO manual

Document version: 1.2.6 67

Legal

DAB-Embedded is registered trade mark of DAB-Embedded BV company.

NXP, the NXP logo, I2C BUS, Kinetis, QorIQ, QorIQ Qonverge, Layerscape are trademarks of NXP B.V. .

ST, BRAM, ZEROPOWER, SNAPHAT, TAGRAM, TIMEKEEPER, W.A.R.P, NOMADIK, Krypto, SmartJ,

SmoothDrive, Mozart, PowerMESH, Max247 BiPORT, TIMEKEEPER, TAGRAM, ISOWATT218, ISOWATT220,

LightFlash, TO-220FP, ISOTOP, VIPower, OPTIMWATT, Occam, PowerSO-10, PowerSO-20, HEPTAWATT,

MULTIWATT, PENTAWATT, Max220, I-Max220, Max247, Tone Pulse, SNUBBERLESS, SnoopTAG, WORD

DIALER, CONTINUOUS ARRAY, BCD,CAPHAT, POLYUSE, ST6, ST9 and ST18 are registered trademarks of

companies belonging to the STMicroelectronics Group.

