
Manual

HI-TECH C TOOLS for the PIC32

MCU Family

HI-TECH Software

Copyright (C) 2008 HI-TECH Software.
All Rights Reserved. Printed in Australia.

Produced on: July 22, 2008

HI-TECH Software Pty. Ltd.
ACN 002 724 549

45 Colebard Street West
Acacia Ridge QLD 4110

Australia

email: hitech@htsoft.com
web: http://microchip.htsoft.com

ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://microchip.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents 3

List of Tables 15

1 Introduction 17

1.1 Typographic conventions . 17

2 PICC32 Command-line Driver 19

2.1 Invoking the Compiler . 20

2.1.1 Long Command Lines . 21

2.2 The Compilation Sequence . 22

2.2.1 Single-step Compilation . 23

2.2.2 Generating Intermediate Files . 24

2.2.3 Special Processing . 25

2.2.3.1 Printf check . 26

2.2.3.2 Assembly Code Requirements 26

2.3 Runtime Files . 26

2.3.1 Library Files . 27

2.3.1.1 Standard Libraries . 28

2.3.1.2 Peripheral Libraries . 28

2.3.2 Runtime Startup Module . 28

2.3.2.1 Initialization of Data psects . 29

2.3.2.2 Clearing the Bss Psect . 30

2.3.2.3 System Coprocessor Initialization (--RUNTIME=cp0) 31

2.3.2.4 General Purpose Register Intialization (--RUNTIME=gpr) 31

2.3.2.5 The Stack and Heap (--RUNTIME=stack, --RUNTIME=heap) . . 31

2.3.2.6 Default Configuration Words (--RUNTIME=config) 32

2.3.2.7 Memory Performance (--RUNTIME=perform) 32

3

CONTENTS CONTENTS

2.3.3 The Powerup Routine . 33

2.3.4 The printf Routine . 33

2.4 Debugging Information . 35

2.4.1 Output File Formats . 35

2.4.2 Symbol Files . 35

2.5 Compiler Messages . 36

2.5.1 Messaging Overview . 36

2.5.2 Message Language . 37

2.5.3 Message Type . 37

2.5.4 Message Format . 38

2.5.5 Changing Message Behaviour . 40

2.5.5.1 Disabling Messages . 41

2.5.5.2 Changing Message Types . 41

2.6 PICC32 Driver Option Descriptions . 41

2.6.1 -C: Compile to Object File . 42

2.6.2 -Dmacro: Define Macro . 42

2.6.3 -Efile: Redirect Compiler Errors to a File 43

2.6.4 -Gfile: Generate Source-level Symbol File 44

2.6.5 -Ipath: Include Search Path . 44

2.6.6 -Llibrary: Scan Library . 45

2.6.7 -L-option: Adjust Linker Options Directly 45

2.6.8 -Mfile: Generate Map File . 47

2.6.9 -Nsize: Identifier Length . 47

2.6.10 -Ofile: Specify Output File . 47

2.6.11 -P: Preprocess Assembly Files . 48

2.6.12 -Q: Quiet Mode . 48

2.6.13 -S: Compile to Assembler Code . 48

2.6.14 -Umacro: Undefine a Macro . 48

2.6.15 -V: Verbose Compile . 49

2.6.16 -X: Strip Local Symbols . 49

2.6.17 --ASMLIST: Generate Assembler .LST Files 49

2.6.18 --CALLGRAPH=type: Select callgraph type 49

2.6.19 --CHECKSUM=start-end@destination<,specs>: Calculate a check-

sum . 50

2.6.20 --CHIP=processor: Define Processor 50

2.6.21 --CHIPINFO: Display List of Supported Processors 50

2.6.22 --CR=file: Generate Cross Reference Listing 50

2.6.23 --DEBUGGER=type: Select Debugger Type 51

2.6.24 --ECHO: Echo command line before processing 51

4

CONTENTS CONTENTS

2.6.25 --ERRFORMAT=format: Define Format for Compiler Messages 51

2.6.26 --ERRORS=number: Maximum Number of Errors 51

2.6.27 --FILL=opcode: Fill Unused Program Memory 52

2.6.28 --GETOPTION=app,file: Get Command-line Options 52

2.6.29 --HELP<=option>: Display Help . 52

2.6.30 --IDE=type: Specify the IDE being used 52

2.6.31 --INTERRUPTS=suboption,<suboption>: Specify the Interrupts Scheme 52

2.6.32 --ISA=<type>: Specify the Instruction Set Architecture 54

2.6.33 --LANG=language: Specify the Language for Messages 54

2.6.34 --MEMMAP=file: Display Memory Map 55

2.6.35 --MSGDISABLE=messagelist: Disable Warning Messages 55

2.6.36 --MSGFORMAT=format: Set Advisory Message Format 55

2.6.37 --NODEL: Do not remove temporary files 55

2.6.38 --NOEXEC: Don’t Execute Compiler . 55

2.6.39 --OBJDIR=path: Specify a directory for Object files 55

2.6.40 --OPT<=type>: Invoke Compiler Optimizations 56

2.6.41 --OUTDIR=path: Specify a directory for Output files 56

2.6.42 --OUTPUT=type: Specify Output File Type 56

2.6.43 --PASS1: Compile to P-code . 57

2.6.44 --PRE: Produce Preprocessed Source Code 57

2.6.45 --PROTO: Generate Prototypes . 58

2.6.46 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges 59

2.6.47 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges . . . 59

2.6.48 --RUNTIME=type: Specify Runtime Environment 60

2.6.49 --SCANDEP: Scan for Dependencies . 61

2.6.50 --SERIAL=hexcode@address: Store a Value at this Program Memory

Address . 61

2.6.51 --SETOPTION=app,file: Set the Command-line Options for Application . 62

2.6.52 --STRICT: Strict ANSI Conformance . 62

2.6.53 --STRICTCALLS: Strict MIPS Parameter Passing 62

2.6.54 --SUMMARY=type: Select Memory Summary Output Type 63

2.6.55 --TIME: Report time taken for each phase of build process 63

2.6.56 --VER: Display The Compiler’s Version Information 63

2.6.57 --WARN=level: Set Warning Level . 63

2.6.58 --WARNFORMAT=format: Set Warning Message Format 64

5

CONTENTS CONTENTS

3 C Language Features 65

3.1 ANSI Standard Issues . 65

3.1.1 Divergence from the ANSI C Standard . 65

3.1.2 Implementation-defined behaviour . 65

3.1.3 Non-ANSI Operations . 65

3.2 Processor-related Features . 66

3.2.1 Processor Support . 66

3.2.2 Configuration Fuses . 66

3.2.3 Multi-byte SFRs . 67

3.3 Supported Data Types and Variables . 67

3.3.1 Radix Specifiers and Constants . 67

3.3.2 Bit Data Types and Variables . 69

3.3.3 Using Bit-Addressable Registers . 70

3.3.4 8-Bit Integer Data Types and Variables . 71

3.3.5 16-Bit Integer Data Types . 71

3.3.6 32-Bit Integer Data Types and Variables . 72

3.3.7 Floating Point Types and Variables . 72

3.3.8 Structures and Unions . 73

3.3.8.1 Bit-fields in Structures . 73

3.3.8.2 Structure and Union Qualifiers 74

3.3.9 Standard Type Qualifiers . 75

3.3.9.1 Const and Volatile Type Qualifiers 75

3.3.10 Special Type Qualifiers . 76

3.3.10.1 Persistent Type Qualifier . 76

3.3.10.2 cp0 Type Qualifier . 77

3.3.10.3 sfr Type Qualifier . 77

3.3.10.4 __strictcall Function Qualifier . 78

3.3.10.5 ISA Function Qualifiers . 78

3.3.11 Pointer Types . 78

3.3.11.1 Pointers to Const . 78

3.3.11.2 Function Pointers . 79

3.4 Storage Class and Object Placement . 79

3.4.1 Local Variables . 79

3.4.1.1 Auto Variables . 79

3.4.1.2 Static Variables . 79

3.4.2 Absolute Variables . 80

3.4.3 Objects in Program Space . 80

3.5 Functions . 81

3.5.1 Absolute Functions . 81

6

CONTENTS CONTENTS

3.5.2 Function Argument Passing . 81

3.5.3 Function Return Values . 81

3.5.4 Function Stack Frame . 82

3.6 Register Usage Conventions . 82

3.7 Operators . 83

3.7.1 Integral Promotion . 83

3.7.2 Shifts applied to integral types . 84

3.7.3 Division and modulus with integral types 85

3.8 Psects . 85

3.8.1 Compiler-generated Psects . 85

3.9 Interrupt Handling in C . 87

3.9.1 Interrupt Functions . 87

3.9.2 Interrupt & Exception Types . 87

3.9.3 Runtime Startup Callback Sequence . 88

3.10 Mixing C and Assembly Code . 88

3.10.1 External Assembly Language Functions . 89

3.10.2 #asm, #endasm and asm() . 92

3.10.3 Accessing C objects from within Assembly Code 93

3.10.3.1 Accessing special function register names from assembler 94

3.10.4 Interaction between Assembly and C Code 94

3.10.4.1 Absolute Psects . 94

3.10.4.2 Undefined Symbols . 95

3.11 Preprocessing . 96

3.11.1 C Language Comments . 96

3.11.2 Preprocessor Directives . 97

3.11.3 Predefined Macros . 97

3.11.4 Pragma Directives . 100

3.11.4.1 The #pragma jis and nojis Directives 100

3.11.4.2 The #pragma printf_check Directive 100

3.11.4.3 The #pragma regsused Directive 101

3.11.4.4 The #pragma switch Directive . 101

3.11.4.5 The #pragma warning Directive 102

3.12 Linking Programs . 104

3.12.1 Replacing Library Modules . 105

3.12.2 Signature Checking . 105

3.12.3 Linker-Defined Symbols . 107

3.13 Standard I/O Functions and Serial I/O . 107

7

CONTENTS CONTENTS

4 Macro Assembler 109

4.1 Assembler Usage . 109

4.2 Assembler Options . 110

4.3 HI-TECH C Assembly Language . 113

4.3.1 Pre-defined Macros . 113

4.3.1.1 MIPS32r2 In-built Macro Instructions 113

4.3.1.2 MIPS16E In-built Macro Instructions 113

4.3.2 Instruction Operand Variants . 114

4.3.3 Statement Formats . 114

4.3.4 Characters . 114

4.3.4.1 Delimiters . 114

4.3.4.2 Special Characters . 114

4.3.5 Comments . 114

4.3.5.1 Special Comment Strings . 116

4.3.6 Constants . 116

4.3.6.1 Numeric Constants . 116

4.3.6.2 Character Constants and Strings 117

4.3.7 Identifiers . 117

4.3.7.1 Significance of Identifiers . 117

4.3.7.2 Assembler-Generated Identifiers 118

4.3.7.3 Symbolic Labels . 118

4.3.8 Expressions . 118

4.3.9 Program Sections . 120

4.3.10 Assembler Directives . 121

4.3.10.1 GLOBAL . 121

4.3.10.2 END . 121

4.3.10.3 PSECT . 121

4.3.10.4 ORG . 124

4.3.10.5 EQU . 125

4.3.10.6 SET . 126

4.3.10.7 DB . 126

4.3.10.8 DH . 126

4.3.10.9 DSTR . 126

4.3.10.10 DSTRZ . 126

4.3.10.11 DW . 126

4.3.10.12 DS . 127

4.3.10.13 DABS . 127

4.3.10.14 IF, ELSIF, ELSE and ENDIF . 127

4.3.10.15 MACRO and ENDM . 128

8

CONTENTS CONTENTS

4.3.10.16 LOCAL . 129

4.3.10.17 ALIGN . 130

4.3.10.18 REPT . 130

4.3.10.19 IRP and IRPC . 130

4.3.10.20 PROCESSOR . 131

4.3.10.21 SIGNAT . 131

4.3.11 Assembler Controls . 132

4.3.11.1 ASMOPT_ON . 132

4.3.11.2 ASMOPT_OFF . 133

4.3.11.3 FORCE_EXTEND . 133

4.3.11.4 NEVER_EXTEND . 133

4.3.11.5 AUTO_EXTEND . 133

4.3.11.6 COND . 133

4.3.11.7 EXPAND . 133

4.3.11.8 INCLUDE . 133

4.3.11.9 LIST . 134

4.3.11.10 NOCOND . 134

4.3.11.11 NOEXPAND . 134

4.3.11.12 NOLIST . 134

4.3.11.13 NOXREF . 134

4.3.11.14 PAGE . 135

4.3.11.15 SPACE . 135

4.3.11.16 SUBTITLE . 135

4.3.11.17 TITLE . 135

4.3.11.18 XREF . 135

5 Linker and Utilities 137

5.1 Introduction . 137

5.2 Relocation and Psects . 137

5.3 Program Sections . 138

5.4 Local Psects . 138

5.5 Global Symbols . 138

5.6 Link and load addresses . 139

5.7 Operation . 139

5.7.1 Numbers in linker options . 140

5.7.2 -Aclass=low-high,... 141

5.7.3 -Cx . 141

5.7.4 -Cpsect=class . 141

5.7.5 -Dclass=delta . 142

9

CONTENTS CONTENTS

5.7.6 -Dsymfile . 142

5.7.7 -Eerrfile . 142

5.7.8 -F . 142

5.7.9 -Gspec . 142

5.7.10 -Hsymfile . 143

5.7.11 -H+symfile . 143

5.7.12 -Jerrcount . 143

5.7.13 -K . 143

5.7.14 -I . 144

5.7.15 -L . 144

5.7.16 -LM . 144

5.7.17 -Mmapfile . 144

5.7.18 -N, -Ns and-Nc . 144

5.7.19 -Ooutfile . 144

5.7.20 -Pspec . 144

5.7.21 -Qprocessor . 146

5.7.22 -S . 146

5.7.23 -Sclass=limit[, bound] . 146

5.7.24 -Usymbol . 147

5.7.25 -Vavmap . 147

5.7.26 -Wnum . 147

5.7.27 -X . 147

5.7.28 -Z . 147

5.8 Invoking the Linker . 148

5.9 Map Files . 148

5.9.1 Generation . 148

5.9.2 Contents . 149

5.9.2.1 General Information . 149

5.9.2.2 Psect Information listed by Module 151

5.9.2.3 Psect Information listed by Class 153

5.9.2.4 Segment Listing . 153

5.9.2.5 Unused Address Ranges . 153

5.9.2.6 Symbol Table . 154

5.10 Librarian . 155

5.10.1 The Library Format . 155

5.10.2 Using the Librarian . 156

5.10.3 Examples . 157

5.10.4 Supplying Arguments . 157

5.10.5 Listing Format . 157

10

CONTENTS CONTENTS

5.10.6 Ordering of Libraries . 158

5.10.7 Error Messages . 158

5.11 Objtohex . 158

5.11.1 Checksum Specifications . 158

5.12 Cref . 160

5.12.1 -Fprefix . 160

5.12.2 -Hheading . 161

5.12.3 -Llen . 161

5.12.4 -Ooutfile . 161

5.12.5 -Pwidth . 161

5.12.6 -Sstoplist . 161

5.12.7 -Xprefix . 162

5.13 Cromwell . 162

5.13.1 -Pname[,architecture] . 163

5.13.2 -N . 163

5.13.3 -D . 163

5.13.4 -C . 164

5.13.5 -F . 164

5.13.6 -Okey . 164

5.13.7 -Ikey . 164

5.13.8 -L . 164

5.13.9 -E . 165

5.13.10 -B . 165

5.13.11 -M . 165

5.13.12 -V . 165

5.14 Hexmate . 165

5.14.1 Hexmate Command Line Options . 166

5.14.1.1 specifications,filename.hex . 166

5.14.1.2 + Prefix . 168

5.14.1.3 -ADDRESSING . 168

5.14.1.4 -BREAK . 169

5.14.1.5 -CK . 169

5.14.1.6 -FILL . 170

5.14.1.7 -FIND . 171

5.14.1.8 -FIND...,DELETE . 172

5.14.1.9 -FIND...,REPLACE . 172

5.14.1.10 -FORMAT . 172

5.14.1.11 -HELP . 173

5.14.1.12 -LOGFILE . 173

11

CONTENTS CONTENTS

5.14.1.13 -MASK . 174

5.14.1.14 -Ofile . 174

5.14.1.15 -SERIAL . 174

5.14.1.16 -SIZE . 175

5.14.1.17 -STRING . 175

5.14.1.18 -STRPACK . 176

A Library Functions 177

__CONFIG . 178

ABS . 179

ACOS . 180

ASCTIME . 181

ASIN . 183

ASSERT . 184

ATAN . 185

ATAN2 . 186

ATOF . 187

ATOI . 188

ATOL . 189

BSEARCH . 190

CEIL . 192

CGETS . 193

COS . 195

COSH . 196

CPUTS . 197

CTIME . 198

DIV . 199

EVAL_POLY . 200

EXP . 201

FABS . 202

FMOD . 203

FLOOR . 204

FREXP . 205

FTOA . 206

GETCH . 207

GETCHAR . 208

GETS . 209

GMTIME . 210

ISALNUM . 212

12

CONTENTS CONTENTS

ISDIG . 214

ITOA . 215

LABS . 216

LDEXP . 217

LDIV . 218

LOCALTIME . 219

LOG . 221

LONGJMP . 222

LTOA . 224

MEMCMP . 225

MKTIME . 227

MODF . 229

POW . 232

PUTCH . 233

PUTCHAR . 234

PUTS . 236

QSORT . 237

RAND . 239

ROUND . 241

SETJMP . 244

SETVECTOR . 246

SIN . 247

SQRT . 248

SRAND . 249

STRCAT . 250

STRCHR . 251

STRCMP . 253

STRCPY . 255

STRCSPN . 256

STRLEN . 257

STRNCAT . 258

STRNCMP . 260

STRNCPY . 262

STRPBRK . 264

STRRCHR . 265

STRSPN . 266

STRSTR . 267

STRTOD . 268

STRTOL . 270

13

CONTENTS CONTENTS

STRTOK . 272

TAN . 274

TIME . 275

TOLOWER . 277

TRUNC . 278

UDIV . 279

ULDIV . 280

UNGETCH . 281

UTOA . 282

VA_START . 283

XTOI . 285

B Error and Warning Messages 287

1... 287

138... 295

184... 301

227... 309

269... 318

312... 324

355... 332

400... 341

444... 346

489... 354

599... 361

670... 365

730... 370

776... 379

836... 384

904... 389

970... 394

1031... 399

1157... 404

1242... 409

C Chip Information 415

D Configuration Attributes 417

Index 421

14

List of Tables

2.1 PICC32 input file types . 20

2.2 Default configuration settings . 32

2.3 Support languages . 37

2.4 Messaging environment variables . 39

2.5 Messaging placeholders . 39

2.6 Supported IDEs . 52

2.7 --interrupts sub-options affecting the type of interrupt vectors. 53

2.8 --interrupts sub-options affecting the location of the vector table. 53

2.9 --interrupts sub-options affecting the number of vectors to service interrupts. . . . 54

2.10 Supported languages . 54

2.11 Optimization Options . 56

2.12 Output file formats . 57

2.14 Memory Summary Suboptions . 63

3.1 Basic data types . 68

3.2 Radix formats . 68

3.3 Floating-point formats . 73

3.4 Floating-point format example IEEE 754 . 73

3.5 Integral division . 85

3.6 Preprocessor directives . 99

3.8 Pragma directives . 100

3.9 Valid register names . 102

3.10 Switch types . 102

3.11 Supported standard I/O functions . 107

4.1 ASPIC32 command-line options . 110

4.2 MIPS32r2 Assembly Instruction Operand Variants. 115

15

LIST OF TABLES LIST OF TABLES

4.3 MIPS16e Assembly Instruction Operand Variants 116

4.4 ASPIC32 statement formats . 116

4.5 ASPIC32 numbers and bases . 117

4.6 ASPIC32 operators . 119

4.7 ASPIC32 assembler directives . 122

4.8 PSECT flags . 123

4.9 psect isa flag suboptions. 125

4.10 PIC32 assembler controls . 132

4.11 LIST control options . 134

5.1 Linker command-line options . 139

5.1 Linker command-line options . 140

5.2 Librarian command-line options . 156

5.3 Librarian key letter commands . 156

5.4 OBJTOHEX command-line options . 159

5.5 CREF command-line options . 161

5.6 CROMWELL format types . 162

5.7 CROMWELL command-line options . 163

5.8 -P option architecture arguments for COFF file output. 164

5.9 Hexmate command-line options . 167

5.10 Hexmate Checksum Algorithm Selection . 170

5.11 INHX types used in -FORMAT option . 173

C.1 Devices supported by HI-TECH C PRO for the PIC32 MCU Family 415

16

Chapter 1

Introduction

1.1 Typographic conventions

Different fonts and styles are used throughout this manual to indicate special words or text. Com-

puter prompts, responses and filenames will be printed in constant-spaced type. When the

filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.

<stdio.h>. These header files can be found in the INCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in

a constant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized using italicized type. When part of

a term requires substitution, that part should be printed in the appropriate font, but in italics. For

example: #include <filename.h>.

17

Typographic conventions Introduction

18

Chapter 2

PICC32 Command-line Driver

PICC32 is the driver invoked from the command line to perform all aspects of compilation, includ-

ing C code generation, assembly and link steps. It is the recommended way to use the compiler as it

hides the complexity of all the internal applications used in the compilation process and provides a

consistent interface for all compilation steps.

This chapter describes the steps the driver takes during compilation, files that the driver can

accept and produce, as well as the command-line options that control the compiler’s operation.

•

WHAT IS “THE COMPILER”? Throughout this manual, the term “the compiler” is

used to refer to either all, or some subset of, the collection of applications that form

the HI-TECH C PRO for the PIC32 MCU Family package. Often it is not important

to know, for example, whether an action is performed by the parser or code generator

application, and it is sufficient to say it was performed by “the compiler”.

It is also reasonable for “the compiler” to refer to the command-line driver (or just

“driver”), PICC32 , as this is the application executed to invoke the compilation process.

Following this view, “compiler options” should be considered command-line driver op-

tions, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating

source code into an executable binary image.

19

Invoking the Compiler PICC32 Command-line Driver

Table 2.1: PICC32 input file types

File Type Meaning

.c C source file

.p1 p-code file

.lpp p-code library file

.as Assembler source file

.obj Relocatable object code file

.lib Relocatable object library file

.hex Intel HEX file

2.1 Invoking the Compiler

This chapter looks at how to use PICC32 as well as the tasks that it and the internal applications

perform during compilation.

PICC32 has the following basic command format:

PICC32 [options] files [libraries]

It is conventional to supply options(identified by a leading dash “-” or double dash “–”) before

the filenames, although this is not mandatory.

The formats of the options are discussed below in Section 2.6, and a detailed description of each

option follows.

The files may be any mixture of C and assembler source files, and precompiled intermediate

files, such as relocatable object (.obj) files or p-code (.p1) files. The order of the files is not

important, except that it may affect the order in which code or data appears in memory, and may

affect the name of some of the output files.

Libraries is a list of either object code or p-code library files that will be searched by the

linker.

PICC32 distinguishes source files, intermediate files and library files solely by the file type or

extension. Recognized file types are listed in Table 2.1. This means, for example, that an assembler

file must always have a .as extension. Alphabetic case of the extension is not important from the

compiler’s point of view.

•

MODULES AND SOURCE FILES: A C source file is a file on disk that contains all or

part of a program. C source files are initially passed to the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of

any header files (or other source files) which are specified by #include preprocessor

20

PICC32 Command-line Driver Invoking the Compiler

directives. These modules are then passed to the remainder of the compiler applications.

Thus, a module may consist of several source and header files. A module is also often

referred to as a translation unit. These terms can also be applied to assembly files, as

they too can include other header and source files.

Some of the compiler’s output files contain project-wide information and are not directly associated

with any one particular input file, e.g. the map file. If the names of these project-wide files are not

specified on the command line, the basename of these files is derived from the first C source file

listed on the command line. If there are no files of this type being compiled, the name is based on

the first input file (regardless of type) on the command line. Throughout this manual, the basename

of this file will be called the project name.

Most IDEs use project files whose names are user-specified. Typically the names of project-wide

files, such as map files, are named after the project, however check the manual for the IDE you are

using for more details.

2.1.1 Long Command Lines

The PICC32 driver is capable of processing command lines exceeding any operating system limita-

tion. To do this, the driver may be passed options via a command file. The command file is read by

using the @ symbol which should be immediately followed (i.e. no intermediate space character) by

the name of the file containing the command line arguments.

The file may contain blank lines, which are simply skipped by the driver. The command-line

arguments may be placed over several lines by using a space and backslash character for all non-

blank lines, except for the last line.

The use of a command file means that compiler options and project filenames can be stored along

with the project, making them more easily accessible and permanently recorded for future use.

TUT•RIAL

USING COMMAND FILES A command file xyz.cmd is constructed with your favorite

text editor and contains both the options and file names that are required to compile your

project as follows:

--chip=32MX360F512L -m \

--opt=all -g \

main.c isr.c

After it is saved, the compiler may be invoked with the command:

PICC32 @xyz.cmd

21

The Compilation Sequence PICC32 Command-line Driver

Figure 2.1: Flow diagram of the initial compilation sequence

.c

CPP

P1

.p1

.lpp
.as

code

generator

.obj

.lib

HLINK

assembler

.pre

.p1

--PRE

--PASS1

-S

-C

.as

.obj.lst --ASMLIST

2.2 The Compilation Sequence

PICC32 will check each file argument and perform appropriate actions on each file. The entire

compilation sequence can be thought of as the initial sequence up to the link stage, and the final

sequence which takes in the link step and any post link steps required.

Graphically the compilation steps up to the link stage are illustrated in Figure 2.1. This diagram

shows all possible input files along the top; intermediate and transitional files, along the right side;

and useful compiler output files along the left. Generated files are shown along with the options that

are used to generate and preserve these. All the files shown on the right, can be generated and fed to

the compiler in a subsequent compile step; those on the left are used for debug purposes and cannot

be used as an input to any subsequent compilation.

The individual compiler applications are shown as boxes. The C preprocessor, CPP, and parser,

P1, have been grouped together for clarity.

The thin, multi-arrowed lines indicate the flow of multiple files — one for each file being pro-

cessed by the revel ant application. The thick single-arrowed lines indicate a single file for the project

being compiled. Thus, for example, when using the --PASS1 driver option, the parser produces one

.p1 file for each C source file that is being compiled as part of the project, but the code generator

produces only one .as file from all .c, .p1 and .lpp input files which it is passed.

Dotted lines indicate a process that may require an option to create or preserve the indicated file.

22

PICC32 Command-line Driver The Compilation Sequence

Figure 2.2: Flow diagram of the final compilation sequence

l.objHLINK.map

OBJTOHEX

CROMWELL

HEXMATE

.hex

--NODEL-M

debug

.hex

The link and post-link steps are graphically illustrated in Figure 2.2.

This diagram shows .hex files as additional input file type not considered in the initial compi-

lation sequence. These files can be merged into the .hex file generated from the other input files in

the project by an application called HEXMATE. See Section 5.14 for more information on this utility.

The output of the linker is a single absolute object file, called l.obj, that can be preserved by

using the --NODEL driver option. Without this option, this temporary file is used to generate an

output file (e.g. a HEX file) and files used for debugging by development tools (e.g. COFF files)

before it is deleted. The file l.obj can be used as the input to OBJTOHEX if running this application

manually, but it cannot be passed to the driver as an input file as it absolute and cannot be further

processed.

2.2.1 Single-step Compilation

The command-line driver, PICC32 , can compile any mix of input files in a single step. All source

files will be re-compiled regardless of whether they have been changes since that last time a compi-

lation was performed.

Unless otherwise specified, a default output file and debug file are produced. All intermedi-

ate files (.p1 and .obj) remain after compilation has completed, but all other transitional files are

deleted, unless you use the --NODEL option which preserves all generated files. Note some generated

files may be in a temporary directory not associated with your project and use a pseudo-randomly

23

The Compilation Sequence PICC32 Command-line Driver

generated filename.

TUT•RIAL

SINGLE STEP COMPILATION The files, main.c, io.c, mdef.as, sprt.obj, a_sb.lib

and c_sb.lpp are to be compiled. To perform this in a single step, the following com-

mand line can be used as a starting point for the project development.

PICC32 --chip=32MX360F512L main.c io.c mdef.as sprt.obj a_sb.lib c_sb.lpp

This will run the C pre-processor then the parser with main.c as input, and then again

for io.c producing two p-code files. These two files, in addition to the library file

c_sb.lpp, are passed to the code generator producing a single temporary assembler file

output. The assembler is then executed and is passed the output of the code generator.

It is run again with mdef.as, producing two relocatable object files. The linker is then

executed, passing in the assembler output files in addition to sprt.obj and the library

file a_sb.lib. The output is a single absolute object file, l.obj. This is then passed to

the appropriate post-link utility applications to generate the specified output file format

and debugging files. All temporary files, including l.obj, are then deleted. The inter-

mediate files: p-code and relocatable object files, are not deleted. This tutorial does not

consider the runtime startup code that is automatically generated by the driver.

2.2.2 Generating Intermediate Files

The HI-TECH C PRO for the PIC32 MCU Family version compiler uses two types of intermediate

files. For C source files, the p-code file (.p1 file) is used as the intermediate file. For assembler

source files, the relocatable object file (.obj file) is used.

You may wish to generate intermediate files for several reasons, but the most likely will be if

you are using an IDE or make system that allows an incremental build of the project. The advantage

of a incremental build is that only the source files that have been modified since the last build need

to be recompiled before again running the final link step. This dependency checking may result in

reduced compilation times, particularly if there are a large number of source files.

You may also wish to generate intermediate files to construct your own library files, although

PICC32 is capable of constructing libraries in a single step, so this is typically not necessary. See

Section 2.6.42 for more information.

Intermediate files may also assist with debugging a project that fails to work as expected.

If a multi-step compilation is required the recommended compile sequence is as follows.

• Compile all modified C source files to p-code files using the --PASS1 driver option

24

PICC32 Command-line Driver The Compilation Sequence

• Compile all modified assembler source files to relocatable object files using the -C driver

option

• Compile all p-code and relocatable object files into a single output object file

The final step not only involves the link stage, but also code generation of all the p-code files. In

effect, the HI-TECH C PRO for the PIC32 MCU Family version code generator performs some of

the tasks normally performed by the linker. Any user-specified (non standard) libraries also need

to be passed to the compiler during the final step. This is the incremental build sequence used by

HI-TIDE
TM

.

TUT•RIAL

MULTI-STEP COMPILATION The files in the previous example are to be compiled

using a multi-step compilation. The following could be used.

PICC32 --chip=32MX360F512L --pass1 main.c

PICC32 --chip=32MX360F512L --pass1 io.c

PICC32 --chip=32MX360F512L -c mdef.as

PICC32 --chip=32MX360F512L main.p1 io.p1 mdef.obj sprt.obj c_sb.lpp a_sb.lib

If using a make system with incremental builds, only those source files that have changed

since the last build need the first compilation step performed again, so not all of the first

three steps need be executed.

If is important to note that the code generator needs to compile all p-code or p-code library files in

the one step. Thus, if the --PASS1 option is not used (or --PRE is not used), all C source files, and

any p-code libraries, must be built together in the one command.

If a compilation is performed, and the source file that contains main() is not present in the list

of C source files, an undefined symbol error for _main will be produced by the code generator. If the

file that contains the definition for main() is present, but it is a subset of the C source files making

up a project that is being compiled, the code generator will not be able to see the entire C program

and this will defeat most of the optimization techniques employed by the code generator.

There may be multi-step compilation methods employed that lead to compiler errors as a result

of the above restrictions, for example you cannot have an C function compiled into a p-code library

that is called only from assembler code.

2.2.3 Special Processing

There are several special steps that take place during compilation.

25

Runtime Files PICC32 Command-line Driver

2.2.3.1 Printf check

An extra execution of the code generator is performed for prior to the actual code generation phase.

This pass is part of the process by which the printf library function is customized, see Section 2.3.4

for more details.

2.2.3.2 Assembly Code Requirements

After pre-processing and parsing of any C source files, but before code generation of these files, the

compiler assembles any assembly source files to relocatable object files. These object files, together

with any object files specified on the command line, are scanned by the compiler driver and certain

information from these files are collated and passed to the code generator. Several actions are taken

based on this information. See Section 3.10.4.

The driver instructs the code generator to preserve any C variables that map to symbols which

are used, but not defined, in the assembly/object code. In-line assembly is similarly scanned. This

allows variables to be defined in C code, and only referenced in assembly code. Normally such C

variables would be removed as the code generator would consider them to be unused (from the C

perspective). However in this case the C variables are automatically qualified as being volatile

which is sufficient to prevent the code generator making this optimization.

The driver also takes note of any absolute psects (viz. use the abs and ovrld PSECT directive

flags) in the assembly/object code. The memory occupied by the psects is removed from the available

memory ranges passes to the code generator and linker. This information ensures that this memory

is not allocated to any C resources.

2.3 Runtime Files

In addition to the input files specified on the command line by the user, there are also compiler-

generated source files and pre-compiled library files which might be compiled into the project by the

driver. These are:

• Library files;

• The runtime startup module;

• The powerup routine; and

• The printf routine.

Strictly speaking, the powerup routine is neither compiler-generated source, nor a library routine. It

is fully defined by the user, however as it is very closely associated with the runtime startup module,

it is discussed with the other runtime files in the following sections.

26

PICC32 Command-line Driver Runtime Files

By default, libraries appropriate for the selected driver options are automatically passed to the

code generator and linker. Although individual library functions or routines will be linked in once

referenced in C code, the compiler still requires the inclusion of the appropriate header file for the

library function that is being used. See the appropriate library function section in Chapter A for the

header file that should be used.

2.3.1 Library Files

By default, PICC32 will search the LIB directory of the compiler distribution for several p-code and

relocatable object library files, which are then passed to the code generator and linker, respectively.

These library files typically contain:

• The C standard library functions

• Assembly routines implicitly called by the code generator

• Chip-specific peripherals functions

• Chip-specific memory functions

These library files are always scanned after scanning any user-specified libraries passed to the driver

on the command line, thus allowing library routines to be easily replaced with user-defined alterna-

tives. See Section 3.12.1.

The C standard libraries and libraries of implicitly-called assembly routines can be omitted from

the project by disabling the clib suboption of --RUNTIME. 2.6.48. For example:

--RUNTIME=default,-clib

If these libraries are excluded from the project then calls to any routine, or access of any variable,

that is defined in the omitted library files will result in an error from the linker. The user must provide

alternative libraries or source files containing definitions for any routine or symbol accessed by the

project.

•

Do not confuse the actual library (.lib) files and the header (.h) files. Both are covered

by a library package, but the library files contain precompiled code, typically functions

and variable definitions; the header files provide declarations (as opposed to defini-

tions) for functions, variables and types in the library files, as well as other preprocessor

macros. PICC32 will always link in all the library files associated with the C standard

library (unless you have used an option to prevent this), however with user-defined li-

brary packages, the inclusion of a header does not imply that the corresponding library

file(s) will be searched.

27

Runtime Files PICC32 Command-line Driver

2.3.1.1 Standard Libraries

The C standard libraries contain a standardised collection of functions, such as string, math and

input/output routines. The range of these functions are described in Appendix A.

These libraries also contain assembler-level routines that are implicitly called by the output code

of the code generator. These are routines that perform tasks such as floating point operations, and

that do not directly correspond to a C function call in the source code.

The general form of the standard library names is pic32-c.lpp. The meaning of each field is

described by:

• Processor Type is always pic.

• Processor Range is 32 for the PIC32 family.

• Library Type is always c.

• The extension is .lpp for p-code libraries.

2.3.1.2 Peripheral Libraries

HI-TECH C PRO for the PIC32 MCU Family has support for all of Microchip’s PIC32 peripheral

libraries. The source for these routines can be viewed in the sources and include directories of the

compiler. For more information concerning peripheral libraries, please visit Microchip’s website.

Note that to use peripheral libraries, the --RUNTIME=plib option will need to be used. See Section

2.6.48.

2.3.2 Runtime Startup Module

A C program requires certain objects to be initialised and the processor to be in a particular state

before it can begin execution of its function main(). It is the job of the runtime startup code to

perform these tasks, specifically:

• Initialisation of global variables assigned a value when defined

• Clearing of non-initialised global variables

• General setup of registers or processor state

Rather than the traditional method of linking in a generic, precompiled routine, HI-TECH C PRO

for the PIC32 MCU Family uses a more efficient method which actually determines what runtime

startup code is required from the user’s program. It does this by performing an additional link step,

the output of which is used to determine the requirements of the program. From this information

28

PICC32 Command-line Driver Runtime Files

PICC32 then “writes” the assembler code which will perform the startup sequence. This code is

stored into a file which is then assembled and linked into the remainder of the program automatically.

The runtime startup code is generated automatically on every compilation. If required, the as-

sembler file which contains the runtime startup code can be deleted after compilation by using the

driver option:

--RUNTIME=default,-keep

If the startup module is kept, it will be called startup.as and will be located in the current working

directory. If you are using an IDE to perform the compilation the destination directory is dictated by

the IDE itself, however you may use the --OUTDIR option to specify an explicit output directory to

the compiler.

This is an automatic process which does not require any user interaction, however some aspects

of the runtime code can be controlled, if required, using the --RUNTIME option. Section 2.6.48

describes the use of this option, and the following sections describes the functional aspects of the

code contained in this module and its effect on program operation.

If you require any special initialization to be performed immediately after reset, you should use

the powerup routine feature decsribed later in Section 2.3.3.

2.3.2.1 Initialization of Data psects

One job of the runtime startup code is ensure that any initialized variables contain their initial value

before the program begins execution. Initialized variables are those which are not auto objects and

which are assigned an initial value in their definition, for example input in the following example.

int input = 88;

void main(void) { ...

Such initialized objects have two components: their initial value stored in a psect destined for non-

volatile memory (i.e. placed in the HEX file), and space for the variable in RAM psect where the

variable will reside and be accessed during program execution.

The actual initial values are placed in a psect called idata. Space is reserved for the runtime

location of initialized variables in a psect called rdata. This psect does not contribute to the output

file and consitutes a reservation of space in the RAM once the program is running.

The runtime startup code performs a block copy of the values from the idata to the rdata psect

so that the RAM variables will contain their initial values before main() is executed. Each location

in the idata psect is copied to the corresponding place in the rdata psect.

The block copy of the data psects may be omitted by disabling the init suboption of --RUNTIME.

For example:

--RUNTIME=default,-init

29

Runtime Files PICC32 Command-line Driver

With this part of the runtime startup code absent, the contents of initialized variables will be unpre-

dictable when the program begins execution. Code relying on variables containing their initial value

will fail.

•

Since auto objects are dynamically created, they require code to be positioned in the

function in which they are defined to perform their initialization. It is also possible that

their initial value changes on each instance of the function. As a result, initialized auto

objects do not use the data psects and are not considered by the runtime startup code.

Variables whose contents should be preserved over a reset, or even power off, should be qualified

with persistent, see Section 3.3.10.1. Such variables are linked at a different area of memory and are

not altered by the runtime startup code in any way.

2.3.2.2 Clearing the Bss Psect

The ANSI standard dictates that those non-auto objects which are not initialized must be cleared

before execution of the program begins. The compiler does this by grouping all such uninitialized

objects into one of the bss psects. This psect is then cleared as a block by the runtime startup code.

•

The abbreviation "bss" stands for Block Started by Symbol and was an assembler pseudo-

op used in IBM systems back in the days when computers were coal-fired. The contin-

ued usage of this term is still appropriate.

HI-TECH C PRO for the PIC32 MCU Family uses the traditional psect: bss, which is used for

unitialized static variables. However, unitialized variables that are written to only once may be

placed into non-volatile memory (nvram psect) .

Assembly code that defines variables which should be cleared at startup should be placed in the

bss psect. Appropriate default linker options will be issued for bss, thus it’s use does not require

modification of the linker options, and the command-line driver will automatically check the size of

this psect to determine if block-clear code is required. Variables placed into psects other than the

comipler-defined bss psect will not be cleared at startup by default.

The block clear of the bss psect can be omitted by disabling the clear suboption of --RUNTIME.

For example:

--RUNTIME=default,-clear

30

PICC32 Command-line Driver Runtime Files

With this part of the runtime startup code absent, the contents of uninitialized variables will be

unpredictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified

with persistent. See Section 3.3.10.1 for more information. Such variables are linked at a different

area of memory and are not altered by the runtime startup code in anyway.

2.3.2.3 System Coprocessor Initialization (--RUNTIME=cp0)

Initialise the system coprocessor. This includes clearing the Count register and status bits and ini-

tialising the Cause and EBase registers. It also includes any other initialisations performed by other

--RUNTIME sub-options. This behaviour is enabled by default.

2.3.2.4 General Purpose Register Intialization (--RUNTIME=gpr)

For the purpose of code generation some of the CPU general purpose registers are initialised with

special values, e.g. register 28 is used as a global data pointer and is initialised with an address in

the middle of KSEG0 DRM. This behaviour is enabled by default.

2.3.2.5 The Stack and Heap (--RUNTIME=stack, --RUNTIME=heap)

The allocation and size of the program stack and heap can be specified with the sub-options stack

and heap respectively. Both reserve memory for the these regions and the stack sub-option will

initialise the stack pointer (register 29) accordingly. By default both options are enabled. The default

behaviour is that both the stack and the heap are reserved the same area of memory as indicated by

the compiler generated psect heapstack. The stack grows down from the top of this psect and the

heap grows up from the bottom. The heapstack psect is allocated the largest available space in RAM

that is word aligned and divisible after all other data psects have been allocated.

Arguments can also be provided to each of these sub-options that place restrictions on the size

of the stack or heap. Each argument is delimited by a colon. Valid arguments are as follows:

:num Specifies a specific size for the stack/heap in num number of bytes. Note that the stack/heap

is required to be word (i.e. 4 bytes) aligned and in units of words. Therefore any size specified

will be rounded down to the nearest whole word quantity.

:min:num Specifies the minimum number of num bytes the stack/heap must be.

:max:num Specifies the maximum number of num bytes the size of the stack/heap is restricted to.

If any kind of size restriction is placed on either or both of these regions then each is allocated its

own psect. Each psect will be as large as permitted by those restrictions. The stack psect will be

linked as high as possible and the heap psect will be linked as low as possible. The growth of the

stack and heap remains unchanged.

31

Runtime Files PICC32 Command-line Driver

CONFIG WORD SETTINGS

0xBFC02FFC Code protection disabled

Boot flash write-protect disabled

Program write protection disabled

ICE/ICD comm communication uses PGC2/PGD2 pins

Background ICE debugger enabled

0xBFC02FF8 WDT Disabled with 1:1 postscale

Clock switching and fail-safe clock monitor enabled

PBCLK is SYSCLK divided by 1

CLK0 disabled

Primary oscillator in HS mode

Internal external switch-over mode enabled

Secondary oscillator enabled

Fast RC oscillator with divide-by-N with PPL module

0xBFC02FF4 PLL output divided by 1 for 80MHz devices or

PLL output divided by 2 for 40MHz devices

20x initial PLL multiplier

PLL input divide by 2

Table 2.2: Default configuration settings

2.3.2.6 Default Configuration Words (--RUNTIME=config)

With this runtime sub-option enabled the driver will check to ensure that the config words at the

top of boot flash have been programmed using the __CONFIG macro defined in <pic32.h>. If any

of these words have not be programmed the driver will do so with default settings as per Table 2.2.

These settings will configure the device to operate at maximum speed and for debugging.

2.3.2.7 Memory Performance (--RUNTIME=perform)

This runtime option configures the device to operate for optimal performance. This option takes

only one argument separated by a colon, the nominated operating frequency in Hz. This argument is

optional and if it is missing the driver will assume that you intend to operate the device at maximum

frequency as per the configuration settings in Table 2.2.

Using either the maximum or nominated frequency the driver will initialise the device with the

following settings:

• the appropriate PFM wait states assuming a flash speed of 30MHz;

• disable DRM wait states;

32

PICC32 Command-line Driver Runtime Files

• enable instruction caching and

• enable predictive prefetch cache on all regions.

2.3.3 The Powerup Routine

Some hardware configurations require special initialization, often within the first few instruction

cycles after reset. To achieve this there is a hook to the reset vector provided via the powerup

routine.

This routine can be supplied in a user-defined assembler module that will be executed immedi-

ately after reset. An empty powerup routine is provided in the file powerup.as which is located

in the SOURCES directory of your compiler distribution. Refer to comments in this file for more

details.

The file should be copied to your working directory, modified and included into your project as

a source file. No special linker options or other code is required; the compiler will detect if you

have defined a powerup routine and will automatically use it, provided the code in this routine is

contained in a psect called powerup.

The runtime startup code will invoke the powerup routine using a absolute jump and link instruc-

tion which will place the return address in register 31 (ra). For correct operation (when using the

default compiler-generated runtime startup code), the code must contain at its end a jr ra instruc-

tion and ensure that it preserves the address in register 31. As with all user-defined assembly code,

it must take into consideration program memory paging and/or data memory banking, as well as any

applicable errata issues for the device you are using. The program’s entry point is already defined by

the runtime startup code, so this should not be specified in the powerup routine at the END directive

(if used). See Section 4.3.10.2 for more information on this assembler directive.

2.3.4 The printf Routine

The code associated with the printf function is not found in the library files. The printf function

is generated from a special C source file that is customized after analysis of the user’s C code. See

Section for more information on the printf library function.

This template file is found in the LIB directory of the compiler distribution and is called doprnt.c.

It contains a minimal implementation of the printf function, but with the more advanced features

included as conditional code which can be utilized via preprocessor macros that are defined when it

is compiled.

The parser and code generator analyze the C source code, searching for calls to the printf func-

tion. For all calls, the placeholders that were specified in the printf format strings are collated to

produce a list of the desired functionality of the final function. The doprnt.c file is then prepro-

cessed with the those macros specified by the preliminary analysis, thus creating a custom printf

33

Runtime Files PICC32 Command-line Driver

function for the project being compiled. After parsing, the p-code output derived from doprnt.c is

then combined with the remainder of the C program in the final code generation step.

TUT•RIAL

CALLS TO PRINTF A program contains one call to printf, which looks like:

printf(”input is: $d”);

The compiler will note that only the %d placeholder is used and the doprnt module that is

linked into the program will only contain code that handles printing of decimal integers.

The code is latter changed and another call to printf is added. The new call looks like:

printf(”output is %6d”);

Now the compiler will detect that in addition there must be code present in the doprnt

module that handles integers printed to a specific width. The code that handles this flag

will be introduced into the doprnt module.

The size of the doprnt module will increase as more printf features are detected.

If the format string in a call to printf is not a string literal as in the tutorial, but is rather a pointer

to a string, then the compiler will not be able to reliably predict the printf usage, and so it forces a

more complete version of printf to be generated. However, even without being able to scan printf

placeholders, the compiler can still make certain assumptions reagarding the usage of the function.

In particular, the compiler can look at the number and type of the additional arguments to printf

(those following the format string expression) to determine which placeholders could be valid. This

enables the size and complexity of the generated printf routine to be kept to a minimum.

TUT•RIAL

PRINTF WITHOUT LITERAL FORMAT STRINGS If there is only one reference to

printf in a program and it appears as in the following code:

void my_print(const char * mes) {

printf(mes);

}

the compiler cannot determine the exact format string, but can see that there are no

additional arguments to printf following the format string represented by mes. Thus,

the only valid format strings will not contain placeholders that print any arguments,

and a minimal version of printf will be generated and compiled. If the above code

was rewritten as:

void my_print(const char * mes, double val) {

printf(mes, val);

}

34

PICC32 Command-line Driver Debugging Information

the compiler will detect that the argument being printed has double type, thus the only

valid placeholders would be those that print floating point types, for example %e, %f and

%g.

No aspect of this operation is user-controllable (other than by adjusting the calls to printf), how-

ever the actual printf code used by a program can be observed. If compiling a program using

printf, the driver will leave behind the pre-processed version of doprnt.c. This module, called

doprnt.pre in your working directory, will show the C code that will actually be contained in the

printf routine. As this code has been pre-procedssed, indentation and comments will have been

stripped out as part of the normal actions taken by the C pre-processor.

2.4 Debugging Information

Several driver options and output files are related to allow devlopment tools, such as HI-TIDE
TM

or MPLAB R©, to perform source-level debugging of the output code. These are described in the

following sections.

2.4.1 Output File Formats

The compiler is able to directly produce a number of the output file formats which are used by

common PROM programmers and in-circuit emulators.

The default behaviour of the PICC32 command is to produce ELF/DWARF and Intel HEX

output. If no output filename or type is specified, PICC32 will produce an ELF/DWARF and Intel

HEX file with the same base name as the first source or object file specified on the command line.

Table 2.12 shows the output format options available with PICC-32. The File Type column lists the

filename extension which will be used for the output file.

2.4.2 Symbol Files

The PICC32 -G option tells the compiler to produce several symbol files which can be used by

debuggers and simulators to perform symbolic and source-level debugging. Using the --IDE option

may also enable symbol file generation as well.

The -G option produces an absolute symbol files which contain both assembler- and C-level

information. This file is produced by the linker after the linking process has ben completed. If

no symbol filename is specified, a default filename of file.sym will be used, where file is the

basename of the first source file specified on the command line. For example, to produce a symbol

file called test.sym which includes C source-level information:

35

Compiler Messages PICC32 Command-line Driver

PICC32 --CHIP=32MX360F512L -Gtest.sym test.c init.c

This option will also generate other symbol files for each module compiled. These files are produced

by the code generator and do not contain absolute address. These files have the extension .sdb.

The base name will be the same as the base name of the module being compiled. Thus the above

command line would also generate symbols files with the names test.sdb and init.sdb.

2.5 Compiler Messages

All compiler applications, including the command-line driver, PICC32 , use textual messages to

report feedback during the compilation process. A centralized messaging system is used to produce

the messages which allows a consistancy during all stages of the compilation process.

2.5.1 Messaging Overview

A message is referenced by a unique number which is passed to the alert system by the compiler

application that needs to convey the information. The message string corresponding to this number

is obtained from Message Description Files (MDF) which are stored in the DAT directory of the

compiler distribution.

When a message is requested by a compiler application, its number is looked up in the MDF

which corresponds to the currently selected language. The language of messages can be altered as

discussed in Section 2.5.2.

Once found, the alert system determines the message type that should be used to display the

message. There are several different message types which are described in Section 2.5.3. The default

type is stored in the MDF, however this can be overridden by the user, as described in Section 2.5.3.

The user is also able to set a threshold for warning message importance, so that only those which the

user considers significant will be displayed. In addition, messages with a particular number can be

disabled. Both of these methods are explained in Section 2.5.5.1.

Provided the message is enabled and it is not a warning messages that is below the warning

threshold, the message string will be displayed.

In addition to the actual message string, there are several other pieces of information that may

be displayed, such as the message number, the name of the file for which the message is applicable,

the file’s line number and the application that requested the message, etc.

If a message is being displayed as an error, a counter is incremented. After a certain number of

errors has been reached, compilation of the current module will cease. The default number of errors

that will cause this termination can be adjusted by using the --ERRORS option, see Section 2.6.26.

This counter is reset after each compilation step of each module, thus specifying a maximum of five

errors will allow up to five errors from the parser, five from the code generator, five from the linker,

five from the driver, etc.

36

PICC32 Command-line Driver Compiler Messages

Table 2.3: Support languages

Language MDF name

English en_msgs.txt

German de_msgs.txt

French fr_msgs.txt

If a language other than English is selected, and the message cannot be found in the appropriate

non-English MDF, the alert system tries to find the message in the English MDF. If an English

message string is not present, a message similar to:

error/warning (*) generated, but no description available

where * indicates the message number that was generated, will be printed, otherwise the message in

the requested language will be displayed.

2.5.2 Message Language

HI-TECH C PRO for the PIC32 MCU Family Supports more than one language for displayed mes-

sages. There is one MDF for each language supported.

The language used for messaging may be specified with each compile using the --LANG option,

see Section 2.6.33. Alternatively it may be set up in a more permanent manner by using the --LANG

option together with the --SETUP option which will store the default language in either the reg-

istry, under Windows, or in a configuration file on other systems. On subsequent builds the default

language used will be that specified.

Table shows the MDF applicable for the currently supported languages.

2.5.3 Message Type

There are four types of message whose default behaviour is described below.

Advisory Messages convey information regarding a situation the compiler has encountered or some

action the compiler is about to take. The information is being displayed “for your interest”

and typically require no action to be taken.

Unless prevented by some driver option or another error message, the project will be linked

and the requested output file(s) will be generated.

Warning Messages indicate source code or some other situation that is valid, but which may lead

to runtime failure of the code. The code or situation that triggered the warning should be

investigated, however, compilation of the current module will continue, as will compilation of

37

Compiler Messages PICC32 Command-line Driver

any remaining modules.

Unless prevented by some driver option or another error message, the project will be linked

and the requested output file(s) will be generated.

Error Messages indicate source code that is illegal and that compilation of this code either cannot

or will not take place. Compilation will be attempted for the remaining source code in the

current module, but no additional modules will be compiled and the compilation process will

then conclude.

The requested output files will not be produced.

Fatal Error Messages indicate a situation that cannot allow compilation to proceed and which re-

quired the the compilation process to stop immediately.

The requested output files will not be produced.

2.5.4 Message Format

By default, messages are printed in the most useful human-readable format as possible. This format

can vary from one compiler application to another, since each application reports information about

different file formats. Some applications, for example the parser, are typically able to pinpoint the

area of interest down to a position on a particular line of C source code, whereas other applications,

such as the linker, can at best only indicate a module name and record number, which is less directly

associated with any particular line of code. Some messages relate to driver options which are in no

way associated with any source code.

There are several ways of changing the format in which message are displayed, which are dis-

cussed below.

The driver option -E (with or without a filename) alters the format of all displayed messages. See

Section 2.6.3. Using this option produces messages that are better suited to machine parsing, and

user-friendly. Typically each message is displayed on a single line. The general form of messages

produced with the -E option in force is:

filename line_number: (message number) message string (message type)

The -E option also has another effect. If it is being used, the driver first checks to see if special

environment variables have been set. If so, the format dictated by these variables are used as a

template for all messages produced by all compiler applications. The names of these variables are

given in Table 2.4.

The value of these environment variables are strings that are used as templates for the message

format. Printf-like placeholders can be placed within the string to allow the message format to be

customised. The placeholders and what they represent are indicated in Table 2.5.

•

If these options are used in a DOS batch file, two percent characters will need to be used

38

PICC32 Command-line Driver Compiler Messages

Table 2.4: Messaging environment variables

Variable Effect

HTC_MSG_FORMAT All advisory messages

HTC_WARN_FORMAT All warning messages

HTC_ERR_FORMAT All error and fatal error messages

Table 2.5: Messaging placeholders

Placeholder Replacement

%a application name

%c column number

%f filename

%l line number

%n message number

%s message string (from MDF)

to specify the placeholders, as DOS interprets a single percent character as an argument

and will not pass this on to the compiler. For example:

--ERRFORMAT=”file %%f: line %%l”

The message environment variables, in turn, may be overridden by the driver options: --MSGFORMAT,

--WARNFORMAT and --ERRFORMAT, see Sections 2.6.25, 2.6.36 and 2.6.58. These options take a

string as their argument. The option strings are formatted, and can use the same placeholders, as

their variable counterparts.

TUT•RIAL

CHANGING MESSAGE FORMATS A project is compiled, but produces a warning from

the parser and an error from the linker. By default the following messages are displayed

when compiling.

main.c: main()

17: ip = &b;

^ (362) redundant "&" applied to array (warning)

(492) attempt to position absolute psect "text" is illegal

Notice that the format of the messages from the parser and linker differ since the parser

is able to identify the particular line of offending source code. The parser has indicated

the name of the file, indicated the function in which the warning is located, reproduced

39

Compiler Messages PICC32 Command-line Driver

the line of source code and highlighted the position at which the warning was first

detected, as well as show the actual warning message string.

The -E option is now used and the compiler issues the same messages, but in a new

format as dictated by the -E option. Now environment variables are set and no other

messaging driver options were specified so the default -E format is used.

main.c: 12: (362) redundant "&" applied to array (warning)

(492) attempt to position absolute psect "text" is illegal (error)

Notice that now all message follow a more uniform format and are displayed on a single

line.

The user now sets the environment variable HTC_WARN_FORMAT to be the following

string. (Under Windows, this can be performed via the Control Panel’s System panel.)

%a %n %l %f %s

and the project recompiled. The following output will be displayed.

parser 362 12 main.c redundant "&" applied to array (492)

attempt to position absolute psect "text" is illegal (error)

Notice that the format of the warning was changed, but that of the error message was

not. The warning format now follows the specification of the environment variable. The

application name (parser) was substituted for the %a placeholder, the message number

(362) substituted the %n placeholder, etc.

The option --ERRFORMAT="%a %n %l %f %s" is then added to the driver command

line and the following output is observed.

parser 362 12 main.c redundant "&" applied to array

linker 492 attempt to position absolute psect "text" is illegal

Note that now the warning and error formats have changed to that requested. For the

case of the linker error, there is no line number information so the replacement for this

placeholder is left blank.

2.5.5 Changing Message Behaviour

Both the attributes of individual messages and general settings for messaging system can be modified

during compilation. There are both driver command-line options and C pragmas that can be used to

achieve this.

40

PICC32 Command-line Driver PICC32 Driver Option Descriptions

2.5.5.1 Disabling Messages

Each warning message has a default number indicating a level of importance. This number is speci-

fied in the MDF and ranges from -9 to 9. The higher the number, the more important the warning.

Warning messages can be disabled by adjusting the warning level threshold using the --WARN

driver option, see Section 2.6.57. Any warnings whose level is below that of the current threshold

are not displayed. The default threshold is 0 which implies that only warnings with a warning level of

0 or higher will be displayed by default. The information in this option is propagated to all compiler

applications, so its effect will be observed during all stages of the compilation process.

Warnings may also be disabled by using the --MSGDISABLE option, see Section 2.6.35. This

option takes a comma-separated list of message numbers. Any warnings which are listed are disabled

and will never be issued, regardless of any warning level threshold in place. This option cannot be

used to disable error messages.

Some warning messages can also be disabled by using the warning disable pragma. This

pragma will only affect warnings that are produced by either parser or the code generator, i.e. errors

directly associated with C code. See Section 3.11.4.5 for more information on this pragma.

Error messages can also be disabled, however a slighty more verbose form of the command is

required to confirm the action required. To specify an error message number in the --MSGDISABLE

command, the number must be followed by :off to ensure that it is actually disabled. For example:

--MSGDISABLE=195:off will disable error number 195.

•

Disabling error or warning messages in no way fixes any potential problems reported

by the message. Always use caution when exercising this option.

2.5.5.2 Changing Message Types

It is also possible to change the type of some messages. This is only possible by the use of the

warning pragma and only affects messages generated by the parser or code generator. See Section

3.11.4.5 for more information on this pragma.

2.6 PICC32 Driver Option Descriptions

Most aspects of the compilation can be controlled using the command-line driver, PICC32 . The

driver will configure and execute all required applications, such as the code generator, assembler

and linker.

41

PICC32 Driver Option Descriptions PICC32 Command-line Driver

PICC32 recognizes the compiler options listed in the table below. The case of the options is

not important, however command shells in UNIX-based operating systems are case sensitive when

it comes to names of files.

All single letter options are identified by a leading dash character, “-”, e.g. -C. Some single letter

options specify an additional data field which follows the option name immediately and without any

whitespace, e.g. -Ddebug.

Multi-letter, or word, options have two leading dash characters, e.g. --ASMLIST. (Because of the

double dash, you can determine that the option --ASMLIST, for example, is not a -A option followed

by the argument SMLIST.) Some of these options define suboptions which typically appear as a

comma-separated list following an equal character, =, e.g. --OUTPUT=hex,cof. The exact format of

the options varies and are described in detail in the following sections.

Some commonly used suboptions include default, which represent the default specification

that would be used if this option was absent altogether; all, which indicates that all the available

suboptions should be enabled as if they had each been listed; and none, which indicates that all

suboptions should be disabled. Some suboptions may be prefixed with a plus character, +, to indicate

that they are in addition to the other suboptions present, or a minus character “-”, to indicate that

they should be excluded. In the following sections, angle brackets, < >, are used to indicate optional

parts of the command.

See the –HELP option, Section 2.6.29, for more information about options and suboptions.

2.6.1 -C: Compile to Object File

The -C option is used to halt compilation after generating a relocatable object file. This option

is frequently used when compiling assembly source files using a “make” utility. Use of this option

when only a subset of all the C source files in a project are being compiled will result in an error from

the code generator. See Section 2.2.2 for more information on generating and using intermediate

files.

2.6.2 -Dmacro: Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had

been defined using a #define directive in the source code. This option may take one of two forms,

-Dmacro which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or -Dmacro=text which is equivalent

to:

#define macro text

42

PICC32 Command-line Driver PICC32 Driver Option Descriptions

where text is the textual substitution required. Thus, the command:

PICC32 --CHIP=32MX360F512L -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1

#define buffers 10

2.6.3 -Efile: Redirect Compiler Errors to a File

This option has two purposes. The first is to change the format of displayed messages. The second

is to optionally allow messages to be directed to a file as some editors do not allow the standard

command line redirection facilities to be used when invoking the compiler.

The general form of messages produced with the -E option in force is:

filename line_number: (message number) message string (message type)

If a filename is specified immediately after -E, it is treated as the name of a file to which all

messages (errors, warnings etc) will be printed. For example, to compile x.c and redirect all errors

to x.err, use the command:

PICC32 --CHIP=32MX360F512L -Ex.err x.c

The -E option also allows errors to be appended to an existing file by specifying an addition charac-

ter, +, at the start of the error filename, for example:

PICC32 --CHIP=32MX360F512L -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single text file, use

the -E option to create the file then use -E+ when compiling all the other source files. For example,

to compile a number of files with all errors combined into a file called project.err, you could use

the -E option as follows:

PICC32 --CHIP=32MX360F512L -Eproject.err -O --PASS1 main.c

PICC32 --CHIP=32MX360F512L -E+project.err -O --PASS1 part1.c

PICC32 --CHIP=32MX360F512L -E+project.err -C asmcode.as

Section 2.5 has more information regarding this option as well as an overview of the messaging

system and other related driver options.

43

PICC32 Driver Option Descriptions PICC32 Command-line Driver

2.6.4 -Gfile: Generate Source-level Symbol File

The -G option generates a source-level symbol file (i.e. a file which allows tools to determine which

line of source code is associated with machine code instructions, and determine which source-level

variable names correspond with areas of memory, etc.) for use with supported debuggers and simu-

lators such as HI-TIDE
TM

and MPLAB R©. If no filename is given, the symbol file will have the same

base name as the project name (see Section 2.1), and an extension of .sym. For example the option

-Gtest.sym generates a symbol file called test.sym. Symbol files generated using the -G option

include source-level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with

the -G option. The option is also required at the link stage, if this is performed separately. For

example:

PICC32 --CHIP=32MX360F512L -G --PASS1 test.c modules1.c

PICC32 --CHIP=32MX360F512L -Gtest.sym test.p1 module1.p1

The --IDE option, see Section 2.6.30 will typically enable the -G option.

2.6.5 -Ipath: Include Search Path

Use -I to specify an additional directory to use when searching for header files which have been

included using the #include directive. The -I option can be used more than once if multiple

directories are to be searched.

The default include directory containing all standard header files is always searched even if no

-I option is present. The default search path is searched after any user-specified directories have

been searched. For example:

PICC32

--CHIP=32MX360F512L -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files included into

the source code, then search the default include directory (the include directory where the compiler

was installed).

It is strongly advised not to use -I to add the compiler’s default include path, not only because

it is unnecessary but in the event that the build tool changes, the path specified here will be searched

prior to searching the new compiler’s default path.

This option has no effect for files that are included into assembly source using the INCLUDE

directive. See Section 4.3.11.8.

44

PICC32 Command-line Driver PICC32 Driver Option Descriptions

2.6.6 -Llibrary: Scan Library

The -L option is used to specify additional libraries which are to be scanned by the linker and code

generator. Libraries specified using the -L option are scanned before any C standard libraries.

The argument to -L is a library keyword to which the prefix pic32- and other letters and digits,

as described in Section 2.3.1, are added. Both a p-code and object code library filename is generated

and passed to the code generator and linker, respectively. The case of the string following the option

is important for enviroments where filenames are case sensative.

Thus the option -Lt when compiling for a 32MX360F512L will, for example, specify the li-

brary filenames pic32-t.lpp and pic32-t.lib. The option -Lxx will specify libraries called

pic32-xx.lpp and pic32-xx.lib. All libraries must be located in the LIB subdirectory of the

compiler installation directory.

If you wish the linker to scan libraries whose names do not follow the above naming conven-

tion or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the

command line along with your source files.

•

The commonly-used HI-TECH C PRO for the PIC32 MCU Family Standard compiler

options -Ll, -Lf and -Lw should not be used for altering the behaviour of the printf

function. The library files corresponding to these opptions are not provided with the

PRO version of this compiler, and an error will result if these options are used with

creating these library sets. A custom printf function is automatically generated by the

compiler when required, as descibed in section 2.3.4.

2.6.7 -L-option: Adjust Linker Options Directly

The -L driver option can also be used to specify an option which will be passed directly to the linker.

If -L is followed immediately by text starting with a dash character “-”, the text will be passed

directly to the linker without being interpreted by PICC32 . For example, if the option -L-FOO is

specified, the -FOO option will be passed on to the linker. The linker will then process this option,

when, and if, it is invoked, and perform the appropriate function, or issue an error if the option is

invalid.

•

Take care with command-line options. The linker cannot interpret driver options; sim-

ilarly the command-line driver cannot interpret linker options. In most situations, it is

always the command-line driver, PICC32 , that is being executed. If you need to add

45

PICC32 Driver Option Descriptions PICC32 Command-line Driver

alternate settings in the linker tab in an MPLAB Build options... dialogue, these

are the driver options (not linker options), but which are used by the driver to generate

the appropriate linker options during the linking process.

The -L option is especially useful when linking code which contains non-standard program sections

(or psects), as may be the case if the program contains assembly code which contains user-defined

psects. Without this -L option, it would be necessary to invoke the linker manually to allow the

linker options to be adjusted.

One commonly used linker option is -N, which sorts the symbol table in the map file by address,

rather than by name. This would be passed to PICC32 as the option -L-N.

This option can also be used to replace default linker options: If the string starting from the first

character after the -L up to the first = character matches first part of a default linker option, then that

default linker option is replaced by the option specified by the -L.

TUT•RIAL

REPLACING DEFAULT LINKER OPTIONS In a particular project, the psect entry is

used, but the programmer needs to ensure that this psect is positioned above the address

800h. This can be achieved by adjusting the default linker option that positions this

psect. First, a map file is generated to determine how this psect is normally allocated

memory. The Linker command line: in the map file indicates that this psect is nor-

mally linked using the linker option:

-pentry=CODE

Which places entry anywhere in the memory defined by the CODE class. The program-

mer then re-links the project, but now using the driver option:

-L-pentry=CODE+800h

to ensure that the psect is placed above 800h. Another map file is generated and the

Linker command line: section is checked to ensure that the option was recieved and

executed by the linker. Next, the address of the psect entry is noted in the psect lists

that appear later in the map file. See Section 5.9 for more information on the contents

of the map file.

If there are no characters following the first = character in the -L option, then any matching default

linker option will be deleted. For example: -L-pfirst= will remove any default linker option that

begins with the string -pfirst=. No warning is generated if such a default linker option cannot be

found.

TUT•RIAL

ADDING AND DELETING DEFAULT LINKER OPTIONS The default linker options for

46

PICC32 Command-line Driver PICC32 Driver Option Descriptions

for a project links several psects in the following fashion.

-pone=600h,two,three

which links one at 600h, then follows this with two, then three. It has been decided

that the psects should be linked so that one follows two, which follows three, and

that the highest address of one should be located at 5FFh. This new arragement can be

specified issuing the following driver option:

-L-pthree=-600h,two,one

which creates passes the required linker options to the linker. The existing default option

is still present, so this must be removed by use the driver option:

-L-pone=

which will remove the existing option.

The default option that you are deleting or replacing must contain an equal character.

2.6.8 -Mfile: Generate Map File

The -M option is used to request the generation of a map file. The map is generated by the linker

an includes detailed information about where objects are located in memory, see Section 5.9 for

information regarding the content of map files.

If no filename is specified with the option, then the name of the map file will have the project

name, with the extension .map.

2.6.9 -Nsize: Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes

for this option are from 32 to 255. The option has no effect for all other values.

2.6.10 -Ofile: Specify Output File

This option allows the basename of the output file(s) to be specified. If no -O option is given, the

output file(s) will be named after the first source or object file on the command line. The files

controlled are any produced by the linker or applications run subsequent to that, e.g. CROMWELL. So

for instance the HEX file, MAP file and SYM file are all controlled by the -O option.

The -O option can also change the directory in which the output file is located by including the

required path before the filename, e.g. -Oc:\project\output\first. This will then also specify

the output directory for any files produced by the linker or subsequently run applications. Any

relative paths specified are with respect to the current working directory.

Any extension supplied with the filename will be ignored. The name and path specified by the

-O option will apply to all output files.

47

PICC32 Driver Option Descriptions PICC32 Command-line Driver

The options that specify MAP file creation (-M, see 2.6.8), and SYM file creation (-G, see 2.6.4)

override any name or path information provided by -O relevant to the MAP and SYM file.

To change the directory in which all output and intermediate files are written, use the --OUTDIR

option, see Section 2.6.41. Note that if -O specifies a path which is inconsistent with the path

specified in the --OUTDIR option, this will result in an error.

2.6.11 -P: Preprocess Assembly Files

The -P option causes the assembler files to be preprocessed before they are assembled thus allowing

the use of preprocessor directives, such as #include, with assembler code. By default, assembler

files are not preprocessed.

2.6.12 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the HI-TECH Software copyright

notice from being displayed.

2.6.13 -S: Compile to Assembler Code

The -S option stops compilation after generating an assembler source file. An assembler file will be

generated for each file passed to the assembler by the code generator. The command:

PICC32 --CHIP=32MX360F512L -S test.c test1.c

will produce an assembler file called test.as which contains the code generated from test.c and

test1.c . This option is particularly useful for checking function calling conventions and signature

values when attempting to write external assembly language routines.

The file produced by this option differs to that produced by the --ASMLIST option in that it does

not contain op-codes or addresses and it may be used as a source file and subsequently passed to the

assembler to be assembled.

2.6.14 -Umacro: Undefine a Macro

The -U option, the inverse of the -D option, is used to undefine predefined macros. This option takes

the form -Umacro. The option, -Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.

48

PICC32 Command-line Driver PICC32 Driver Option Descriptions

2.6.15 -V: Verbose Compile

The -V is the verbose option. The compiler will display the command lines used to invoke each of

the compiler applications or compiler passes. Displayed will be the name of the compiler application

being executed, plus all the command-line arguments to this application. This option may be useful

for determining the exact linker options if you need to directly invoke the HLINK command.

If this option is used twice, it will display the full path to each compiler application as well as the

full command line arguments. This would be useful to ensure that the correct compiler installation

is being executed if there is more than one installed.

2.6.16 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only global sym-

bols will remain in any object files or symbol files produced.

2.6.17 --ASMLIST: Generate Assembler .LST Files

The --ASMLIST option tells PICC32 to generate one or more assembler listing file for each C and

assembly source module being compiled.

In the case of code being assembled that was originally C source, the list file shows both the

original C code and the corresponding assembly code generated by the code generator. For both

C and assembly source code, a line number, the binary op-codes and addresses are shown. If the

assembler optimizer is enabled (default operation) the list file may differ from the original assem-

bly source code. The assembler optimizer may also simpify some expression and remove some

assembler directives from the listing file for clarity, although they are processed in the usual way.

Provided the link stage has successfully concluded, the listing file will be updated by the linker

so that it contains absolute addresses and symbol values. Thus you may use the assembler listing file

to determine the position of, and exact op codes corresponding to, instructions.

2.6.18 --CALLGRAPH=type: Select callgraph type

This option allows control over the type of callgraph produced in the map file. Allowable suboptions

include: none, to specify that no callgraph should be produced; and full to indicate that the full

callgraph be displayed in the map file. In addition, the suboption std can be specified to indicate

that a shorter form, without redundant information relating to ARG functions be produced; or crit,

to indicate that only critical path information be displayed in the callgraph.

See also Sections

49

PICC32 Driver Option Descriptions PICC32 Command-line Driver

2.6.19 --CHECKSUM=start-end@destination<,specs>: Calculate a

checksum

This option will perform a checksum over the address range specified and store the result at the

destination address specified. Additional specifications can be appended as a comma separated list

to this option. Such specifications are:

,width=n select the byte-width of the checksum result. A negative width will store the result in

little-endian byte order. Result widths from one to four bytes are permitted.

,offset=nnnn An initial value or offset to be added to this checksum.

,algorithm=n Select one of the checksum algorithms implemented in hexmate. The selectable al-

gorithms are described in Table 5.10.

2.6.20 --CHIP=processor: Define Processor

This option can be used to specify the target processor for the compilation.

To see a list of supported processors that can be used with this option, use the --CHIPINFO option

described in Section 2.6.21.

See also Section 4.3.10.20 for information on setting the target processor from within assembly

files.

2.6.21 --CHIPINFO: Display List of Supported Processors

The --CHIPINFO option simply displays a list of processors the compiler supports. The names listed

are those chips defined in the chipinfo file and which may be used with the --CHIP option.

2.6.22 --CR=file: Generate Cross Reference Listing

The --CR option will produce a cross reference listing. If the file argument is omitted, the “raw”

cross reference information will be left in a temporary file, leaving the user to run the CREF utility.

If a filename is supplied, for example --CR=test.crf, PICC32 will invoke CREF to process the

cross reference information into the listing file, in this case test.crf. If multiple source files are

to be included in the cross reference listing, all must be compiled and linked with the one PICC32

command. For example, to generate a cross reference listing which includes the source modules

main.c, module1.c and nvram.c, compile and link using the command:

PICC32 --CHIP=32MX360F512L --CR=main.crf main.c module1.c nvram.c

50

PICC32 Command-line Driver PICC32 Driver Option Descriptions

Thus this option can not be used when using any compilation process that compiles each source file

separately using the -C or --PASS1 options. Such is the case for most IDEs, including HI-TIDE,

and makefiles.

2.6.23 --DEBUGGER=type: Select Debugger Type

This option is intended for use for compatibility with debuggers. PICC32 supports the Microchip

ICD2 debugger and using this option will configure the compiler to conform to the requirements of

the ICD2 (reserving memory addresses, etc.). For example:

PICC32 --CHIP=32MX360F512L --DEBUGGER=icd2 main.c

Basic debugging with Microchip REALICE is also supported when –debugger=realice is used.

2.6.24 --ECHO: Echo command line before processing

Use of this option will result in the command line being echoed to the stderr stream before com-

pilation is commenced. Each token of the command line will be printed on a separate line and will

appear in the order in which they are placed on the command line.

2.6.25 --ERRFORMAT=format: Define Format for Compiler Messages

If the --ERRFORMAT option is not used, the default behaviour of the compiler is to display any

errors in a “human readable” format line. This standard format is perfectly acceptable to a person

reading the error output, but is not generally usable with environments which support compiler error

handling. The following sections indicate how this option may be used in such situations.

This option allows the exact format of printed error messages to be specified using special place-

holders embedded within a message template. See Section 2.5 for full details of the messaging

system employed by PICC32 .

This section is also applicable to the --WARNFORMAT and --MSGFORMAT options which adjust the

format of warning and advisory messages, respectively.

See Section 2.6.33 for the appropriate option to change the message language.

2.6.26 --ERRORS=number: Maximum Number of Errors

This option sets the maximum number of errors each compiler application, as well as the driver, will

display before stopping. By default, up to 20 error messages will be displayed. See Section 2.5 for

full details of the messaging system employed by PICC32 .

51

PICC32 Driver Option Descriptions PICC32 Command-line Driver

Table 2.6: Supported IDEs

Suboption IDE

hitide HI-TECH Software’s HI-TIDE

mplab Microchip’s MPLAB

2.6.27 --FILL=opcode: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all unused program

memory locations with a known code sequence. Multi-byte codes should be entered in little endian

byte order.

2.6.28 --GETOPTION=app,file: Get Command-line Options

This option is used to retrieve the command line options which are used for named compiler appli-

cation. The options are then saved into the given file. This option is not required for most projects.

2.6.29 --HELP<=option>: Display Help

The --HELP option displays information on the PICC32 compiler options. To find out more about a

particular option, use the option’s name as a parameter. For example:

PICC32 --help=warn

This will display more detailed information about the --WARN option, the available suboptions, and

which suboptions are enabled by default.

2.6.30 --IDE=type: Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Integrated Devel-

opment Environment (IDE). The supported IDE’s are shown in Table 2.6.

2.6.31 --INTERRUPTS=suboption,<suboption>: Specify the Interrupts

Scheme

This option will instruct the compiler to initialise the device and the vector table according to the

desired scheme. The interrupt scheme is specified using sub-options to this driver option in a similar

fashion to the --runtime option. Sub-options are divided into three groups which are as follows:

• sub-options which affect the type of interrupt vectors (see Table 2.7);

52

PICC32 Command-line Driver PICC32 Driver Option Descriptions

SUB-OPTION MEANING

rom (default) For each interrupt function assigned a specific

vector to service, a corresponding entry is made in the table

which jumps only to this function.

ram At each entry in the table the address of the current

interrupt function for that vector is loaded from a separate

table stored in RAM and indirectly invoked. At startup the

table in RAM is initialised by the runtime startup code with

the interrupt vector functions specified in code with the @

operator.

The SETVECTOR macro can be used to assign an interrupt

function to service a particular interrupt at runtime. This

macro is described in more detail in Appendix A.

Table 2.7: --interrupts sub-options affecting the type of interrupt vectors.

• sub-options which affect the location of interrupt vector table (see Table 2.8);

• sub-options which affect the number of vectors to service interrupts (see Table 2.9).

All sub-options within each group are mutually exclusive. If the driver detects confliciting or missing

sub-options within a particular group it will use the default sub-option for that group. This new driver

option replaces the previous --ivt option.

SUB-OPTION MEANING

boot (default) The vector table will be located in the device’s

boot flash memory and linked in KSEG0. The precise

location within this region isn’t known until link-time.

pfm The vector table will be located in the device’s program

flash memory and linked in KSEG0. The precise location

within this region isn’t known until link-time.

Table 2.8: --interrupts sub-options affecting the location of the vector table.

53

PICC32 Driver Option Descriptions PICC32 Command-line Driver

SUB-OPTION MEANING

multi (default) All interrupt service requests will be serviced at a

calculated address. In all cases the spaceing between

vectors in 32 bytes. All other exceptions are still serviced at

0x180 from the vector table base.

single All interrupt service requests will be serviced at one vector

address, namely 0x200 from the vector table base. All other

exceptions are still serviced at 0x180.

genex All interrupt service requests and exceptions are service at

the general exception vector at 0x180 from the vector table

base.

Table 2.9: --interrupts sub-options affecting the number of vectors to service interrupts.

Table 2.10: Supported languages

Suboption Language

en, english English

fr, french,francais French

de, german, deutsch German

2.6.32 --ISA=<type>: Specify the Instruction Set Architecture

The default Instruction Set Architecture for generated code can be set to either MIPS16e or MIPS32r2.

The MIPS16e setting can lead to higher code density. See the device datasheet for more information.

PICC32 --CHIP=32MX360F512L --ISA=MIPS16E test.c init.c

The default setting is MIPS32r2. Note that the fucntion qualifiers mips16e and mips32r2 will over-

ride this option for that function. See 3.3.10.5.

2.6.33 --LANG=language: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some advisory mes-

sages in languages other than English. English is the default language and some messages are only

ever printed in English regardless of the language specified with this option.

Table 2.10 shows those langauges currently supported.

See Section 2.5 for full details of the messaging system employed by PICC32 .

54

PICC32 Command-line Driver PICC32 Driver Option Descriptions

2.6.34 --MEMMAP=file: Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,

but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through

the driver. This command would display the memory summary which is normally produced at the

end of compilation by the driver.

2.6.35 --MSGDISABLE=messagelist: Disable Warning Messages

This option allows warning or advisory messages to be disabled during compilation of all modules

within the project, and during all stages of compilation. Warning mesasges can also be disabled

using pragma directives. For full information on the compiler’s messaging system, see Section 2.5.

The messagelist is a comma-separated list of warning numbers that are to be disabled. If the

number of an error is specified, it will be ignored by this option. If the message list is specified as 0,

then all warnings are disabled.

2.6.36 --MSGFORMAT=format: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. See Section 2.5 for full

information.

2.6.37 --NODEL: Do not remove temporary files

Specifying --NODEL when building will instruct PICC32 not to remove the intermediate and tempo-

rary files that were created during the build process.

2.6.38 --NOEXEC: Don’t Execute Compiler

The --NOEXEC option causes the compiler to go through all the compilation steps, but without ac-

tually performing any compilation or producing any output. This may be useful when used in con-

junction with the -V (verbose) option in order to see all of the command lines the compiler uses to

drive the compiler applications.

2.6.39 --OBJDIR=path: Specify a directory for Object files

This option allows a directory to be nominated in for PICC32 to locate its intermediate files. In-

termediate file include .pre and .p1 file for C source, and also includes .obj and .lst files for

assembly source and the compiler-generated runtime startup source file.

55

PICC32 Driver Option Descriptions PICC32 Command-line Driver

Table 2.11: Optimization Options

Option name Funcion

1..9 Select global optimization level (1 through 9)

asm Select optimizations of assembly derived from C source

asmfile Select optimizations of assembly source files

debug Favor accurate debugging over optimization

all Enable all compiler optimizations

none Do not use any compiler optimziations

If this option is omitted, intermediate files will be created in the current working directory. This

option will not set the location of output files, instead use --OUTDIR. See 2.6.41 and 2.6.10 for more

information.

2.6.40 --OPT<=type>: Invoke Compiler Optimizations

The --OPT option allows control of all the compiler optimizers. By default, without this option, all

optimizations are enabled. The options --OPT or --OPT=all also enable all optimizations. Opti-

mizations may be disabled by using --OPT=none, or individual optimizers may be controlled, e.g.

--OPT=asm will only enable some assembler optimizations. Table 2.11 lists the available optimiza-

tion types. The optimizations that are controlled through specifying a level 1 through 9 affect opti-

mization during the code generation stage. The level selected is commonly referred to as the global

optimization level.

2.6.41 --OUTDIR=path: Specify a directory for Output files

This option allows a directory to be nominated in for PICC32 to locate its output files. If this option

is omitted, output files will be created in the current working directory. This option will not set the

location of intermediate files, instead use --OBJDIR. See 2.6.39 and 2.6.10 for more information.

2.6.42 --OUTPUT=type: Specify Output File Type

This option allows the type of the output file(s) to be specified. If no --OUTPUT option is specified,

the output file’s name will be derived from the first source or object file specified on the command

line.

The available output file format are shown in Table 2.12. More than one output format may be

specified by supplying a comma-separated list of tags. Those output file types which specify library

formats stop the compilation process before the final stages of compilation are executed. Hence

56

PICC32 Command-line Driver PICC32 Driver Option Descriptions

Table 2.12: Output file formats

Type tag File format

lib Library File

lpp P-code library

intel Intel HEX

tek Tektronic

aahex American Automation symbolic HEX file

mot Motorola S19 HEX file

ubrof UBROF format

bin Binary file

cof Common Object File Format

cod Bytecraft COD file format

elf ELF/DWARF file format

specifying an output file format list containing, e.g. lib or all will over-ride the non-library output

types, and only the library file will be created.

2.6.43 --PASS1: Compile to P-code

The --PASS1 option is used to generate a p-code intermediate files (.p1 file) from the parser, then

stop compilation. Such a file needs to be generated if creating a p-code library file.

2.6.44 --PRE: Produce Preprocessed Source Code

The --PRE option is used to generate preprocessed C source files with an extension .pre. This may

be useful to ensure that preprocessor macros have expanded to what you think they should. Use

of this option can also create C source files which do not require any separate header files. This is

useful when sending files for technical support.

If you wish to see the preprocessed source for the printf family of functions, do not use this

option. The source for this function is customised by the compiler, but only after the code generator

has scanned the project for printf usage. Thus, as the –PRE option stops compilation after the

preprocessor stage, the code generator will not execute and no printf code will be processed. If this

option is omitted, the preprocessed source for printf will be retained in the file doprnt.pre.

If you wish to see the preprocessed source for the printf family of functions, do not use this

option. The source for this function is customised by the compiler, but only after the code generator

has scanned the project for printf usage. Thus, as the –PRE option stops compilation after the

preprocessor stage, the code generator will not execute and no printf code will be processed. If this

57

PICC32 Driver Option Descriptions PICC32 Command-line Driver

option is omitted, the preprocessed source for printf will be retained in the file doprnt.pre.

2.6.45 --PROTO: Generate Prototypes

The --PROTO option is used to generate .pro files containing both ANSI and K&R style function

declarations for all functions within the specified source files. Each .pro file produced will have

the same base name as the corresponding source file. Prototype files contain both ANSI C-style

prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each .pro file should be edited into a global header file which is

included in all the source files comprising a project. The .pro files may also contain static decla-

rations for functions which are local to a source file. These static declarations should be edited into

the start of the source file. To demonstrate the operation of the --PROTO option, enter the following

source code as file test.c:

#include <stdio.h>

add(arg1, arg2)

int * arg1;

int * arg2;

{

return *arg1 + *arg2;

}

void printlist(int * list, int count)

{

while (count--)

printf("%d ", *list++);

putchar(’\n’);

}

If compiled with the command:

PICC32 --CHIP=32MX360F512L --PROTO test.c

PICC32 will produce test.pro containing the following declarations which may then be edited as

necessary:

/* Prototypes from test.c */

/* extern functions - include these in a header file */

#if PROTOTYPES

extern int add(int *, int *);

58

PICC32 Command-line Driver PICC32 Driver Option Descriptions

extern void printlist(int *, int);

#else /* PROTOTYPES */

extern int add();

extern void printlist();

#endif /* PROTOTYPES */

2.6.46 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which

should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-

ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory

which contain physical RAM. The output that will be placed in the ranges specified by this option

are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory

space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made

available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

--RAM=default,+100-1ff

for example. To only use an external range and ignore any on-chip memory, use:

--RAM=0-ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the

chipinfo file. To do this supply a range prefixed with a minus character, -, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h

for allocation of RAM objects.

2.6.47 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges

This option is used to specify memory, in addition to any ROM specified in the chip configuration

file, which should be treated as available ROM space. Strictly speaking, this option specifies the

areas of memory that may be used by read-only (ROM-based) objects, and not necessarily those

areas of memory which contain physical ROM. The output that will be placed in the ranges specified

by this option are typically executable code and any data variables that are qualified as const.

When producing code that may be downloaded into a system via a bootloader the destination

memory may indeed be some sort of (volatile) RAM. To only use on-chip ROM memory, this option

is not required. For example, to specify an additional range of memory to that on-chip, use:

59

PICC32 Driver Option Descriptions PICC32 Command-line Driver

--ROM=default,+100-2ff

for example. To only use an external range and ignore any on-chip memory, use:

--ROM=100-2ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the

chip configuration file. To do this supply a range prefixed with a minus character, -, for example:

--ROM=default,-100-1ff

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 1ffh for

allocation of ROM objects.

2.6.48 --RUNTIME=type: Specify Runtime Environment

The --RUNTIME option is used to control what is included as part of the runtime environment. The

runtime environment encapsulates any code that is present at runtime which has not been defined by

the user, instead supplied by the compiler, typically as library code.

All runtime features (except plib) are enabled by default and this option is not required for

normal compilation. The usable suboptions include those shown in Table 2.13.

Suboption Controls On (+) implies

init The code present in the startup module that

copies the idata, ibigdata and ifardata

psects’ ROM-image to RAM.

The idata, ibigdata and

ifardata psects’ ROM image is

copied into RAM.

clib The inclusion of library files into the output

code by the linker.

Library files are linked into the

output.

clear The code present in the startup module that

clears the bss, bigbss and farbss psects.

The bss, bigbss and farbss

psects are cleared.

config The driver will check that the config words

at the top of boot flash have been pro-

grammed using the __CONFIG macro defined

in <pic32.h>. See Section 2.3.2.6.

Any unprogrammed config words

will be set to configure the device

to operate at maximum speed and

for debugging.

keep Whether the start-up module source file is

deleted after compilation.

The start-up module is not

deleted.

no_startup Whether the startup module is linked in with

user-defined code.

The start-up module is generated

and linked into the program.

stackwarn Checking the depth of the stack used. The stack depth is monitored at

compile time.

60

PICC32 Command-line Driver PICC32 Driver Option Descriptions

Suboption Controls On (+) implies

nmi Test for a non maskable interrupt and invoke

it’s handler if necessary.

Non-maskable interrupts are sup-

ported.

soft Test for a soft-reset condition and invoke the

applicable interrupt function.

Soft-interrupts are enabled.

cp0 Initialise the system coprocessor. See Section

2.3.2.3.

The system coprocessor is initial-

ized.

gpr Initialise some general purpose registers. See

Section 2.3.2.4.

Some general purpose registers

are initialised with special values.

icache Whether instruction caching is used or not. Instruction caching is used.

stack Reserve memory for the stack and initialise

the stack pointer (register 29) accordingly. See

Section 2.3.2.5.

Will reserve as much memory

as possible for the stack, unless

specified otherwise

heap Reserve memory for the heap. See Section

2.3.2.5.

Will reserve as much memory

as possible for the heap, unless

specified otherwise.

perform Configures the device for optimal perfor-

mance. Supplying an argument will initialise

the device to perform at that frequency (in Hz).

See Section 2.3.2.7.

Using either the maximum or

nominated frequency the driver

will initialise the device.

plib Compiler links the peripheral libraries. Other

than <htc.h> no other header files need to be

included to use the functions in these libraries.

By default this option is not set.

Compiler links the peripheral li-

braries.

2.6.49 --SCANDEP: Scan for Dependencies

When this option is used, a .dep (dependency) file is generated. The dependency file lists those

files on which the source file is dependant. Dependencies result when one file is #included into

another.

2.6.50 --SERIAL=hexcode@address: Store a Value at this Program Mem-

ory Address

This option allows a hexadecimal code to be stored at a particular address in program memory. A

typical application for this option might be to position a serial number in program memory. The

byte-width of data to store is determined by the byte-width of the hexcode parameter in the option.

A label __serial0 is defined by the runtime startup code that marks the position of the hexadec-

imal code. This symbol may be referenced by C or assembly code in the usual way.

61

PICC32 Driver Option Descriptions PICC32 Command-line Driver

For example, to store the one byte value, 0, at program memory address 1000h, use the option

--SERIAL=00@1000. Use the option --SERIAL=00000000@1000 to store the same value as a

four byte quantity. This option is functionally identical to the corresponding hexmate option. For

more detailed information and advanced controls that can be used with this option, refer to Section

5.14.1.15 of this manual.

2.6.51 --SETOPTION=app,file: Set the Command-line Options for Ap-

plication

This option is used to supply alternative command line options for the named application when com-

piling. The app component specifies the application that will recieve the new options. The file

component specifies the name of the file that contains the additional options that will be passed to

the application. This option is not required for most projects. If specifying more than one option to

a component, each option must be entered on a new line in the option file.

This option can also be used to remove an application from the build sequence. If the file param-

eter is specified as off, execution of the named application will be skipped. In most cases this is

not desirable as almost all applications are critical to the success of the build process. Disabling a

critical application will result in catastrophic failure. However it is permissible to skip a non-critical

application such as clist or hexmate if the final results are not reliant on their function.

2.6.52 --STRICT: Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI conformance of all special keywords. HI-

TECH C supports various special keywords (for example the persistent type qualifier). If the

--STRICT option is used, these keywords are changed to include two underscore characters at

the beginning of the keyword (e.g. __persistent) so as to strictly conform to the ANSI stan-

dard. Be warned that use of this option may cause problems with some standard header files (e.g.

<intrpt.h>).

2.6.53 --STRICTCALLS: Strict MIPS Parameter Passing

The --STRICTCALLS option is used to enable strict MIPS parameter passing for the entire program.

HI-TECH C PRO for the PIC32 MCU Familysupports passing parameters in any unused registers,

however this option will cause the program to follow the MIPS standard of using only the first 4

A registers for parameter passing. To force only individual modules to use strict MIPS paramater

passing see: 3.5.2.

62

PICC32 Command-line Driver PICC32 Driver Option Descriptions

Table 2.14: Memory Summary Suboptions

Suboption Controls On (+) implies

psect Summary of psect usage. A summary of psect names and

the addresses they were linked at

will be shown.

mem General summary of memory used. A concise summary of memory

used will be shown.

class Summary of class usage. A summary of all classes in each

memory space will be shown.

hex Summary of address used within the hex

file.

A summary of addresses and hex

files which make up the final out-

put file will be shown.

file Whether summary information is shown

on the screen or shown and saved to a file.

Summary information will be

shown on screen and saved to a

file.

2.6.54 --SUMMARY=type: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,

or if the mem suboption is selected, a memory summary is shown. This shows the total memory usage

for all memory spaces.

A psect summary may be shown by enabling the psect suboption. This shows individual psects,

after they have been grouped by the linker, and the memory ranges they cover. Table 2.14 shows

what summary types are available.

2.6.55 --TIME: Report time taken for each phase of build process

Adding --TIME when building generate a summary which shows how much time each stage of the

build process took to complete.

2.6.56 --VER: Display The Compiler’s Version Information

The --VER option will display what version of the compiler is running.

2.6.57 --WARN=level: Set Warning Level

The --WARN option is used to set the compiler warning level. Allowable warning levels range from

-9 to 9. The warning level determines how pedantic the compiler is about dubious type conversions

63

PICC32 Driver Option Descriptions PICC32 Command-line Driver

and constructs. The higher the warning level, the more important the warning message. The default

warning level is 0 and will allow all normal warning messages.

Use this option with care as some warning messages indicate code that is likely to fail during

execution, or compromise portability.

Warning message can be individually disabled with the --MSGDISABLE option, see 2.6.35. See

also Section 2.5 for full information on the compiler’s messaging system.

2.6.58 --WARNFORMAT=format: Set Warning Message Format

This option sets the format of warning messages produced by the compiler. See Section 2.5.4 for

more information on this option. For full information on the compiler’s messaging system, see

Section 2.5.

64

Chapter 3

C Language Features

HI-TECH C PRO for the PIC32 MCU Family supports a number of special features and extensions

to the C language which are designed to ease the task of producing ROM-based applications. This

chapter documents the compiler options and special language features which are specific to the

Microchip PIC 32 family of processors.

3.1 ANSI Standard Issues

3.1.1 Divergence from the ANSI C Standard

HI-TECH C PRO for the PIC32 MCU Family does not diverge from the ANSI C standard except as

noted below. Function recursion is supported.

3.1.2 Implementation-defined behaviour

Certain sections of the ANSI standard have implementation-defined behaviour. This means that the

exact behaviour of some C code can vary from compiler to compiler. Throughout this manual are

sections describing how the HI-TECH C PRO for the PIC32 MCU Family compiler behaves in such

situations.

3.1.3 Non-ANSI Operations

HI-TECH C PRO for the PIC32 MCU Familycan detect specific sequences of portable ANSI C code

that implicitly implements a rotate operation. The C language only specifies a left and right shift

65

Processor-related Features C Language Features

operator, but no rotate operator. The code generator encodes matching sequences using assembly

rotate instructions where possible.

The code sequence to implement a rotate right by 1 bit looks like:

var = (var > > 1) | (var < < 7);

where var must be an unsigned char or:

var = (var > > 1) | (var < < 15);

where var must be an unsigned int. Rotates can be either left or right and of any number of bits.

Note that a rotate left of 1 bit is equalivent to a rotate right of 7 bits when dealing with byte-wide

variables, or a rotate right of 15 bits when dealing with 2-byte quantities.

3.2 Processor-related Features

HI-TECH C PRO for the PIC32 MCU Family has many features which relate directly to the PIC32

family of processors. These are detailed in the following sections.

3.2.1 Processor Support

HI-TECH C PRO for the PIC32 MCU Family supports the full range of Microchip PIC 32 proces-

sors. Additional code-compatible processors may be added by editing the pic32.ini file in the DAT

directory. User-defined processors should be placed at the end of the file. The header of the file

explains how to specify a processor. Newly added processors will be available the next time you

compile by selecting the name of the new processor on the command line in the usual way.

3.2.2 Configuration Fuses

The PIC32 processor’s have several locations which contain the configuration bits or fuses. These

bits may be set using the configuration macro. The macro has the form:

__CONFIG(n,x);

(there are two leading underscore characters) where n is the configuration register number and x is

the value that is to be the configuration word. The macro will be defined if <htc.h> is included, so

be sure to include that into each module that uses this macro.

The configuration macro will program the config words in the boot segment with each call.

Special named quantities are defined in the header file appropriate for the processor you are using to

help you enable the required features.

66

C Language Features Supported Data Types and Variables

For example, to set a PIC32Cxx1 chip to have Code Protect and Boot Flash write-protect dis-

abled, ICE Communication Channnel enabled, and the watchdog timer enabled with a post scale

factor of 1:1, the following could be used.

#include <htc.h>

__CONFIG(DEVCFG0, GCP_OFF & BWP_OFF & ICS_PGx1);

__CONFIG(DEVCFG1, FWDTEN_ON & WDTPS(0));

Note that the individual selections are ANDed together. Any bits which are not selected in these

macros will remain unprogrammed. You should ensure that you have specified all bits correctly

to ensure proper operation of the part when programmed. Consult your PIC32 datasheet for more

details.

The __CONFIG macro does not produce executable code.

3.2.3 Multi-byte SFRs

The SFRs associated with the PIC32 are 32 bits wide. Although it is possible to define an absolute

C variable to map over such registers, it is highly recommended that the existing SFR definitions

(included via <htc.h>) are used . Each SFR should be accessed directly and in the required order

by the programmer’s code. This will ensure a much higher degree of portability.

3.3 Supported Data Types and Variables

The HI-TECH C PRO for the PIC32 MCU Family compiler supports basic data types with 1, 2 and

4 byte sizes. All multi-byte types follow least significant byte first format, also known as little-

endian. Word size values thus have the least significant byte at the lower address, and double word

size values have the least significant byte and least significant word at the lowest address. Table 3.1

shows the data types and their corresponding size and arithmetic type.

3.3.1 Radix Specifiers and Constants

The format of integral constants specifies their radix. HI-TECH C PRO for the PIC32 MCU Fam-

ily supports the ANSI standard radix specifiers as well as ones which enables binary constants to

specified in C code. The format used to specify the radices are given in Table 3.2. The letters used

to specify binary or hexadecimal radices are case insensitive, as are the letters used to specify the

hexadecimal digits.

67

Supported Data Types and Variables C Language Features

Table 3.1: Basic data types

Type Size (bits) Arithmetic Type

bit 1 unsigned integer

char 8 unsigned integer

unsigned char 8 unsigned integer

signed char 8 signed integer

short 16 signed integer

unsigned short 16 unsigned integer

signed short 16 signed integer

int 32 signed integer

unsigned int 32 unsigned integer

signed int 32 signed integer

long 32 signed integer

unsigned long 32 unsigned integer

signed long 32 signed integer

float 32 real

double 32 real

Table 3.2: Radix formats
Radix Format Example

binary 0bnumber or 0Bnumber 0b10011010

octal 0number 0763

decimal number 129

hexadecimal 0xnumber or 0Xnumber 0x2F

68

C Language Features Supported Data Types and Variables

Any integral constant will have a type which is the smallest type that can hold the value without

overflow. The suffix l or L may be used with the constant to indicate that it must be assigned either

a signed long or unsigned long type, and the suffix u or U may be used with the constant to

indicate that it must be assigned an unsigned type, and both l or L and u or U may be used to indicate

unsigned long int type.

Floating-point constants have double type unless suffixed by f or F, in which case it is a float

constant. The suffixes l or L specify a long double type which is considered an identical type to

double by HI-TECH C PRO for the PIC32 MCU Family.

Character constants are enclosed by single quote characters ’, for example ’a’. A character

constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters ", for example "hello

world". The type of string constants is const char [] and the strings are stored in the program

memory. Assigning a string constant to a non-const char pointer will generate a warning from the

compiler. For example:

char * cp= "one"; // "one" in ROM, produces warning

const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string, for example:

char ca[]= "two"; // "two" different to the above

produces an array in data space which is initialised at startup with the string "two" (copied from

program space), whereas a constant string used in other contexts represents an unnamed const-

qualified array, accessed directly in program space.

HI-TECH C will use the same storage location and label for strings that have identical character

sequences, except where the strings are used to initialise an array residing in the data space as shown

in the last statement in the previous example.

Two adjacent string constants (i.e. two strings separated only by white space) are concatenated

by the compiler. Thus:

const char * cp = "hello " "world";

assigned the pointer with the string "hello world".

3.3.2 Bit Data Types and Variables

HI-TECH C PRO for the PIC32 MCU Familysupports bit integral types which can hold the values

0 or 1. Single bit variables may be declared using the keyword bit. bit objects declared within a

function, for example:

69

Supported Data Types and Variables C Language Features

static bit init_flag;

will be allocated in the bit-addressable psect rbit, and will be visible only in that function. When

the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible, but located within the same psect.

A function may return a bit object by using the bit keyword in the functions prototype in the

usual way. The bit return value will be returning in the carry flag in the status register.

Bit variables behave in most respects like normal unsigned char variables, but they may only

contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean

flags without consuming large amounts of internal RAM. It is, however, not possible to declare

pointers to bit variables or statically initialise bit variables.

Operations on bit objects use the Bit Field instructions (ext and ins) , thus the generated code

to access bit objects requires more instructions than other data types.

Note that when assigning a larger integral type to a bit variable, only the least-significant bit is

used. For example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;

bit bitvar;

bitvar = data;

it will be cleared by the assignment since the least significant bit of data is zero. If you want to set

a bit variable to be 0 or 1 depending on whether the larger integral type is zero (false) or non-zero

(true), use the form:

bitvar = data != 0;

The psects in which bit objects are allocated storage are declared using the bit PSECT directive

flag. Eight bit objects will take up one byte of storage space which is indicated by the psect’s scale

value of 8 in the map file. The length given in the map file for bit psects is in units of bits, not bytes.

All addresses specified for bit objects are also bit addresses.

The bit psects are cleared on startup, but are not initialised. To create a bit object which has a

non-zero initial value, explicitly initialise it at the beginning of your code.

If the PICC32 flag --STRICT is used, the bit keyword becomes unavailable.

3.3.3 Using Bit-Addressable Registers

The bit variable facility may be combined with absolute variable declarations (see Section 3.4.2) to

access bits at specific addresses. Absolute bit objects are numbered from 0 (the least significant bit

70

C Language Features Supported Data Types and Variables

of the first byte) up. Therefore, bit number 3 (the fourth bit in the byte since numbering starts with

0) in byte number 5 is actually absolute bit number 43 (that is 8bits/byte * 5 bytes + 3 bits).

For example, to access the software reset detection flag bit in the RCON register, declare RCON

to be a C object at absolute address BF80F600h, then declare a bit variable at absolute bit address

27:

static unsigned long RCON @ 0xBF80F600;

static near bit SWR @ (unsigned)&RCON*8+6;

Note that all standard registers and bits within these registers are defined in the header files provided.

The only header file you need to include to have access to the PIC32 registers is <htc.h> - at compile

time this will include the appropriate header for the selected chip.

3.3.4 8-Bit Integer Data Types and Variables

HI-TECH C PRO for the PIC32 MCU Family supports both signed char and unsigned char

8-bit integral types. If the signed or unsigned keyword is absent from the variable’s definition,

the default type is unsigned char . The signed char type is an 8-bit two’s complement signed

integer type, representing integral values from -128 to +127 inclusive. The unsigned char is an

8-bit unsigned integer type, representing integral values from 0 to 255 inclusive. It is a common

misconception that the C char types are intended purely for ASCII character manipulation. This is

not true, indeed the C language makes no guarantee that the default character representation is even

ASCII. The char types are simply the smallest of up to four possible integer sizes, and behave in all

respects like integers.

The reason for the name “char” is historical and does not mean that char can only be used to

represent characters. It is possible to freely mix char values with short, int and long values in C

expressions. With HI-TECH C PRO for the PIC32 MCU Family the char types will commonly be

used for a number of purposes, as 8-bit integers, as storage for ASCII characters, and for access to

I/O locations.

Variables may be declared using the signed char and unsigned char keywords, respectively,

to hold values of these types. Where only char is used in the declaration, the type will be signed

char unless the option, mentioned above, to specify unsigned char as default is used.

3.3.5 16-Bit Integer Data Types

HI-TECH C PRO for the PIC32 MCU Family supports 2 16-bit integer types. short is a 16-bit two’s

complement signed integer type, representing integral values from -32,768 to +32,767 inclusive.

Unsigned short is a 16-bit unsigned integer type, representing integral values from 0 to 65,535

inclusive. All 16-bit integer values are represented in little endian format with the least significant

byte at the lower address.

71

Supported Data Types and Variables C Language Features

Variables may be declared using the signed short int and unsigned short int keyword

sequences, respectively, to hold values of these types. When specifying a short int type, the

keyword int may be omitted. Thus a variable declared as short will contain a signed short int

and a variable declared as unsigned short will contain an unsigned short int.

3.3.6 32-Bit Integer Data Types and Variables

HI-TECH C PRO for the PIC32 MCU Familysupports four 32-bit integer types. Long and int are

32-bit two’s complement signed integer types, representing integral values from -2,147,483,648 to

+2,147,483,647 inclusive. Unsigned long and unsigned int are 32-bit unsigned integer types,

representing integral values from 0 to 4,294,967,295 inclusive. All 32-bit integer values are repre-

sented in little endian format with the least significant word and least significant byte at the lowest

address. Long and unsigned long occupy 32 bits as this is the smallest long integer size allowed

by the ANSI standard for C.

Variables may be declared using the signed long int and unsigned long int keyword se-

quences, respectively, to hold values of these types. Where only long int is used in the declaration,

the type will be signed long. When specifying this type, the keyword int may be omitted. Thus

a variable declared as long will contain a signed long int and a variable declared as unsigned

long will contain an unsigned long int.

3.3.7 Floating Point Types and Variables

Floating point is implemented using the IEEE 754 32-bit format.

The 32-bit format is used for all float and double values.

This format is described in Table 3.3, where:

• sign is the sign bit

• The exponent is 8-bits which is stored as excess 127 (i.e. an exponent of 0 is stored as 127).

• mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the

left of the radix point which is always 1 except for a zero value, where the implied bit is zero.

A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent−127) x 1.mantissa.

Here are some examples of the IEEE 754 32-bit formats:

Note that the most significant bit of the mantissa column in Table 3.4 (that is the bit to the left

of the radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which

case the float is zero).

The 32-bit example in Table 3.4 can be calculated manually as follows.

72

C Language Features Supported Data Types and Variables

Table 3.3: Floating-point formats

Format Sign biased exponent mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

Table 3.4: Floating-point format example IEEE 754

Number biased expo-

nent

1.mantissa decimal

7DA6B69Bh 11111011b 1.01001101011011010011011b 2.77000e+37

(251) (1.302447676659)

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary

number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this

fraction. The floating-point number is then given by:

−10×2124×1.302447676659 = 1×2.126764793256e+37×1.302447676659≈ 2.77000e+37

Variables may be declared using the float and double keywords, respectively, to hold values

of these types. Floating point types are always signed and the unsigned keyword is illegal when

specifying a floating point type. Types declared as long double will use the same format as types

declared as double.

3.3.8 Structures and Unions

HI-TECH C PRO for the PIC32 MCU Family supports struct and union types of any size from one

byte upwards. Structures and unions only differ in the memory offset applied for each member. The

members of structures and unions may not be objects of type bit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and return values. Pointers to

structures and unions are fully supported.

3.3.8.1 Bit-fields in Structures

HI-TECH C PRO for the PIC32 MCU Familyfully supports bit-fields in structures.

bit-fields are always allocated within 32-bit words. The first bit defined will be the least signifi-

cant bit of the word in which it will be stored. When a bit-field is declared, it is allocated within the

current 32-bit unit if it will fit, otherwise a new word is allocated within the structure. bit-fields can

never cross the boundary between 32-bit allocation units. For example, the declaration:

struct {

73

Supported Data Types and Variables C Language Features

unsigned lo : 1;

unsigned dummy : 30;

unsigned hi : 1;

} foo;

will produce a structure occupying 4 bytes. If foo was ultimately linked at address 10H, the field lo

will be bit 0 of address 10H, hi will be bit 7 of address 13H. The least significant bit of dummy will

be bit 1 of address 10H and the most significant bit of dummy will be bit 6 of address 13h.

Unnamed bit-fields may be declared to pad out unused space between active bits in control

registers. For example, if dummy is never used the structure above could have been declared as:

struct {

unsigned lo : 1;

unsigned : 30;

unsigned hi : 1;

} foo;

If a bit-field is declared in a structure that is assigned an absolute address, no storage will be allocated

for the structure. Absolute structures would be used when mapping a structure over a register to allow

a portable method of accessing individual bits within the register.

A structure with bit-fields may be initialised by supplying a comma-separated list of initial values

for each field. For example:

struct {

unsigned lo : 1;

unsigned mid : 30;

unsigned hi : 1;

} foo = {1, 8, 0};

3.3.8.2 Structure and Union Qualifiers

HI-TECH C PRO for the PIC32 MCU Family supports the use of type qualifiers on structures. When

a qualifier is applied to a structure, all of its members will inherit this qualification. In the following

example the structure is qualified const.

const struct {

int number;

int *ptr;

} record = { 0x55, &i};

74

C Language Features Supported Data Types and Variables

In this case, the structure will be placed into the program space and each member will, obviously, be

read-only. Remember that all members must be initialized if a structure is const as they cannot be

initialized at runtime.

If the members of the structure were individually qualified const but the structure was not, then

the structure would be positioned into RAM, but each member would be read-only. Compare the

following structure with the above.

struct {

const int number;

int * const ptr;

} record = { 0x55, &i};

3.3.9 Standard Type Qualifiers

Type qualifiers provide information regarding how an object may be used, in addition to its type

which defines it storage size and format. HI-TECH C PRO for the PIC32 MCU Family supports

both ANSI qualifiers and additional special qualifiers which are useful for embedded applications

and which take advantage of the PIC32 architecture.

3.3.9.1 Const and Volatile Type Qualifiers

HI-TECH C PRO for the PIC32 MCU Family supports the use of the ANSI type qualifiers const

and volatile.

The const type qualifier is used to tell the compiler that an object is read only and will not be

modified. If any attempt is made to modify an object declared const, the compiler will issue a

warning. User-defined objects declared const are placed in a special psect in the program space.

Obviously, a const object must be initialised when it is declared as it cannot be assigned a value at

any point at runtime. For example:

const int version = 3;

The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain

its value between successive accesses. This prevents the optimizer from eliminating apparently

redundant references to objects declared volatile because it may alter the behaviour of the program

to do so. All Input/Output ports and any variables which may be modified by interrupt routines

should be declared volatile, for example:

volatile static sfr unsigned long PORTA @ 0xBF886010;

Volatile objects may be accessed using different generated code to non-volatile objects. For ex-

ample, when assigning a non-volatile object the value 1, the object may be cleared and then

75

Supported Data Types and Variables C Language Features

incremented, but the same operation performed on a volatile object will load the W register with

1 and then store this to the appropriate address.

Objects that are not qualified volatile may be removed by the compiler if they not used in C

or assemby code.

3.3.10 Special Type Qualifiers

HI-TECH C PRO for the PIC32 MCU Family supports the special type qualifiers persistent, sfr

and cp0 to allow the user to control placement of static and extern class variables into particular

address spaces. If the PICC32 option, --STRICT is used, these type qualifiers are changed to

__persistent __sfr and __cp0. This type qualifier may also be applied to pointers. These types

of qualifiers may not be used on variables of class auto; if used on variables local to a function it

must be combined with the static keyword. For example, you may not write:

void test(void) {

persistent int intvar; /* WRONG! */

... other code ...

}

because intvar is of class auto. To declare intvar as a persistent variable local to function

test(), write:

static persistent int intvar;

Variables qualified as sfr or cp0must also be 4-byte unsigned integers assigned an absolute address.

Additionally, variables qualifed as cp0 have other requirements as detailed below.

3.3.10.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is

consistent with the definition of the C language. However, there are occasions where it is desired for

some data to be preserved across resets or even power cycles (on-off-on).

The persistent type qualifier is used to qualify variables that should not be cleared on startup.

In addition, any persistent variables will be stored in a different area of memory to other variables.

Persistent objects are placed within one of the non-volatile psects. If the persistent object is

also qualified near, it placed in the nvrram psect. Persistent bit objects are placed within the

nvbit psect. All other persistent objects are placed in the nvram psect.

76

C Language Features Supported Data Types and Variables

3.3.10.2 cp0 Type Qualifier

The cp0 type qualifier is used to facilitate access within C programs to the registers of the system

coprocessor 0 (CP0). Any 4-byte unsigned integer variable may be so qualified. These variables must

also be made absolute and assigned a magic number which encodes the register and the selection

number. These magic numbers have been defined in <pic32.h> as well as variable definitions for

each of the CP0 registers.

3.3.10.3 sfr Type Qualifier

Variables qualifed as sfr and given an absolute address (that of the corresponding SFR) will instruct

the compiler to generate code which takes advantage of it’s separate set, clear and toggle addresses.

Only 4-byte unsigned integer data type variables may be qualified as sfr. Structures or unions so

qualified may only have members which are bitfields or structures or unions which only have bitfield

members. For example, the SFR WDTCON from the device specific header file 32mx360f512l.h is as

follows:

volatile sfr unsigned long WDTCON @ 0xBF800000;

typedef union {

struct {

unsigned volatile WDTCLR:1;

unsigned :1;

unsigned volatile SWDTPS0:1;

unsigned volatile SWDTPS1:1;

unsigned volatile SWDTPS2:1;

unsigned volatile SWDTPS3:1;

unsigned volatile SWDTPS4:1;

unsigned :8;

unsigned volatile ON:1;

};

struct {

unsigned :2;

unsigned volatile WDTPSTA:5;

};

struct {

unsigned volatile w:32;

};

} __WDTCONbits_t;

volatile __WDTCONbits_t sfr WDTCONbits @ 0xBF800000;

77

Supported Data Types and Variables C Language Features

3.3.10.4 __strictcall Function Qualifier

If the __strictcall qualifier is used, only the first 4 a registers are used for passing parameters

to this function. If the __strictcall qualifier is not used, the HI-TECH C PRO for the PIC32

MCU Family will dynamically determine which registers to use for passing parameters for that

function.

3.3.10.5 ISA Function Qualifiers

Use of one of the mips16e or mips32r2 qualifiers may be used to explicitly generate a function in

the particular ISA. Note that these qualifiers will override the default ISA specified by the --ISA

option (see 2.6.32) for the qualified function. Note that interrupt functions can not be generated in

mips16e. If the default ISA is mips16e, ensure all interrupt functions are qualified as mips32r2.

3.3.11 Pointer Types

There are two basic pointer types supported by HI-TECH C PRO for the PIC32 MCU Family: data

pointers and function pointers. Data pointers hold the address of variables which can be read, and

possibly written, indirectly by the program. Function pointers hold the address of an executable

routine which can be called indirectly via the pointer. As the PIC32 has a flat memory space, both

of these pointer types are 32-bit and are addressed in the same manner. It is helpful to first review

the ANSI standard conventions for definitions of pointer types.

3.3.11.1 Pointers to Const

The const qualifier plays no direct part in specifying the pointer classification that the compiler will

allocate to a pointer. This qualifier should be used when the target, or targets, referenced by the

pointer should be read-only. The addresses of const objects assigned to a pointer will result in that

pointer having a classification capable of accessing the program space. The exact classification will

also depend on other factors.

The code generator tracks the total size of const qualified variables that are defined. It uses

this information to determine how large any pointers that can access const objects must be. Such

pointers are 4 bytes wide.

For pointer that are accessing const objects, the address contained within the pointer is an offset

into the psect used to store the const data. For programs defining less than 64 kbytes of const

data, this data is placed into a psect called const; for larger const data amounts, the psect is called

constfar.

•

Any hand-written assembler code, or C code that writes to the table pointer SFRs di-

78

C Language Features Storage Class and Object Placement

rectly, must ensure that the contents of any non-active table registers are preserved.

Saving both TBLPTRH and TBLPTRU will ensure that this requirement is met.

3.3.11.2 Function Pointers

Function pointers can be defined to indirectly call functions or routines in the program space. The

size of these pointers are 32 bits wide. The addresses for all code labels are shown in the map file as

an untruncated 4-byte address.

3.4 Storage Class and Object Placement

Objects are positioned in different memory areas dependant on their storage class and declaration.

This is discussed in the following sections.

3.4.1 Local Variables

A local variable is one which only has scope within the block in which it was defined. That is, it may

only be referenced within that block. C supports two classes of local variables in functions: auto

variables which are normally allocated in the function’s auto-variable block, and static variables

which are always given a fixed memory location and have permanent duration.

3.4.1.1 Auto Variables

auto (short for automatic) variables are the default type of local variable. Unless explicitly declared

to be static a local variable will be made auto, however the auto keyword may be used if desired.

Note that most type qualifiers cannot be used with auto variables, since there is no control over the

storage location. The exceptions are const and volatile.

All auto variables exist for their duration in the stack. As such, they will not appear as symbols

in the map file.

3.4.1.2 Static Variables

Uninitialized static variables are allocated in the bss psect. They will occupy fixed memory

locations which will not be overlapped by storage for other functions. Static variables are local in

scope to the function in which they are declared, but may be accessed by other functions via pointers

since they have permanent duration. Static variables are guaranteed to retain their value between

79

Storage Class and Object Placement C Language Features

calls to a function, unless explicitly modified via a pointer. Static variables are not subject to any

architectural limitations on the PIC32.

Static variables which are initialised are allocated in the data psect are only initialised once

during the program’s execution. Thus, they may be preferable over initialised auto objects which

are assigned a value every time the block in which the definition is placed is executed.

3.4.2 Absolute Variables

A global or static variable can be located at an absolute address by following its declaration with

the construct @ address, for example:

volatile unsigned char Portvar @ 0x06;

will declare a variable called Portvar located at 06h. The compiler will reserve storage for this

object via the assembler DABS directive, and will equate the variable to that address. The compiler-

generated assembler will include a line of the form:

_Portvar EQU 06h

This construct is primarily intended for equating the address of a C identifier with a microprocessor

special function register, but can be used to place user-defined variables at an absolute address. The

compiler and linker do not make any checks for overlap of absolute variables with other absolute

variables.

•

Defining absolute objects can fragment memory and may make it impossible for the

linker to position other objects. Avoid absolute objects if at all possible. If absolute

objects must be defined, try to place them at one end of a memory bank or space.

3.4.3 Objects in Program Space

Const objects are usually placed in program space. On PIC32 devices, the program space is 32

bit-wide, the compiler stores one character per byte location and values are read using the table read

instructions. All const-qualified data objects and string literals are placed in either the const or

farconst psect, depending on the amount of const data defined in the program. The appropriate

const psect is placed at an address above the upper limit of RAM since RAM and const pointers

use this address to determine if an access to ROM or RAM is required. See Section 3.3.11.

80

C Language Features Functions

3.5 Functions

3.5.1 Absolute Functions

The generated code associated with a function can be placed at an absolute address. This can be

accomplished by using an @ address construct in a similar fashion to that used with absolute vari-

ables.

The following example of an absolute function which will place the function label and first

assembly instruction corresponding to the function at address 400h:

int mach_status(int mode) @ 0x400

{

/* function body */

}

Using this construct with interrupt functions will not alter the position of the interrupt context

saving code that preceeds the code associated with the interrupt function body. Note also that the

address specified will be interpreted as a virtual address and not a physical address.

3.5.2 Function Argument Passing

The method used to pass function arguments depends on the size of the argument or arguments and

the degree of optimisation specified. The compiler is free to choose the most optimal combination of

passing arguments in registers or on the stack. Only argument values of a type equal to or less than 4

bytes are candidates for being passed in a register. Depending on the ISA of a given function, it will

be restricted to a subset of registers in which arguments can be passed to it. mips32r2 functions are

restricted to registers 1-27. mips16e functions are restricted to registers 4-7. Any arguments larger

than 4 bytes will always be passed on the stack in reverse order.

If the --STRICTCALLS option (2.6.53) or strictcall qualifier (3.3.10.4) is used, only the first 4

A registers are used for passing parameters. If the strictcalls option and/or qualifier is not used,

the HI-TECH C PRO for the PIC32 MCU Family will dynamically determine which registers to use

for passing parameters.

3.5.3 Function Return Values

Function return values are passed to the calling function as follows:

Function return values of a type equal to or less than 4 bytes are returned via register 2 (v0).

Return values of a type greater than 4 bytes are passed on the stack. In these cases the function will

reuse as much of the current stack frame as possible to pass the value.

81

Register Usage Conventions C Language Features

(a) stackframe

Figure 3.1: General Function Stack Frame

3.5.4 Function Stack Frame

Figure 3.1 illustrates the general arrangement of function stack frames used by the compiler.

3.6 Register Usage Conventions

Some of the general purpose registers of the device have been dedicated (depending on context) to

certain roles. All functions (both mips32r2 and mips16e) with a return type equal to or less than 4

bytes will return their value in register 2 (v0). See also 3.5.3. Register 28 (gp) is initialised in the

runtime startup code with the centre address of KSEG1 DRM to allow more efficient access of data

and bss objects in RAM. Register 29 (sp) serves as the program’s stack pointer and is initialised

in the runtime startup code. The compiler does not make use of the dedicated stack frame pointer

register. Register 30 (fp/s8)is initialised in the runtime startup code with the centre address of the

const psect to allow more efficient access of constant data in ROM. Therefore the const psect is

limited by a maximum size (padding included) of 64KB. Where programs require more constant

data the excess will be allocated to the constfar psect. See 2.6.48 for more information on the

--RUNTIME option. Register 31 (ra) is used to store the return address of the most recent function

call. In leaf functions (functions which occur only as leaf nodes in all call graphs) the contents of this

82

C Language Features Operators

register will always contain the return address from that function. In non-leaf functions the contents

of the register is preserved on the stack.

3.7 Operators

HI-TECH C PRO for the PIC32 MCU Family supports all the ANSI operators. The exact results of

some of these are implementation defined. The following sections illustrate code produced by the

compiler.

3.7.1 Integral Promotion

When there is more than one operand to an operator, they typically must be of exactly the same type.

The compiler will automatically convert the operands, if necessary, so they have the same type. The

conversion is to a “larger” type so there is no loss of information. Even if the operands have the same

type, in some situations they are converted to a different type before the operation. This conversion

is called integral promotion. HI-TECH C PRO for the PIC32 MCU Family performs these integral

promotions where required. If you are not aware that these changes of type have taken place, the

results of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties

of char, short int or bitfield types to either signed int or unsigned int. If the result of the

conversion can be represented by an signed int, then that is the destination type, otherwise the

conversion is to unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;

if(a - b < 10)

count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are con-

verted to signed int via integral promotion before the subtraction takes place. The result of the

subtraction with these data types is -50 (which is less than 10) and hence the body of the if() state-

ment is executed. If the result of the subtraction is to be an unsigned quantity, then apply a cast.

For example:

if((unsigned int)(a - b) < 10)

count++;

The comparison is then done using unsigned int, in this case, and the body of the if() would not be

executed.

83

Operators C Language Features

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This

operator toggles each bit within a value. Consider the following code.

unsigned char count, c;

c = 0x55;

if(~c == 0xAA)

count++;

If c contains the value 55h, it often assumed that ~c will produce AAh, however the result is FFAAh

and so the comparison above would fail. The compiler may be able to issue a mismatched compari-

son error to this effect in some circumstances. Again, a cast could be used to change this behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed

with char-type operands, but with int-type operands. However there are circumstances when the

result of an operation is identical regardless of whether the operands are of type char or int. In

these cases, HI-TECH C PRO for the PIC32 MCU Family will not perform the integral promotion

so as to increase the code efficiency. Consider the following example.

unsigned char a, b, c;

a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted to unsigned

int, the addition performed, the result of the addition cast to the type of a, and then the assignment

can take place. Even if the result of the unsigned int addition of the promoted values of b and c

was different to the result of the unsigned char addition of these values without promotion, after

the unsigned int result was converted back to unsigned char, the final result would be the same.

An 8-bit addition is more efficient than a 16-bit addition and so the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion would have

to be performed to comply with the ANSI standard.

3.7.2 Shifts applied to integral types

The ANSI standard states that the result of right shifting (> > operator) signed integral types is

implementation defined when the operand is negative. Typically, the possible actions that can be

taken are that when an object is shifted right by one bit, the bit value shifted into the most significant

bit of the result can either be zero, or a copy of the most significant bit before the shift took place.

The latter case amounts to a sign extension of the number.

PICC-32 performs a sign extension of any signed integral type (for example signed char,

signed int or signed long). Thus an object with the signed int value 01240000h shifted right

one bit will yield the value 00920000h and the value 80240000h shifted right one bit will yield the

value C0120000h.

84

C Language Features Psects

Table 3.5: Integral division

Operand 1 Operand 2 Quotient Remainder

+ + + +

- + - -

+ - - +

- - + -

Right shifts of unsigned integral values always clear the most significant bit of the result.

Left shifts (< < operator), signed or unsigned, always clear the least significant bit of the result.

3.7.3 Division and modulus with integral types

The sign of the result of division with integers when either operand is negative is implementation

specific. 3.5 shows the expected sign of the result of the division of operand 1 with operand 2 when

compiled with PICC-32.

In the case where the second operand is zero (division by zero), the result will always be zero.

3.8 Psects

The compiler splits code and data objects into a number of standard program sections referred to

as psects. The HI-TECH assembler allows an arbitrary number of named psects to be included in

assembler code. The linker will group all data for a particular psect into a single segment.

•

If you are using PICC32 to invoke the linker, you don’t need to worry about the in-

formation documented here, except as background knowledge. If you want to run the

linker manually (this is not recommended), or write your own assembly language sub-

routines, you should read this section carefully.

A psect can be created in assembly code by using the PSECT assembler directive (see Section

4.3.10.3).

3.8.1 Compiler-generated Psects

The code generator places code and data into psects with standard names which are subsequent

positioned by the default linker options. These psects are linked into KSEG1 internal boot flash,

internal program flash and internal RAM, then loaded into the respective physical implementations.

85

Psects C Language Features

The compiler-generated psects which are loaded in internal boot flash are:

init Runtime startup code which performs initialisation, for example, clearing the RAM.

powerup Used to load any user-defined routine in powerup.as.

config Used to store the configuration words.

reset Code to service the reset vector at 0xBFC00000 and invoke the runtime startup code.

bootex Code to service the bootstrap exception vector at 0xBFC00380 and invoke (if provided) the

interrupt function to handle it.

The compiler-generated psects which are placed in Internal program flash are:

text16 Is a global psect used for MIPS16e executable code and library functions.

text32 Is a global psect used for MIPS32r2 executable code and library functions.

idata These psects contain the ROM image of any initialised variables. These psects are copied into

the data psects at startup.

strings This psect holds the program string literals table.

const These psects hold objects that are declared const and are within range of the pointer stored

in register 30 (a.k.a s8 or fp).

constfar These psects hold objects that are declared const and are out of range of the pointer stored

in register 30 (a.k.a s8 or fp).

vectors This psect holds the interrupt vector table.

The compiler-generated psects which are loaded in internal RAM are:

bss These psects contain uninitialized global or static variables.

data These psects contain initialised global or static variables. These psects will be wholly placed

within a RAM bank and so can be accessed more efficiently.

nvram This psect is used to store (non-bit) persistent variables. It is not cleared or otherwise

modified at startup.

nvbit This psect holds persistent bit objects. It is not cleared or otherwise modified at startup.

rbit These psects are used to store all bit variables.

86

C Language Features Interrupt Handling in C

stack This psect contains the program stack.

heap This psect contains the program heap.

heapstack This psect contains the program heap and stack.

3.9 Interrupt Handling in C

The compiler incorporates features allowing interrupts to be handled from C code. Interrupt func-

tions are often called interrupt service routines (ISR). Interrupts are also known as exceptions. PIC32

devices have 64 separate interrupt vectors servicing 96 external interrupts, and a priority scheme to

determine which interrupts are serviced first. See the device datasheet for more detailed information.

3.9.1 Interrupt Functions

Functions of void type and void parameters may be qualified interrupt. Functions qualified in

this manner will be generated with the necessary context handling code depending on its intended

duty. The duty of an interrupt function can be specified at compile time and/or runtime depending on

the interrupt vector table type specified. To specify the duty of an interrupt at compile time assign it

the appropriate absolute address with the @ operator. These addresses aren’t necessarily absolute but

are more truly a “magic” number interpreted by the compiler as referring to a specific interrupt or

exception. These addresses are defined in the compiler header file <pic32.h>. See 2.6.31 for more

details on the interrupt vector table types and assigning specific interrupt function duties.

Interrupt functions qualified fast assume that the function will be using a shadow set of general

purpose registers reserved for high priority interrupts. As a result, these functions only perform a

minimum of context handling.

3.9.2 Interrupt & Exception Types

PICC32 supports the use of several different types of interrupts. Briefly, these are:

Non-Maskable Interrupts An interrupt function may be assigned the duty of servicing non-maskable

interrupts by addressing it with the macro NM_INTERRUPT defined in <pic32.h>. Only one

interrupt function may be assigned this duty and only at compile time. If no interrupt function

is assigned this duty the compiler will generate a default handler which consists solely of an

eret instruction.

General Exceptions An interrupt function may be assigned the duty of servicing general excep-

tions (i.e. exception 0x180) by addressing it with the macro GENERAL_EXCEPTION in defined

87

Mixing C and Assembly Code C Language Features

<pic32.h>. Only one interrupt function may be assigned this duty and only at compile time.

If no interrupt function is assigned this duty the compiler will generate a default handler which

consists solely of an infinite loop.

Bootstrap Exceptions An interrupt function may be assigned the duty of servicing bootstrap excep-

tions by addressing it with the macro BOOTSTRAP_EXCEPTION defined in <pic32.h>. Only

one interrupt function may be assigned this duty and only at compile time. If no interrupt func-

tion is assigned this duty the compiler will generate a default handler which consists solely of

an infinite loop.

Soft resets An interrupt function may be assigned the duty of servicing a soft reset by addressing

it with the macro SOFT_RESET in defined <pic32.h>. Only one interrupt function may be

assigned this duty and only at compile time. If no interrupt function is assigned this duty the

compiler will not add a test for a soft reset in the runtime startup code or generate a default

handler.

General interrupt function An interrupt function may be assigned the duty of servicing any un-

specified interrupts by addressing it with the macro GENERAL_INTERRUPT defined in <pic32.h>.

Only one interrupt function may be assigned this duty and only at compile time. If no inter-

rupt function is assigned this duty the compiler will not generate a default general interrupt

function.

3.9.3 Runtime Startup Callback Sequence

The following conditions and callbacks (in order) are tested and invoked in the boot flash runtime

startup code before device initialisation:

1. user supplied powerup routine;

2. non-maskable interrupt; and

3. soft reset.

3.10 Mixing C and Assembly Code

Assembly code can be mixed with C code using three different techniques. The following section

describes writing assembly code in separate assembly modules. The subsequent section looks at two

methods of having assembly code being placed in-line with C code.

The following sections describe consideration of mixing assemby with C code, and some of the

special features the compiler uses to allow for assembly-C code interation.

88

C Language Features Mixing C and Assembly Code

3.10.1 External Assembly Language Functions

Entire functions may be coded in assembly language as separate .as source files, assembled by the

assembler, ASPIC32 , and combined into the binary image using the linker. This technique allows

arguments and return values to be passed between C and assembly code.

The following are guidelines that must be adhered to when writing a routine in assembly code

that is callable from C code.

• select, or define, a suitable psect for the executable assembly code

• select a name (label) for the routine so that its corresponding C identifier is valid

• ensure that the routine’s label is globally accessible, i.e. from other modules

• select an appropriate equivalent C prototype for the routine on which argument passing can be

modelled

• ensure any symbol used to hold arguments to the routine is globally accessible

• ensure any symbol used to hold a return value is globally accessible

• optionally, use a signature value to enable type checking of parameters when the function is

called

• write the routine ensuring arguments are read from the correct location and the return value is

loaded to the correct storage location before returning

• ensure any local variables required by the routine have space reserved by the appropriate

directive

A mapping is performed on the names of all C functions and non-static global variables. See

3.10.3 for a description of mappings between C and assembly identifiers.

TUT•RIAL

C-CALLABLE ASSEMBLY ROUTINES An assembly routine is required which can add

two 16-bit values together. The routine must be callable from C code. Both the values

are passed in as arguments when the routine is called from the C code. The assembly

routine should return the result of the addition as a 16-bit quantity.

Most compiler-generated executable code is placed in a psect called text32 (or text16

for mips16e functions - see Section 3.8.1). As we do not need to have this assembly

routine linked at any particular location, we can use this same psect so the code is

bundled with other executable code and stored at any location in the program space.

89

Mixing C and Assembly Code C Language Features

This way we do not need to use any additional linker options. So we use an ordinary

looking psect that you would see in assembly code produced by the compiler. The

psect’s name is text32. It will be linked somewhere in the range of addresses defined

by the CODE class:

PSECT text32,class=CODE

Now we would like to call this routine as add in the C code. Thus, in assembly code, we

must choose the name _add as this then maps to the C identifier add. If the name add

was chosen for the assembly routine label, then it could never be called from C code.

The name of the assembly routine is the label that we will associate with the assembly

code:

_add:

We need to be able to call this from other modules, so make this label globally accessi-

ble:

GLOBAL _add

By compiling a dummy C function with a similar prototype to the prototype we require

for our function add, we can determine the signature value. To see the value, generate

an assembly list file, and compile with the assembler optimizer turned off. Look for a

directive similar to that below, which can then be copied into the assembly source for

our add routine.

SIGNAT _add,8298

When writing the function, you can find that the parameters will be loaded into the

function’s parameter area by the calling function, and the result should be placed in the

same location to be returned.

To call an assembly routine from C code, a declaration for the routine must be provided. This ensures

that the compiler knows how to encode the function call in terms of parameters and return values,

however no other code is necessary.

If a signature value is present in the assembly code routine, its value will be checked by the linker

when the calling and called routines’ signatures can be compared.

TUT•RIAL

To continue the previous example, here is a code snippet that declares the operation of

the assembler routine, then calls the routine.

extern unsigned short add(unsigned short a, unsigned short b);

void main(void)

90

C Language Features Mixing C and Assembly Code

{

short a, result;

a = read_port();

result = add(5, a);

}

Another example, suppose you have an assembly language function to double an unsigned byte

value:

extern __strictcall char twice(char);

declares an external function called twice()which has a return value type of char and takes a single

argument of type char. The actual code for twice() will be supplied by an external .as file which

will be separately assembled with ASPIC32 . The full PIC32 assembly code for twice() would be

something like:

PROCESSOR 32MX360F512L

PSECT text32, class=KSEG0_PFM, local, reloc=4, isa=mips32r2

GLOBAL _twice

SIGNAT _twice,1049

_twice:

; parameter passed via a0 register (if using __strictcall)

sll a0, 1

andi a0, (1< < 8) -1

move v0, a0

jr ra

END

The name of the assembly language function is the name declared in C, with an underscore prepended.

The GLOBAL pseudo-op is the assembler equivalent to the C extern keyword and the SIGNAT

pseudo-op is used to enforce link time calling convention checking. Signature checking and the

SIGNAT pseudo-op are discussed in more detail later in this chapter.

Note that in order for assembly language functions to work properly they must look in the right

place for any arguments passed and must correctly set up any return values. Local variable allocation

(via the FNSIZE directive), argument and return value passing mechanisms are discussed in the

Section 4.7 and should be understood before attempting to write assembly language routines.

91

Mixing C and Assembly Code C Language Features

3.10.2 #asm, #endasm and asm()

PIC32 instructions may also be directly embedded “in-line” into C code using the directives #asm,

#endasm or the statement asm().

The #asm and #endasm directives are used to start and end a block of assembly instructions which

are to be embedded into the assembly output of the code generator. The #asm and #endasm construct

is not syntactically part of the C program, and thus it does not obey normal C flow-of-control rules,

however you can easily include multiple instructions with this form of in-line assembly.

The asm() statement is used to embed a single assembler instruction. This form looks and be-

haves like a C statement, however each instruction must be encapsulated within an asm() statement.

•

You should not use a #asm block within any C constructs such as if, while, do etc.

In these cases, use only the asm("") form, which is a C statement and will correctly

interact with all C flow-of-control structures.

The following example shows both methods used to shift a byte right by 1 bit:

unsigned char var;

void main(void){

var = 1;

#asm // like this...

lbu a2,x-gptr(gp)

sra a2, a2,1

andi a3, a2, 255

sb a3, _x-__gptr(gp)

#endasm

asm(“lbu a2,x-gptr(gp)”);

asm(“sra a2, a2,1”);

asm(“andi a3, a2, 255”);

asm(“sb a3, _x-__gptr(gp)”);

}

When using in-line assembly code, great care must be taken to avoid interacting with compiler-

generated code. If in doubt, compile your program with the PICC32 -S option and examine the

assembly code generated by the compiler.

IMPORTANT NOTE: the #asm and #endasm construct is not syntactically part of the C program,

and thus it does not obey normal C flow-of-control rules. For example, you cannot use a #asm block

with an if statement and expect it to work correctly. If you use in-line assembler around any C

92

C Language Features Mixing C and Assembly Code

constructs such as if, while, do etc. then you should use only the asm("") form, which is a C

statement and will correctly interact with all C flow-of-control structures.

3.10.3 Accessing C objects from within Assembly Code

Global C objects may be directly accessed from within assembly code using their name prepended

with an underscore character. For example, the object foo defined globally in a C module:

int foo;

may be access from assembler as follows.

GLOBAL _foo

sw a3, _foo-__gptr(gp)

If the assembler is contained in a different module, then the GLOBAL assembler directive should be

used in the assembly code to make the symbol name available, as above. If the object is being

accessed from in-line assembly in another module, then an extern declaration for the object can be

made in the C code, for example:

extern int foo;

This declaration will only take effect in the module if the object is also accessed from within C code.

If this is not the case then, an in-line GLOBAL assembler directive should be used. Care should be

taken if the object is defined in a bank other than 0. The address of a C object includes the bank

information which must be stripped before the address can be used in most PIC32 instructions. The

exceptions are the movff and lsfr instructions. Failure to do this may result in fixup errors issued

by the linker. If in doubt as to writing assembler which access C objects, write code in C which

performs a similar task to what you intend to do and study the assembler listing file produced by the

compiler.

•

C identifiers are assigned different symbols in the output assembly code so that an as-

sembly identifier cannot conflict with an identifier defined in C code. If assembly pro-

grammers choose identifier names that do not begin with an underscore, these identifiers

will never conflict with C identifiers. Importantly, this implies that the assembly identi-

fier, i, and the C identifier i relate to different objects at different memory locations.

93

Mixing C and Assembly Code C Language Features

3.10.3.1 Accessing special function register names from assembler

If writing separate assembly modules, SFR definitions will not automatically be present. If writing

assembly code from within a C module, SFRs may be accessed by referring to the symbols defined

by the chip-specific C header files. Whenever you include <htc.h> into a C module, all the available

SFRs are defined as absolute C variables. As the contents of this file is C code, it cannot be included

into an assembler module, but assembly code can uses these definitions. To use a SFR in in-line

assembly code from within the same C module that includes <htc.h>, simply use the symbol with

an underscore character prepended to the name. For example:

#include <htc.h>

void main(void)

{

PORTA = 0x55FFFFFF;

asm("li a3, 055FFFFFFh");

asm("li a2, _PORTA");

asm("sw a3, 0(a2)");

...

}

3.10.4 Interaction between Assembly and C Code

HI-TECH C PRO for the PIC32 MCU Family incorporates several features designed to allow C code

to obey requirements of user-defined assembly code.

The command-line driver ensures that all user-defined assembly files have been processed first,

before compilation of C source files begin. The driver is able to read and analyse certain information

in the relocatable object files and pass this information to the code generator. This information is

used to ensure the code generator takes into account requirement of the assembly code.

3.10.4.1 Absolute Psects

Some of the information that is extracted from the relocatable objects by the driver relates to absolute

psects, specifically psects defined using the abs and ovrld, PSECT flags, see Section 4.3.10.3 for

more information. These are psects have been rarely required in general coding, but do allow for

data to be collated over multiple modules in a specific order.

HI-TECH C PRO for the PIC32 MCU Family is able to determine the address bounds of abso-

lute psects to enure that the output of C code does not consume specific resources required by the

assembly code. The code generator will ensure that any memory used by these psects are reserved

and not used by C code. The linker options are also adjusted by the driver to enure that this memory

is not allocated.

94

C Language Features Mixing C and Assembly Code

TUT•RIAL

PROCESSING OF ABSOLUTE PSECTS An assembly code files defines a table that must

be located at address 210h in the data space. The assembly file contains:

PSECT lkuptbl,class=RAM,space=1,abs,ovlrd

ORG 210h

lookup:

ds 20h

When the project is compiled, this file is assembled and the resulting relocatable object

file scanned for absolute psects. As this psect is flagged as being abs and ovlrd, the

bounds and space of the psect will be noted — in this case a memory range from address

210h to 22fh in memory space 1 is being used. This information is passed to the code

generator to ensure that these address spaces are not used by C code. The linker will

also be told to remove these ranges from those available, and this reservation will be

observable in the map file. The RAM class definition, for example, may look like:

-ARAM=00h-0FFhx2,0200h-020Fh,0230h-02FFh,0300h-03FFhx3

for an 18F452 device, showing that addresses 210h through 22F were reserved from this

class range.

3.10.4.2 Undefined Symbols

Variables can be defined in assembly code if required, but in some instances it is easier to do so in

C source code, in other cases, the symbols may need to be accessable from both assembly and C

source code.

A problem can occur if there is a variable defined in C code, but is never referenced throughout

the entire the C program. In this case, the code generator may remove the variable believing it is

unused. If assembly code is relying on this definition an error will result.

To work around this issue, HI-TECH C PRO for the PIC32 MCU Family also searches assembly-

derived object files for symbols which are undefined. These will typically be symbols that are used,

but not defined, in assembly code. The code generator is informed of these symbols, and if they

are encountered in the C code the variable is automatically marked as being volatile. This is the

equivalent of the programmer having qualified the variable as being volatile in the source code,

see Section 3.3.9. Variables qualified as volatile will never be removed by the code generator,

even if they appear to be unused throughout the program.

TUT•RIAL

PROCESSING OF UNDEFINED SYMBOLS A C source module defines a global variable

as follows:

95

Preprocessing C Language Features

int input;

but this variable is only ever used in assembly code. The assembly module(s) can simply

declare and link in to this symbol using the GLOBAL assembler directive, and them make

use of the symbol.

GLOBAL _input

PSECT text,class=CODE,reloc=2

li a2, _PORTA

lw a3, 0(a2)

sw s3, (((_input)-(gptr))(gp)

TUT•RIAL

In this instance the C variable input will not be removed and be treated as if it was

qualified volatile.

3.11 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if

the -P command-line option is issued, see Section 2.6.11.

3.11.1 C Language Comments

HI-TECH C PRO for the PIC32 MCU Family accepts both block and in-line (C99 standard) C

source comments, as shown in the following examples. In-line comments are normally termined

by the newline character, however they can span multiple lines when the line is terminated with a

backslash character.

/* I am a block comment

that can run over more

than one line of source */

// I am an in-line comment

// I am an in-line comment \

that spans two lines

96

C Language Features Preprocessing

Both these comment styles can be used, in addition to the standard assembly comment (see Section

4.3.5), in assembly source code if the -P command-line option is issued, see Section 2.6.11.

All comments are removed by the C preprocessor before being passed to the parser application.

3.11.2 Preprocessor Directives

HI-TECH C PRO for the PIC32 MCU Family accepts several specialised preprocessor directives in

addition to the standard directives. All of these are listed in Table 3.6.

Macro expansion using arguments can use the # character to convert an argument to a string, and

the ## sequence to concatenate tokens.

3.11.3 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional com-

pilation based on chip type etc. The symbols listed in Table 3.7 show the more common symbols

defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

Symbol When set Usage

HI_TECH_C Always To indicate that the compiler in use is HI-

TECH C.

_HTC_VER_MAJOR_ Always To indicate the integer component of the

compiler’s version number.

_HTC_VER_MINOR_ Always To indicate the decimal component of the

compiler’s version number.

_HTC_VER_PATCH_ Always To indicate the patch level of the com-

piler’s version number.

__PICC32__ Always To indicate the use of the HI-TECH PICC-

32 compiler.

_PIC32 Always To indicate that this is a PIC32 device.

_chipname When chip selected To indicate the specific chip type selected

__chipname__ Always To indicate the target device.

__FILE__ Always To indicate this source file being prepro-

cessed.

__LINE__ Always To indicate this source line number.

__DATE__ Always To indicate the current date, e.g. May

2004

continued. . .

97

Preprocessing C Language Features

__TIME__ Always To indicate the current time, e.g.

08:06:31.

__LANGUAGE_C__ Always To indicate the target language.

_PLIB --runtime=plib To indicate that the peripheral libraries

have been linked in.

__OPTIMIZE_SPEED__ –opt=speed To indicate that compiler optimisations

have focused on speed.

__OPTIMIZE_SIZE__ –opt=size To indicate that compiler optimisations

have focused on size.

_INTERRUPTS_SINGLE --interrupts=single To indicate that the current interrupt

scheme uses a single interrupt vector.

_INTERRUPTS_MULTI --interrupts=multi or by default To indicate that the current interrupt

scheme uses a multiple interrupt vectors.

_INTERRUPTS_GENEX --interrupts=genex To indicate that the current interrupt

scheme uses only the general exception

vector.

_INTERRUPTS_PFM --interrupts=pfm To indicate that the current interrupt

scheme locates the vector table in program

flash memory.

_INTERRUPTS_BOOT --interrupts=boot or by default To indicate that the current interrupt

scheme locates the vector table in boot

flash memory.

_INTERRUPTS_RAM --interrupts=ram To indicate that the current interrupt

scheme uses ram vectors.

_INTERRUPTS_ROM --interrupts=rom or by default To indicate that the current interrupt

scheme uses rom vectors.

_INTERRUPTS_NONE --interrupts=none To indicate that no interrupt vector scheme

is to be employed

_DEFAULT_ISA_MIPS32R2 --isa=mips32r2 or by default To indicate that the default ISA is

MIPS32r2.

_DEFAULT_ISA_MIPS16E --isa=mips16e To indicate that the default ISA is

MIPS16e.

98

C Language Features Preprocessing

Table 3.6: Preprocessor directives

Directive Meaning Example

preprocessor null directive, do

nothing

#

#assert generate error if condition false #assert SIZE > 10

#asm signifies the beginning of in-line

assembly

#asm

mov r0, r1h

#endasm
#define define preprocessor macro #define SIZE 5

#define FLAG

#define add(a,b) ((a)+(b))
#elif short for #else #if see #ifdef

#else conditionally include source lines see #if

#endasm terminate in-line assembly see #asm

#endif terminate conditional source

inclusion

see #if

#error generate an error message #error Size too big

#if include source lines if constant

expression true

#if SIZE < 10

c = process(10)

#else

skip();

#endif
#ifdef include source lines if preprocessor

symbol defined

#ifdef FLAG

do_loop();

#elif SIZE == 5

skip_loop();

#endif
#ifndef include source lines if preprocessor

symbol not defined

#ifndef FLAG

jump();

#endif
#include include text file into source #include <stdio.h>

#include "project.h"
#line specify line number and filename

for listing

#line 3 final

#nn (where nn is a number) short for

#line nn

#20

#pragma compiler specific options 3.11.4

#undef undefines preprocessor symbol #undef FLAG

#warning generate a warning message #warning Length not set

99

Preprocessing C Language Features

Table 3.8: Pragma directives

Directive Meaning Example

jis Enable JIS character handling in

strings

#pragma jis

nojis Disable JIS character handling (de-

fault)

#pragma nojis

printf_check Enable printf-style format string

checking

#pragma

printf_check(printf) const

regsused Specify registers which are used in

an interrupt

#pragma regsused r4

switch Specify code generation for switch

statements

#pragma switch direct

warning Control messaging parameters #pragma warning disable

299,407

3.11.4 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.

These are implemented through the use of the ANSI standard #pragma facility. The format of a

pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options.

A list of the keywords is given in Table 3.8. Those keywords not discussed elsewhere are detailed

below.

3.11.4.1 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-

tional characters, the #pragma jis directive will enable proper handling of these characters, specif-

ically not interpreting a backslash, \, character when it appears as the second half of a two byte

character. The nojis directive disables this special handling. JIS character handling is disabled by

default.

3.11.4.2 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the

manner of printf(). Although the format string is interpreted at runtime, it can be compile-time

100

C Language Features Preprocessing

checked for consistency with the remaining arguments.

This directive enables this checking for the named function, e.g. the system header file <stdio.h>

includes the directive #pragma printf_check(printf) const to enable this checking for printf().

You may also use this for any user-defined function that accepts printf-style format strings. The

qualifier following the function name is to allow automatic conversion of pointers in variable argu-

ment lists. The above example would cast any pointers to strings in RAM to be pointers of the type

(const char *)

•

Note that the warning level must be set to -1 or below for this option to have any visible

effect. See Section 2.6.57.

3.11.4.3 The #pragma regsused Directive

HI-TECH C will automatically save context when an interrupt occurs. The compiler will determine

only those registers and objects which need to be saved for the particular interrupt function defined.

The #pragma regsused directive allows the programmer to indicate register usage for functions

that will not be “seen” by the code generator, for example if they were written in assembly code.

The general form of the pragma is:

#pragma regsused routine_name register_list

where routine_name is the assembly name of the function or routine whose register usage is

being defined, and register_list is a space-separated list of registers names. Those registers

not listed are assumed to be unused by the function or routine. The code generator may use any

unspecified registers to hold values across a function call. Hence, if the routine does in fact use these

registers, unreliable program execution may eventuate.

The register names are not case sensitive and a warning will be produced if the register name is

not recognised. A blank list indicates that the specified function or routine uses no registers.

3.11.4.4 The #pragma switch Directive

Normally the compiler decides the code generation method for switch statements which results in

the smallest possible code size. The #pragma switch directive can be used to force the compiler to

use one particular method. The general form of the switch pragma is:

101

Preprocessing C Language Features

Table 3.9: Valid register names

Register Name Description

wreg W register

status STATUS register

pclat PCLATH register

prodl, prodh product result registers

fsr0, fsr1, fsr2 indirect data pointers 0, 1 and 2

tblptrl, tblptrh, tblptru table pointer registers

Table 3.10: Switch types

switch type description

auto use smallest code size method (default)

direct table lookup (fixed delay)

#pragma switch switch_type

where switch_type is one of the available switch methods listed in Table .

Specifying the direct option to the #pragma switch directive forces the compiler to generate

the table look-up style switch method. This is mostly useful where timing is an issue for switch

statements (i.e.: state machines).

This pragma affects all code generated onward. The auto option may be used to revert to the

default behaviour.

3.11.4.5 The #pragma warning Directive

The warning disable pragma Some warning messages can be disabled by using the warning

disable pragma. This pragma will only affect warnings that are produced by either parser or the

code generator, i.e. errors directly associated with C code. The position of the pragma is only

significant for the parser, i.e. a parser warning number may be disabled, then re-enabled around

a section of the code to target specific instances of the warning. Specific instances of a warning

produced by the code generator cannot be individually controlled. The pragma will remain in force

during compilation of the entire module.

The state of those warnings which have been disabled can preserved and recalled using the

warning push and warning pop pragmas. Pushes and pops can be nested to allow a large degree

of control over the message behaviour.

TUT•RIAL

DISABLING A WARNING The following example shows the warning associated with

102

C Language Features Preprocessing

qualifying an auto object being disabled, number 348.

void main(void)

{

#pragma warning disable 348

near int c;

#pragma warning enable 348

/* etc */

}

int rv(int a)

{

near int c;

/* etc */

}

which will issue only one warning associated with the second definition of the auto

variable c. Warning number 348 is disabled during parsing of the definition of the auto

variable, c, inside the function main.

altst.c: 35: (348) auto variable "c" should not be qualified (warning)

This same affect would be observed using the following code.

void main(void)

{

#pragma warning push

#pragma warning disable 348

near int c;

#pragma warning pop

/* etc */

}d

int rv(int a)

{

near int c;

/* etc */

}

Here the state of the messaging system is saved by the warning push pragma. Warning

348 is disabled, then after the source code which triggers the warning, the state of the

messaging system is retrieved by the use of the warning pop pragma.

103

Linking Programs C Language Features

The warning error/warning pragma It is also possible to change the type of some messages.

This is only possible by the use of the warning pragma and only affects messages generated by the

parser or code generator. The position of the pragma is only significant for the parser, i.e. a parser

message number may have its type changed, then reverted back around a section of the code to target

specific instances of the message. Specific instances of a message produced by the code generator

cannot be individually controlled. The pragma will remain in force during compilation of the entire

module.

TUT•RIAL

The following shows the warning produced in the previous example being converted to

an error for the instance in the function main().

void main(void)

{

#pragma warning error 348

near int c;

#pragma warning warning 348

/* etc */

}

int rv(int a)

{

near int c;

/* etc */

}

Compilation of this code would result in an error, and as with any error, this will force

compilation to cease after the current module has concluded, or the maximum error

count has been reached.

3.12 Linking Programs

The compiler will automatically invoke the linker unless requested to stop after producing assembly

code (PICC32 -S option) or object code (PICC32 -C option).

HI-TECH C, by default, generates Intel HEX. Use the --OUTPUT= option to specify a different

output format.

After linking, the compiler will automatically generate a memory usage map which shows the

address used by, and the total sizes of, all the psects which are used by the compiled code.

104

C Language Features Linking Programs

The program statistics shown after the summary provides more concise information based on

each memory area of the device. This can be used as a guide to the available space left in the device.

More detailed memory usage information, listed in ascending order of individual psects, may

be obtained by using the PICC32 --SUMMARY=psect option. Generate a map file for the complete

memory specification of the program.

3.12.1 Replacing Library Modules

Although HI-TECH C comes with a librarian (LIBR) which allows you to unpack a library files and

replace modules with your own modified versions, you can easily replace a library module that is

linked into your program without having to do this. If you add the source file which contains the

library routine you wish to replace on the command-line list of source files then the routine will

replace the routine in the library file with the same name.

•

This method works due to the way the linker scans source and library file. When trying

to resolve a symbol (in this instance a function name) the linker first scans all source

modules for the definition. Only if it cannot resolve the symbol in these files does it

then search the library files. Even though the symbol may be defined in a source file

and a library file, the linker will not search the libraries and no multiply defined symbol

error will result. This is not true if a symbol is defined twice in source files.

For example, if you wished to make changes to the library function max() which resides in the file

max.c in the SOURCES directory, you could make a copy of this source file, make the appropriate

changes and then compile and use it as follows.

PICC32 --chip=32MX360F512L main.c init.c max.c

The code for max() in max.c will be linked into the program rather than the max() function con-

tained in the standard libraries. Note, that if you replace an assembler module, you may need the

-P option to preprocess assembler files as the library assembler files often contain C preprocessor

directives.

3.12.2 Signature Checking

The compiler automatically produces signatures for all functions. A signature is a 16-bit value

computed from a combination of the function’s return data type, the number of its parameters and

other information affecting the calling sequence for the function. This signature is output in the

object code of any function referencing or defining the function.

105

Linking Programs C Language Features

At link time the linker will report any mismatch of signatures. HI-TECH C PRO for the PIC32

MCU Family is only likely to issue a mismatch error from the linker when the routine is either a

precompiled object file or an assembly routine. Other function mismatches are reported by the code

generator.

TUT•RIAL

It is sometimes necessary to write assembly language routines which are called from C

using an extern declaration. Such assembly language functions should include a signa-

ture which is compatible with the C prototype used to call them. The simplest method of

determining the correct signature for a function is to write a dummy C function with the

same prototype and compile it to assembly language using the PICC32 -S option. For

example, suppose you have an assembly language routine called _widget which takes

two int arguments and returns a char value. The prototype used to call this function

from C would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two int

arguments and a char return value would be generated. In order to match the correct

signature the source code for widget needs to contain an assembler SIGNAT pseudo-op

which defines the same signature value. To determine the correct value, you would write

the following code:

char widget(int arg1, int arg2)

{

}

and compile it to assembly code using

PICC32 -S x.c

The resultant assembly code includes the following line:

SIGNAT _widget,8249

The SIGNAT pseudo-op tells the assembler to include a record in the .obj file which

associates the value 8249 with symbol _widget. The value 8249 is the correct signature

for a function with two int arguments and a char return value. If this line is copied into

the .as file where _widget is defined, it will associate the correct signature with the

function and the linker will be able to check for correct argument passing. For example,

if another .c file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature mis-

match which will alert you to the possible existence of incompatible calling conventions.

106

C Language Features Standard I/O Functions and Serial I/O

Table 3.11: Supported standard I/O functions

Function name Purpose

printf(const char * s, ...) Formatted printing to stdout

sprintf(char * buf, const char * s, ...) Writes formatted text to buf

3.12.3 Linker-Defined Symbols

The link address of a psect can be obtained from the value of a global symbol with name __Lname

where name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The

highest address of a psect (i.e. the link address plus the size) is symbol __Hname.

If the psect has different load and link addresses the load start address is specified as __Bname.

3.13 Standard I/O Functions and Serial I/O

A number of the standard I/O functions are provided, specifically those functions intended to read

and write formatted text on standard output and input. A list of the available functions is in Table

3.11. More details of these functions can be found in Appendix A.

Before any characters can be written or read using these functions, the putch() and getch()

functions must be written. Other routines which may be required include getche() and kbhit().

You will find samples of serial code which implements the putch() and getch() functions in the

file serial.c in the SAMPLES directory.

107

Standard I/O Functions and Serial I/O C Language Features

108

Chapter 4

Macro Assembler

The Macro Assembler included with HI-TECH C PRO for the PIC32 MCU Family assembles source

files for PIC32 MCUs. This chapter describes the usage of the assembler and the directives (assem-

bler pseudo-ops and controls) accepted by the assembler in the source files.

The HI-TECH C Macro Assembler package includes a linker, librarian, cross reference generator

and an object code converter.

•

Athough the term “assembler” is almost universally used to decribe the tool which con-

verts human-readable mnemonics into machine code, both “assembler” and “assembly”

are used to describe the source code which such a tool reads. The latter is more com-

mon and is used in this manual to describe the language. Thus you will see the terms

assembly language (or just assembly), assembly listing and etc, but assembler options,

assembler directive and assembler optimizer.

4.1 Assembler Usage

The assembler is called ASPIC32 and is available to run on Windows, Linux and Mac OS systems.

Note that the assembler will not produce any messages unless there are errors or warnings — there

are no “assembly completed” messages.

Typically the command-line driver, PICC32 , is used to envoke the assembler as it can be passed

assembler source files as input, however the options for the assembler are supplied here for instances

109

Assembler Options Macro Assembler

where the assembler is being called directly, or when they are specified using the command-line

driver option --SETOPTION, see Section 2.6.51.

The usage of the assembler is similar under all of available operating systems. All command-line

options are recognised in either upper or lower case. The basic command format is shown:

ASPIC32 [options] files

files is a space-separated list of one or more assembler source files. Where more than one source

file is specified the assembler treats them as a single module, i.e. a single assembly will be performed

on the concatenation of all the source files specified. The files must be specified in full, no default

extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with a minus sign - as

the first character. A full list of possible options is given in Table 4.1, and a full description of each

option follows.

Table 4.1: ASPIC32 command-line options

Option Meaning Default

-A Produce assembler output Produce object code

-C Produce cross-reference file No cross reference

-Cchipinfo Define the chipinfo file dat\picc-32.ini

-E[file|digit] Set error destination/format

-Flength Specify listing form length 66

-H Output hex values for constants Decimal values

-I List macro expansions Don’t list macros

-L[listfile] Produce listing No listing

-O Perform optimization No optimization

-Ooutfile Specify object name srcfile.obj

-Pprocessor Define the processor

-R Specify non-standard ROM

-Twidth Specify listing page width 80

-V Produce line number info No line numbers

-Wlevel Set warning level threshold 0

-X No local symbols in OBJ file

4.2 Assembler Options

The command-line options recognised by ASPIC32 are as follows.

110

Macro Assembler Assembler Options

-A An assembler file with an extension .opt will be produced if this option is used. This is useful

when checking the optimized assembly produced using the -O assembler option. Thus if both

-A and -O are used with an assembly source file, the file will be optimized and rewritten, with-

out the usual conversion to an object file.

The output file, when this option is used, is a valid assembly file that can be passed to the as-

sembler. This differs to the assembly list file produced by the assembler when the -L assembler

option is used.

-C A cross reference file will be produced when this option is used. This file, called srcfile.crf,

where srcfile is the base portion of the first source file name, will contain raw cross refer-

ence information. The cross reference utility CREF must then be run to produce the formatted

cross reference listing. See Section 4.10 for more information.

-Cchipinfo Specify the chipinfo file to use. The chipinfo file is called pic32.ini and can be found

in the DAT directory of the compiler distribution.

-E[file|digit] The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line line of the file filename.

The -E option with no argument will make the assembler use an alternate format for

error and warning messages. Use of the option in this form has a similar effect as the

same option used with command-line driver. See Section 2.5 for more information.

Specifying a digit as argument has a similar effect, only it allows selection of pre-set

message formats.

Specifying a filename as argument will force the assembler to direct error and warning

messages to a file with the name specified.

-Flength By default when an assembly list file is requested (see assembler option -L), the listing

format is pageless, i.e. the assembly listing output is continuous. The output may be formatted

into pages of varying lengths. Each page will begin with a header and title, if specified. The

-F option allows a page length to be specified. A zero value of length implies pageless

output. The length is specified in a number of lines.

-H Particularly useful in conjunction with the -A or -L ASPIC32 options, this option specifies that

output constants should be shown as hexadecimal values rather than decimal values.

-I This option forces listing of macro expansions and unassembled conditionals which would other-

wise be suppressed by a NOLIST assembler control. The -L option is still necessary to produce

a listing.

111

Assembler Options Macro Assembler

-Llistfile This option requests the generation of an assembly listing file. If listfile is specified

then the listing will be written to that file, otherwise it will be written to the standard output.

An assembly listing file contains additional fields, such as the address and opcode fields, which

are not part of the assembly source syntax, hence these files cannot be passed to the assembler

for compilation. See the assembler -A option for generating processed assembly source files

that can be used as source files in subsequent compilation.

-O This requests the assembler to perform optimization on the assembly code. Note that the use of

this option slows the assembly process down, as the assembler must make an additional pass

over the input code. Debug information for assembler code generated from C source code

may become unreliable.

-Ooutfile By default the assembler determines the name of the object file to be created by stripping

any suffix or extension (i.e. the portion after the last dot) from the first source filename and

appending .obj. The -O option allows the user to override the default filename and specify a

new name for the object file.

-Pprocessor This option defines the processor which is being used. The processor type can also be

indicated by use of the PROCESSOR directive in the assembler source file, see Section 4.3.10.20.

You can also add your own processors to the compiler via the compiler’s chipinfo file.

-Twidth This option allows specification of the assembly list file width, in characters. width

should be a decimal number greater than 41. The default width is 80 characters.

-V This option will include line number and filename information in the object file produced by

the assembler. Such information may be used by debuggers. Note that the line numbers will

correspond with assembler code lines in the assembler file. This option should not be used

when assembling an assembler file produced by the code generator from a C source file, i.e. it

should only be used with hand-written assembler source files.

-W[!]warnlevel This option allow the warning threshold level to be set. This will limit the number

of warning messages produce when the assembler is executing. The effect of this option is

similar to the command-line driver’s --WARN option, see Section 2.6.57. See Section 2.5 for

more information.

-X The object file created by the assembler contains symbol information, including local symbols,

i.e. symbols that are neither public or external. The -X assembler option will prevent the local

symbols from being included in the object file, thereby reducing the file size.

112

Macro Assembler HI-TECH C Assembly Language

4.3 HI-TECH C Assembly Language

The source language accepted by the macro assembler, ASPIC32 , is described below. All opcode

mnemonics and operand syntax are strictly PIC32 assembly language. Additional mnemonics and

assembler directives are documented in this section.

4.3.1 Pre-defined Macros

The PIC32 assembler features a number of convenient in-built macro instructions for both MIPS32r2

and MIPS16e instruction set architectures. The following sections describe these in more detail.

Note that these descriptions use the same notation used in the official MIPS documentation.

4.3.1.1 MIPS32r2 In-built Macro Instructions

LI rt, immediate Loads the immediate operand into the register rt using various combina-

tions of LUI, ORI and ADDIU instructions where appropriate.

LI rd rt immediate Loads the immediate operand into the register rd using various combi-

nations of LUI, ORI and ADDIU instructions where appropriate. If two instructions are required

then rt is used as a temporary register to store an intermediate result.

MOVE rd, rs A synonym of OR rd, rs, zero.

NEG rd, rt A synonym of SUB rd, zero, rt.

NEGU rd, rt A synonym of SUBU rd, zero, rt.

NOT rd, rt A synonym of NOR rd, zero, rt.

4.3.1.2 MIPS16E In-built Macro Instructions

ADDIUPC rx, immediate A synonym of ADDIU rx, pc, immediate.

LI32 rx, immediate Loads the 32 bit immediate operand into the register rx. Literal con-

stant immediate operands are loaded into the register using various combinations of LI, SLL,

ADDIU and NEG instructions. For immediate operands which cannot be determined until link

time, the appropriate value is stored in a small in situ table and loaded into rx with a LW

instruction relative to the pc.

LWPC rx, offset A synonym of LW rx, offset(pc).

113

HI-TECH C Assembly Language Macro Assembler

4.3.2 Instruction Operand Variants

Many of the 2 or 3 operand assembly machine and in-built instructions have variants with less

operands supported by the assembler. These variants have been enumerated in Tables 4.2 and 4.3 for

both MIPS32r2 and MIPS16e assembly respectively.

4.3.3 Statement Formats

Legal statement formats are shown in Table 4.4.

The label field is optional and, if present, should contain one identifier. A label may appear

on a line of its own, or precede a mnemonic as shown in the second format.

The third format is only legal with certain assembler directives, such as MACRO, SET and EQU. The

name field is mandatory and should also contain one identifier.

If the assembly file is first processed by the C preprocessor, see Section 2.6.11, then it may also

contain lines that form valid preprocessor directives. See Section 3.11.2 for more information on the

format for these directives.

There is no limitation on what column or part of the line in which any part of the statement

should appear.

4.3.4 Characters

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not

mnemonics and reserved words. Tabs are treated as equivalent to spaces.

4.3.4.1 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the

end of a line.

4.3.4.2 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character & is

used for token concatenation. To use the bitwise & operator within a macro body, escape it by using

&& instead. In a macro argument list, the angle brackets < and > are used to quote macro arguments.

4.3.5 Comments

An assembly comment is initiated with a semicolon that is not part of a string or character constant.

If the assembly file is first processed by the C preprocessor, see Section 2.6.11, then it may also

contain C or C++ style comments using the standard /* ... */ and // syntax.

114

Macro Assembler HI-TECH C Assembly Language

VARIANT INTERPRETATION

ADD rd, rt ADD rd, rd, rt

ADDU rd, rt ADDU rd, rd, rt

ADDI rt, immediate ADDI rt, rt, immediate

ADDIU rt, immediate ADDIU rt, rt, immediate

AND rd, rt AND rd, rd, rt

ANDI rt, immediate ANDI rt, rt, immediate

CLO rd CLO rd, rd

CLZ rd CLZ rd, rd

MUL rd, rt MUL rd, rd, rt

NEG rd NEG rd, rd

NEGU rd NEGU rd, rd

NOR rd, rt NOR rd, rd, rt

NOT rd NOT rd, rd

OR rd, rt OR rd, rd, rt

ORI rt, immediate ORI rt, rt, immediate

ROTR rd, sa ROTR rd, rd, sa

ROTRV rd, rs ROTRV rd, rd, rs

SLL rd, sa SLL rd, rd, sa

SLLV rd, rs SLLV rd, rd, rs

SLT rd, rt SLT rd, rd, rt

SLTU rd, rt SLTU rd, rd, rt

SRA rd, sa SRA rd, rd, sa

SRAV rd, rs SRAV rd, rd, rs

SRL rd, sa SRL rd, rd, sa

SRLV rd, rs SRLV rd, rd, rs

SUB rd, sa SUB rd, rd, sa

SUBU rd, sa SUBU rd, rd, sa

SLTI rt, immediate SLTI rt, rt, immediate

SLTIU rt, immediate SLTIU rt, rt, immediate

XOR rd, sa XOR rd, rd, sa

XORI rt, immediate XORI rt, rt, immediate

Table 4.2: MIPS32r2 Assembly Instruction Operand Variants.

115

HI-TECH C Assembly Language Macro Assembler

VARIANT INTERPRETATION

ADDU rx, ry ADDU rx, rx, ry

NEG rx NEG rx, rx

SLL rx, sa SLL rx, rx, sa

SRA rx, sa SRA rx, rx, sa

SRL rx, sa SRL rx, rx, sa

SUBU rx, ry SUBU rx, rx, ry

Table 4.3: MIPS16e Assembly Instruction Operand Variants

Table 4.4: ASPIC32 statement formats
Format 1 label:

Format 2 label: mnemonic operands ; comment

Format 3 name pseudo-op operands ; comment

Format 4 ; comment only

Format 5 <empty line>

4.3.5.1 Special Comment Strings

Several comment strings are appended to assembler instructions by the code generator. These are

typically used by the assembler optimizer.

The comment string ;volatile is used to indicate that the memory location being accessed in

the commented instruction is associated with a variable that was declared as volatile in the C

source code. Accesses to this location which appear to be redundant will not be removed by the

assembler optimizer if this string is present.

This comment string may also be used in assembler source to achive the same effect for locations

defined and accessed in assembly code.

4.3.6 Constants

4.3.6.1 Numeric Constants

The assembler performs all arithmetic with signed 32-bit precision.

The default radix for all numbers is 10. Other radices may be specified by a trailing base specifier

as given in Table 4.5.

Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identi-

fiers. Hexadecimal digits are accepted in either upper or lower case.

116

Macro Assembler HI-TECH C Assembly Language

Table 4.5: ASPIC32 numbers and bases
Radix Format

Binary digits 0 and 1 followed by B

Octal digits 0 to 7 followed by O, Q, o or q

Decimal digits 0 to 9 followed by D, d or nothing

Hexadecimal digits 0 to 9, A to F preceded by Ox or followed by H or h

Note that a binary constant must have an upper case B following it, as a lower case b is used for

temporary (numeric) label backward references.

In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit

format.

4.3.6.2 Character Constants and Strings

A character constant is a single character enclosed in single quotes ’.

Multi-character constants, or strings, are a sequence of characters, not including carriage return

or newline characters, enclosed within matching quotes. Either single quotes ’ or double quotes "

maybe used, but the opening and closing quotes must be the same.

4.3.7 Identifiers

Assembly identifiers are user-defined symbols representing memory locations or numbers. A sym-

bol may contain any number of characters drawn from the alphabetics, numerics and the special

characters dollar, $, question mark, ? and underscore, _.

The first character of an identifier may not be numeric. The case of alphabetics is significant,

e.g. Fred is not the same symbol as fred. Some examples of identifiers are shown here:

An_identifier

an_identifier

an_identifier1

4.3.7.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note

that this assembler attaches no significance to any symbol, and places no restrictions or expectations

on the usage of a symbol.

The names of psects (program sections) and ordinary symbols occupy separate, overlapping

name spaces, but other than this, the assembler does not care whether a symbol is used to represent

117

HI-TECH C Assembly Language Macro Assembler

bytes, words or sports cars. No special syntax is needed or provided to define the addresses of bits

or any other data type, nor will the assembler issue any warnings if a symbol is used in more than

one context. The instruction and addressing mode syntax provide all the information necessary for

the assembler to generate correct code.

4.3.7.2 Assembler-Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to

replace each specified identifier in each expansion of that macro. These unique symbols will have

the form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the

same form.

4.3.7.3 Symbolic Labels

A label is symbolic alias which is assigned a value equal to its offset within the current psect.

A label definition consists of any valid assembly identifier followed by a colon, :. The defini-

tion may appear on a line by itself or be positioned before a statement. Here are two examples of

legitimate labels interspersed with assembly code.

frank:

ori a3, zero, 16

j fin

simon44: sb zero, _input-__gptr(gp)

Here, the label frank will ultimately be assigned the address of the ori instruction, and simon44

the address of the sb instruction. Regardless of how they are defined, the assembler list file produced

by the assembler will always show labels on a line by themselves.

Labels may be used (and are prefered) in assembly code rather than using an absolute address.

Thus they can be used as the target location for jump-type instructions or to load an address into a

register.

Like variables, labels have scope. By default, they may be used anywhere in the module in which

they are defined. They may be used by code above their definition. To make a label accessable in

other modules, use the GLOBAL directive. See Section 4.3.10.1 for more information.

4.3.8 Expressions

The operands to instructions and directives are comprised of expressions. Expressions can be made

up of numbers, identifiers, strings and operators.

Operators can be unary (one operand, e.g. not) or binary (two operands, e.g. +). The operators

allowable in expressions are listed in Table 4.6. The usual rules governing the syntax of expressions

118

Macro Assembler HI-TECH C Assembly Language

Table 4.6: ASPIC32 operators

Operator Purpose Example

* Multiplication movlw 4*33

+ Addition bra $+1

- Subtraction DB 5-2

/ Division movlw 100/4

= or eq Equality IF inp eq 66

> or gt Signed greater than IF inp > 40

>= or ge Signed greater than or equal to IF inp ge 66

< or lt Signed less than IF inp < 40

<= or le Signed less than or equal to IF inp le 66

<> or ne Signed not equal to IF inp <> 40

low Low byte of operand movlw low(inp)

high High byte of operand movlw high(1008h)

highword High 16 bits of operand DW highword(inp)

mod Modulus movlw 77 mod 4

& Bitwise AND clrf inp&0ffh

^ Bitwise XOR (exclusive or) movlw inp^80

| Bitwise OR movlw inp|1

not Bitwise complement movlw not 055h

< < or shl Shift left DB inp> >8

> > or shr Shift right movlw inp shr 2

rol Rotate left DB inp rol 1

ror Rotate right DB inp ror 1

float24 24-bit version of real operand DW float24(3.3)

nul Tests if macro argument is null

119

HI-TECH C Assembly Language Macro Assembler

apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The

HI-TECH linker permits relocation of complex expressions, so the results of expressions involving

relocatable identifiers may not be resolved until link time.

4.3.9 Program Sections

Program sections, or psects, are simply a section of code or data. They are a way of grouping together

parts of a program (via the psect’s name) even though the source code may not be physically adjacent

in the source file, or even where spread over several source files.

•

The concept of a program section is not a HI-TECH-only feature. Often referred to as

blocks or segments in other compilers, these grouping of code and data have long used

the names text, bss and data.

A psect is identified by a name and has several attributes. The PSECT assembler directive is used

to define a psect. It takes as arguments a name and an optional comma-separated list of flags. See

Section 4.3.10.3 for full information on psect definitions. Chapter 5 has more information on the

operation of the linker and on optins that can be used to control psect placement in memory.

The assembler associates no significance to the name of a psect and the linker is also not aware

of which are compiler-generated or user-defined psects. Unless defined as abs (absolute), psects are

relocatable.

The following is an example showing some executable instructions being placed in the text32

psect, and some data being placed in the bss psect.

PSECT text32,class=KSEG0_PFM

adjust:

jal clear_fred

increment:

lbu a3,_fred-gptr(gp)

addiu a3,a3,1

PSECT bss

fred:

DS 1

PSECT text32,class=KSEG0_PFM

clear_fred:

sb zero,_fred-__gptr(gp)

120

Macro Assembler HI-TECH C Assembly Language

Note that even though the two blocks of code in the text32 psect are separated by a block in the bss

psect, the two text32 psect blocks will be contiguous when loaded by the linker. In other words, the

addiu a3,a3,1 instruction will be followed by the clrf instruction in the final ouptut. The actual

location in memory of the text32 and bss psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default (unnamed)

psect.

4.3.10 Assembler Directives

Assembler directives, or pseudo-ops, are used in a similar way to instruction mnemonicss, but either

do not generate code, or generate non-executable code, i.e. data bytes. The directives are listed in

Table 4.7, and are detailed below.

4.3.10.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public. If

the symbols are not defined in the current module, it is a reference to symbols in external modules.

Example:

GLOBAL lab1,lab2,lab3

4.3.10.2 END

END is optional, but if present should be at the very end of the code defined in the module. It will

terminate the assembly process, and not even blank lines should follow this directive.

If an expression is supplied as an argument, that expression will be used to define the entry point

(address) of the program. Whether this is of any use will depend on the type of output debug file

being generated and the target platform. It is typically most useful for hosted systems, where an

application program may not be located at the reset vector.

For example, if start_label is defined at the reset vector:

END start_label

4.3.10.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and,

optionally, a comma-separated list of flags. The allowed flags are listed in Table 4.8, below.

Once a psect has been declared it may be resumed later by another PSECT directive, however the

flags need not be repeated.

121

HI-TECH C Assembly Language Macro Assembler

Table 4.7: ASPIC32 assembler directives
Directive Purpose

GLOBAL Make symbols accessible to other modules or allow reference to

other modules’ symbols

END End assembly

PSECT Declare or resume program section

ORG Set location counter

EQU Define symbol value

SET Define or re-define symbol value

DB Define constant byte(s)

DW Define constant word(s)

DS Reserve storage

DABS Define absolute storage

IF Conditional assembly

ELSIF Alternate conditional assembly

ELSE Alternate conditional assembly

ENDIF End conditional assembly

FNADDR Inform the linker that a function may be indirectly called

FNARG Inform the linker that evaluation of arguments for one function

requires calling another

FNBREAK Break call graph links

FNCALL Inform the linker that one function calls another

FNCONF Supply call graph configuration information for the linker

FNINDIR Inform the linker that all functions with a particular signature

may be indirectly called

FNROOT Inform the linker that a function is the “root” of a call grpah

FNSIZE Inform the linker of argument and local variable for a function

MACRO Macro definition

ENDM End macro definition

LOCAL Define local tabs

ALIGN Align output to the specified boundary

PAGESEL Generate set/reset instruction to set PCLATH for this page

PROCESSOR Define the particular chip for which this file is to be assembled.

REPT Repeat a block of code n times

IRP Repeat a block of code with a list

IRPC Repeat a block of code with a character list

SIGNAT Define function signature

122

Macro Assembler HI-TECH C Assembly Language

Table 4.8: PSECT flags

Flag Meaning

abs Psect is absolute

bit Psect holds bit objects

class=name Specify class name for psect

delta=size Size of an addressing unit

global Psect is global (default)

isa Specify Instruction Set Architecture

limit=address Upper address limit of psect

local Psect is not global

ovrld Psect will overlap same psect in other modules

pure Psect is to be read-only

reloc=boundary Start psect on specified boundary

size=max Maximum size of psect

space=area Represents area in which psect will reside

with=psect Place psect in the same page as specified psect

• abs defines the current psect as being absolute, i.e. it is to start at location 0. This does

not mean that this module’s contribution to the psect will start at 0, since other modules may

contribute to the same psect.

• The bit flag specifies that a psect hold objects that are 1 bit long. Such psects have a scale

value of 8 to indicate that there are 8 addressable units to each byte of storage.

• The class flag specifies a class name for this psect. Class names are used to allow local psects

to be referred to by a class name at link time, since they cannot be referred to by their own

name. Class names are also useful where psects need only be positioned anywhere within a

range of addresses rather than at one specific address.

• The delta flag defines the size of an addressing unit. In other words, the number of bytes

covered for an increment in the address.

• A psect defined as global will be combined with other global psects of the same name from

other modules at link time. This is the default behaviour for psects, unless the local flag is

used.

• The isa flag indicates what instruction set architecture (ISA) the executable assembly in the

psect (if any) belongs to. See table 4.9 for allowable options to this flag.

• The limit flag specifies a limit on the highest address to which a psect may extend.

123

HI-TECH C Assembly Language Macro Assembler

• A psect defined as local will not be combined with other local psects at link time, even if

there are others with the same name. Where there are two local psects in the one module,

they reference the same psect. A local psect may not have the same name as any global

psect, even one in another module.

• A psect defined as ovrld will have the contribution from each module overlaid, rather than

concatenated at runtime. ovrld in combination with abs defines a truly absolute psect, i.e. a

psect within which any symbols defined are absolute.

• The pure flag instructs the linker that this psect will not be modified at runtime and may

therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends

on the linker and target system enforcing it.

• The reloc flag allows specification of a requirement for alignment of the psect on a particular

boundary, e.g. reloc=100h would specify that this psect must start on an address that is a

multiple of 100h.

• The size flag allows a maximum size to be specified for the psect, e.g. size=100h. This will

be checked by the linker after psects have been combined from all modules.

• The space flag is used to differentiate areas of memory which have overlapping addresses,

but which are distinct. Psects which are positioned in program memory and data memory may

have a different space value to indicate that the program space address zero, for example,

is a different location to the data memory address zero. Devices which use banked RAM

data memory typically have the same space value as their full addresses (including bank

information) are unique.

• The with flag allows a psect to be placed in the same page with a specified psect. For example

with=text will specify that this psect should be placed in the same page as the text psect.

Some examples of the use of the PSECT directive follow:

PSECT fred

PSECT bill,size=100h,global

PSECT joh,abs,ovrld,class=CODE,delta=2

4.3.10.4 ORG

The ORG directive changes the value of the location counter within the current psect. This means that

the addresses set with ORG are relative to the base address of the psect, which is not determined

until link time.

124

Macro Assembler HI-TECH C Assembly Language

Table 4.9: psect isa flag suboptions.

Suboption Meaning
none

(default) Indicates that the psect contains no executable

assembly code of any (ISA). This option is

usually used by data, bss or const type

psects.

mips16e Indicates that the psect contains only

executable MIPS16e assembly.

mips32r2 Indicates that the psect contains only

executable MIPS32r2 assembly.

•

The much-abused ORG directive does not necessarily move the location counter to the

absolute address you specify as the operand. This directive is rarely needed in programs.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In

either case the current location counter is set to the value determined by the argument. It is not

possible to move the location counter backward. For example:

ORG 100h

will move the location counter to the beginning of the current psect plus 100h. The actual location

will not be known until link time.

In order to use the ORG directive to set the location counter to an absolute value, the directive

must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld

ORG 50h

4.3.10.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol has not

previously been defined. See also Section 4.3.10.6.

125

HI-TECH C Assembly Language Macro Assembler

4.3.10.6 SET

This pseudo-op is equivalent to EQU except that allows a symbol to be re-defined. For example

thomas SET 0h

4.3.10.7 DB

DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be

assembled into one byte. Each character of the string will be assembled into one memory location.

Examples:

alabel: DB ’X’,1,2,3,4,

Note that because the size of an address unit in ROM is 4 bytes, the DB pseudo-op will initialise a

word with the upper 3 bytes set to zero.

4.3.10.8 DH

Operates in a similar fashion to DB, except that it assembles expressions in half-words (i.e. 2 bytes).

Example:

DH 0x1234

4.3.10.9 DSTR

Used to store the ASCII values of characters of a string without a NULL terminating character.

Example:

DSTR “Hello”

4.3.10.10 DSTRZ

Used to store the ASCII values of characters of a string with a NULL terminating character.

DSTRZ “World!”

4.3.10.11 DW

DW operates in a similar fashion to DB, except that it assembles expressions in words (i.e. 4 bytes).

Example:

DW -1, 36641234h, ‘A’, 3777

126

Macro Assembler HI-TECH C Assembly Language

4.3.10.12 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number

of bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory

xlabel: DS 2+3 ;Reserve 5 bytes of memory

4.3.10.13 DABS

This directive allows one or more bytes of memory to be reserved at the specified address. The

general form of the directive is:

DABS memory_space,address,bytes

where memory_space is a number representing the memory space in which the reservation will

take place, address is the address at which the reservation will take place, and bytes is the

number of bytes that is to be reserved. This directive differs to the DS directive in that it does not

allocate space at the curernt location in the current psect, but instead can be used to reserve memory

at any location.

The memory space number is the same as the number specified with the space flag option to

psects. Devices with a single flat memory space will typically always use 0 as the space value;

devices with separate code and data spaces typically use 0 for the code space and 1 for the data

space.

The code generator issues a DABS directive for every user-defined absolute C variable, or for

variables that have been allocated an address by the code generator.

4.3.10.14 IF, ELSIF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF and ELSIF should be an

absolute expression. If it is non-zero, then the code following it up to the next matching ELSE,

ELSIF or ENDIF will be assembled. If the expression is zero then the code up to the next matching

ELSE or ENDIF will be skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will termi-

nate the conditional assembly block. Example:

IF ABC

goto aardvark

ELSIF DEF

127

HI-TECH C Assembly Language Macro Assembler

goto denver

ELSE

goto grapes

ENDIF

In this example, if ABC is non-zero, the first jmp instruction will be assembled but not the second or

third. If ABC is zero and DEF is non-zero, the second jmp will be assembled but the first and third

will not. If both ABC and DEF are zero, the third jmp will be assembled. Conditional assembly blocks

may be nested.

4.3.10.15 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by

the macro name and optionally followed by a comma-separated list of formal parameters. When the

macro is used, the macro name should be used in the same manner as a machine opcode, followed

by a list of arguments to be substituted for the formal parameters.

For example:

;macro: storem

;args: arg1 - the NAME of the source variable

; arg2 - the literal value to load

;descr: Loads two registers with the value in the variable:

ldtwo MACRO arg1,arg2

movlw &arg2

movwf &arg1

ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with the formal

parameters substituted by the arguments. Thus:

storem tempvar,2

expands to:

movlw 2

movwf tempvar

A point to note in the above example: the & character is used to permit the concatenation of macro

parameters with other text, but is removed in the actual expansion.

A comment may be suppressed within the expansion of a macro (thus saving space in the macro

storage) by opening the comment with a double semicolon, ;;.

128

Macro Assembler HI-TECH C Assembly Language

When invoking a macro, the argument list must be comma-separated. If it is desired to include a

comma (or other delimiter such as a space) in an argument then angle brackets < and > may be used

to quote the argument. In addition the exclamation mark, ! may be used to quote a single character.

The character immediately following the exclamation mark will be passed into the macro argument

even if it is normally a comment indicator.

If an argument is preceded by a percent sign %, that argument will be evaluated as an expression

and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument

inside the macro body would yield a different result.

The nul operator may be used within a macro to test a macro argument, for example:

IF nul arg3 ; argument was not supplied.

...

ELSE ; argument was supplied

...

ENDIF

By default, the assembly list file will show macro in an unexpanded format, i.e. as the macro was

invoked. Expansion of the macro in the listing file can be shown by using the EXPAND assembler

control, see Section 4.3.11.7,

4.3.10.16 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any

symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted

for them when the macro is expanded. For example:

down MACRO count

LOCAL more

more: decfsz count

goto more

ENDM

when expanded will include a unique assembler generated label in place of more. For example:

down foobar

expands to:

??0001 decfsz foobar

goto ??0001

if invoked a second time, the label more would expand to ??0002.

129

HI-TECH C Assembly Language Macro Assembler

4.3.10.17 ALIGN

The ALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary

in the psect in which the directive is found. The boundary is specified by a number following the

directive and it specifies a number of bytes. For example, to align output to a 2 byte (even) address

within a psect, the following could be used.

ALIGN 2

Note, however, that what follows will only begin on an even absolute address if the psect begins on

an even address. The ALIGN directive can also be used to ensure that a psect’s length is a multiple

of a certain number. For example, if the above ALIGN directive was placed at the end of a psect, the

psect would have a length that was always an even number of bytes long.

4.3.10.18 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number of times as

determined by its argument. For example:

REPT 3

addwf fred,w

ENDM

will expand to

addwf fred,w

addwf fred,w

addwf fred,w

4.3.10.19 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT, however instead of repeating the block a

fixed number of times, it is repeated once for each member of an argument list. In the case of IRP

the list is a conventional macro argument list, in the case or IRPC it is each character in one argument.

For each repetition the argument is substituted for one formal parameter.

For example:

PSECT idata_0

IRP number,4865h,6C6Ch,6F00h

DW number

ENDM

PSECT text0

130

Macro Assembler HI-TECH C Assembly Language

would expand to:

PSECT idata_0

DW 4865h

DW 6C6Ch

DW 6F00h

PSECT text0

Note that you can use local labels and angle brackets in the same manner as with conventional

macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-

space characters.

For example:

PSECT romdata,class=CODE,delta=2

IRPC char,ABC

DB ’char’

ENDM

PSECT text

will expand to:

PSECT romdata,class=CODE,delta=2

DB ’A’

DB ’B’

DB ’C’

PSECT text

4.3.10.20 PROCESSOR

The output of the assembler may vary depending on the target device. The device name is typically

set using the --CHIP option to the command-line driver PICC32 , see Section 2.6.20, or using the

assembler -P option, see Table 4.1, but can also be set with this directive, e.g.

PROCESSOR 16F877

4.3.10.21 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the linker checks

that all signatures defined for a particular label are the same and produces an error if they are not. The

131

HI-TECH C Assembly Language Macro Assembler

Table 4.10: PIC32 assembler controls
Control1 Meaning Format

COND* Include conditional code in the listing COND

EXPAND Expand macros in the listing output EXPAND

INCLUDE Textually include another source file INCLUDE <pathname>

LIST* Define options for listing output LIST [<listopt>, ...,

<listopt>]

NOCOND Leave conditional code out of the listing NOCOND

NOEXPAND* Disable macro expansion NOEXPAND

NOLIST Disable listing output NOLIST

PAGE Start a new page in the listing output PAGE

SUBTITLE Specify the subtitle of the program SUBTITLE “<subtitle>”

TITLE Specify the title of the program TITLE “<title>”

SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of C function

prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from

C. For example:

SIGNAT _fred,1049

will associate the signature value 8192 with the symbol _fred. If a different signature value for

_fred is present in any object file, the linker will report an error.

4.3.11 Assembler Controls

Assembler controls may be included in the assembler source to control assembler operation such as

listing format. These keywords have no significance anywhere else in the program. The control is

invoked by the directive OPT followed by the control name. Some keywords are followed by one or

more parameters. For example:

OPT EXPAND

A list of keywords is given in Table 4.10, and each is described further below.

4.3.11.1 ASMOPT_ON

From this point onwards in the current module within the current psect instruct the assembler to

perform optimisations unless of course assembler optimisations have been turned off with the driver

option --opt.

132

Macro Assembler HI-TECH C Assembly Language

4.3.11.2 ASMOPT_OFF

From this point onwards in the current module within the current psect instruct the assembler to not

perform optimisations even if assembler optimisations have been turned on with the driver option

--opt.

4.3.11.3 FORCE_EXTEND

Forces the assembler from this point onwards in the current module within the current psect to always

extend any MIPS16e instructions (that are extensible) whether it is required or not.

4.3.11.4 NEVER_EXTEND

Forces the assembler from this point onwards in the current module within the current psect to never

extend any MIPS16e instructions (that are extensible) whether it is safe to do so or not.

4.3.11.5 AUTO_EXTEND

From this point onwards in the current module within the current psect let the assembler decide

whether or not extension of any MIPS16e instructions is necessary.

4.3.11.6 COND

Any conditional code will be included in the listing output. See also the NOCOND control in Section

4.3.11.10.

4.3.11.7 EXPAND

When EXPAND is in effect, the code generated by macro expansions will appear in the listing output.

See also the NOEXPAND control in Section 4.3.11.11.

4.3.11.8 INCLUDE

This control causes the file specified by pathname to be textually included at that point in the

assembly file. The INCLUDE control must be the last control keyword on the line, for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not located in the

working directory, the pathname must specify the exact location.

See also the driver option -P in Section 2.6.11 which forces the C preprocessor to preprocess

assembly file, thus allowing use of preprocessor directives, such as #include (see Section 3.11.2).

133

HI-TECH C Assembly Language Macro Assembler

Table 4.11: LIST control options

List Option Default Description

c=nnn 80 Set the page (i.e. column) width.

n=nnn 59 Set the page length.

t=ON|OFF OFF Truncate listing output lines. The default wraps lines.

p=<processor> n/a Set the processor type.

r=<radix> hex Set the default radix to hex, dec or oct.

x=ON|OFF OFF Turn macro expansion on or off.

4.3.11.9 LIST

If the listing was previously turned off using the NOLIST control, the LIST control on its own will

turn the listing on.

Alternatively, the LIST control may includes options to control the assembly and the listing. The

options are listed in Table 4.11.

See also the NOLIST control in Section 4.3.11.12.

4.3.11.10 NOCOND

Using this control will prevent conditional code from being included in the listing output. See also

the COND control in Section 4.3.11.6.

4.3.11.11 NOEXPAND

NOEXPAND disables macro expansion in the listing file. The macro call will be listed instead. See

also the EXPAND control in Section 4.3.11.7. Assembly macro are discussed in Section 4.3.10.15.

4.3.11.12 NOLIST

This control turns the listing output off from this point onward. See also the LIST control in Section

4.3.11.9.

4.3.11.13 NOXREF

NOXREF will disable generation of the raw cross reference file. See also the XREF control in Section

4.3.11.18.

134

Macro Assembler HI-TECH C Assembly Language

4.3.11.14 PAGE

PAGE causes a new page to be started in the listing output. A Control-L (form feed) character will

also cause a new page when encountered in the source.

4.3.11.15 SPACE

The SPACE control will place a number of blank lines in the listing output as specified by its param-

eter.

4.3.11.16 SUBTITLE

SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string

should be enclosed in single or double quotes. See also the TITLE control in Section 4.3.11.17.

4.3.11.17 TITLE

This control keyword defines a title to appear at the top of every listing page. The string should be

enclosed in single or double quotes. See also the SUBTITLE control in Section 4.3.11.16.

4.3.11.18 XREF

XREF is equivalent to the driver command line option --CR (see Section 2.6.22). It causes the assem-

bler to produce a raw cross reference file. The utility CREF should be used to actually generate the

formatted cross-reference listing.

135

HI-TECH C Assembly Language Macro Assembler

136

Chapter 5

Linker and Utilities

5.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C

source files. This means that a program may be divided into several source files, each of which

may be kept to a manageable size for ease of editing and compilation, then each source file may be

compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most

instances it will not be necessary to use the linker directly, as the compiler driver will automatically

invoke the linker with all necessary arguments. Using the linker directly is not simple, and should

be attempted only by those with a sound knowledge of the compiler and linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker

arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that

the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for

several different processors. Not all features described in this chapter are applicable to all compilers.

5.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The

object files are said to be relocatable since the files have sufficient information in them so that any

references to program or data addresses (e.g. the address of a function) within the file may be

adjusted according to where the file is ultimately located in memory after the linkage process. Thus

the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.

137

Program Sections Linker and Utilities

relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the

base address of a particular section of code, for example the section of code containing the actual

executable instructions.

5.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which

will be referred to as psects. These psects represent logical groupings of certain types of code bytes in

the program. In general the compiler will produce code in three basic types of psects, although there

will be several different types of each. The three basic kinds are text psects, containing executable

code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved

data.

The difference between the data and bss psects may be illustrated by considering two external

variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into

the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of

the program, thus the second variable will be initialised at run time to zero. The first will however

occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite

possible to modify the value of a variable in the data psect during execution, however it is better

practice not to do so, since this leads to more consistent use of variables, and allows for restartable

and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate

machine-specific chapter.

5.4 Local Psects

Most psects are global, i.e. they are referred to by the same name in all modules, and any reference

in any module to a global psect will refer to the same psect as any other reference. Some psects

are local, which means that they are local to only one module, and will be considered as separate

from any other psect even of the same name in another module. Local psects can only be referred

to at link time by a class name, which is a name associated with one or more psects via the PSECT

directive class= in assembler code. See Section 4.3.10.3 for more information on PSECT options.

5.5 Global Symbols

The linker handles only symbols which have been declared as GLOBAL to the assembler. The code

generator generates these assembler directives whenever it encounters global C objects. At the C

source level, this means all names which have storage class external and which are not declared

138

Linker and Utilities Link and load addresses

as static. These symbols may be referred to by modules other than the one in which they are

defined. It is the linker’s job to match up the definition of a global symbol with the references to it.

Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise

processed by the linker.

5.6 Link and load addresses

The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link

address of a psect is the address by which it will be accessed at run time. The load address, which

may or may not be the same as the link address, is the address at which the psect will start within the

output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-

responds to the offset within a segment, while the load address corresponds to the physical address

of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is

copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that

is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular

compiler and memory model being used.

5.7 Operation

A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some

way. Files is one or more object files, and zero or more library names. The options recognised by

the linker are listed in Table 5.1 and discussed in the following paragraphs.

Table 5.1: Linker command-line options

Option Effect

-8 Use 8086 style segment:offset address form

-Aclass=low-high,... Specify address ranges for a class

-Cx Call graph options

continued. . .

1In earlier versions of HI-TECH C the linker was called LINK.EXE

139

Operation Linker and Utilities

Table 5.1: Linker command-line options

Option Effect

-Cpsect=class Specify a class name for a global psect

-Cbaseaddr Produce binary output file based at baseaddr

-Dclass=delta Specify a class delta value

-Dsymfile Produce old-style symbol file

-Eerrfile Write error messages to errfile

-F Produce .obj file with only symbol records

-Gspec Specify calculation for segment selectors

-Hsymfile Generate symbol file

-H+symfile Generate enhanced symbol file

-I Ignore undefined symbols

-Jnum Set maximum number of errors before aborting

-K Prevent overlaying function parameter and auto areas

-L Preserve relocation items in .obj file

-LM Preserve segment relocation items in .obj file

-N Sort symbol table in map file by address order

-Nc Sort symbol table in map file by class address order

-Ns Sort symbol table in map file by space address order

-Mmapfile Generate a link map in the named file

-Ooutfile Specify name of output file

-Pspec Specify psect addresses and ordering

-Qprocessor Specify the processor type (for cosmetic reasons only)

-S Inhibit listing of symbols in symbol file

-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects

-Usymbol Pre-enter symbol in table as undefined

-Vavmap Use file avmap to generate an Avocet format symbol file

-Wwarnlev Set warning level (-9 to 9)

-Wwidth Set map file width (>=10)

-X Remove any local symbols from the symbol file

-Z Remove trivial local symbols from the symbol file

5.7.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is

similar. By default, the number will be interpreted as a decimal value. To force interpretation as a

hex number, a trailing H should be added, e.g. 765FH will be treated as a hex number.

140

Linker and Utilities Operation

5.7.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but some-

times it is desired to have a class of psects linked into more than one non-contiguous address range.

This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution

to a psect from one module cannot be split, but the linker will attempt to pack each block from each

module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a

repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though

the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the

character x or * after a range, followed by a count.

5.7.3 -Cx

These options allow control over the call graph information which may be included in the map file

produced by the linker. There are four varients of this option:

Fully expanded callgraph The -Cf option displays the full callgraph information.

Short form callgraph The -Cs option is the default callgraph option which removes some redun-

dant information from the callgraph display. In the case where there are parameters to a

function that involve function calls, the callgraph information associated with the “ARG func-

tion” is only shown the first time it is encountered in the callgraph. See Sections ?? and ?? for

more information on these functions.

Critical path callgraph The -Cc option only include the critical paths of the call graph. A function

call that is marked with a * in a full call graph is on a critical path and only these calls are

included when the -Cc option is used. See Section ?? for more information on critical paths.

No callgraph The -Cn option removes the call graph information from the map file.

5.7.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on

the command line since classes are specified in object files.

141

Operation Linker and Utilities

5.7.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined.

The delta value should be a number and represents the number of bytes per addressable unit of

objects within the psects. Most psects do not need this option as they are defined with a delta value.

5.7.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where

each line has the link address of the symbol followed by the symbol name.

5.7.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no

convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard

output is redirected). This option will make the linker write all error messages to the specified file

instead of the screen, which is the default standard error destination.

5.7.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and

symbol information. Sometimes it is desired to produce a symbol-only object file that can be used

again in a subsequent linker run to supply symbol values. The -F option will suppress data and code

bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program

is contained in different memory devices located at different addresses. The files for one device are

compiled using this linker option to produce a symbol-only object file; this is then linked with the

files for the other device. The process can then be repeated for the other files and device.

5.7.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker

can assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous

group of psects where each psect in sequence has both its link and load address concatenated with

the previous psect in the group. The segment address or selector for the segment is the value derived

when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-

ment by the relocation quantum of the segment, which is based on the reloc= flag value given to

psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode

142

Linker and Utilities Operation

or some bank-switched arrangements. In this instance the -G option is used to specify a method for

calculating the segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the

load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-

tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.

The token N is replaced by the ordinal number of the segment, which is allocated by the linker. For

example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This

particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number

of segments defined. This would be appropriate when compiling for 80286 protected mode, where

these selectors would represent LDT entries.

5.7.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument symfile

specifies a file to receive the symbol file. The default file name is l.sym.

5.7.11 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides, in addition

to the standard symbol file, class names associated with each symbol and a segments section which

lists each class name and the range of memory it occupies. This format is recommended if the code

is to be run in conjunction with a debugger. The optional argument symfile specifies a file to

receive the symbol file. The default file name is l.sym.

5.7.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings).

The default number is 10, but the -J option allows this to be altered.

5.7.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter

areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature

can be disabled with this option.

143

Operation Linker and Utilities

5.7.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will

cause undefined symbols to be treated as warnings instead.

5.7.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since

the file is now absolute. In some circumstances a further "relocation" of the program will be done at

load time, e.g. when running a .exe file under DOS or a .prg file under TOS. This requires that some

information about what addresses require relocation is preserved in the object (and subsequently the

executable) file. The -L option will generate in the output file one null relocation record for each

relocation record in the input.

5.7.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment

relocations. This is used particularly for generating .exe files to run under DOS.

5.7.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if

the file name is omitted. The format of the map file is illustrated in Section 5.9.

5.7.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The -N option will cause it to

be sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly

except that the symbols are grouped by either their space value, or class.

5.7.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is

l.obj. Use of this option will override the default.

5.7.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via -P

options. The argument to the -P option consists basically of comma-separated sequences thus:

144

Linker and Utilities Operation

-Ppsect=lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load ad-

dresses, and a minimum value. All values may be omitted, in which case a default will apply,

depending on previous values.

The minimum value, min, is preceded by a + sign, if present. It sets a minimum value for the

link or load address. The address will be calculated as described below, but if it is less than the

minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects

or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse

order with the top of the psect appearing at the specified address minus one. Psects following a

negative address will be placed before the first psect in memory. If a link address is omitted, the

psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data

psect will be linked (and loaded) at an address which is 100 hex plus the length of the text psect,

rounded up as necessary if the data psect has a reloc= value associated with it. Similarly, the bss

psect will concatenate with the data psect. Again:

-Ptext=-100h,data,bss

will link in ascending order bss, data then text with the top of text appearing at address 0ffh.

If the load address is omitted entirely, it defaults to the same as the link address. If the slash /

character is supplied, but no address is supplied after it, the load address will concatenate with the

previous psect, e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and

data will have a load address starting after the end of text. The bss psect will concatenate with data

for both link and load addresses.

The load address may be replaced with a dot . character. This tells the linker to set the load

address of this psect to the same as its link address. The link or load address may also be the name of

another (already linked) psect. This will explicitly concatenate the current psect with the previously

specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

145

Operation Linker and Utilities

This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and

loaded at 8000h plus the size of data, and nvram and heap are concatenated with bss. Note here

the use of two -P options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be

used in place of a link or load address, and space will be found in one of the address ranges. For

example:

-ACODE=8000h-BFFEh,E000h-FFFEh

-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated with CODE.

If no sufficiently large space is available, an error will result. Note that in this case the data psect

will still be assembled into one contiguous block, whereas other psects in the class CODE will be

distributed into the address ranges wherever they will fit. This means that if there are two or more

psects in class CODE, they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any

address ranges specified with the -A option. This allows a range to be specified with the -A option

without knowing in advance how much of the lower part of the range, for example, will be required

for other psects.

5.7.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map

file. The argument to this option is a string describing the processor.

5.7.22 -S

This option prevents symbol information relating from being included in the symbol file produced

by the linker. Segment information is still included.

5.7.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places

a limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with a limit= flag on

a PSECT directive).

146

Linker and Utilities Operation

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound

address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper

address limit of 6000h:

-SFARCODE=6000h,1000h

5.7.24 -Usymbol

This option will enter the specified symbol into the linker’s symbol table as an undefined symbol.

This is useful for linking entirely from libraries, or for linking a module from a library where the

ordering has been arranged so that by default a later module will be linked.

5.7.25 -Vavmap

To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to

map psect names to Avocet memory identifiers. The avmap file will normally be supplied with the

compiler, or created automatically by the compiler driver as required.

5.7.26 -Wnum

The -W option can be used to set the warning level, in the range -9 to 9, or the width of the map file,

for values of num >= 10.

-W9will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9)

will give the most comprehensive warning messages.

5.7.27 -X

Local symbols can be suppressed from a symbol file with this option. Global symbols will always

appear in the symbol file.

5.7.28 -Z

Some local symbols are compiler generated and not of interest in debugging. This option will

suppress from the symbol file all local symbols that have the form of a single alphabetic character,

followed by a digit string. The set of letters that can start a trivial symbol is currently "klfLSu".

The -Z option will strip any local symbols starting with one of these letters, and followed by a digit

string.

147

Invoking the Linker Linker and Utilities

5.8 Invoking the Linker

The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation

directory. It may be invoked with no arguments, in which case it will prompt for input from standard

input. If the standard input is a file, no prompts will be printed. This manner of invocation is

generally useful if the number of arguments to HLINK is large. Even if the list of files is too long

to fit on one line, continuation lines may be included by leaving a backslash \ at the end of the

preceding line. In this fashion, HLINK commands of almost unlimited length may be issued. For

example a link command file called x.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \

-Ptext=0,data=0/,bss,nvram=bss/. \

X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk

hlink < x.lnk

5.9 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned to

symbols within those psects.

5.9.1 Generation

If compilation is being performed via HI-TIDE
TM

a map file is generated by default without you

having to adjust the compiler options. If you are using the driver from the command line then you’ll

need to use the -M option, see Section 2.6.8.

Map files are produced by the linker. If the compilation process is stopped before the linker is

executed, then no map file is produced. The linker will still produce a map file even if it encounters

errors, which will allow you to use this file to track down the cause of the errors. However, if the

linker ultimately reports too many errors then it did not run to completion, and the map file will

be either not created or not complete. You can use the --ERRORS option on the command line, or as

an alternate MPLAB IDE setting, to increase the number of errors before the compiler applications

give up. See Section 2.6.26 for more information on this option.

148

Linker and Utilities Map Files

5.9.2 Contents

The sections in the map file, in order of appearance, are as follows:

• The compiler name and version number;

• A copy of the command line used to invoke the linker;

• The version number of the object code in the first file linked;

• The machine type;

• Optionally (dependent on the processor and compiler options selected), the call graph infor-

mation;

• A psect summary sorted by the psect’s parent object file;

• A psect summary sorted by the psect’s CLASS;

• A segment summary;

• Unused address ranges summary; and

• The symbol table

Portions of an example map file, along with explanatory text, are shown in the following sections.

5.9.2.1 General Information

At the top of the map file is general information relating to the execution of the linker.

When analysing a program, always confirm the compiler version number shown in the map file if

you have more than one compiler version installed to ensure the desired compiler is being executed.

The chip selected with the --CHIP option should appear after the Machine type entry.

The Object code version relates to the file format used by relocatable object files produced by

the assembler. Unless either the assembler or linker have been updated independently, this should

not be of concern.

A typical map file may begin something like the following. This example has been cut down for

clarity and brevity, and should not be used for reference.

HI-TECH Software PICC Compiler std#V9.60

Linker command line:

--edf=C:\Program Files\HI-TECH Software\pic\std\9.60\dat\en_msgs.txt \

-h+conv.sym -z -Q16F73 -ol.obj -Mconv.map -ver=PICC#std#V9.60 \

149

Map Files Linker and Utilities

-ACODE=00h-07FFhx2 -ACONST=00h-0FFhx16 -ASTRING=00h-0FFhx16 \

-ABANK0=020h-07Fh -ABANK1=0A0h-0FFh \

-preset_vec=00h,intentry,intcode -ppowerup=CODE -pintsave_0=07Fh \

-prbit_0=BANK0,rbss_0=BANK0,rdata_0=BANK0,idata_0=CODE \

C:\DOCUME~1\user\LOCALS~1\Temp\cgta5eHNF.obj conv.obj \

C:\Program Files\HI-TECH Software\pic\std\9.60\lib\pic412-c.lib \

C:\Program Files\HI-TECH Software\pic\std\9.60\lib\pic20--u.lib

Object code version is 3.9

Machine type is 16F73

The Linker command line shown is the entire list of options and files that were passed to the linker

for the build recorded by this map file. Remember, these are linker options and not command-line

driver options. Typically the first options relate to general execution of the linker: path and file

names for various input and output support files; and the chip type etc. These are followed by the

memory allocation options, e.g. -A and -p. Last are the input object and library files that will be

linked to form the output.

The linker command line should be used to confirm that driver options that control the link step

have been specified correctly, and at the correct time. It is particularly useful when using the driver

-L- option, see Section 2.6.7.

TUT•RIAL

CONFIRMING LINKER OPERATION A project requires that a number of memory lo-

cations be reserved. For the compiler and target device used by the project, the --ROM

driver option is suitable for this task. How can the operation of this option be confirmed?

First the program is compiled without using this option and the following linker class

definition is noted in the linker command line:

-ACODE=0-03FFFhx2

The class name may vary between compilers and the selected target device, however

there is typically a class that is defined to cover the entire memory space used by the

device.

The driver option --ROM=default,-4000-400F is then used and the map file resulting

from the subsequent build shows the following change:

-ACODE=0-03FFFh,04010h-07FFFh

which confirms that the memory option was seen by the linker and that the memory

requested was reserved.

150

Linker and Utilities Map Files

5.9.2.2 Psect Information listed by Module

The next section in the map file lists those modules that made a contribution to the output, and

information regarding the psects these modules defined.

This section is heralded by the line that contains the headings:

Name Link Load Length Selector Space Scale

Under this on the far left is a list of object files. These object files include both files generated from

source modules and those that were extracted from object library files. In the case of those from

library files, the name of the library file is printed before the object file list.

This section shows all the psects (under the Name column) that were linked into the program

from each object file, and information regarding that psect. This only deals with object files linked

by the linker. P-code modules derived from p-code library files are handled by the code generator,

and do not appear in the map file.

The Link address indicates the address at which this psect will be located when the program

is running. (The Load address is also shown for those psects that may reside in the HEX file at

a different location and which are mapped before program execution.) The Length of the psect is

shown (in units suitable for that psect). The Selector is less commonly used, but the Space field is

important as it indicates the memory space in which the psect was placed. For Harvard architecture

machines, with separate memory spaces, this field must be used in conjunction with the address to

specify an exact storage location. The Scale of a psect indicates the number of address units per byte

— this is left blank if the scale is 1 — and typically this will show 8 for psects that hold bit objects.

The Load address of psects that hold bits is used to display the link address converted into units of

bytes, rather than the load address.

TUT•RIAL

INTERPRETING THE PSECT LIST The following appears in a map file.

Name Link Load Length Selector Space Scale

ext.obj text 3A 3A 22 30 0

bss 4B 4B 10 4B 1

rbit 50 A 2 0 1 8

This indicates that one of the files that the linker processed was called ext.obj. (This

may have been derived from ext.c or ext.as.) This object file contained a text psect,

as well as psects called bss and rbit. The psect text was linked at address 3A and

bss at address 4B. At first glance, this seems to be a problem given that text is 22 words

long, however note that they are in different memory areas, as indicated by the Space

flag (0 for text and 1 for bss), and so do not occupy the same memory. The psect

151

Map Files Linker and Utilities

rbit contains bit objects, as indicated by its Scale value (its name is a bit of a giveaway

too). Again, at first glance there seems there could be an issue with rbit linked over

the top of bss. Their Space flags are the same, but since rbit contains bit objects, all

the addresses shown are bit addresses, as indicated by the Scale value of 8. Note that

the Load address field of rbit psect displays the Link address converted to byte units,

i.e. 50h/8 => Ah.

The list of files, that make up the program, indicated in this section of the map file will typically

consist of one or more object files derived from input source code. The map file produced by PRO

compilers will show one object file derived from all C source modules, however Standard version

compilers will show one object file per C source module.

In addition, there will typically be the runtime startup module. The runtime startup code is

precompiled into an object file, in the case of Standard version compilers, or is a compiler-written

assembler source file, which is then compiled along with the remainder of the program. In either

case, an object file module will be listed in this section, along with those psects which it defines.

If the startup module is not being deleted after compilation (see the --RUNTIME option in Section

2.6.48) then the module name will be startup.obj, otherwise this module will have a system-

dependent temporary file name, stored in a system-dependent location.

Modules derived from library files area also shown in this list. The name of the library file is

printed as a header, followed by a list of the modules that contributed to the output. Only mod-

ules that define symbols that are referenced are included in the program output. For example, the

following:

C:\program files\HI-TECH Software\PICC-18\9.50\lib\pic86l-c.lib

i1aldiv.obj text 174 174 3C C 0

aldiv.obj text 90 90 3C C 0

indicates that both the i1aldiv.obj and aldiv.obj modules were linked in from the library file

pic86l-c.lib.

Underneath the library file contributions, there may be a label COMMON. This shows the con-

tribution to the program from program-wide psects, in particular that used by the compiled stack

auto/parameter area.

This information in this section of the map file can be used to observe several details;

• To confirm that a module is making a contribution to the output file by ensuring that the

module appears in the module list;

• To determine the exact psects that each module defines;

152

Linker and Utilities Map Files

• For cases where a user-defined routine, with the same name as a library routine, is present in

the programs source file list, to confirm that the user-defined routine was linked in preference

to the library routine.

5.9.2.3 Psect Information listed by Class

The next section in the map file is the same psect information listed by module, but this time grouped

into the psects’ class.

This section is heralded by the line that contains the headings:

TOTAL Name Link Load Length

Under this are the class names followed by those psects which belong to this class. These psects are

the same as those listed by module in the above section; there is no new information contained in

this section.

5.9.2.4 Segment Listing

The class listing in the map file is followed by a listing of segments. A segment is conceptual

grouping of contiguous psects, and are used by the linker as an aid in psect placement. There is no

segment assembler directive and segments cannot be controlled in any way.

This section is heralded by the line that contains the headings:

SEGMENTS Name Load Length Top Selector Space Class

The name of a segment is derived from the psect in the contiguous group with the lowest link address.

This can lead to confusion with the psect with the same name. Do not read psect information from

this section of the map file.

Typically this section of the map file can be ignored by the user.

5.9.2.5 Unused Address Ranges

The last of the memory summaries Just before the symbol table in the map file is a list of memory

which was not allocated by the linker. This memory is thus unused. The linker is aware of any

memory allocated by the code generator (for absolute variables), and so this free space is accurate.

This section follows the heading:

UNUSED ADDRESS RANGES

153

Map Files Linker and Utilities

and is followed by a list of classes and the memory still available in each class defined in the program.

If there is more than one range in a class, each range is printed on a separate line. Any paging

boundaries within a class are ignored and not displayed in any way.

Note that classes often define memory that is also covered by other classes, thus the total free

space in a memory area is not simply the addition of the size of all the ranges indicated. For example

if there are two classes the cover the RAM memory — RAM and BANKRAM — and the first 100h

out of 500h bytes are used, then both will indicate 000100-0004FF as the unused memory.

5.9.2.6 Symbol Table

The final section in the map file list global symbols that the program defines. This section has a

heading:

Symbol Table

and is followed by two columns in which the symbols are alphabetically listed. As always with the

linker, any C derived symbol is shown with its assembler equivalent symbol name. The symbols

listed in this table are:

• Global assembly labels;

• Global EQU/SET assembler directive labels; and

• Linker-defined symbols.

Assembly symbols are made global via the GLOBAL assembler directive, see Section 4.3.10.1 for

more information. linker-defined symbols act like EQU directives, however they are defined by the

linker during the link process, and no definition for them will appear in any source or intermediate

file.

Non-static C functions, and non-auto and non-static C variables directly map to assembly

labels. The name of the label will be the C identifier with a leading underscore character. The

linker-defined symbols include symbols used to mark the bounds of psects. See Section 3.12.3. The

symbols used to mark the base address of each functions’ auto and parameter block are also shown.

Although these symbols are used to represent the local autos and parameters of a function, they

themselves must be globally accessible to allow each calling function to load their contents. The

C auto and parameter variable identifiers are local symbols that only have scope in the function in

which they are defined.

Each symbol is shown with the psect in which they are placed, and the address which the symbol

has been assigned. There is no information encoded into a symbol to indicate whether it represents

code or variables, nor in which memory space it resides.

154

Linker and Utilities Librarian

If the psect of a symbol is shown as (abs), this implies that the symbol is not directly associated

with a psect as is the case with absolute C variables. Linker-defined symbols showing this as the

psect name may be symbols that have never been used throughout the program, or relate to symbols

that are not directly associated with a psect.

Note that a symbol table is also shown in each assembler list file. (See Section 2.6.17 for in-

formation on generating these files.) These differ to that shown in the map file in that they list

all symbols, whether they be of global or local scope, and they only list the symbols used in the

module(s) associated with that list file.

5.10 Librarian

The librarian program, LIBR, has the function of combining several object files into a single file

known as a library. The purposes of combining several such object modules are several.

• fewer files to link

• faster access

• uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library

differently from object files. If an object file is specified to the linker, it will be linked into the final

linked module. A module in a library, however, will only be linked in if it defines one or more

symbols previously known, but not defined, to the linker. Thus modules in a library will be linked

only if required. Since the choice of modules to link is made on the first pass of the linker, and

the library is searched in a linear fashion, it is possible to order the modules in a library to produce

special effects when linking. More will be said about this later.

5.10.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is main-

tained a directory of the modules and symbols in the library. Since this directory is smaller than the

sum of the modules, the linker can perform faster searches since it need read only the directory, and

not all the modules, on the first pass. On the second pass it need read only those modules which are

required, seeking over the others. This all minimises disk I/O when linking.

It should be noted that the library format is geared exclusively toward object modules, and is not

a general purpose archiving mechanism as is used by some other compiler systems. This has the

advantage that the format may be optimized toward speeding up the linkage process.

155

Librarian Linker and Utilities

Table 5.2: Librarian command-line options

Option Effect

-Pwidth specify page width

-W Suppress non-fatal errors

Table 5.3: Librarian key letter commands

Key Meaning

r Replace modules

d Delete modules

x Extract modules

m List modules

s List modules with symbols

o Re-order modules

5.10.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

LIBR options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, options is zero or more librarian options which

affect the output of the program. k is a key letter denoting the function requested of the librarian

(replacing, extracting or deleting modules, listing modules or symbols), file.lib is the name of

the library file to be operated on, and file.obj is zero or more object file names.

The librarian options are listed in Table 5.2.

The key letters are listed in Table 5.3.

When replacing or extracting modules, the file.obj arguments are the names of the modules

to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be

replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian

to replace it in the library. Since it is not present, the module will be appended to the library. If the

r key is used and the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it

is an error not to give any object file names.

The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols

defined or referenced within (global symbols only are handled by the librarian). As with the r and x

key letters, an empty list of modules means all the modules in the library.

The o key takes a list of module names and re-orders the matching modules in the library file so

they have the same order as that listed on the command line. Modules which are not listed are left

156

Linker and Utilities Librarian

in their existing order, and will appear after the re-ordered modules.

5.10.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the

modules a.obj, b.obj and c.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modules a.obj, b.obj and c.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

5.10.4 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are

restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input

if no command line arguments are given. If the standard input is attached to the console, LIBR will

prompt for input. Multiple line input may be given by using a backslash as a continuation character

on the end of a line. If standard input is redirected from a file, LIBR will take input from the file,

without prompting. For example:

libr

libr> r file.lib 1.obj 2.obj 3.obj \

libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>

prompts were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input from lib.cmd, and execute the command found therein. This allows a virtually

unlimited length command to be given to LIBR.

5.10.5 Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on standard

output. The s keyletter will produce the same, with a list of symbols after each module name. Each

symbol will be preceded by the letter D or U, representing a definition or reference to the symbol

respectively. The -P option may be used to determine the width of the paper for this operation. For

example:

157

Objtohex Linker and Utilities

LIBR -P80 s file.lib

will list all modules in file.lib with their global symbols, with the output formatted for an 80

column printer or display.

5.10.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the com-

mand line. When updating a library the order of the modules is preserved. Any new modules added

to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module

which references a symbol defined in another module in the same library, the module defining the

symbol should come after the module referencing the symbol.

5.10.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a

harmless occurrence which will nonetheless be reported unless the -W option was used. In this case

all warning messages will be suppressed.

5.11 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other

format required must be produced by running the utility program OBJTOHEX. This allows conversion

of object files as produced by the linker into a variety of different formats, including various hex

formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. If outputfile is omitted it defaults to l.hex or l.bin depend-

ing on whether the -b option is used. The inputfile defaults to l.obj.

The options for OBJTOHEX are listed in Table 5.4. Where an address is required, the format is the

same as for HLINK.

5.11.1 Checksum Specifications

If you are generating a HEX file output, please refer to the hexmate section 5.14 for calculating

checksums. For OBJTOHEX, the checksum specification allows automated checksum calculation and

takes the form of several lines, each line describing one checksum. The syntax of a checksum line

is:

158

Linker and Utilities Objtohex

Table 5.4: OBJTOHEX command-line options

Option Meaning

-8 Produce a CP/M-86 output file

-A Produce an ATDOS .atx output file

-Bbase Produce a binary file with offset of base. Default file name is

l.obj

-Cckfile Read a list of checksum specifications from ckfile or standard

input

-D Produce a COD file

-E Produce an MS-DOS .exe file

-Ffill Fill unused memory with words of value fill - default value is

0FFh

-I Produce an Intel HEX file with linear addressed extended

records.

-L Pass relocation information into the output file (used with .exe

files)

-M Produce a Motorola HEX file (S19, S28 or S37 format)

-N Produce an output file for Minix

-Pstk Produce an output file for an Atari ST, with optional stack size

-R Include relocation information in the output file

-Sfile Write a symbol file into file

-T Produce a Tektronix HEX file.

-TE Produce an extended TekHEX file.

-U Produce a COFF output file

-UB Produce a UBROF format file

-V Reverse the order of words and long words in the output file

-n,m Format either Motorola or Intel HEX file, where n is the maxi-

mum number of bytes per record and m specifies the record size

rounding. Non-rounded records are zero padded to a multiple of

m. m itself must be a multiple of 2.

159

Cref Linker and Utilities

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix.

Such a specification says that the bytes at addr1 through to addr2 inclusive should be summed

and the sum placed in the locations where1 through where2 inclusive. For an 8 bit checksum

these two addresses should be the same. For a checksum stored low byte first, where1 should be less

than where2, and vice versa. The +offset is optional, but if supplied, the value offset will be used

to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit

checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH

to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of

this checksum would add the last address of the ROM being checksummed into the checksum. For

the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any

desired fashion.

5.12 Cref

The cross reference list utility CREF is used to format raw cross-reference information produced by

the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the

--CR option to the compiler. The assembler will generate a raw cross-reference file with a -C option

(most assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line

(PIC assembler). The general form of the CREF command is:

cref options files

where options is zero or more options as described below and files is one or more raw cross-

reference files. CREF takes the options listed in Table 5.5.

Each option is described in more detail in the following paragraphs.

5.12.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header

file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to

exclude any symbols defined in a file whose path name begins with that prefix. For example, -F\

will exclude any symbols from all files with a path name starting with \.

160

Linker and Utilities Cref

Table 5.5: CREF command-line options

Option Meaning

-Fprefix Exclude symbols from files with a pathname or

filename starting with prefix

-Hheading Specify a heading for the listing file

-Llen Specify the page length for the listing file

-Ooutfile Specify the name of the listing file

-Pwidth Set the listing width

-Sstoplist Read file stoplist and ignore any symbols

listed.

-Xprefix Exclude and symbols starting with prefix

5.12.2 -Hheading

The -H option takes a string as an argument which will be used as a header in the listing. The default

heading is the name of the first raw cross-ref information file specified.

5.12.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be

printed on 55 line paper you would use a -L55 option. The default is 66 lines.

5.12.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard

output and may be redirected in the usual manner. Alternatively outfile may be specified as the

output file name.

5.12.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g. -P132

will format the listing for a 132 column printer. The default is 80 columns.

5.12.6 -Sstoplist

The -S option should have as its argument the name of a file containing a list of symbols not to be

listed in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

161

Cromwell Linker and Utilities

Table 5.6: CROMWELL format types

Key Format

cod Bytecraft COD file

coff COFF file format

elf ELF/DWARF file

eomf51 Extended OMF-51 format

hitech HI-TECH Software format

icoff ICOFF file format

ihex Intel HEX file format

mcoff Microchip COFF file format

omf51 OMF-51 file format

pe P&E file format

s19 Motorola HEX file format

5.12.7 -Xprefix

The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument

to -X. For example if it was desired to exclude all symbols starting with the character sequence xyz

then the option -Xxyzwould be used. If a digit appears in the character sequence then this will match

any digit in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by

a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied

by invoking CREF with no arguments and typing the command line in response to the cref> prompt.

A backslash at the end of the line will be interpreted to mean that more command lines follow.

5.13 Cromwell

The CROMWELL utility converts code and symbol files into different formats. The formats available

are shown in Table 5.6.

The general form of the CROMWELL command is:

CROMWELL options input_files -okey output_file

where options can be any of the options shown in Table 5.7. Output_file (optional) is the

name of the output file. The input_files are typically the HEX and SYM file. CROMWELL

automatically searches for the SDB files and reads those if they are found. The options are further

described in the following paragraphs.

162

Linker and Utilities Cromwell

Table 5.7: CROMWELL command-line options

Option Description

-Pname[,architecture] Processor name and architecture

-N Identify code classes

-D Dump input file

-C Identify input files only

-F Fake local symbols as global

-Okey Set the output format

-Ikey Set the input format

-L List the available formats

-E Strip file extensions

-B Specify big-endian byte ordering

-M Strip underscore character

-V Verbose mode

5.13.1 -Pname[,architecture]

The -P options takes a string which is the name of the processor used. CROMWELL may use this in the

generation of the output format selected. Note that to produce output in COFF format an additional

argument to this option which also specifies the processor architecture is required. Hence for this

format the usage of this option must take the form: -Pname,architecture. Table 5.8 enumerates

the architectures supported for producing COFF files.

5.13.2 -N

To produce some output file formats (e.g. COFF), Cromwell requires that the names of the program

memory space psect classes be provided. The names of the classes are given as a comma separated

list. For example, in the DSPIC C compiler these classes are typically “CODE” and “NEARCODE”,

i.e. -NCODE,NEARCODE.

5.13.3 -D

The -D option is used to display to the screen details about the named input file in a readable format.

The input file can be one of the file types as shown in Table 5.6.

163

Cromwell Linker and Utilities

Table 5.8: -P option architecture arguments for COFF file output.

Architecture Description

68K Motorola 68000 series chips

H8/300 Hitachi 8 bit H8/300 chips

H8/300H Hitachi 16 bit H8/300H chips

SH Hitachi 32 bit SuperH RISC chips

PIC12 Microchip base-line PIC chips

PIC14 Microchip mid-range PIC chips

PIC16 Microchip high-end (17Cxxx) PIC chips

PIC18 Microchip PIC18 chips

PIC24 Microchip PIC24F and PIC24H chips

PIC30 Microchip dsPIC30 and dsPIC33 chips

5.13.4 -C

This option will attempt to identify if the specified input files are one of the formats as shown in

Table 5.6. If the file is recognised, a confirmation of its type will be displayed.

5.13.5 -F

When generating a COD file, this option can be used to force all local symbols to be represented as

global symbols. The may be useful where an emulator cannot read local symbol information from

the COD file.

5.13.6 -Okey

This option specifies the format of the output file. The key can be any of the types listed in Table

5.6.

5.13.7 -Ikey

This option can be used to specify the default input file format. The key can be any of the types

listed in Table 5.6.

5.13.8 -L

Use this option to show what file format types are supported. A list similar to that given in Table 5.6

will be shown.

164

Linker and Utilities Hexmate

5.13.9 -E

Use this option to tell CROMWELL to ignore any filename extensions that were given. The default

extension will be used instead.

5.13.10 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

5.13.11 -M

When generating COD files this option will remove the preceding underscore character from sym-

bols.

5.13.12 -V

Turns on verbose mode which will display information about operations CROMWELL is performing.

5.14 Hexmate

The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link

stage utility that provides the facility to:

• Calculate and store variable-length checksum values

• Fill unused memory locations with known data sequences

• Merge multiple Intel hex files into one output file

• Convert INHX32 files to other INHX formats (e.g. INHX8M)

• Detect specific or partial opcode sequences within a hex file

• Find/replace specific or partial opcode sequences

• Provide a map of addresses used in a hex file

• Change or fix the length of data records in a hex file.

• Validate checksums within Intel hex files.

Typical applications for hexmate might include:

165

Hexmate Linker and Utilities

• Merging a bootloader or debug module into a main application at build time

• Calculating a checksum over a range of program memory and storing its value in program

memory or EEPROM

• Filling unused memory locations with an instruction to send the PC to a known location if it

gets lost.

• Storage of a serial number at a fixed address.

• Storage of a string (e.g. time stamp) at a fixed address.

• Store initial values at a particular memory address (e.g. initialise EEPROM)

• Detecting usage of a buggy/restricted instruction

• Adjusting hex file to meet requirements of particular bootloaders

5.14.1 Hexmate Command Line Options

Some of these hexmate operations may be possible from the compiler’s command line driver. How-

ever, if hexmate is to be run directly, its usage is:

hexmate <file1.hex ... fileN.hex> <options>

Where file1.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Ad-

ditional options can be provided to further customize this process. Table 5.9 lists the command line

options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail. Note that any integral

values supplied to the hexmate options should be entered as hexadecimal values without leading 0x

or trailing h characters. Note also that any address fields specified in these options are to be entered

as byte addresses, unless specified otherwise in the -ADDRESSING option.

5.14.1.1 specifications,filename.hex

Intel hex files that can be processed by hexmate should be in either INHX32 or INHX8M format.

Additional specifications can be applied to each hex file to put restrictions or conditions on how this

file should be processed. If any specifications are used they must precede the filename. The list of

specifications will then be separated from the filename by a comma.

A range restriction can be applied with the specification rStart-End. A range restriction will

cause only the address data falling within this range to be used. For example:

r100-1FF,myfile.hex

166

Linker and Utilities Hexmate

Table 5.9: Hexmate command-line options

Option Effect

-ADDRESSING Set address fields in all hexmate options to use word addressing

or other

-BREAK Break continuous data so that a new record begins at a set

address

-CK Calculate and store a checksum value

-FILL Program unused locations with a known value

-FIND Search and notify if a particular code sequence is detected

-FIND...,DELETE Remove the code sequence if it is detected (use with caution)

-FIND...,REPLACE Replace the code sequence with a new code sequence

-FORMAT Specify maximum data record length or select INHX variant

-HELP Show all options or display help message for specific option

-LOGFILE Save hexmate analysis of output and various results to a file

-Ofile Specify the name of the output file

-SERIAL Store a serial number or code sequence at a fixed address

-SIZE Report the number of bytes of data contained in the resultant

hex image.

-STRING Store an ASCII string at a fixed address

-STRPACK Store an ASCII string at a fixed address using string packing

-W Adjust warning sensitivity

+ Prefix to any option to overwrite other data in its address range

if necessary

167

Hexmate Linker and Utilities

will use myfile.hex as input, but only process data which is addressed within the range 100h-1FFh

(inclusive) to be read from myfile.hex.

An address shift can be applied with the specification sOffset . If an address shift is used, data

read from this hex file will be shifted (by the Offset) to a new address when generating the output.

The offset can be either positive or negative. For example:

r100-1FFs2000,myfile.hex

will shift the block of data from 100h-1FFh to the new address range 2100h-21FFh.

Be careful when shifting sections of executable code. Program code shouldn’t be shifted unless it

can be guaranteed that no part of the program relies upon the absolute location of this code segment.

5.14.1.2 + Prefix

When the + operator precedes a parameter or input file, the data obtained from that parameter will

be forced into the output file and will overwrite other data existing within its address range. For

example:

+input.hex +-STRING@1000="My string"

Ordinarily, hexmate will issue an error if two sources try to store differing data at the same location.

Using the + operator informs hexmate that if more than one data source tries to store data to the same

address, the one specified with a ’+’ will take priority.

5.14.1.3 -ADDRESSING

By default, all address parameters in hexmate options expect that values will be entered as byte

addresses. In some device architectures the native addressing format may be something other than

byte addressing. In these cases it would be much simpler to be able to enter address-components

in the device’s native format. To facilitate this, the -ADDRESSING option is used. This option takes

exactly one parameter which configures the number of bytes contained per address location. If for

example a device’s program memory naturally used a 16-bit (2 byte) word-addressing format, the

option -ADDRESSING=2 will configure hexmate to interpret all command line address fields as word

addresses. The affect of this setting is global and all hexmate options will now interpret addresses

according to this setting. This option will allow specification of addressing modes from one byte-

per-address to four bytes-per-address.

168

Linker and Utilities Hexmate

5.14.1.4 -BREAK

This option takes a comma separated list of addresses. If any of these addresses are encountered

in the hex file, the current data record will conclude and a new data record will recommence from

the nominated address. This can be useful to use new data records to force a distinction between

functionally different areas of program space. Some hex file readers depend on this.

5.14.1.5 -CK

The -CK option is for calculating a checksum. The usage of this option is:

-CK=start-end@destination[+offset][wWidth][tCode][gAlogithm]

where:

• Start and End specify the address range that the checksum will be calculated over.

• Destination is the address where to store the checksum result. This value cannot be within the

range of calculation.

• Offset is an optional initial value to add to the checksum result. Width is optional and specifies

the byte-width of the checksum result. Results can be calculated for byte-widths of 1 to 4

bytes. If a positive width is requested, the result will be stored in big-endian byte order. A

negative width will cause the result to be stored in little-endian byte order. If the width is left

unspecified, the result will be 2 bytes wide and stored in little-endian byte order.

• Code is a hexadecimal code that will trail each byte in the checksum result. This can allow

each byte of the checksum result to be embedded within an instruction.

• Algorithm is an integer to select which hexmate algorithm to use to calculate the checksum

result. A list of selectable algorithms are given in Table 5.10. If unspecified, the default

checksum algorithm used is 8 bit addition.

A typical example of the use of the checksum option is:

-CK=0-1FFF@2FFE+2100w2

This will calculate a checksum over the range 0-1FFFh and program the checksum result at address

2FFEh, checksum value will apply an initial offset of 2100h. The result will be two bytes wide.

169

Hexmate Linker and Utilities

Table 5.10: Hexmate Checksum Algorithm Selection

Selector Algorithm description

-4 Subtraction of 32 bit values from initial value

-3 Subtraction of 24 bit values from initial value

-2 Subtraction of 16 bit values from initial value

-1 Subtraction of 8 bit values from initial value

1 Addition of 8 bit values from initial value

2 Addition of 16 bit values from initial value

3 Addition of 24 bit values from initial value

4 Addition of 32 bit values from initial value

7 Fletcher’s checksum (8 bit)

8 Fletcher’s checksum (16 bit)

5.14.1.6 -FILL

The -FILL option is used for filling unused memory locations with a known value. The usage of this

option is:

-FILL=Code@Start-End[,data]

where:

• Code is the opcode that will be programmed to unused locations in memory. Multi-byte codes

should be entered in little endian order.

• Start and End specify the address range that this fill will apply to.

For example:

-FILL=3412@0-1FFF,data

will program opcode 1234h in all unused addresses from program memory address 0 to 1FFFh (Note

the endianism). -FILL accepts whole bytes of hexadecimal data from 1 to 8 bytes in length.

Adding the ,data flag to this option is not required. If the data flag has been specified, hexmate

will only perform ROM filling to records that actually contain data. This means that these records

will be padded out to the default data record length or the width specified in the -FORMAT option.

Records will also begin on addresses which are multiples of the data record length used. The default

data record length is 16 bytes. This facility is particularly useful or is a requirement for some

bootloaders that expect that all data records will be of a particular length and address alignment.

170

Linker and Utilities Hexmate

5.14.1.7 -FIND

This option is used to detect and log occurrences of an opcode or partial code sequence. The usage

of this option is:

-FIND=Findcode[mMask]@Start-End[/Align][w][t”Title”]

where:

• Findcode is the hexadecimal code sequence to search for and is entered in little endian byte

order.

• Mask is optional. It allows a bit mask over the Findcode value and is entered in little endian

byte order.

• Start and End limit the address range to search through.

• Align is optional. It specifies that a code sequence can only match if it begins on an address

which is a multiple of this value. w, if present will cause hexmate to issue a warning whenever

the code sequence is detected.

• Title is optional. It allows a title to be given to this code sequence. Defining a title will make

log-reports and messages more descriptive and more readable. A title will not affect the actual

search results.

TUT•RIAL

Let’s look at some examples. The option -FIND=3412@0-7FFF/2w will detect the code

sequence 1234h when aligned on a 2 (two) byte address boundary, between 0h and

7FFFh. w indicates that a warning will be issued each time this sequence is found.

Another example, -FIND=3412M0F00@0-7FFF/2wt"ADDXY" is same as last example

but the code sequence being matched is masked with 000Fh, so hexmate will search for

123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied

to. Any messaging or reports generated by hexmate will refer to this opcode by the

name, ADDXY as this was the title defined for this search.

If hexmate is generating a log file, it will contain the results of all searches. -FIND accepts whole

bytes of hex data from 1 to 8 bytes in length. Optionally, -FIND can be used in conjunction with

,REPLACE or ,DELETE (as described below).

171

Hexmate Linker and Utilities

5.14.1.8 -FIND...,DELETE

If DELETE is used in conjunction with a -FIND option and a sequence is found that matches the

-FIND criteria, it will be removed. This function should be used with extreme caution and is not

recommended for removal of executable code.

5.14.1.9 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the

-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option

is:

-FIND...,REPLACE=Code[mMask]

where:

• Code is a little endian hexadecimal code to replace the sequences that match the -FIND crite-

ria.

• Mask is an optional bit mask to specify which bits within Code will replace the code sequence

that has been matched. This may be useful if, for example, it is only necessary to modify 4

bits within a 16-bit instruction. The remaining 12 bits can masked and be left unchanged.

5.14.1.10 -FORMAT

The -FORMAT option can be used to specify a particular variant of INHX format or adjust maximum

record length. The usage of this option is:

-FORMAT=Type[,Length]

where:

• Type specifies a particular INHX format to generate.

• Length is optional and sets the maximum number of bytes per data record. A valid length is

between 1 and 16, with 16 being the default.

TUT•RIAL

Consider this case. A bootloader trying to download an INHX32 file fails succeed

because it cannot process the extended address records which are part of the INHX32

standard. You know that this bootloader can only program data addressed within the

range 0 to 64k, and that any data in the hex file outside of this range can be safely

172

Linker and Utilities Hexmate

Table 5.11: INHX types used in -FORMAT option

Type Description

INHX8M Cannot program addresses beyond 64K.

INHX32 Can program addresses beyond 64K with extended linear address records.

INHX032 INHX32 with initialization of upper address to zero.

disregarded. In this case, by generating the hex file in INHX8M format the operation

might succeed. The hexmate option to do this would be -FORMAT=INHX8M.

Now consider this. What if the same bootloader also required every data record to

contain eight bytes of data, no more, no less? This is possible by combining -FORMAT

with -FILL. Appropriate use of -FILL can ensure that there are no gaps in the data

for the address range being programmed. This will satisfy the minimum data length

requirement. To set the maximum length of data records to eight bytes, just modify the

previous option to become -FORMAT=INHX8M,8.

The possible types that are supported by this option are listed in Table 5.11. Note that INHX032 is

not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize

the upper address information to zero. This is a requirement of some device programmers.

5.14.1.11 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of

-HELP will show a detailed help message for the given option. For example:

-HELP=string

will show additional help for the -STRING hexmate option.

5.14.1.12 -LOGFILE

The -LOGFILE option saves hex file statistics to the named file. For example:

-LOGFILE=output.log

will analyse the hex file that hexmate is generating and save a report to a file named output.log.

173

Hexmate Linker and Utilities

5.14.1.13 -MASK

Use this option to logically AND a memory range with a particular bitmask. This is used to ensure

that the unimplemented bits in program words (if any) are left blank. The usage of this option is as

follows:

-MASK=hexcode@start-end

Where hexcode is a hexadecimal value that will be ANDed with data within the start-end

address range. Multibyte mask values can be entered in little endian byte order.

5.14.1.14 -Ofile

The generated Intel hex output will be created in this file. For example:

-Oprogram.hex

will save the resultant output to program.hex. The output file can take the same name as one of its

input files, but by doing so, it will replace the input file entirely.

5.14.1.15 -SERIAL

This option will store a particular hex value at a fixed address. The usage of this option is:

-SERIAL=Code[+/-Increment]@Address[+/-Interval][rRepetitions]

where:

• Code is a hexadecimal value to store and is entered in little endian byte order.

• Increment is optional and allows the value of Code to change by this value with each repetition

(if requested).

• Address is the location to store this code, or the first repetition thereof.

• Interval is optional and specifies the address shift per repetition of this code.

• Repetitions is optional and specifies the number of times to repeat this code.

For example:

-SERIAL=000001@EFFE

174

Linker and Utilities Hexmate

will store hex code 00001h to address EFFEh.

Another example:

-SERIAL=0000+2@1000+10r5

will store 5 codes, beginning with value 0000 at address 1000h. Subsequent codes will appear at

address intervals of +10h and the code value will change in increments of +2h.

5.14.1.16 -SIZE

Using the -SIZE option will report the number of bytes of data within the resultant hex image to

standard output. The size will also be recorded in the log file if one has been requested.

5.14.1.17 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:

-STRING@Address[tCode]=”Text”

where:

• Address is the location to store this string.

• Code is optional and allows a byte sequence to trail each byte in the string. This can allow the

bytes of the string to be encoded within an instruction.

• Text is the string to convert to ASCII and embed.

For example:

-STRING@1000="My favourite string"

will store the ASCII data for the string, My favourite string (including null terminator) at ad-

dress 1000h.

Another example:

-STRING@1000t34="My favourite string"

will store the same string with every byte in the string being trailed with the hex code 34h.

175

Hexmate Linker and Utilities

5.14.1.18 -STRPACK

This option performs the same function as -STRING but with two important differences. Firstly, only

the lower seven bits from each character are stored. Pairs of 7 bit characters are then concatenated

and stored as a 14 bit word rather than in separate bytes. This is usually only useful for devices where

program space is addressed as 14 bit words. The second difference is that -STRING’s t specifier is

not applicable with -STRPACK.

176

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with

the name of the function. This is followed by information decomposed into the following categories.

Synopsis the C declaration of the function, and the header file in which it is declared.

Description a narrative description of the function and its purpose.

Example an example of the use of the function. It is usually a complete small program that illus-

trates the function.

Data types any special data types (structures etc.) defined for use with the function. These data

types will be defined in the header file named under Synopsis.

See also any allied functions.

Return value the type and nature of the return value of the function, if any. Information on error

returns is also included

Only those categories which are relevant to each function are used.

177

Library Functions

__CONFIG

Synopsis

#include <htc.h>

__CONFIG(n, data)

Description

This macro is used to program the configuration fuses that set the device into various modes of

operation.

The macro accepts a number corresponding to the configuration register it is to program, then

the value it is to update it with.

Macros have been defined to give a more readable name to the configuration register, also masks

have been created to describe each programmable attribute available on each device. These attribute

masks can be found tabulated in this manual in the Configuration Attributes section.

Multiple attributes can be selected by ANDing them together.

Example

#include <htc.h>

__CONFIG(DEVCFG0, GCP_OFF & BWP_OFF & ICS_PGx1)

__CONFIG(DEVCFG1, FWDTEN_ON & WDTPS(0))

void

main (void)

{

}

178

Library Functions

ABS

Synopsis

#include <stdlib.h>

int abs (int j)

Description

The abs() function returns the absolute value of j.

Example

#include <stdio.h>

#include <stdlib.h>

void

main (void)

{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));

}

See Also

labs(), fabs()

Return Value

The absolute value of j.

179

Library Functions

ACOS

Synopsis

#include <math.h>

double acos (double f)

Description

The acos() function implements the inverse of cos(), i.e. it is passed a value in the range -1 to +1,

and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>

#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void

main (void)

{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {

a = acos(i)*180.0/3.141592;

printf("acos(%f) = %f degrees\n", i, a);

}

}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 to π

180

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into the struct tm structure, pointed to by its

argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0

Note the newline at the end of the string. The width of each field in the string is fixed. The

example gets the current time, converts it to a struct tm pointer with localtime(), it then converts

this to ASCII and prints it. The time() function will need to be provided by the user (see time() for

details).

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

struct tm * tp;

time(&clock);

tp = localtime(&clock);

printf("%s", asctime(tp));

}

See Also

ctime(), gmtime(), localtime(), time()

181

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the

compiler.. See time() for more details.

182

Library Functions

ASIN

Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,

and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {

a = asin(i)*180.0/3.141592;

printf("asin(%f) = %f degrees\n", i, a);

}

}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range - π

183

Library Functions

ASSERT

Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally

throughout your code at points where correct operation of the code depends upon certain conditions

being true initially. An assert() routine may be used to ensure at run time that an assumption holds

true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);

If at run time the expression evaluates to false, the program will abort with a message identifying

the source file and line number of the assertion, and the expression used as an argument to it. A fuller

discussion of the uses of assert() is impossible in limited space, but it is closely linked to methods

of proving program correctness.

Example

void

ptrfunc (struct xyz * tp)

{

assert(tp != 0);

}

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-

mented by the user.

184

Library Functions

ATAN

Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range - π

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", atan(1.5));

}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

185

Library Functions

ATAN2

Synopsis

#include <math.h>

double atan2 (double x, double x)

Description

This function returns the arc tangent of y/x.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", atan2(10.0, -10.0));

}

See Also

sin(), cos(), tan(), asin(), acos(), atan()

Return Value

The arc tangent of y/x.

186

Library Functions

ATOF

Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It then converts

an ASCII representation of a number to a double. The number may be in decimal, normal floating

point or scientific notation.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

double i;

gets(buf);

i = atof(buf);

printf("Read %s: converted to %f\n", buf, i);

}

See Also

atoi(), atol(), strtod()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

187

Library Functions

ATOI

Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an

optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

int i;

gets(buf);

i = atoi(buf);

printf("Read %s: converted to %d\n", buf, i);

}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

188

Library Functions

ATOL

Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

The atol() function scans the character string passed to it, skipping leading blanks. It then converts

an ASCII representation of a decimal number to a long integer.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

long i;

gets(buf);

i = atol(buf);

printf("Read %s: converted to %ld\n", buf, i);

}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

189

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,

size_t size, int (*compar)(const void *, const void *))

Description

The bsearch() function searches a sorted array for an element matching a particular key. It uses a

binary search algorithm, calling the function pointed to by compar to compare elements in the array.

Example

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct value {

char name[40];

int value;

} values[100];

int

val_cmp (const void * p1, const void * p2)

{

return strcmp(((const struct value *)p1)->name,

((const struct value *)p2)->name);

}

void

main (void)

{

char inbuf[80];

int i;

struct value * vp;

190

Library Functions

i = 0;

while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);

i++;

}

qsort(values, i, sizeof values[0], val_cmp);

vp = bsearch("fred", values, i, sizeof values[0], val_cmp);

if(!vp)

printf("Item ’fred’ was not found\n");

else

printf("Item ’fred’ has value %d\n", vp->value);

}

See Also

qsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these

may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

191

Library Functions

CEIL

Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less than f.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

double j;

scanf("%lf", &j);

printf("The ceiling of %lf is %lf\n", j, ceil(j));

}

192

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets() function will read one line of input from the console into the buffer passed as an ar-

gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with

backspace deleting the previously typed character, and ctrl-U deleting the entire line typed so far.

Other characters are placed in the buffer, with a carriage return or line feed (newline) terminating

the function. The collected string is null terminated.

Example

#include <conio.h>

#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {

cgets(buffer);

if(strcmp(buffer, "exit") == 0)

break;

cputs("Type ’exit’ to finish\n");

}

}

See Also

getch(), getche(), putch(), cputs()

193

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

194

Library Functions

COS

Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated

by expansion of a polynomial series approximation.

Example

#include <math.h>

#include <stdio.h>

#define C 3.141592/180.0

void

main (void)

{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)

printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

195

Library Functions

COSH, SINH, TANH

Synopsis

#include <math.h>

double cosh (double f)

double sinh (double f)

double tanh (double f)

Description

These functions are the implement hyperbolic equivalents of the trigonometric functions; cos(), sin()

and tan().

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", cosh(1.5));

printf("%f\n", sinh(1.5));

printf("%f\n", tanh(1.5));

}

Return Value

The function cosh() returns the hyperbolic cosine value.

The function sinh() returns the hyperbolic sine value.

The function tanh() returns the hyperbolic tangent value.

196

Library Functions

CPUTS

Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputting carriage returns before

each newline in the string. It calls putch() repeatedly. On a hosted system cputs() differs from puts()

in that it writes to the console directly, rather than using file I/O. In an embedded system cputs() and

puts() are equivalent.

Example

#include <conio.h>

#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {

cgets(buffer);

if(strcmp(buffer, "exit") == 0)

break;

cputs("Type ’exit’ to finish\n");

}

}

See Also

cputs(), puts(), putch()

197

Library Functions

CTIME

Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

The ctime() function converts the time in seconds pointed to by its argument to a string of the same

form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

time(&clock);

printf("%s", ctime(&clock));

}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

198

Library Functions

DIV

Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

The div() function computes the quotient and remainder of the numerator divided by the denomina-

tor.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

div_t x;

x = div(12345, 66);

printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

See Also

udiv(), ldiv(), uldiv()

Return Value

Returns the quotient and remainder into the div_t structure.

199

Library Functions

EVAL_POLY

Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d, at

x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed in n.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

double x, y;

double d[3] = {1.1, 3.5, 2.7};

x = 2.2;

y = eval_poly(x, d, 2);

printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value

A double value, being the polynomial evaluated at x.

200

Library Functions

EXP

Synopsis

#include <math.h>

double exp (double f)

Description

The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)

printf("e to %1.0f = %f\n", f, exp(f));

}

See Also

log(), log10(), pow()

201

Library Functions

FABS

Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f %f\n", fabs(1.5), fabs(-1.5));

}

See Also

abs(), labs()

202

Library Functions

FMOD

Synopsis

#include <math.h>

double fmod (double x, double y)

Description

The function fmod returns the remainder of x/y as a floating point quantity.

Example

#include <math.h>

void

main (void)

{

double rem, x;

x = 12.34;

rem = fmod(x, 2.1);

}

Return Value

The floating-point remainder of x/y.

203

Library Functions

FLOOR

Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater than f.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", floor(1.5));

printf("%f\n", floor(-1.5));

}

204

Library Functions

FREXP

Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

The frexp() function breaks a floating point number into a normalized fraction and an integral power

of 2. The integer is stored into the int object pointed to by p. Its return value x is in the interval (0.5,

1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the

result are zero.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

int i;

f = frexp(23456.34, &i);

printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also

ldexp()

205

Library Functions

FTOA

Synopsis

#include <stdlib.h>

char * ftoa (float f, int * status)

Description

The function ftoa converts the contents of f into a string which is stored into a buffer which is then

return.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char * buf;

float input = 12.34;

int status;

buf = ftoa(input, &status);

printf("The buffer holds %s\n", buf);

}

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a reference to the buffer into which the result is written.

206

Library Functions

GETCH, GETCHE

Synopsis

#include <conio.h>

char getch (void)

char getche (void)

Description

The getch() function reads a single character from the console keyboard and returns it without echo-

ing. The getche() function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.

By default, the library contains a version of getch() that will interface to the Lucifer Debugger. The

user should supply an appropriate routine if another source is desired, e.g. a serial port.

The module getch.c in the SOURCES directory contains model versions of all the console I/O

routines. Other modules may also be supplied, e.g. ser180.c has routines for the serial port in a

Z180.

Example

#include <conio.h>

void

main (void)

{

char c;

while((c = getche()) != ’\n’)

continue;

}

See Also

cgets(), cputs(), ungetch()

207

Library Functions

GETCHAR

Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h. Note that under

normal circumstances getchar() will NOT return unless a carriage return has been typed on the

console. To get a single character immediately from the console, use the function getch().

Example

#include <stdio.h>

void

main (void)

{

int c;

while((c = getchar()) != EOF)

putchar(c);

}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

208

Library Functions

GETS

Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer at s, deleting the newline (cf.

fgets()). The buffer is null terminated. In an embedded system, gets() is equivalent to cgets(), and

results in getche() being called repeatedly to get characters. Editing (with backspace) is available.

Example

#include <stdio.h>

void

main (void)

{

char buf[80];

printf("Type a line: ");

if(gets(buf))

puts(buf);

}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

209

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970,

into a broken down time stored in a structure as defined in time.h. The structure is defined in the

’Data Types’ section.

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

struct tm * tp;

time(&clock);

tp = gmtime(&clock);

printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also

ctime(), asctime(), time(), localtime()

210

Library Functions

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

211

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.

Synopsis

#include <ctype.h>

int isalnum (char c)

int isalpha (char c)

int isascii (char c)

int iscntrl (char c)

int isdigit (char c)

int islower (char c)

int isprint (char c)

int isgraph (char c)

int ispunct (char c)

int isspace (char c)

int isupper (char c)

int isxdigit(char c)

Description

These macros, defined in ctype.h, test the supplied character for membership in one of several over-

lapping groups of characters. Note that all except isascii() are defined for c, if isascii(c) is true or if

c = EOF.

isalnum(c) c is in 0-9 or a-z or A-Z

isalpha(c) c is in A-Z or a-z

isascii(c) c is a 7 bit ascii character

iscntrl(c) c is a control character

isdigit(c) c is a decimal digit

islower(c) c is in a-z

isprint(c) c is a printing char

isgraph(c) c is a non-space printable character

ispunct(c) c is not alphanumeric

isspace(c) c is a space, tab or newline

isupper(c) c is in A-Z

isxdigit(c) c is in 0-9 or a-f or A-F

212

Library Functions

Example

#include <ctype.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

int i;

gets(buf);

i = 0;

while(isalnum(buf[i]))

i++;

buf[i] = 0;

printf("’%s’ is the word\n", buf);

}

See Also

toupper(), tolower(), toascii()

213

Library Functions

ISDIG

Synopsis

#include <ctype.h>

int isdig (int c)

Description

The isdig() function tests the input character c to see if is a decimal digit (0 – 9) and returns true is

this is the case; false otherwise.

Example

#include <ctype.h>

void

main (void)

{

char buf[] = "1998a";

if(isdig(buf[0]))

printf("valid type detected\n");

}

See Also

isdigit() (listed un isalnum())

Return Value

Zero if the character is a decimal digit; a non-zero value otherwise.

214

Library Functions

ITOA

Synopsis

#include <stdlib.h>

char * itoa (char * buf, int val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf. The conversion

is performed according to the radix specified in base. buf is assumed to reference a buffer which has

sufficent space allocated to it.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[10];

itoa(buf, 1234, 16);

printf("The buffer holds %s\n", buf);

}

See Also

strtol(), utoa(), ltoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

215

Library Functions

LABS

Synopsis

#include <stdlib.h>

int labs (long int j)

Description

The labs() function returns the absolute value of long value j.

Example

#include <stdio.h>

#include <stdlib.h>

void

main (void)

{

long int a = -5;

printf("The absolute value of %ld is %ld\n", a, labs(a));

}

See Also

abs()

Return Value

The absolute value of j.

216

Library Functions

LDEXP

Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

The ldexp() function performs the inverse of frexp() operation; the integer i is added to the exponent

of the floating point f and the resultant returned.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

f = ldexp(1.0, 10);

printf("1.0 * 2^10 = %f\n", f);

}

See Also

frexp()

Return Value

The return value is the integer i added to the exponent of the floating point value f.

217

Library Functions

LDIV

Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

The ldiv() routine divides the numerator by the denominator, computing the quotient and the remain-

der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is

the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and

the members of the returned structure are all of type long int.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

ldiv_t lt;

lt = ldiv(1234567, 12345);

printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also

div(), uldiv(), udiv()

Return Value

Returns a structure of type ldiv_t

218

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on Jan

1, 1970, into a broken down time stored in a structure as defined in time.h. The routine localtime()

takes into account the contents of the global integer time_zone. This should contain the number of

minutes that the local time zone is westward of Greenwich. On systems where it is not possible to

predetermine this value, localtime() will return the same result as gmtime().

Example

#include <stdio.h>

#include <time.h>

char * wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"

};

void

main (void)

{

time_t clock;

struct tm * tp;

time(&clock);

tp = localtime(&clock);

printf("Today is %s\n", wday[tp->tm_wday]);

}

219

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

220

Library Functions

LOG, LOG10

Synopsis

#include <math.h>

double log (double f)

double log10 (double f)

Description

The log() function returns the natural logarithm of f. The function log10() returns the logarithm to

base 10 of f.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)

printf("log(%1.0f) = %f\n", f, log(f));

}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

221

Library Functions

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.

To use this facility, setjmp() should be called with a jmp_buf argument in some outer level function.

The call from setjmp() will return 0.

To return to this level of execution, longjmp() may be called with the same jmp_buf argument

from an inner level of execution. Note however that the function which called setjmp() must still be

active when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack

containing invalid data. The val argument to longjmp() will be the value apparently returned from

the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf jb;

void

inner (void)

{

longjmp(jb, 5);

}

void

main (void)

{

int i;

222

Library Functions

if(i = setjmp(jb)) {

printf("setjmp returned %d\n", i);

exit(0);

}

printf("setjmp returned 0 - good\n");

printf("calling inner...\n");

inner();

printf("inner returned - bad!\n");

}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active when longjmp() is called. Breach of this rule

will cause disaster, due to the use of a stack containing invalid data.

223

Library Functions

LTOA

Synopsis

#include <stdlib.h>

char * ltoa (char * buf, long val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf. The conversion

is performed according to the radix specified in base. buf is assumed to reference a buffer which has

sufficent space allocated to it.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[10];

utoi(buf, 12345678L, 16);

printf("The buffer holds %s\n", buf);

}

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

224

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

The memcmp() function compares two blocks of memory, of length n, and returns a signed value

similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

int buf[10], cow[10], i;

buf[0] = 1;

buf[2] = 4;

cow[0] = 1;

cow[2] = 5;

buf[1] = 3;

cow[1] = 3;

i = memcmp(buf, cow, 3*sizeof(int));

if(i < 0)

printf("less than\n");

else if(i > 0)

printf("Greater than\n");

else

printf("Equal\n");

}

225

Library Functions

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal

to or greater than the string pointed to by s2 in the collating sequence.

226

Library Functions

MKTIME

Synopsis

#include <time.h>

time_t mktime (struct tm * tmptr)

Description

The mktime() function converts the local calendar time referenced by the tm structure pointer tmptr

into a time being the number of seconds passed since Jan 1st 1970, or -1 if the time cannot be

represented.

Example

#include <time.h>

#include <stdio.h>

void

main (void)

{

struct tm birthday;

birthday.tm_year = 1955;

birthday.tm_mon = 2;

birthday.tm_mday = 24;

birthday.tm_hour = birthday.tm_min = birthday.tm_sec = 0;

printf("you have been alive approximately %ld seconds\n",

mktime(&birthday));

}

See Also

ctime(), asctime()

227

Library Functions

Return Value

The time contained in the tm structure represented as the number of seconds since the 1970 Epoch,

or -1 if this time cannot be represented.

228

Library Functions

MODF

Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argument value into integral and fractional parts, each having the

same sign as value. For example, -3.17 would be split into the integral part (-3) and the fractional

part (-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double i_val, f_val;

f_val = modf(-3.17, &i_val);

}

Return Value

The signed fractional part of value.

229

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE

Synopsis

#include <sys.h>

int persist_check (int flag)

void persist_validate (void)

Description

The persist_check() function is used with non-volatile RAM variables, declared with the persistent

qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call

to persist_validate() and a checksum also calculated by persist_validate(). If the magic number and

checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it

will optionally zero out and re-validate the non-volatile RAM area (by calling persist_validate()).

This is done if the flag argument is true.

The persist_validate() routine should be called after each change to a persistent variable. It will

set up the magic number and recalculate the checksum.

Example

#include <sys.h>

#include <stdio.h>

persistent long reset_count;

void

main (void)

{

if(!persist_check(1))

printf("Reset count invalid - zeroed\n");

else

printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */

persist_validate(); /* and checksum */

for(;;)

continue; /* sleep until next reset */

230

Library Functions

}

Return Value

FALSE (zero) if the NVRAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

231

Library Functions

POW

Synopsis

#include <math.h>

double pow (double f, double p)

Description

The pow() function raises its first argument, f, to the power p.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)

printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also

log(), log10(), exp()

Return Value

f to the power of p.

232

Library Functions

PUTCH

Synopsis

#include <conio.h>

void putch (char c)

Description

The putch() function outputs the character c to the console screen, prepending a carriage return if

the character is a newline. In a CP/M or MS-DOS system this will use one of the system I/O calls.

In an embedded system this routine, and associated others, will be defined in a hardware dependent

way. The standard putch() routines in the embedded library interface either to a serial port or to the

Lucifer Debugger.

Example

#include <conio.h>

char * x = "This is a string";

void

main (void)

{

char * cp;

cp = x;

while(*x)

putch(*x++);

putch(’\n’);

}

See Also

cgets(), cputs(), getch(), getche()

233

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

The putchar() function is a putc() operation on stdout, defined in stdio.h.

Example

#include <stdio.h>

char * x = "This is a string";

void

main (void)

{

char * cp;

cp = x;

while(*x)

putchar(*x++);

putchar(’\n’);

}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

234

Library Functions

Note

This routine is not usable in a ROM based system.

235

Library Functions

PUTS

Synopsis

#include <stdio.h>

int puts (const char * s)

Description

The puts() function writes the string s to the stdout stream, appending a newline. The null character

terminating the string is not copied.

Example

#include <stdio.h>

void

main (void)

{

puts("Hello, world!");

}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

236

Library Functions

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,

int (*func)(const void *, const void *))

Description

The qsort() function is an implementation of the quicksort algorithm. It sorts an array of nel items,

each of length width bytes, located contiguously in memory at base. The argument func is a pointer

to a function used by qsort() to compare items. It calls func with pointers to two items to be com-

pared. If the first item is considered to be greater than, equal to or less than the second then func

should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>

#include <stdlib.h>

int aray[] = {

567, 23, 456, 1024, 17, 567, 66

};

int

sortem (const void * p1, const void * p2)

{

return *(int *)p1 - *(int *)p2;

}

void

main (void)

{

register int i;

237

Library Functions

qsort(aray, sizeof aray/sizeof aray[0],

sizeof aray[0], sortem);

for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);

putchar(’\n’);

}

Note

The function parameter must be a pointer to a function of type similar to:

int func (const void *, const void *)

i.e. it must accept two const void * parameters, and must be prototyped.

238

Library Functions

RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0

to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a

deterministic sequence if started from the same point. The starting point is set using the srand() call.

The example shows use of the time() function to generate a different starting point for the sequence

each time.

Example

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t toc;

int i;

time(&toc);

srand((int)toc);

for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());

putchar(’\n’);

}

See Also

srand()

239

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

240

Library Functions

ROUND

Synopsis

#include <math.h>

double round (double x)

Description

The round function round the argument to the nearest integer value, but in floating-point format.

Values midway between integer values are rounded up.

Example

#include <math.h>

void

main (void)

{

double input, rounded;

input = 1234.5678;

rounded = round(input);

}

See Also

trunc()

241

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>

#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from the stdin stream. Similar func-

tions are available for streams in general, and for strings. The function vscanf() is similar, but takes

a pointer to an argument list rather than a series of additional arguments. This pointer should have

been initialised with va_start().

The input conversions are performed according to the fmt string; in general a character in the

format string must match a character in the input; however a space character in the format string will

match zero or more "white space" characters in the input, i.e. spaces, tabs or newlines.

A conversion specification takes the form of the character %, optionally followed by an assign-

ment suppression character (’*’), optionally followed by a numerical maximum field width, followed

by a conversion specification character. Each conversion specification, unless it incorporates the as-

signment suppression character, will assign a value to the variable pointed at by the next argument.

Thus if there are two conversion specifications in the fmt string, there should be two additional

pointer arguments.

The conversion characters are as follows:

o x d

Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was

supplied, take at most that many characters from the input. A leading minus sign will be recognized.

s

Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

argument must be a pointer to char. The field width will limit the number of characters copied. The

resultant string will be null terminated.

c

Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a

242

Library Functions

field width is specified, then copy that many characters. This differs from the s format in that white

space does not terminate the character sequence.

The conversion characters o, x, u, and d may be preceded by an l to indicate that the correspond-

ing pointer argument is a pointer to long as appropriate. A preceding h will indicate that the pointer

argument is a pointer to short rather than int.

Example

scanf("%d %s", &a, &c)

with input " 12s"

will assign 12 to a, and "s" to s.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file

was seen before any conversions were performed.

243

Library Functions

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-

mation.

Example

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf jb;

void

inner (void)

{

longjmp(jb, 5);

}

void

main (void)

{

int i;

if(i = setjmp(jb)) {

printf("setjmp returned %d\n", i);

exit(0);

}

printf("setjmp returned 0 - good\n");

printf("calling inner...\n");

244

Library Functions

inner();

printf("inner returned - bad!\n");

}

See Also

longjmp()

Return Value

The setjmp() function returns zero after the real call, and non-zero if it apparently returns after a call

to longjmp().

245

Library Functions

SETVECTOR

Synopsis

void interrupt ISR (void) {

SETVECTOR(n,ISR);

...

}

Description

This routine is used to assign an interrupt function to service a particular interrupt at runtime. The

first argument should be the vector number (between 0 and 63). The second argument should be the

function which you want the interrupt vector to point to. This must be used within the appropriate

interrupt routine.

Example

void interrupt foo (void) {

SETVECTOR(3,foo);

...

}

void main (void){

}

See Also

Return Value

Note

This should be used in conjuction with the --interrupt=ram option.

246

Library Functions

SIN

Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>

#include <stdio.h>

#define C 3.141592/180.0

void

main (void)

{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)

printf("sin(%3.0f) = %f\n", i, sin(i*C));

printf("cos(%3.0f) = %f\n", i, cos(i*C));

}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale of f.

247

Library Functions

SQRT

Synopsis

#include <math.h>

double sqrt (double f)

Description

The function sqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)

printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

248

Library Functions

SRAND

Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given

seed. This provides a mechanism for varying the starting point of the pseudo-random sequence

yielded by rand(). On the Z80, a good place to get a truly random seed is from the refresh register.

Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t toc;

int i;

time(&toc);

srand((int)toc);

for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());

putchar(’\n’);

}

See Also

rand()

249

Library Functions

STRCAT

Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description

This function appends (concatenates) string s2 to the end of string s1. The result will be null termi-

nated. The argument s1 must point to a character array big enough to hold the resultant string.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strncat(), strlen()

Return Value

The value of s1 is returned.

250

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

char * strchr (const char * s, int c)

char * strichr (const char * s, int c)

Description

The strchr() function searches the string s for an occurrence of the character c. If one is found, a

pointer to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example

#include <strings.h>

#include <stdio.h>

void

main (void)

{

static char temp[] = "Here it is...";

char c = ’s’;

if(strchr(temp, c))

printf("Character %c was found in string\n", c);

else

printf("No character was found in string");

}

See Also

strrchr(), strlen(), strcmp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

251

Library Functions

Note

Although the function takes an integer argument for the character, only the lower 8 bits of the value

are used.

252

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)

int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed

integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with

the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

int i;

if((i = strcmp("ABC", "ABc")) < 0)

printf("ABC is less than ABc\n");

else if(i > 0)

printf("ABC is greater than ABc\n");

else

printf("ABC is equal to ABc\n");

}

See Also

strlen(), strncmp(), strcpy(), strcat()

253

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero

or positive, i.e. do not test explicitly for negative one (-1) or one (1).

254

Library Functions

STRCPY

Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. The destination

array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer pointer s1 is returned.

255

Library Functions

STRCSPN

Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

The strcspn() function returns the length of the initial segment of the string pointed to by s1 which

consists of characters NOT from the string pointed to by s2.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));

printf("%d\n", strcspn("xxxbcadefs", set));

printf("%d\n", strcspn("1234567890", set));

}

See Also

strspn()

Return Value

Returns the length of the segment.

256

Library Functions

STRLEN

Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

The strlen() function returns the number of characters in the string s, not including the null termina-

tor.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

Return Value

The number of characters preceding the null terminator.

257

Library Functions

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description

This function appends (concatenates) string s2 to the end of string s1. At most n characters will be

copied, and the result will be null terminated. s1 must point to a character array big enough to hold

the resultant string.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strncat(s1, s2, 5);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strcat(), strlen()

258

Library Functions

Return Value

The value of s1 is returned.

259

Library Functions

STRNCMP, STRNICMP

Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)

int strnicmp (const char * s1, const char * s2, size_t n)

Description

The strncmp() function compares its two, null terminated, string arguments, up to a maximum of n

characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.

The comparison is done with the standard collating sequence, which is that of the ASCII character

set.

The strnicmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

int i;

i = strcmp("abcxyz", "abcxyz");

if(i == 0)

printf("Both strings are equal\n");

else if(i > 0)

printf("String 2 less than string 1\n");

else

printf("String 2 is greater than string 1\n");

}

See Also

strlen(), strcmp(), strcpy(), strcat()

260

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero

or positive, i.e. do not test explicitly for negative one (-1) or one (1).

261

Library Functions

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. At most

n characters are copied. If string s2 is longer than n then the destination string will not be null

terminated. The destination array must be large enough to hold the entire string, including the null

terminator.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strncpy(buffer, "Start of line", 6);

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcat(), strlen(), strcmp()

262

Library Functions

Return Value

The destination buffer pointer s1 is returned.

263

Library Functions

STRPBRK

Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from

string s2, or a null pointer if no character from s2 exists in s1.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

char * str = "This is a string.";

while(str != NULL) {

printf("%s\n", str);

str = strpbrk(str+1, "aeiou");

}

}

Return Value

Pointer to the first matching character, or NULL if no character found.

264

Library Functions

STRRCHR, STRRICHR

Synopsis

#include <string.h>

char * strrchr (char * s, int c)

char * strrichr (char * s, int c)

Description

The strrchr() function is similar to the strchr() function, but searches from the end of the string

rather than the beginning, i.e. it locates the last occurrence of the character c in the null terminated

string s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

char * str = "This is a string.";

while(str != NULL) {

printf("%s\n", str);

str = strrchr(str+1, ’s’);

}

}

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

265

Library Functions

STRSPN

Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed to by s1 which

consists entirely of characters from the string pointed to by s2.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

printf("%d\n", strspn("This is a string", "This"));

printf("%d\n", strspn("This is a string", "this"));

}

See Also

strcspn()

Return Value

The length of the segment.

266

Library Functions

STRSTR, STRISTR

Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)

char * stristr (const char * s1, const char * s2)

Description

The strstr() function locates the first occurrence of the sequence of characters in the string pointed

to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

printf("%d\n", strstr("This is a string", "str"));

}

Return Value

Pointer to the located string or a null pointer if the string was not found.

267

Library Functions

STRTOD

Synopsis

#include <stdlib.h>

double strtok (const char * s, const char ** res)

Description

Parse the string s converting it to a double floating point type. This function converts the first

occurence of a substring of the input that is made up of characters of the expected form after skipping

leading white-space characters. If res is not NULL, it will be made to point to the first character after

the converted sub-string.

Example

#include <stdio.h>

#include <strlib.h>

void

main (void)

{

char buf[] = " 35.7 23.27 ";

char * end;

double in1, in2;

in1 = strtod(buf, &end);

in2 = strtod(end, NULL);

printf("in comps: %f, %f\n", in1, in2);

}

See Also

atof()

268

Library Functions

Return Value

Returns a double representing the floating-point value of the converted input string.

269

Library Functions

STRTOL

Synopsis

#include <stdlib.h>

double strtol (const char * s, const char ** res, int base)

Description

Parse the string s converting it to a long integer type. This function converts the first occurence of

a substring of the input that is made up of characters of the expected form after skipping leading

white-space characters. The radix of the input is determined from base. If this is zero, then the

radix defaults to base 10. If res is not NULL, it will be made to point to the first character after the

converted sub-string.

Example

#include <stdio.h>

#include <strlib.h>

void

main (void)

{

char buf[] = " 0X299 0x792 ";

char * end;

long in1, in2;

in1 = strtol(buf, &end, 16);

in2 = strtol(end, NULL, 16);

printf("in (decimal): %ld, %ld\n", in1, in2);

}

See Also

strtod()

270

Library Functions

Return Value

Returns a long int representing the value of the converted input string using the specified base.

271

Library Functions

STRTOK

Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)

Description

A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text

tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first

token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null

character, which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching

from the end of the last token found, and again return a pointer to the first character of the next token,

or NULL if no further tokens were found.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

char * ptr;

char buf[] = "This is a string of words.";

char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);

while(ptr != NULL) {

printf("%s\n", ptr);

ptr = strtok(NULL, sep_tok);

}

}

272

Library Functions

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator string s2 may be different from call to call.

273

Library Functions

TAN

Synopsis

#include <math.h>

double tan (double f)

Description

The tan() function calculates the tangent of f.

Example

#include <math.h>

#include <stdio.h>

#define C 3.141592/180.0

void

main (void)

{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)

printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of f.

274

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This

function will be user implemented. When implemented, this function should return the current time

in seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is

stored into the object pointed to by t.

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

time(&clock);

printf("%s", ctime(&clock));

}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,

1970.

275

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the

specifications outlined above.

276

Library Functions

TOLOWER, TOUPPER, TOASCII

Synopsis

#include <ctype.h>

char toupper (int c)

char tolower (int c)

char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, the tolower()

routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed

in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an

alphabetic character.

Example

#include <stdio.h>

#include <ctype.h>

#include <string.h>

void

main (void)

{

char * array1 = "aBcDE";

int i;

for(i=0;i < strlen(array1); ++i) {

printf("%c", tolower(array1[i]));

}

printf("\n");

}

See Also

islower(), isupper(), isascii(), et. al.

277

Library Functions

TRUNC

Synopsis

#include <math.h>

double trunc (double x)

Description

The trunc function rounds the argument to the nearest integer value, in floating-point format, that is

not larger in magniture than the argument.

Example

#include <math.h>

void

main (void)

{

double input, rounded;

input = 1234.5678;

rounded = trunc(input);

}

See Also

round()

278

Library Functions

UDIV

Synopsis

#include <stdlib.h>

int udiv (unsigned num, unsigned demon)

Description

The udiv() function calculate the quotient and remainder of the division of number and denom,

storing the results into a udiv_t structure which is returned.

Example

#include <stdlib.h>

void

main (void)

{

udiv_t result;

unsigned num = 1234, den = 7;

result = udiv(num, den);

}

See Also

uldiv(), div(), ldiv()

Return Value

Returns the the quotient and remainder as a udiv_t structure.

279

Library Functions

ULDIV

Synopsis

#include <stdlib.h>

int uldiv (unsigned long num, unsigned long demon)

Description

The uldiv() function calculate the quotient and remainder of the division of number and denom,

storing the results into a uldiv_t structure which is returned.

Example

#include <stdlib.h>

void

main (void)

{

uldiv_t result;

unsigned long num = 1234, den = 7;

result = uldiv(num, den);

}

See Also

ldiv(), udiv(), div()

Return Value

Returns the the quotient and remainder as a uldiv_t structure.

280

Library Functions

UNGETCH

Synopsis

#include <conio.h>

void ungetch (char c)

Description

The ungetch() function will push back the character c onto the console stream, such that a subse-

quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

281

Library Functions

UTOA

Synopsis

#include <stdlib.h>

char * utoa (char * buf, unsigned val, int base)

Description

The function itoa converts the unsigned contents of val into a string which is stored into buf. The

conversion is performed according to the radix specified in base. buf is assumed to reference a

buffer which has sufficent space allocated to it.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[10];

utoi(buf, 1234, 16);

printf("The buffer holds %s\n", buf);

}

See Also

strtol(), itoa(), ltoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

282

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)

type va_arg (ap, type)

void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in

a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function

are not known at compile time.

The rightmost parameter to the function (shown as parmN) plays an important role in these

macros, as it is the starting point for access to further parameters. In a function taking variable num-

bers of arguments, a variable of type va_list should be declared, then the macro va_start() invoked

with that variable and the name of parmN. This will initialize the variable to allow subsequent calls

of the macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name

which is the type that the next parameter is expected to be. Note that any arguments thus accessed

will have been widened by the default conventions to int, unsigned int or double. For example if a

character argument has been passed, it should be accessed by va_arg(ap, int) since the char will

have been widened to int.

An example is given below of a function taking one integer parameter, followed by a number

of other parameters. In this example the function expects the subsequent parameters to be pointers

to char, but note that the compiler is not aware of this, and it is the programmers responsibility to

ensure that correct arguments are supplied.

Example

#include <stdio.h>

#include <stdarg.h>

void

pf (int a, ...)

{

283

Library Functions

va_list ap;

va_start(ap, a);

while(a--)

puts(va_arg(ap, char *));

va_end(ap);

}

void

main (void)

{

pf(3, "Line 1", "line 2", "line 3");

}

284

Library Functions

XTOI

Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional

sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

int i;

gets(buf);

i = xtoi(buf);

printf("Read %s: converted to %x\n", buf, i);

}

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

285

Library Functions

286

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with

an explanation of each message. Most messages have been assigned a unique number which appears

in brackets before each message in this chapter, and which is also printed by the compiler when the

message is issued. The messages shown here are sorted by their number. Un-numbered messages

appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets

opposite the error message. In some cases examples of code or options that could trigger the error

are given. The use of * in the error message is used to represent a string that the compiler will

substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error

message.

(1) too many errors (*) (all applications)

The executing compiler application has encountered too many errors and will exit immediately.

Other uncompiled source files will be processed, but the compiler applications that would normally

be executed in due course will not be run. The number of errors that can be accepted can be con-

trolled using the --ERRORS option, See Section 2.6.26.

(2) error/warning (*) generated, but no description available (all applications)

The executing compiler application has emitted a message (advisory/warning/error), but there is no

description available in the message description file (MDF) to print. This may be because the MDF

is out of date, or the message issue has not been tranlated into the selected language.

287

Error and Warning Messages

(3) malformed error information on line *, in file * (all applications)

The compiler has attempted to load the messages for the selected language, but the message descrip-

tion file (MDF) was corrupted and could not be read correctly.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matching #endif, e.g.:

#if INPUT /* error flagged here */

void main(void)

{

run();

} /* no #endif was found in this module */

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a #else. These can only follow a

#if, e.g.:

#ifdef FOO

result = foo;

#else

result = bar;

#elif defined(NEXT) /* the #else above terminated the #if */

result = next(0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching #if line. If there is an

apparently corresponding #if line, check for things like extra #endif’s, or improperly terminated

comments, e.g.:

#ifdef FOO

result = foo;

#endif

result = bar;

#elif defined(NEXT) /* the #endif above terminated the #if */

result = next(0);

#endif

288

Error and Warning Messages

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally

used to check compile time defines etc. Remove the directive to remove the error, but first check as

to why the directive is there.

(104) preprocessor #assert failure (Preprocessor)

The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer

induced error.

#assert SIZE == 4 /* size should never be 4 */

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching #asm, e.g.:

void cleardog(void)

{

clrwdt

#endasm /* in-line assembler ends here,

only where did it begin? */

}

(106) nested #asm directives (Preprocessor)

It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive, e.g.:

#asm

move r0, #0aah

#asm ; previous #asm must be closed before opening another

sleep

#endasm

(107) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand the # directive. It is probably a misspelling of a pre-processor #

directive, e.g.:

#indef DEBUG /* oops -- that should be #undef DEBUG */

289

Error and Warning Messages

(108) #if[n][def] without an argument (Preprocessor)

The preprocessor directives #if, #ifdef and #ifndef must have an argument. The argument to #if

should be an expression, while the argument to #ifdef or #ifndef should be a single name, e.g.:

#if /* oops -- no argument to check */

output = 10;

#else

output = 20;

#endif

(109) #include syntax error (Preprocessor)

The syntax of the filename argument to #include is invalid. The argument to #include must be

a valid file name, either enclosed in double quotes "" or angle brackets < >. Spaces should not be

included, and the closing quote or bracket must be present. There should be nothing else on the line

other than comments, e.g.:

#include stdio.h /* oops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-

sor is being executed by a compiler driver.

(111) redefining preprocessor macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want

to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1

/* elsewhere: */

/* Is this correct? It will overwrite the first definition. */

#define ONE one

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that

does not start with a letter or a missing closing parenthesis ,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

290

Error and Warning Messages

(113) unterminated string in preprocessor macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to #undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

(115) recursive preprocessor macro definition of "*" defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion

of itself!

(116) end of file within preprocessor macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been

omitted from a macro invocation. The line number given is the line where the macro argument

started, e.g.:

#define FUNC(a, b) func(a+b)

FUNC(5, 6; /* oops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a #if expression should only occur in syntactically correct places. This error is most

probably caused by omission of an operator, e.g.:

#if FOO BAR /* oops -- did you mean: #if FOO == BAR ? */

(118) stack overflow processing #if expression (Preprocessor)

The preprocessor filled up its expression evaluation stack in a #if expression. Simplify the expres-

sion — it probably contains too many parenthesized subexpressions.

(119) invalid expression in #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

291

Error and Warning Messages

(120) operator "*" in incorrect context (Preprocessor)

An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary

operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */

#define BIG

#endif

(121) expression stack overflow at operator "*" (Preprocessor)

Expressions in #if lines are evaluated using a stack with a size of 128. It is possible for very complex

expressions to overflow this. Simplify the expression.

(122) unbalanced parenthesis at operator "*" (Preprocessor)

The evaluation of a #if expression found mismatched parentheses. Check the expression for correct

parenthesisation, e.g.:

#if ((A) + (B) /* oops -- a missing), I think */

#define ADDED

#endif

(123) misplaced "?" or ":"; previous operator is "*" (Preprocessor)

A colon operator has been encountered in a #if expression that does not match up with a corre-

sponding ? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in a #if expression that has no business being there. Valid characters are the

letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY‘ /* what are these characters doing here? */

int m;

#endif

292

Error and Warning Messages

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a #if expression that has no business being there. Valid char-

acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ^SYYY /* what is this control characters doing here? */

int m;

#endif

(126) strings can’t be used in #if (Preprocessor)

The preprocessor does not allow the use of strings in #if expressions, e.g.:

/* no string operations allowed by the preprocessor */

#if MESSAGE > “hello”

#define DEBUG

#endif

(127) bad syntax for defined() in #[el]if (Preprocessor)

The defined() pseudo-function in a preprocessor expression requires its argument to be a single

name. The name must start with a letter and should be enclosed in parentheses, e.g.:

/* oops -- defined expects a name, not an expression */

#if defined(a&b)

input = read();

#endif

(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* oops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

The backslash is incorrect in the #if statement, e.g.:

#if FOO == \34

#define BIG

#endif

293

Error and Warning Messages

(130) unknown type "*" in #[el]if sizeof() (Preprocessor)

An unknown type was used in a preprocessor sizeof(). The preprocessor can only evaluate

sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* should be: #if sizeof(int) == 2 */

i = 0xFFFF;

#endif

(131) illegal type combination in #[el]if sizeof() (Preprocessor)

The preprocessor found an illegal type combination in the argument to sizeof() in a #if expres-

sion, e.g.

/* To sign, or not to sign, that is the error. */

#if sizeof(signed unsigned int) == 2

i = 0xFFFF;

#endif

(132) no type specified in #[el]if sizeof() (Preprocessor)

Sizeof() was used in a preprocessor #if expression, but no type was specified. The argument to

sizeof() in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* oops -- size of what? */

i = 0;

#endif

(133) unknown type code (0x*) in #[el]if sizeof() (Preprocessor)

The preprocessor has made an internal error in evaluating a sizeof() expression. Check for a

malformed type specifier. This is an internal error. Contact HI-TECH Software technical support

with details.

(134) syntax error in #[el]if sizeof() (Preprocessor)

The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable

causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) // oops - should be: #if sizeof(int) == 2

i = 0xFFFF;

#endif

294

Error and Warning Messages

(135) unknown operator (*) in #if (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is

an internal error. Contact HI-TECH Software technical support with details.

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation operator ## that is neither a letter nor a digit.

Since the result of this operator must be a legal token, the operands must be tokens containing only

letters and digits, e.g.:

/* the ’ character will not lead to a valid token */

#define cc(a, b) a ## ’b

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator ## that is neither a letter

nor a digit. Since the result of this operator must be a legal token, the operands must be tokens

containing only letters and digits, e.g.:

/* the ’ character will not lead to a valid token */

#define cc(a, b) a ## ’b

(139) end of file in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here the comment begins. I’m not sure where I end, though

}

(140) can’t open * file "*": * (Driver, Preprocessor, Code Generator, Assembler)

The command file specified could not be opened for reading. Confirm the spelling and path of the

file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

295

Error and Warning Messages

(141) can’t open * file "*": * (Any)

An output file could not be created. Confirm the spelling and path of the file specified on the com-

mand line.

(144) too many nested #if blocks (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(146) #include filename too long (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.

Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many #include directories specified (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The

number of directories specified with the driver is too great.

(148) too many arguments for preprocessor macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) preprocessor macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is

normally 32768 bytes long. Thus any macro expansion must not expand into a total of more than

32K bytes.

(150) illegal "__" preprocessor macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(151) too many arguments in preprocessor macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is

31.

(152) bad dp/nargs in openpar(): c = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

296

Error and Warning Messages

(153) out of space in preprocessor macro "*" argument expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes

long.

(155) work buffer overflow conatenating "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer "*" overflow (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) can’t allocate * bytes of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable in preprocessor macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too many calls to unget() (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(161) control line "*" within preprocessor macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.

This should not happen.

(162) #warning: * (Preprocessor, Driver)

This warning is either the result of user-defined #warning preprocessor directive or the driver en-

countered a problem reading the the map file. If the latter then please HI-TECH Software technical

support with details

(163) unexpected text in control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text

will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to

enclose the text as a comment, e.g.:

297

Error and Warning Messages

#if defined(END)

#define NEXT

#endif END /* END would be better in a comment here */

(164) #include filename "*" was converted to lower case (Preprocessor)

The #include file name had to be converted to lowercase before it could be opened, e.g.:

#include <STDIO.H> /* oops -- should be: #include <stdio.h> */

(165) #include filename "*" does not match actual name (check upper/lower case) (Prepro-

cessor)

In Windows versions this means the file to be included actually exists and is spelt the same way as

the #include filename, however the case of each does not exactly match. For example, specifying

#include “code.c” will include Code.c if it is found. In Linux versions this warning could occur

if the file wasn’t found.

(166) too few values specified with option "*" (Preprocessor)

The list of values to the preprocessor (CPP) -S option is incomplete. This should not happen if the

preprocessor is being invoked by the compiler driver. The values passes to this option represent the

sizes of char, short, int, long, float and double types.

(167) too many values specified with -S option; "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message -s, too

few values specified in * on page ??.

(168) unknown option "*" (Any)

This option given to the component which caused the error is not recognized.

(169) strange character (*) after ## (Preprocessor)

There is an unexpected character after #.

298

Error and Warning Messages

(170) symbol "*" in undef was never defined (Preprocessor)

The symbol supplied as argument to #undef was not already defined. This warning may be disabled

with some compilers. This warning can be avoided with code like:

#ifdef SYM

#undef SYM /* only undefine if defined */

#endif

(171) wrong number of preprocessor macro arguments for "*" (* instead of *)(Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)

ADD(1, 2, 3) /* oops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator # (not to be confused with the leading # used for preprocessor control

lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* oops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this

expression, its value has been taken as zero. This warning may be disabled with some compilers.

Example:

#if FOO+BAR /* e.g. FOO was never #defined */

#define GOOD

#endif

299

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,

e.g.:

#if CHAR == ’ab’

#define MULTI

#endif

(175) division by zero in #if; zero result assumed (Preprocessor)

Inside a #if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */

int a;

#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line

at the end. This problem is normally introduced by editors.

(177) symbol "*" in -U option was never defined (Preprocessor)

A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot

be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a

previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated

flag = TRUE; /* next comment:

hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

300

Error and Warning Messages

(181) non-scalar types can’t be converted to other types (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;

struct TEST * sp;

sp = test; /* oops -- did you mean: sp = &test; ? */

(182) illegal conversion between types (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure

type into an integer, e.g.:

struct LAYOUT layout;

int i;

layout = i; /* int cannot be converted to struct */

Note that even if a structure only contains an int, for example, it cannot be assigned to an int

variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;

a = b(c+d); /* b is not a function --

did you mean a = b*(c+d) ? */

(184) calling an interrupt function is illegal (Parser)

A function qualified interrupt can’t be called from other functions. It can only be called by a

hardware (or software) interrupt. This is because an interrupt function has special function entry

and exit code that is appropriate only for calling from an interrupt. An interrupt function can call

other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

301

Error and Warning Messages

int get_value(void);

void main(void)

{

int input;

input = get_value(6); /* oops --

parameter should not be here */

}

(186) too many function arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);

add(5, 7, input); /* call has too many arguments */

(187) too few function arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);

add(5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;

switch(input) {

case a: /* oops!

can’t use variable as part of a case label */

input++;

}

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* oops -- twelve and a half elements, eh? */

302

Error and Warning Messages

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];

i = array[3.5]; /* oops --

exactly which element do you mean? */

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either

scalar (i.e. not an array or a structure) or the type void, e.g.:

lip = (long [])input; /* oops -- maybe: lip = (long *)input */

(192) undefined identifier "*" (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling

errors if you think it has been defined.

(193) not a variable identifier "*" (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194) ")" expected (Parser)

A closing parenthesis,), was expected here. This may indicate you have left out this character in an

expression, or you have some other syntax error. The error is flagged on the line at which the code

first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */

b = 0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* oops -- maybe that should be: a /= b; */

303

Error and Warning Messages

(196) struct/union required (Parser)

A structure or union identifier is required before a dot ., e.g.:

int a;

a.b = 9; /* oops -- a is not a structure */

(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

(198) undefined struct/union "*" (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand to if, while statements or to boolean operators like ! and &&

must be a scalar integral type, e.g.:

struct FORMAT format;

if(format) /* this operand must be a scaler type */

format.a = 0;

(200) taking the address of a register variable is illegal (Parser)

A variable declared register may not have storage allocated for it in memory, and thus it is illegal

to attempt to take the address of it by applying the & operator, e.g.:

int * proc(register int in)

{

int * ip = ∈

/* oops -- in may not have an address to take */

return ip;

}

(201) taking the address of this object is illegal (Parser)

The expression which was the operand of the & operator is not one that denotes memory storage ("an

lvalue") and therefore its address can not be defined, e.g.:

ip = &8; /* oops -- you can’t take the address of a literal */

304

Error and Warning Messages

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned

to or otherwise modified, e.g.:

int array[10];

int * ip;

char c;

array = ip; /* array isn’t a variable,

it can’t be written to */

A typecast does not yield an lvalue, e.g.:

/* the contents of c cast to int

is only a intermediate value */

(int)c = 1;

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on bit variable (Parser)

Not all operations on bit variables are supported. This operation is one of those, e.g.:

bit b;

int * ip;

ip = &b; /* oops --

cannot take the address of a bit object */

(204) void function can’t return a value (Parser)

A void function cannot return a value. Any return statement should not be followed by an expres-

sion, e.g.:

void run(void)

{

step();

return 1;

/* either run should not be void, or remove the 1 */

}

305

Error and Warning Messages

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value

is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for "*" (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

(208) operands of "*" not same type (Parser)

The operands of this operator are of different pointer, e.g.:

int * ip;

char * cp, * cp2;

cp = flag ? ip : cp2;

/* result of ? : will be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(211) taking sizeof bit is illegal (Parser)

It is illegal to use the sizeof operator with the HI-TECH C bit type. When used against a type the

sizeof operator gives the number of bytes required to store an object that type. Therefore its usage

with the bit type make no sense and is an illegal operation.

306

Error and Warning Messages

(212) missing number after pragma "pack" (Parser)

The pragma pack requires a decimal number as argument. This specifies the alignment of each

member within the structure. Use this with caution as some processors enforce alignment and will

not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

(215) missing argument to pragma "switch" (Parser)

The pragma switch requires an argument of auto, direct or simple, e.g.:

#pragma switch /* oops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

(216) missing argument to pragma "psect" (Parser)

The pragma psect requires an argument of the form oldname=newname where oldname is an

existing psect name known to the compiler, and newname is the desired new name, e.g.:

#pragma psect /* oops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

The inline pragma expects the name of a function to follow. The function name must be recognized

by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy

307

Error and Warning Messages

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style

format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in <stdio.h>.

(220) exponent expected (Parser)

A floating point constant must have at least one digit after the e or E., e.g.:

float f;

f = 1.234e; /* oops -- what is the exponent? */

(221) hexadecimal digit expected (Parser)

After 0x should follow at least one of the hex digits 0-9 and A-F or a-f, e.g.:

a = 0xg6; /* oops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)

A binary digit was expected following the 0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal

number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string

commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058;

/* leading 0 implies octal which has digits 0 - 7 */

308

Error and Warning Messages

(224) illegal "#" directive (Parser)

An illegal # preprocessor has been detected. Likely a directive has been misspelt in your code

somewhere.

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c = ’12’; /* oops -- only one character may be specified */

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of the ellipsis symbol, which

must have 3 dots. (An ellipsis is used in function prototypes to indicate a variable number of param-

eters.)

Either .. was meant to be an ellipsis symbol which would require you to add an extra dot, or it

was meant to be a structure member operator which would require you remove one dot.

(228) illegal character (0x*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising

the acceptable operators, e.g.:

c = ‘a‘; /* oops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing argument to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

309

Error and Warning Messages

(231) unknown qualifier "*" given to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing argument to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator @, used to associate an absolute address

with a variable, e.g.:

int address;

char LOCK @ address;

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading

is illegal, e.g.:

int twice(int a)

{

return a*2;

}

/* only one prototype & definition of rv can exist */

long twice(long a)

{

return a*2;

}

310

Error and Warning Messages

(238) illegal initialisation (Parser)

You can’t initialise a typedef declaration, because it does not reserve any storage that can be ini-

tialised, e.g.:

/* oops -- uint is a type, not a variable */

typedef unsigned int uint = 99;

(239) identifier "*" redefined (from line *) (Parser)

This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */

int a; /* attempting to define another of the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-

mended.

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object

definition (array or structure), e.g.:

/* three elements, but four initializers */

int ivals[3] = { 2, 4, 6, 8};

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-

ber of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’};

/* oops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,

e.g:

double d;

switch(d) { /* oops -- this must be integral */

case ’1.0’:

d = 0;

}

311

Error and Warning Messages

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-

ture. A continue can only be used inside a while, for or do while loop, while break can only be

used inside those loops or a switch statement, e.g.:

switch(input) {

case 0:

if(output == 0)

input = 0xff;

} /* oops! this shouldn’t be here and closed the switch */

break; /* this should be inside the switch */

(244) "default" case redefined (Parser)

There is only allowed to be one default label in a switch statement. You have more than one, e.g.:

switch(a) {

default: /* if this is the default case... */

b = 9;

break;

default: /* then what is this? */

b = 10;

break;

(245) "default" case not in switch (Parser)

A label has been encountered called default but it is not enclosed by a switch statement. A

default label is only legal inside the body of a switch statement.

If there is a switch statement before this default label, there may be one too many closing

braces in the switch code which would prematurely terminate the switch statement. See example

for Error Message ’case’ not in switch on page ??.

(246) case label not in switch (Parser)

A case label has been encountered, but there is no enclosing switch statement. A case label may

only appear inside the body of a switch statement.

If there is a switch statement before this case label, there may be one too many closing braces

in the switch code which would prematurely terminate the switch statement, e.g.:

312

Error and Warning Messages

switch(input) {

case ’0’:

count++;

break;

case ’1’:

if(count>MAX)

count= 0;

} /* oops -- this shouldn’t be here */

break;

case ’2’: /* error flagged here */

(247) duplicate label "*" (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is

the entire function, not just the block that encloses a label, e.g.:

start:

if(a > 256)

goto end;

start: /* error flagged here */

if(a == 0)

goto start; /* which start label do I jump to? */

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with an if statement. This may

mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...

if(a > b) {

c = 0;

/* ... that will be closed here, thus removing the “if” */

else /* my “if” has been lost */

c = 0xff;

(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding

function has not been ended with a closing brace. This probably means that a closing brace has been

omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

313

Error and Warning Messages

void set(char a)

{

PORTA = a;

/* the closing brace was left out here */

void clear(void) /* error flagged here */

{

PORTA = 0;

}

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It

is acceptable to redeclare the size of an array that was previously declared with a zero dimension,

but not otherwise, e.g.:

extern int array[5];

int array[10]; /* oops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not

agree with a previous prototype for this function, e.g.:

/* this is supposedly calc’s prototype */

extern int calc(int, int);

int calc(int a, long int b) /* hmmm -- which is right? */

{ /* error flagged here */

return sin(b/a);

}

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.

Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */

int calc(int a, int b) /* hmmm -- which is right? */

{ /* error flagged here */

return a + b;

}

314

Error and Warning Messages

(254) undefined *: "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union "*" (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

struct {

int a, b, c;

} data;

if(data.d) /* oops --

there is no member d in this structure */

return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only "register" storage class allowed (Parser)

The only storage class allowed for a function parameter is register, e.g.:

void process(static int input)

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either

directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;

/* oops -- this results in two volatile qualifiers */

volatile vint very_vol;

(259) can’t be qualifed both far and near (Parser)

It is illegal to qualify a type as both far and near, e.g.:

far near int spooky; /* oops -- choose far or near, not both */

315

Error and Warning Messages

(260) undefined enum tag "*" (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) struct/union member "*" redefined (Parser)

This name of this member of the struct or union has already been used in this struct or union, e.g.:

struct {

int a;

int b;

int a; /* oops -- a different name is required here */

} input;

(262) struct/union "*" redefined (Parser)

A structure or union has been defined more than once, e.g.:

struct {

int a;

} ms;

struct {

int a;

} ms; /* was this meant to be the same name as above? */

(263) members can’t be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:

struct {

int a;

int get(int); /* should be a pointer: int (*get)(int); */

} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type of int (signed or unsigned), e.g.:

316

Error and Warning Messages

struct FREG {

char b0:1; /* these must be part of an int, not char */

char :6;

char b7:1;

} freg;

(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a

bitfield. An integral constant must appear after the colon to define the number of bits in the bitfield,

e.g.:

struct {

unsigned first: /* oops -- should be: unsigned first; */

unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {

unsigned first : 4; /* 4 bits wide */

unsigned second: 4; /* another 4 bits */

} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the

storage class of the structure, e.g.:

struct {

/* no additional qualifiers may be present with members */

static int first;

} ;

(267) bad storage class (Code Generator)

The code generator has encountered a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */

int power(static int a) /* parameters may not be static */

{

return foo * a;

}

317

Error and Warning Messages

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,

e.g.:

extern static int where; /* so is it static or extern? */

(269) inconsistent type (Parser)

Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) variable can’t have storage class "register" (Parser)

Only function parameters or auto variables may be declared using the register qualifier, e.g.:

register int gi; /* this cannot be qualified register */

int process(register int input) /* this is okay */

{

return input + gi;

}

(271) type can’t be long (Parser)

Only int and float can be qualified with long.

long char lc; /* what? */

(272) type can’t be short (Parser)

Only int can be modified with short, e.g.:

short float sf; /* what? */

(273) type can’t be both signed and unsigned (Parser)

The type modifiers signed and unsigned cannot be used together in the same declaration, as they

have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? */

318

Error and Warning Messages

(274) type can’t be unsigned (Parser)

A floating point type cannot be made unsigned, e.g.:

unsigned float uf; /* what? */

(275) "..." illegal in non-prototype argument list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not

appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style

non-prototype function definitions. For example:

/* K&R-style non-prototyped function definition */

int kandr(a, b, ...)

int a, b;

{

(276) type specifier required for prototyped argument (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

(277) can’t mix prototyped and non-prototyped arguments (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)

or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration

list before the start of the function body), e.g.:

int plus(int a, b) /* oops -- a is prototyped, b is not */

int b;

{

return a + b;

}

(278) argument "*" redeclared (Parser)

The specified argument is declared more than once in the same argument list, e.g.

/* can’t have two parameters called “a” */

int calc(int a, int a)

319

Error and Warning Messages

(279) initialization of function arguments is illegal (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument

happens when the function is called and a value is provided for the argument by the calling function,

e.g.:

/* oops -- a is initialized when proc is called */

extern int proc(int a = 9);

(280) arrays of functions are illegal (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,

e.g.:

int * farray[](); /* oops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer

to a function could be declared like this: int (* (name()))(). Note the many parentheses that are

necessary to make the parts of the declaration bind correctly.

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a

value. All succeeding dimensions must be present as a constant expression, e.g.:

/* This should be, e.g.: int arr[][7] */

int get_element(int arr[2][])

{

return array[1][6];

}

(284) invalid dimension (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

320

Error and Warning Messages

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been

confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */

{

}

(286) declarator too complex (Parser)

This declarator is too complex for the compiler to handle. Examine the declaration and find a way

to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) arrays of bits or pointers to bit are illegal (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */

bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)

A variable may not be void. Only a function can be void, e.g.:

int a;

void b; /* this makes no sense */

(289) only functions may be qualified "interrupt" (Parser)

The qualifier interrupt may not be applied to anything except a function, e.g.:

/* variables cannot be qualified interrupt */

interrupt int input;

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier

only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have

forgotten out a star * indicating that the function should return a pointer to a qualified object, e.g.

321

Error and Warning Messages

const char ccrv(void) /* const * char ccrv(void) perhaps? */

{ /* error flagged here */

return ccip;

}

(291) K&R identifier "*" not an argument (Parser)

This identifier that has appeared in a K&R style argument declarator is not listed inside the paren-

theses after the function name, e.g.:

int process(input)

int unput; /* oops -- that should be int input; */

{

}

(292) function parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has

been omitted from the declaration.

(293) bad size in index_type() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or

split into two expressions.

(296) out of memory (Objtohex)

This could be an internal compiler error. Contact HI-TECH Software technical support with details.

(297) bad argument (*) to tysize() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

322

Error and Warning Messages

(298) end of file in #asm (Preprocessor)

An end of file has been encountered inside a #asm block. This probably means the #endasm is

missing or misspelt, e.g.:

#asm

mov r0, #55

mov [r1], r0

} /* oops -- where is the #endasm */

(300) unexpected end of file (Parser)

An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)

{

init();

run(); /* is that it? What about the close brace */

(301) end of file on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’t reopen "*": * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) can’t allocate * bytes of memory (line *) (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort

and merge strings. Try reducing the number or length of strings in this module.

(306) can’t allocate * bytes of memory for * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

323

Error and Warning Messages

(308) too many case labels in switch (Code Generator)

There are too many case labels in this switch statement. The maximum allowable number of case

labels in any one switch statement is 511.

(309) too many symbols (Assembler)

There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in

your program.

(310) "]" expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,

e.g.

process(carray[idx); /* oops --

should be: process(carray[idx]); */

(311) closing quote expected (Parser)

A closing quote was expected for the indicated string.

(312) "*" expected (Parser)

The indicated token was expected by the parser.

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no

types inside the parentheses) a function body is expected to follow, e.g.:

/* the function block must follow, not a semicolon */

int get_value(a, b);

(314) ";" expected (Parser)

A semicolon is missing from a statement. A close brace or keyword was found following a statement

with no terminating semicolon, e.g.:

while(a) {

b = a-- /* oops -- where is the semicolon? */

} /* error is flagged here */

324

Error and Warning Messages

Note: Omitting a semicolon from statements not preceding a close brace or keyword typically results

in some other error being issued for the following code which the parser assumes to be part of the

original statement.

(315) "{" expected (Parser)

An opening brace was expected here. This error may be the result of a function definition missing

the opening brace, e.g.:

/* oops! no opening brace after the prototype */

void process(char c)

return max(c, 10) * 2; /* error flagged here */

}

(316) "}" expected (Parser)

A closing brace was expected here. This error may be the result of a initialized array missing the

closing brace, e.g.:

char carray[4] = { 1, 2, 3, 4; /* oops -- no closing brace */

(317) "(" expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after a while, for, if,

do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */

b = 0;

(318) string expected (Parser)

The operand to an asm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

(319) while expected (Parser)

The keyword while is expected at the end of a do statement, e.g.:

325

Error and Warning Messages

do {

func(i++);

} /* do the block while what condition is true? */

if(i > 5) /* error flagged here */

end();

(320) ":" expected (Parser)

A colon is missing after a case label, or after the keyword default. This often occurs when a

semicolon is accidentally typed instead of a colon, e.g.:

switch(input) {

case 0; /* oops -- that should have been: case 0: */

state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear after goto, e.g.:

if(a)

goto 20;

/* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or "{" expected (Parser)

After the keyword enum must come either an identifier that is or will be defined as an enum tag, or

an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow a struct or union

keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

struct {

int a;

} my_struct;

326

Error and Warning Messages

(324) too many arguments for printf-style format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect

format string, e.g.:

/* oops -- missed a placeholder? */

printf(“%d - %d”, low, high, median);

(325) error in printf-style format string (Parser)

There is an error in the format string here. The string has been interpreted as a printf() style format

string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at

run time, e.g.:

printf(“%l”, lll); /* oops -- maybe: printf(“%ld”, lll); */

(326) long int argument required in printf-style format string (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-

fiers and corresponding arguments, e.g.:

printf(“%lx”, 2); // maybe you meant: printf(“%lx”, 2L);

(327) long long int argument required in printf-style format string (Parser)

A long long argument is required for this format specifier. Check the number and order of format

specifiers and corresponding arguments, e.g.:

printf(“%llx”, 2); // maybe you meant: printf(“%llx”, 2LL);

Note that not all HI-TECH C compilers provide support for a long long integer type.

(328) int argument required in printf-style format string (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order

of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* wrong number or wrong placeholder */

327

Error and Warning Messages

(329) double argument required in printf-style format string (Parser)

The printf format specifier corresponding to this argument is %f or similar, and requires a floating

point expression. Check for missing or extra format specifiers or arguments to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

(330) pointer to * argument required in printf-style format string (Parser)

A pointer argument is required for this format specifier. Check the number and order of format

specifiers and corresponding arguments.

(331) too few arguments for printf-style format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed

or converted at run time, e.g.:

printf(“%d - %d”, low);

/* oops! where is the other value to print? */

(332) "interrupt_level" should be 0 to 7 (Parser)

The pragma interrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* oops -- what is the level */

void interrupt isr(void)

{

/* isr code goes here */

}

(333) unrecognized qualifier name after "strings" (Parser)

The pragma strings was passed a qualifier that was not identified, e.g.:

/* oops -- should that be #pragma strings const ? */

#pragma strings cinst

(334) unrecognized qualifier name after "printf_check" (Parser)

The #pragma printf_check was passed a qualifier that could not be identified, e.g.:

/* oops -- should that be const not cinst? */

#pragma printf_check(printf) cinst

328

Error and Warning Messages

(335) unknown pragma "*" (Parser)

An unknown pragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”

“there”; /* this is okay,

but is it what you had intended? */

(337) line does not have a newline on the end (Parser)

The last line in the file is missing the newline (operating system dependent character) from the end.

Some editors will create such files, which can cause problems for include files. The ANSI C standard

requires all source files to consist of complete lines only.

(338) can’t create * file "*" (Any)

The application tried to create or open the named file, but it could not be created. Check that all file

pathnames are correct.

(339) initializer in extern declaration (Parser)

A declaration containing the keyword extern has an initialiser. This overrides the extern storage

class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated

storage, how can it be initialized? */

(340) string not terminated by null character. (Parser)

A char array is being initialized with a string literal larger than the array. Hence there is insufficient

space in the array to safely append a null terminating character, e.g.:

char foo[5] = “12345”; /* the string stored in foo won’t have

a null terminating, i.e.

foo = [’1’, ’2’, ’3’, ’4’, ’5’] */

329

Error and Warning Messages

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach

the end of the function body, thus returning without a value. Either insert a return statement with a

value, or if the function is not to return a value, declare it void, e.g.:

int mydiv(double a, int b)

{

if(b != 0)

return a/b; /* what about when b is 0? */

} /* warning flagged here */

(344) non-void function returns no value (Parser)

A function that is declared as returning a value has a return statement that does not specify a return

value, e.g.:

int get_value(void)

{

if(flag)

return val++;

return;

/* what is the return value in this instance? */

}

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be

reached, e.g.:

while(1) /* how does this loop finish? */

process();

flag = FINISHED; /* how do we get here? */

(346) declaration of "*" hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and

preceding the current function or block). This is legal, but can lead to accidental use of one variable

when the outer one was intended, e.g.:

330

Error and Warning Messages

int input; /* input has filescope */

void process(int a)

{

int input; /* local blockscope input */

a = input; /* this will use the local variable.

Is this right? */

(347) external declaration inside function (Parser)

A function contains an extern declaration. This is legal but is invariably not desirable as it restricts

the scope of the function declaration to the function body. This means that if the compiler encounters

another declaration, use or definition of the extern object later in the same file, it will no longer have

the earlier declaration and thus will be unable to check that the declarations are consistent. This

can lead to strange behaviour of your program or signature errors at link time. It will also hide any

previous declarations of the same thing, again subverting the compiler’s type checking. As a general

rule, always declare extern variables and functions outside any other functions. For example:

int process(int a)

{

/* this would be better outside the function */

extern int away;

return away + a;

}

(348) auto variable "*" should not be qualified (Parser)

An auto variable should not have qualifiers such as near or far associated with it. Its storage class

is implicitly defined by the stack organization. An auto variable may be qualified with static, but

it is then no longer auto.

(349) non-prototyped function declaration for "*" (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype

declarations for all functions, e.g.:

int process(input)

int input; /* warning flagged here */

{

}

This would be better written:

331

Error and Warning Messages

int process(int input)

{

}

(350) unused * "*" (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is

redundant, or the code that was meant to use it was excluded from compilation or misspelt the name

of the object. Note that the symbols rcsid and sccsid are never reported as being unused.

(352) float parameter coerced to double (Parser)

Where a non-prototyped function has a parameter declared as float, the compiler converts this into

a double float. This is because the default C type conversion conventions provide that when a

floating point number is passed to a non-prototyped function, it will be converted to double. It is

important that the function declaration be consistent with this convention, e.g.:

double inc_flt(f) /* f will be converted to double */

float f; /* warning flagged here */

{

return f * 2;

}

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an

explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default

pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and

loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a larger unsigned type. Under the

ANSI "value preserving" rules, this will result in the signed value being first sign-extended to a

signed number the size of the target type, then converted to unsigned (which involves no change

in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first

convert the signed value to an unsigned equivalent, e.g.:

332

Error and Warning Messages

signed char sc;

unsigned int ui;

ui = sc; /* if sc contains 0xff,

ui will contain 0xffff for example */

will perform a sign extension of the char variable to the longer type. If you do not want this to take

place, use a cast, e.g.:

ui = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result

in truncation of the floating point value. A typecast will make this warning go away.

double dd;

int i;

i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you

have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform

the compiler that you want the conversion and the warning will be suppressed. This may also mean

you have forgotten the & address operator, e.g.:

int * ip;

int i;

ip = i; /* oops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

333

Error and Warning Messages

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you

have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform

the compiler that you want the conversion and the warning will be suppressed. This may also mean

you have forgotten the * dereference operator, e.g.:

int * ip;

int i;

i = ip; /* oops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer

of a different type. This will usually mean you have used the wrong variable, but if this is genuinely

what you want to do, use a typecast to inform the compiler that you want the conversion and the

warning will be suppressed, e.g.:

long input;

char * cp;

cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the

intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,

but which have different qualifiers, e.g.:

char * cp;

/* yes, but what sort of characters? */

cp = “I am a string of characters”;

If the default type for string literals is const char *, then this warning is quite valid. This should

be written:

const char * cp;

cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

334

Error and Warning Messages

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the

number of elements in the array. This warning will not be issued when accessing an array element

via a pointer variable, e.g.:

int i, * ip, input[10];

i = input[-2]; /* oops -- this element doesn’t exist */

ip = &input[5];

i = ip[-2]; /* this is okay */

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the

compiler will automatically declare the function to be of type int, with unspecified (K&R style)

parameters. If a definition of the function is subsequently encountered, it is possible that its type

and arguments will be different from the earlier implicit declaration, causing a compiler error. The

solution is to ensure that all functions are defined or at least declared before use, preferably with

prototyped parameters. If it is necessary to make a forward declaration of a function, it should be

preceded with the keywords extern or static as appropriate. For example:

/* I may prevent an error arising from calls below */

void set(long a, int b);

void main(void)

{

/* by here a prototype for set should have seen */

set(10L, 6);

}

(362) redundant "&" applied to array (Parser)

The address operator & has been applied to an array. Since using the name of an array gives its

address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];

int * ip;

/* array is a constant, not a variable; the & is redundant. */

ip = &array;

335

Error and Warning Messages

(363) redundant "&" or "*" applied to function address (Parser)

The address operator "&" has been applied to a function. Since using the name of a function gives

its address anyway, this is unnecessary and has been ignored, e.g.:

extern void foo(void);

void main(void)

{

void(*bar)(void);

/* both assignments are equivalent */

bar = &foo;

bar = foo; /* the & is redundant */

}

(364) attempt to modify object qualified * (Parser)

Objects declared const or code may not be assigned to or modified in any other way by your

program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */

out = 0; /* oops --

writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,

since the storage associated with automatic variables becomes invalid when the function returns,

e.g.:

char * get_addr(void)

{

char c;

/* returning this is dangerous;

the pointer could be dereferenced */

return &c;

}

(366) operands of "*" not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used

the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error

message.

336

Error and Warning Messages

(367) identifier is already extern; can’t be static (Parser)

This function was already declared extern, possibly through an implicit declaration. It has now

been redeclared static, but this redeclaration is invalid.

void main(void)

{

/* at this point the compiler assumes set is extern... */

set(10L, 6);

}

/* now it finds out otherwise */

static void set(long a, int b)

{

PORTA = a + b;

}

(368) array dimension on "*[]" ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually

converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the

dimension from the parameter, or define the parameter using pointer syntax, e.g.:

/* param should be: “int array[]” or “int *” */

int get_first(int array[10])

{ /* warning flagged here */

return array[0];

}

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be type int, the compiler still

treats it as unsigned, e.g.:

struct {

signed int sign: 1; /* this must be unsigned */

signed int value: 15;

} ;

(370) illegal basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type couldn’t not be recognised and the basic type was

assumed to be int, e.g.:

337

Error and Warning Messages

/* here ling is assumed to be int */

unsigned char bar = (unsigned ling) ’a’;

(371) missing basic type; int assumed (Parser)

This declaration does not include a basic type, so int has been assumed. This declaration is not

illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;

i; /* don’t let the compiler make assumptions, use : int i */

func(); /* ditto, use: extern int func(int); */

(372) "," expected (Parser)

A comma was expected here. This could mean you have left out the comma between two identifiers

in a declaration list. It may also mean that the immediately preceding type name is misspelled, and

has thus been interpreted as an identifier, e.g.:

unsigned char a;

/* thinks: chat & b are unsigned, but where is the comma? */

unsigned chat b;

(373) implicit signed to unsigned conversion (Parser)

An unsigned type was expected where a signed type was given and was implicitly cast to unsigned,

e.g.:

unsigned int foo = -1;

/* the above initialization is implicitly treated as:

unsigned int foo = (unsigned) -1; */

(374) missing basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type was missing and assumed to be int., e.g.:

int i = (signed) 2; /* (signed) assumed to be (signed int) */

(375) unknown FNREC type "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

338

Error and Warning Messages

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in

the call graph. This probably means the program has indirect recursion, which is not allowed when

using a compiled stack.

(378) can’t create * file "*" (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

(379) bad record type "*" (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact

HI-TECH Software technical support with details.

(380) unknown record type (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record "*" too long (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not

a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length (*) too small (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expression * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(387) illegal or too many -G options (Linker)

There has been more than one linker -g option, or the -g option did not have any arguments follow-

ing. The arguments specify how the segment addresses are calculated.

339

Error and Warning Messages

(388) duplicate -M option (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you

are using a compiler driver. If invoking the linker manually, ensure that only one instance of this

option is present on the command line. See Section 5.7.9 for information on the correct syntax for

this option.

(389) illegal or too many -O options (Linker)

This linker -o flag is illegal, or another -o option has been encountered. A -o option to the linker

must be immediately followed by a filename with no intervening space.

(390) missing argument to -P (Linker)

There have been too many -p options passed to the linker, or a -p option was not followed by any

arguments. The arguments of separate -p options may be combined and separated by commas.

(391) missing argument to -Q (Linker)

The -Q linker option requires the machine type for an argument.

(392) missing argument to -U (Linker)

The -U (undefine) option needs an argument.

(393) missing argument to -W (Linker)

The -W option (listing width) needs a numeric argument.

(394) duplicate -D or -H option (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you

are using a compiler driver. If invoking the linker manually, ensure that only one instance of either

of these options is present on the command line.

(395) missing argument to -J (Linker)

The maximum number of errors before aborting must be specified following the -j linker option.

340

Error and Warning Messages

(397) usage: hlink [-options] files.obj files.lib (Linker)

Improper usage of the command-line linker. If you are invoking the linker directly then please refer

to Section 5.7 for more details. Otherwise this may be an internal compiler error and you should

contact HI-TECH Software technical support with details.

(398) output file can’t be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be

done, because it needs to simultaneously read and write input and output files.

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a

valid HI-TECH object file. Contact HI-TECH Software technical support with details.

(402) bad argument to -F (Objtohex)

The -F option for objtohex has been supplied an invalid argument. If you are invoking this

command-line tool directly then please refer to Section 5.11 for more details. Otherwise this may be

an internal compiler error and you should contact HI-TECH Software technical support with details.

(403) bad -E option: "*" (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)

The first value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(406) bad argument to -A (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(407) bad argument to -U (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

341

Error and Warning Messages

(408) bad argument to -B (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex

directly then see Section 5.11 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(409) bad argument to -P (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex

directly then see Section 5.11 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(410) bad combination of options (Objtohex)

The combination of options supplied to OBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on "*" (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on "*" (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low in COFF file (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character (*) in extended TEKHEX line (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(417) seek error in "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

342

Error and Warning Messages

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed to OBJTOHEX has relocation items in it. This may indicate it is the wrong object

file, or that the linker or OBJTOHEX have been given invalid options. The object output files from

the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) no end record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH

Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.

Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with

details.

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from

standard input in response to an option.

343

Error and Warning Messages

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied to OBJTOHEX is syntactically incorrect.

(431) bad argument to -E (Objtoexe)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtoexe

directly then check this argument. Otherwise this may be an internal compiler error and you should

contact HI-TECH Software technical support with details.

(432) usage: objtohex [-ssymfile] [object-file [exe-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then

please refer to Section 5.11 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some

global symbols to local symbols to reduce the number of symbols.

(435) bad segment selector "*" (Linker)

The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

(436) psect "*" re-orged (Linker)

This psect has had its start address specified more than once.

344

Error and Warning Messages

(437) missing "=" in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section 5.7.9 for more information.

(438) bad size in -S option (Linker)

The address given in a -S specification is invalid: it should be a valid number, in decimal, octal or

hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may

also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.:

-SCODE=f000

Did you forget the radix?

-SCODE=f000h

(439) bad -D spec: "*" (Linker)

The format of a -D specification, giving a delta value to a class, is invalid, e.g.:

-DCODE

What is the delta value for this class? Maybe you meant something like:

-DCODE=2

(440) bad delta value in -D spec (Linker)

The delta value supplied to a -D specification is invalid. This value should an integer of base 8, 10

or 16.

(441) bad -A spec: "*" (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

345

Error and Warning Messages

(442) missing address in -A spec (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE=

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address "*" in -A spec (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal

or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading

0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is

default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

(444) expected "-" in -A spec (Linker)

There should be a minus sign, -, between the high and low addresses in a -A linker option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

(445) bad high address "*" in -A spec (Linker)

The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal

or hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may

also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh

See Section 5.7.20 for more information.

346

Error and Warning Messages

(446) bad overrun address "*" in -A spec (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,

octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading

0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is

default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

(447) bad load address "*" in -A spec (Linker)

The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal

or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading 0x may

also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,

e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

(448) bad repeat count "*" in -A spec (Linker)

The repeat count given in a -A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The -A spec is invalid. A valid -A spec should be something like:

-AROM=1000h-1FFFh

347

Error and Warning Messages

(450) psect "*" was never defined (Linker, Optimiser)

This psect has been listed in a -P option, but is not defined in any module within the program.

(451) bad psect origin format in -P option (Linker)

The origin format in a -p option is not a validly formed decimal, octal or hex number, nor is it the

name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

(452) bad "+" (minimum address) format in -P option (Linker)

The minimum address specification in the linker’s -p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after "%" in -P option (Linker)

The % operator in a -p option (for rounding boundaries) must have a number after it.

(454) link and load address can’t both be set to "." in -P option (Linker)

The link and load address of a psect have both been specified with a dot character. Only one of these

addresses may be specified in this manner, e.g.:

-Pmypsect=1000h/.

-Pmypsect=./1000h

Both of these options are valid and equivalent, however the following usage is ambiguous:

-Pmypsect=./.

What is the link or load address of this psect?

348

Error and Warning Messages

(455) psect "*" not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct

the -p option. if necessary.

(456) psect "*" not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a -p option.

For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

(459) remove failed, error: *, * (xstrip)

The creation of the output file failed when removing an interemediate file.

(460) rename failed, error: *, * (xstrip)

The creation of the output file failed when renaming an interemediate file.

(461) can’t create * file "*" (Assembler, Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol "*" in FNBREAK record (Linker)

The linker has found an undefined symbol in the FNBREAK record for a non-reentrant function. Con-

tact HI-TECH Support if this is not handwritten assembler code.

(466) undefined symbol "*" in FNINDIR record (Linker)

The linker has found an undefined symbol in the FNINDIR record for a non-reentrant function. Con-

tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol "*" in FNADDR record (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.

Contact HI-TECH Support if this is not handwritten assembler code.

349

Error and Warning Messages

(468) undefined symbol "*" in FNCALL record (Linker)

The linker has found an undefined symbol in the FNCALL record for a non-reentrant function. Contact

HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol "*" in FNROOT record (Linker)

The linker has found an undefined symbol in the FNROOT record for a non-reentrant function. Contact

HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol "*" in FNSIZE record (Linker)

The linker has found an undefined symbol in the FNSIZE record for a non-reentrant function. Contact

HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-

ically allocated local variables (compiled stack). Either use the reentrant keyword (if supported

with this compiler) or recode to avoid recursion, e.g.:

int test(int a)

{

if(a == 5) {

/* recursion may not be supported by some compilers */

return test(a++);

}

return 0;

}

(472) non-reentrant function "*" appears in multiple call graphs: rooted at "*" and "*"

(Linker)

This function can be called from both main-line code and interrupt code. Use the reentrant key-

word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate

the function, e.g.:

void interrupt my_isr(void)

{

scan(6); /* scan is called from an interrupt function */

}

350

Error and Warning Messages

void process(int a)

{

scan(a); /* scan is also called from main-line code */

}

(474) no psect specified for function variable/argument allocation (Linker)

The FNCONF assembler directive which specifies to the linker information regarding the auto/parameter

block was never seen. This is supplied in the standard runtime files if necessary. This error may im-

ply that the correct run-time startup module was not linked. Ensure you have used the FNCONF

directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflicting FNCONF directives. This directive should only be specified once

and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (location 0x* (0x*+*), size *, value 0x*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.

See the following error message (477) for more information..

(477) fixup overflow in expression (location 0x* (0x*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an

assembler instruction with an absolute value. This takes place after positioning the psects (program

sections or blocks) into the available memory on the target device. Fixup overflow is when the

value determined for a symbol is too large to fit within the allocated space within the assembler

instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the

linker determines that the symbol that has been used to represent this address has the value 0x110,

then clearly this value cannot be inserted into the instruction.

The causes for this can be many, but hand-written assembler code is always the first suspect.

Badly written C code can also generate assembler that ultimately generates fixup overflow errors.

Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1),

size 1, value 0x7FC)

This indicates that the file causing the problem was main.obj. This would be typically be the output

of compiling main.c or main.as. This tells you the file in which you should be looking. The next

351

Error and Warning Messages

number (8 in this example) is the record number in the object file that was causing the problem. If

you use the DUMP utility to examine the object file, you can identify the record, however you do not

normally need to do this.

The location (loc) of the instruction (0x1FD), the size (in bytes) of the field in the instruction

for the value (1) , and the value which is the actual value the symbol represents, is typically the only

information needed to track down the cause of this error. Note that a size which is not a multiple of

8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as

1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the

error message.

7 07FC 0E21 movlw 33

8 07FD 6FFC movwf _foo

9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the

symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004

_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but

clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.

If the assembler instruction that caused this error was generated by the compiler, in the assem-

bler list file look back up the file from the instruction at fault to determine which C statement has

generated this instruction. You will then need to examine the C code for possible errors. incorrectly

qualified pointers are an common trigger.

(478) * range check failed (location 0x* (0x*+*), value 0x* > limit 0x*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(479) circular indirect definition of symbol "*" (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the

first symbol.

352

Error and Warning Messages

(480) function signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared

differently, e.g. it may have been prototyped in one module and not another. Check what declarations

for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);

/* and in another module: */

/* this is different to the declaration */

int get_value(int in, char type)

{

(481) common symbol "*" psect conflict (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" is defined more than once in "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol

is defined more than once in the same module, e.g.:

_next:

move r0, #55

move [r1], r0

_next: ; oops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in

different modules. The names of the modules are given in the error message. Note that C identifiers

often have an underscore prepended to their name after compilation.

(483) symbol "*" can’t be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(484) psect "*" can’t be in classes "*" and "*" (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting

class= options to the PSECT directive, or use of the -C option to the linker, e.g.:

psect final,class=CODE

finish:

/* elsewhere: */

psect final,class=ENTRY

353

Error and Warning Messages

(485) unknown "with" psect referenced by psect "*" (Linker)

The specified psect has been placed with a psect using the psect with flag. The psect it has been

placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext

; was that meant to be with text?

(486) psect "*" selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect "*" type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are

trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode

code.

(488) psect "*" memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,

if they are the same psect, place them in the same memory space using the space psect flag, e.g.:

psect spdata,class=RAM,space=0

ds 6

; elsewhere:

psect spdata,class=RAM,space=1

(489) psect "*" memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2

finish:

; elsewhere:

psect final,class=CODE,delta=1

(490) class "*" memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they

are the same class, place them in the same memory space.

354

Error and Warning Messages

(491) can’t find 0x* words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that

is generated from the program into the memory available for the target device. This error indicates

that the linker was unable to find an area of free memory large enough to accommodate one of the

psects. The error message indicates the name of the psect that the linker was attempting to position

and the segment name which is typically the name of a class which is defined with a linker -A option.

Section 3.8.1 lists each compiler-generated psect and what it contains. Typically psect names

which are, or include, text relate to program code. Names such as bss or data refer to variable

blocks. This error can be due to two reasons.

First, the size of the program or the program’s data has exceeded the total amount of space on

the selected device. In other words, some part of your device’s memory has completely filled. If this

is the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being

positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous

block is too small to accommodate the psect. The linker is unable to split psects in this situation.

That is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the

linker must be able to find a contiguous block of memory large enough for every psect. If this is the

cause of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section 2.6.8 for

information on how to generate a map file. Search for the string UNUSED ADDRESS RANGES. Under

this heading, look for the name of the segment specified in the error message. If the name is not

present, then all the memory available for this psect has been allocated. If it is present, there will be

one address range specified under this segment for each free block of memory. Determine the size

of each block and compare this with the number of words specified in the error message.

Psects containing code can be reduced by using all the compiler’s optimizations, or restructuring

the program. If a code psect must be split into two or more small psects, this requires splitting a

function into two or more smaller functions (which may call each other). These functions may need

to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect

is less dramatic. The program may need to be rewritten so that it needs less variables. Section ?? has

information on interpreting the map file’s call graph if the compiler you are using uses a compiled

stack. (If the string Call graph: is not present in the map file, then the compiled code uses a

hardware stack.) If a data psect needs to be split into smaller psects, the definitions for variables

will need to be moved to new modules or more evenly spread in the existing modules. Memory

allocation for auto variables is entirely handled by the compiler. Other than reducing the number of

these variables used, the programmer has little control over their operation. This applies whether the

compiled code uses a hardware or compiled stack.

For example, after receiving the message:

355

Error and Warning Messages

Can’t find 0x34 words (0x34 withtotal) for psect text

in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES

CODE 00000244-0000025F

00001000-0000102f

RAM 00300014-00301FFB

In the CODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one block and 0x30

available in another block. Neither of these are large enough to accommodate the psect text which

is 0x34 bytes long. Notice, however, that the total amount of memory available is larger than 0x34

bytes.

(492) attempt to position absolute psect "*" is illegal (Linker)

This psect is absolute and should not have an address specified in a -P option. Either remove the

abs psect flag, or remove the -P linker option.

(493) origin of psect "*" is defined more than once (Linker)

The origin of this psect is defined more than once. There is most likely more than one -p linker

option specifying this psect.

(494) bad -P format "*/*" (Linker)

The -P option given to the linker is malformed. This option specifies placement of a psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(495) use of both "with=" and "INCLASS/INCLASS" allocation is illegal (Linker)

It is not legal to specify both the link and location of a psect as within a class, when that psect was

also defined using a with psect flag.

356

Error and Warning Messages

(497) psect "*" exceeds max size: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using the size psect flag.

(498) psect "*" exceeds address limit: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using the limit psect flag. Either

the psect needs to be linked at a different location or there is too much code/data in the psect.

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link

an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling

error, or failure to link an appropriate module.

(501) program entry point is defined more than once (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is

specified after the END directive. The runtime startup code defines the entry point, e.g.:

powerup:

goto start

END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or

not an object file. Contact HI-TECH Support with details.

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for

different processor types.

357

Error and Warning Messages

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known

to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object

file if you have not patched the linker.

(505) no end record found inobject file (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an

object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) object file record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file in object file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset (*) out of range 0..*-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using

a linker that is out of date, or that there is an internal error in the assembler or linker. Contact

HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -R or -L options (Linker)

The linker was given a -R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

358

Error and Warning Messages

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably

means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the

file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was

created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function "*" is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-

ing it. If you believe this function should be called, check your source code. Some assembler library

routines are never called, although they are actually execute. In this case, the routines are linked in

a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by function "*" (Linker)

The call graph shows that functions are nested to a depth greater than specified.

(522) library "*" is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument to -W option (*) illegal and ignored (Linker)

The argument to the linker option -w is out of range. This option controls two features. For warning

levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

359

Error and Warning Messages

(524) unable to open list file "*": * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will

contain absolute addresses. Ensure that an assembler list file was generated during the compilation

stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address (memory) spaces; space (*) ignored (Linker)

The limit to the number of address spaces (specified with the PSECT assembler directive) is currently

16.

(526) psect "*" not specified in -P option (first appears in "*") (Linker)

This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the

program, which is probably not where you wanted it.

(528) no start record; entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program

has been set to zero. This may be harmless, but it is recommended that you define a start address in

your startup module by using the END directive.

(529) usage: objtohex [-Ssymfile] [object-file [hex-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then

please refer to Section 5.11 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(593) can’t find 0x* words (0x* withtotal) for psect "*" in segment "*" (Linker)

See error (491) on Page ??.

(594) undefined symbol: (Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link

an appropriate module.

(595) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling

error, or failure to link an appropriate module.

360

Error and Warning Messages

(596) segment "*" (*-*) overlaps segment "*" (*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the -P

linker option.

(599) No psect classes given for COFF write (Cromwell)

Cromwell requires that the program memory psect classes be specified to produce a COFF file.

Ensure that you are using the -N option as per Section 5.13.2.

(600) No chip arch given for COFF write (Cromwell)

Cromwell requires that the chip architecture be specified to produce a COFF file. Ensure that you

are using the -P option as per Section 5.13.1.

(601) Unknown chip arch "*" for COFF write (Cromwell)

The chip architecture specified for producing a COFF file isn’t recognised by Cromwell. Ensure that

you are using the -P option as per Section 5.13.1 and that the architecture specified matches one of

those in Table 5.8.

(602) null file format name (Cromwell)

The -I or -O option to Cromwell must specify a file format.

(603) ambiguous file format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with

the -ikey and -okey options respectively.

(604) unknown file format name "*" (Cromwell)

The output format specified to CROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot

and output file type of cot, did you mean cof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E

or HI-TECH.

361

Error and Warning Messages

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(608) bad path specification (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The -p option to cromwell must specify a processor name.

(610) missing psect classes after -N (Cromwell)

Cromwell requires that the -N option be given a list of the names of psect classes.

(611) too many input files (Cromwell)

To many input files have been specified to be converted by CROMWELL.

(612) too many output files (Cromwell)

To many output file formats have been specified to CROMWELL.

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

(616) option -Cbaseaddr is illegal with options -R or -L (Linker)

The linker option -Cbaseaddr cannot be used in conjunction with either the -R or -L linker options.

362

Error and Warning Messages

(618) error reading COD file data (Cromwell)

An error occurred reading the input COD file. Confirm the spelling and path of the file specified on

the command line.

(619) I/O error reading symbol table (Cromwell)

The COD file has an invalid format in the specified record.

(620) filename index out of range in line number record (Cromwell)

The COD file has an invalid value in the specified record.

(621) error writing ELF/DWARF section "*" on "*" (Cromwell)

An error occurred writing the indicated section to the given file. Confirm the spelling and path of

the file specified on the command line.

(622) too many type entries (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(623) bad class in type hashing (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(624) bad class in type compare (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in COFF: get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(627) missing "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

363

Error and Warning Messages

(629) bad storage class "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(630) invalid syntax for prefix list in SDB file "*" (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(631) syntax error at token "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(632) can’t handle address size (*) (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(633) unknown symbol class (*) (Cromwell)

Cromwell has encountered a symbol class in the symbol table of a COFF, Microchip COFF, or

ICOFF file which it can’t identify.

(634) error dumping "*" (Cromwell)

Either the input file to CROMWELL is of an unsupported type or that file cannot be dumped to the

screen.

(635) invalid HEX file "*" on line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was

generated by the compiler.

(636) checksum error in Intel HEX file "*" on line * (Cromwell, Hexmate)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may

be corrupt.

(637) unknown prefix "*" in SDB file "*" (Cromwell)

This is an internal compiler warning. Contact HI-TECH Software technical support with details.

364

Error and Warning Messages

(638) version mismatch: 0x* expected (Cromwell)

The input Microchip COFF file wasn’t produced using Cromwell.

(639) zero bit width in Microchip optional header (Cromwell)

The optional header in the input Microchip COFF file indicates that the program or data memory

spaces are zero bits wide.

(668) prefix list did not match any SDB types (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(669) prefix list matched more than one SDB type (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(670) bad argument to -T (Clist)

The argument to the -T option to specify tab size was not present or correctly formed. The option

expects a decimal interger argument.

(671) argument to -T should be in range 1 to 64 (Clist)

The argument to the -T option to specify tab size was not in the expected range. The option expects

a decimal interger argument ranging from 1 to 64 inclusive.

(673) missing filename after * option (Objtohex)

The indicated option requires a valid file name. Ensure that the filename argument supplied to this

option exists and is spelt correctly.

(674) too many references to "*" (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

365

Error and Warning Messages

(682) this architecture is not supported by the PICC Lite compiler (Code Generator)

A target device other than baseline, midrange or highend was specified. This compiler only supports

devices from these architecture families.

(683) bank 1 variables are not supported by the PICC Lite compiler (Code Generator)

A variable with an absolute address located in bank 1 was detected. This compiler does not support

code generation of variables in this bank.

(684) bank 2 and 3 variables are not supported by the PICC Lite compiler (Code Generator)

A variable with an absolute address located in bank 2 or 3 was detected. This compiler does not

support code generation of variables in these banks.

(689) unknown predicate "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(695) duplicate case label (*) (Code Generator)

There are two case labels with the same value in this switch statement, e.g.:

switch(in) {

case ’0’: /* if this is case ’0’... */

b++;

break;

case ’0’: /* then what is this case? */

b--;

break;

}

(696) out-of-range case label (*) (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never

be selected.

(697) non-constant case label (Code Generator)

A case label in this switch statement has a value which is not a constant.

366

Error and Warning Messages

(699) no case labels in switch (Code Generator)

There are no case labels in this switch statement, e.g.:

switch(input) {

} /* there is nothing to match the value of input */

(700) truncation of enumerated value (Code Generator)

An enumerated value larger than the maximum value supported by this compiler was detected and

has been truncated, e.g.:

enum { ZERO, ONE, BIG=0x99999999 } test_case;

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused(): bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See

Section 5.7.2 for more information.

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after I (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) bad which in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

367

Error and Warning Messages

(708) bad mod "+" for how = "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister "*" can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) bad how in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For

successful code generation, the code generator must know how to compile an expression and there

must be enough resources (e.g. registers or temporary memory locations) available. Simplifying

the expression, e.g. using a temporary variable to hold an intermediate result, may get around this

message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example

code which writes to a const-qualified object is illegal and will result in warning messages, but the

code generator may unsuccessfully try to produce code to perform the write.

(713) bad initialization list (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma "*" (Code Generator)

The code generator has been passed a pragma directive that it does not understand. This implies that

the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using

has not implemented this pragma.

368

Error and Warning Messages

(716) bad argument to -M option "*" (Code Generator)

The code generator has been passed a -M option that it does not understand. This should not happen

if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.

This is either that incompatible versions of one or more compilers have been installed in the same

directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the

setting of the TEMP environment variable. If it refers to a long path name, change it to something

shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(721) element count must be constant expression (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax in intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(723) function definitions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-

TECH Support with details.

(724) bad op (*) in revlog() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad op "*" in uconval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(727) bad op "*" in bconfloat() (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

369

Error and Warning Messages

(728) bad op "*" in confloat() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad op "*" in conval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(732) initialization of bit types is illegal (Code Generator)

Variables of type bit cannot be initialised, e.g.:

bit b1 = 1; /* oops!

b1 must be assigned after its definition */

(733) bad string "*" in pragma "psect" (Code Generator)

The code generator has been passed a pragma psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

(734) too many "psect" pragmas (Code Generator)

Too many #pragma psect directives have been used.

(735) bad string "*" in pragma "stack_size" (Code Generator)

The argument to the stack_size pragma is malformed. This pragma must be followed by a number

representing the maximum allowed stack size.

370

Error and Warning Messages

(737) unknown argument "*" to pragma "switch" (Code Generator)

The #pragma switch directive has been used with an invalid switch code generation method. Pos-

sible arguments are: auto, simple and direct.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) zero dimension array is illegal (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bitfield too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in an int, e.g. assuming

an int is 16 bits wide:

struct {

unsigned flag : 1;

unsigned value : 12;

unsigned cont : 6; /* oops -- that’s a total of 19 bits */

} object;

(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a

call like:

void fn1(void)

{

fn3(7, fn2(3), fn2(9)); /* Offending call */

}

char fn2(char fred)

{

return fred + fn3(5,1,0);

}

char fn3(char one, char two, char three)

{

return one+two+three;

}

371

Error and Warning Messages

where fn1 is calling fn3, and two arguments are evaluated by calling fn2, which in turn calls fn3.

The program structure should be modified to prevent this type of call sequence.

(743) divide by zero (Code Generator)

An expression involving a division by zero has been detected in your code.

(744) static object "*" has zero size (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(746) object "*" qualified const, but not initialized (Code Generator)

An object has been qualified as const, but there is no initial value supplied at the definition. As this

object cannot be written by the C program, this may imply the intial value was accidently omitted.

(747) unrecognized option "*" to -Z (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable "*" may be used before set (Code Generator)

This variable may be used before it has been assigned a value. Since it is an auto variable, this will

result in it having a random value, e.g.:

void main(void)

{

int a;

if(a) /* oops -- a has never been assigned a value */

process();

}

(749) unknown register name "*" used with pragma (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

372

Error and Warning Messages

(750) constant operand to || or && (Code Generator)

One operand to the logical operators || or && is a constant. Check the expression for missing or

badly placed parentheses. This message may also occur if the global optimizer is enabled and one of

the operands is an auto or static local variable whose value has been tracked by the code generator,

e.g.:

{

int a;

a = 6;

if(a || b) /* a is 6, therefore this is always true */

b++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is

too big for the type of the expression. The most common code to trigger this warning is assignments

to signed data types. For example:

signed char c;

c = 0xFF;

As a signed 8-bit quantity, c can only be assigned values -128 to 127. The constant is equal to 255

and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;

c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.

This warning can also be triggered by intermediate values overflowing. For example:

unsigned int i; /* assume ints are 16 bits wide */

i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveals that 240 * 137 is 32880 which can easily be stored in

an unsigned int, but a warning is produced. Why? Because 240 and 137 and both signed int

values. Therefore the result of the multiplication must also be a signed int value, but a signed

int cannot hold the value 32880. (Both operands are constant values so the code generator can

evaluate this expression at compile time, but it must do so following all the ANSI rules.) The

following code forces the multiplication to be performed with an unsigned result:

i = 240u * 137; /* force at least one operand

to be unsigned */

373

Error and Warning Messages

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the lvalue is of shorter type than the rvalue, e.g.:

char a;

int b, c;

a = b + c; /* int to char conversion

may result in truncation */

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of

bits in the data type. This will produce an undefined result on many processors. This is non-portable

code and is flagged as having undefined results by the C Standard, e.g.:

int input;

input < <= 33; /* oops -- that shifts the entire value out */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.

For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range

from 0 to 3, e.g.:

struct {

unsigned mask : 2; /* mask can hold values 0 to 3 */

} value;

int compare(void)

{

return (value.mask == 6); /* test can

}

(755) divide by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

374

Error and Warning Messages

(757) constant conditional branch (Code Generator)

A conditional branch (generated by an if, for, while statement etc.) always follows the same path.

This will be some sort of comparison involving a variable and a constant expression. For the code

generator to issue this message, the variable must have local scope (either auto or static local) and

the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold

may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during

a function. For C code that compares these variables to constants, the result of the comparison can

be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

{

int a, b;

a = 5;

/* this can never be false;

always perform the true statement */

if(a == 4)

b = 6;

will produce code that sets a to 5, then immediately sets b to 6. No code will be produced for the

comparison if(a == 4). If a was a global variable, it may be that other functions (particularly

interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an

expression with missing or badly placed parentheses, causing the evaluation to yield a value different

to what you expected.

This warning may also be issued because you have written something like while(1). To produce

an infinite loop, use for(;;).

A similar situation arises with for loops, e.g.:

{

int a, b;

/* this loop must iterate at least once */

for(a=0; a!=10; a++)

b = func(a);

In this case the code generator can again pick up that a is assigned the value 0, then immediately

checked to see if it is equal to 10. Because a is modified during the for loop, the comparison

code cannot be removed, but the code generator will adjust the code so that the comparison is not

performed on the first pass of the loop; only on the subsequent passes. This may not reduce code

size, but it will speed program execution.

375

Error and Warning Messages

(758) constant conditional branch: possible use of "=" instead of "==" (Code Generator)

There is an expression inside an if or other conditional construct, where a constant is being assigned

to a variable. This may mean you have inadvertently used an assignment = instead of a compare ==,

e.g.:

int a, b;

/* this can never be false;

always perform the true statement */

if(a = 4)

b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can

be omitted and the assignment to b always made. Did you mean:

/* this can never be false;

always perform the true statement */

if(a == 4)

b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a

function call, e.g.:

int fred;

fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To

accommodate this, in some instances the code generator does produce code for a statement which

only consists of a variable ID. This may happen for variables which are qualified as volatile.

Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;

a = b,c; /* “b” has no effect,

was that meant to be a comma? */

376

Error and Warning Messages

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly

indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero

length array. In general, pointers to arrays are of little use. If you require a pointer to an array of

objects of unknown length, you only need a pointer to a single object that can then be indexed or

incremented.

(762) constant truncated when assigned to bitfield (Code Generator)

A constant value is too large for a bitfield structure member to which it is being assigned, e.g.

struct INPUT {

unsigned a : 3;

unsigned b : 5;

} input_grp;

input_grp.a = 0x12;

/* 12h cannot fit into a 3-bit wide object */

(763) constant left operand to "? :" operator (Code Generator)

The left operand to a conditional operator ? is constant, thus the result of the tertiary operator ?:

will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in

the range of possible values for that expression, e.g.:

unsigned char c;

if(c > 300) /* oops -- how can this be true? */

close();

(765) degenerate unsigned comparison (Code Generator)

There is a comparison of an unsigned value with zero, which will always be true or false, e.g.:

unsigned char c;

if(c >= 0)

will always be true, because an unsigned value can never be less than zero.

377

Error and Warning Messages

(766) degenerate signed comparison (Code Generator)

There is a comparison of a signed value with the most negative value possible for this type, such

that the comparison will always be true or false, e.g.:

char c;

if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

(767) constant truncated to bitfield width (Code Generator)

A constant value is too large for a bitfield structure member on which it is operating, e.g.

struct INPUT {

unsigned a : 3;

unsigned b : 5;

} input_grp;

input_grp.a |= 0x13;

/* 13h to large for 3-bit wide object */

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are

comparing an unsigned number with a negative value, or comparing a variable with a value greater

than the largest number it can represent, e.g.:

unsigned int a;

if(a == -10) /* if a is unsigned, how can it be -10? */

b = 9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-

mum number of open macros and include files is 30.

378

Error and Warning Messages

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files

nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(776) can’t allocate space for object "*" (offs: *) (Assembler)

The assembler has run out of memory.

(777) can’t allocate space for opnd structure within object "*", (offs: *) (Assembler)

The assembler has run out of memory.

(780) too many psects defined (Assembler)

There are too many psects defined! Boy, what a program!

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(783) "with" psects are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no

hierarchy. The with flag is an attribute of a psect and indicates that this psect must be placed in the

same memory page as the specified psect.

Remove a with flag from one of the psect declarations. Such an assembler declaration may look

like:

psect my_text,local,class=CODE,with=basecode

which will define a psect called my_text and place this in the same page as the psect basecode.

379

Error and Warning Messages

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of

2000 temporary labels.

(787) can’t handle "v_rtype" of * in copyexpr (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character "*" in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) end of file inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

(793) unterminated macro argument (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro

arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other

malformed numbers.

(796) use of LOCAL outside macros is illegal (Assembler)

The LOCAL directive is only legal inside macros. It defines local labels that will be unique for each

invocation of the macro.

(797) syntax error in LOCAL argument (Assembler)

A symbol defined using the LOCAL assembler directive in an assembler macro is syntactically incor-

rect. Ensure that all symbols and all other assembler identifiers conform with the assembly language

of the target device.

380

Error and Warning Messages

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directive LOCAL may not include any of the formal parameters to the

macro, e.g.:

mmm macro a1

move r0, #a1

LOCAL a1 ; oops --

; the macro parameter cannot be used with local

ENDM

(799) REPT argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */

move r0, [r1]++

endm

(800) undefined symbol "*" (Assembler)

The named symbol is not defined in this module, and has not been specified GLOBAL.

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(802) invalid address after END directive (Assembler)

The start address of the program which is specified after the assembler END directive must be a label

in the current file.

(803) undefined temporary label (Assembler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a

number >= 0.

(804) write error on object file (Assembler)

The assembler failed to write to an object file. This may be an internal compiler error. Contact

HI-TECH Software technical support with details.

381

Error and Warning Messages

(805) non-whitespace ignored after END directive (Assembler)

The END directive, if used, indicates the end of the source file. If there are non-whitespace characters

after the END directive, then the directive is does actually mark the end of the file.

(806) attempted to get an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(807) attempted to set an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(808) bad size in add_reloc() (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode (*) (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(811) "cnt" too large (*) in display() (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

(816) duplicate ARCH specification in chipinfo file "*" at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is

allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

382

Error and Warning Messages

(819) duplicate ZEROREG for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG

value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with

details.

(820) duplicate SPAREBIT for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT

value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with

details.

(822) duplicate ROMSIZE for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value

is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(824) duplicate LIB for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple LIB values. Only one LIB value is allowed.

If you have not manually edited the chip info file, contact HI-TECH Support with details.

(829) unrecognized line in chipinfo file at line * (Assembler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support

if the INI has not been edited.

(830) missing ARCH specification for "*" in chipinfo file (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor

must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(832) empty chip info file "*" (Assembler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-

TECH Support with details.

383

Error and Warning Messages

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted

listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

(835) form length must be >= 15 (Assembler)

The form length specified using the -Flength option must be at least 15 lines. Setting this length

to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably

due to bizarre use of macros or conditional assembly.

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

(845) symbol "*" defined more than once (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol

is defined more than once in the same module, e.g.:

_next:

move r0, #55

move [r1], r0

_next: ; oops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in

different modules. The names of the modules are given in the error message. Note that C identifiers

often have an underscore prepended to their name after compilation.

384

Error and Warning Messages

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable

value, and two relocatable addresses in the same psect may be subtracted. An absolute value must

be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form

of operands for this instruction.

(850) PAGESEL not usable with this processor (Assembler)

The PAGESEL pseudo-instruction is not usable with the device selected.

(856) ALIGN argument must be a positive constant (Assembler)

The align assembler directive requires a non-zero positive integer argument.

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global

move r0, r1

; elsewhere:

psect text,local,class=CODE

move r2, r4

The global flag is the default for a psect if its scope is not explicitly stated.

(860) page width must be >= 49 (Assembler)

The page width suboption to the LIST assembler directive must specify a with of at least 49.

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

385

Error and Warning Messages

(864) argument to "size" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s size option must be a positive constant number,

e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect flag "size" redefined (Assembler)

The size flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,size=400

; elsewhere:

psect spdata,class=RAM,size=500

(867) psect flag "reloc" redefined (Assembler)

The reloc flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,reloc=4

; elsewhere:

psect spdata,class=RAM,reloc=8

(868) argument to "delta" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s DELTA option must be a positive constant number,

e.g.:

PSECT text,class=CODE,delta=-2 ; negative delta value doesn’t make sense

(869) psect flag "delta" redefined (Assembler)

The ’DELTA’ option of a psect has been redefined more than once in the same module.

(870) argument to "pad" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s ’PAD’ option must be a non-zero positive integer.

(871) argument to "space" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s space option must be a positive constant number,

e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

386

Error and Warning Messages

(872) psect flag "space" redefined (Assembler)

The space flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,space=0

; elsewhere:

psect spdata,class=RAM,space=1

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater

than one character or none at all. An assembler specific example:

mov r0, #’12’ ; ’12’ specifies two characters

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(877) yacc stack overflow (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(878) -S option used: "*" ignored (Driver)

The indicated assembly file has been supplied to the driver in conjunction with the -S option. The

driver really has nothing to do since the file is already an assembly file.

(880) invalid number of parameters. Use "* –HELP" for help (Driver)

Improper command-line usage of the of the compiler’s driver.

(881) setup succeeded (Driver)

The compiler has been successfully setup using the --setup driver option.

(883) setup failed (Driver)

The compiler was not successfully setup using the --setup driver option. Ensure that the directory

argument to this option is spelt correctly, is syntactically correct for your host operating system and

it exists.

387

Error and Warning Messages

(884) please ensure you have write permissions to the configuration file (Driver)

The compiler was not successfully setup using the --setup driver option because the driver was

unable to access the XML configuration file. Ensure that you have write permission to this file. The

driver will search the following configuration files in order:

• the file specified by the environment variable HTC_XML

• the file /etc/htsoft.xml if the directory ’/etc’ is writable and there is no .htsoft.xml file

in your home directory

• the file .htsoft.xml file in your home directory

If none of the files can be located then the above error will occur.

(889) this * compiler has expired (Driver)

The demo period for this compiler has concluded.

(890) contact HI-TECH Software to purchase and re-activate this compiler (Driver)

The evaluation period of this demo installation of the compiler has expired. You will need to pur-

chase the compiler to re-activate it. If however you sincerely believe the evaluation period has ended

prematurely please contact HI-TECH technical support.

(891) can’t open psect usage map file "*": * (Driver)

The driver was unable to open the indicated file. The psect usage map file is generated by the

driver when the driver option --summary=file is used. Ensure that the file is not open in another

application.

(892) can’t open memory usage map file "*": * (Driver)

The driver was unable to open the indicated file. The memory usage map file is generated by the

driver when the driver option --summary=file is used. Ensure that the file is not open in another

application.

(893) can’t open HEX usage map file "*": * (Driver)

The driver was unable to open the indicated file. The HEX usage map file is generated by the

driver when the driver option --summary=file is used. Ensure that the file is not open in another

application.

388

Error and Warning Messages

(894) unknown source file type "*" (Driver)

The extension of the indicated input file could not be determined. Only files with the extensions as,

c, obj, usb, p1, lib or hex are identified by the driver.

(895) can’t request and specify options in the one command (Driver)

The usage of the driver options --getoption and --setoption is mutually exclusive.

(896) no memory ranges specified for data space (Driver)

No on-chip or external memory ranges have been specified for the data space memory for the device

specified.

(897) no memory ranges specified for program space (Driver)

No on-chip or external memory ranges have been specified for the program space memory for the

device specified.

(899) can’t open option file "*" for application "*": * (Driver)

An option file specified by a --getoption or --setoption driver option could not be opened. If

you are using the --setoption option ensure that the name of the file is spelt correctly and that

it exists. If you are using the --getoption option ensure that this file can be created at the given

location or that it is not in use by any other application.

(900) exec failed: * (Driver)

The subcomponent listed failed to execute. Does the file exist? Try re-installing the compiler.

(902) no chip name specified; use "* –CHIPINFO" to see available chip names (Driver)

The driver was invoked without selecting what chip to build for. Running the driver with the –

CHIPINFO option will display a list of all chips that could be selected to build for.

(904) illegal format specified in "*" option (Driver)

The usage of this option was incorrect. Confirm correct usage with –HELP or refer to the part of the

manual that discusses this option.

389

Error and Warning Messages

(905) illegal application specified in "*" option (Driver)

The application given to this option is not understood or does not belong to the compiler.

(907) unknown memory space tag "*" in "*" option specification (Driver)

A parameter to this memory option was a string but did not match any valid tags. Refer to the section

of this manual that describes this option to see what tags (if any) are valid for this device.

(908) exit status = * (Driver)

One of the subcomponents being executed encountered a problem and returned an error code. Other

messages should have been reported by the subcomponent to explain the problem that was encoun-

tered.

(913) "*" option may cause compiler errors in some standard header files (Driver)

Using this option will invalidate some of the qualifiers used in the standard header files resulting in

errors. This issue and its solution are detailed in the section of this manual that specifically discusses

this option.

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(919) * in chipinfo file "*" at line * (Driver)

The specified parameter in the chip configuration file is illegal.

(920) empty chipinfo file (Driver, Assembler)

The chip configuration file was able to be opened but it was empty. Try re-installing the compiler.

390

Error and Warning Messages

(922) chip "*" not present in chipinfo file "*" (Driver)

The chip selected does not appear in the compiler’s chip configuration file. You may need to contact

HI-TECH Software to see if support for this device is available or upgrade the version of your

compiler.

(923) unknown suboption "*" (Driver)

This option can take suboptions, but this suboption is not understood. This may just be a simple

spelling error. If not, –HELP to look up what suboptions are permitted here.

(924) missing argument to "*" option (Driver)

This option expects more data but none was given. Check the usage of this option.

(925) extraneous argument to "*" option (Driver)

This option does not accept additional data, yet additional data was given. Check the usage of this

option.

(926) duplicate "*" option (Driver)

This option can only appear once, but appeared more than once.

(928) bad "*" option value (Driver, Assembler)

The indicated option was expecting a valid hexadecimal integer argument.

(929) bad "*" option ranges (Driver)

This option was expecting a parameter in a range format (start_of_range-end_of_range), but the

parameter did not conform to this syntax.

(930) bad "*" option specification (Driver)

The parameters to this option were not specified correctly. Run the driver with –HELP or refer to

the driver’s chapter in this manual to verify the correct usage of this option.

(931) command file not specified (Driver)

Command file to this application, expected to be found after ’@’ or ’<’ on the command line was

not found.

391

Error and Warning Messages

(939) no file arguments (Driver)

The driver has been invoked with no input files listed on its command line. If you are getting this

message while building through a third party IDE, perhaps the IDE could not verify the source files

to compile or object files to link and withheld them from the command line.

(940) *-bit checksum * placed at * (Objtohex)

Presenting the result of the requested checksum calculation.

(941) bad "*" assignment; USAGE: ** (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message

and ensure that that the option has been formed correctly and completely.

(942) unexpected character on line * of file "*" (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,

an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)

and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)

Sources to Hexmate request differing data to be stored to the same address. To force one data source

to override the other, use the ’+’ specifier. If the two named sources of conflict are the same source,

then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)

The range for this checksum calculation contained a value that could not be resolved. This can

happen if the checksum result was to be stored within the address range of the checksum calculation.

(948) checksum result width must be between 1 and 4 bytes (Hexmate)

The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.

Check the parameters to the -CKSUM option.

(949) start of checksum range must be less than end of range (Hexmate)

The -CKSUM option has been given a range where the start is greater than the end. The parameters

may be incomplete or entered in the wrong order.

392

Error and Warning Messages

(951) start of fill range must be less than end of range (Hexmate)

The -FILL option has been given a range where the start is greater than the end. The parameters may

be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)

Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no

sub-option to list all options.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)

The serial number being stored was out of range. Ensure that the serial number can be stored in the

number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)

Too many file arguments have been used. Try merging these files in several stages rather than in one

command.

(960) unexpected record type (*) on line * of "*" (Hexmate)

Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid

record types.

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source

using the ’+’ specifier store data at the same address. The actual data stored there may not be what

you expect.

(963) checksum range includes voids or unspecified memory locations (Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from

the compile-time checksum due to gaps/unused byes within the address range that the checksum is

calculated over. Filling unused locations with a known value will correct this.

(964) unpaired nibble in -FILL value will be truncated (Hexmate)

The hexadecimal code given to the FILL option contained an incomplete byte. The incomplete byte

(nibble) will be disregarded.

393

Error and Warning Messages

(965) -STRPACK option not yet implemented, option will be ignored (Hexmate)

This option currently is not available and will be ignored.

(966) no END record for HEX file "*" (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition "*" (from line *) (Parser)

The indicated static function was never called in the module being compiled. Being static, the

function cannot be called from other modules so this warning implies the function is never used.

Either the function is redundant, or the code that was meant to call it was excluded from compilation

or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

(972) only modifiers "h" and "l" valid with this format (Parser)

Only modifiers h (short) and l (long) are legal with this printf format specifier.

(973) only modifier "l" valid with this format (Parser)

The only modifier that is legal with this format is l (for long).

(974) type modifier already specified (Parser)

This type modifier has already be specified in this type.

394

Error and Warning Messages

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) this identifier is already an enum tag (Parser)

This identifier following a struct or union keyword is already the tag for an enumerated type, and

thus should only follow the keyword enum, e.g.:

enum IN {ONE=1, TWO};

struct IN { /* oops -- IN is already defined */

int a, b;

};

(979) this identifier is already a struct tag (Parser)

This identifier following a union or enum keyword is already the tag for a structure, and thus should

only follow the keyword struct, e.g.:

struct IN {

int a, b;

};

enum IN {ONE=1, TWO}; /* oops -- IN is already defined */

(980) this identifier is already a union tag (Parser)

This identifier following a struct or enum keyword is already the tag for a union, and thus should

only follow the keyword union, e.g.:

union IN {

int a, b;

};

enum IN {ONE=1, TWO}; /* oops -- IN is already defined */

395

Error and Warning Messages

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;

data->a = 9; /* data is a structure,

not a pointer to a structure */

(982) unknown op "*" in nxtuse() (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(983) storage class redeclared (Parser)

A variable previously declared as being static, has now be redeclared as extern.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible

declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;

char a; /* oops -- what is the correct type? */

(985) qualifiers redeclared (Parser)

This function or variable has different qualifiers in different declarations.

(986) enum member redeclared (Parser)

A member of an enumeration is defined twice or more with differing values. Does the member

appear twice in the same list or does the name of the member appear in more than one enum list?

(987) arguments redeclared (Parser)

The data types of the parameters passed to this function do not match its prototype.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of

the same function.

396

Error and Warning Messages

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the -C option has been used to specify that a

binary output file is to be created that is mapped to this address. This would mean code from this

module would have to be placed before the beginning of the file! Check for missing psect directives

in assembler files.

(990) modulus by zero in #if; zero result assumed (Preprocessor)

A modulus operation in a #if expression has a zero divisor. The result has been assumed to be zero,

e.g.:

#define ZERO 0

#if FOO%ZERO /* this will have an assumed result of 0 */

#define INTERESTING

#endif

(991) integer expression required (Parser)

In an enum declaration, values may be assigned to the members, but the expression must evaluate to

a constant of type int, e.g.:

enum {one = 1, two, about_three = 3.12};

/* no non-int values allowed */

(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(993) some command-line options are disabled (Driver)

The compiler is operating in demo mode. Some command-line options are disabled.

(994) some command-line options are disabled and compilation is delayed (Driver)

The compiler is operating in demo mode. Some command-line options are disabled, the compilation

speed will be slower.

397

Error and Warning Messages

(995) some command-line options are disabled, code size is limited to 16kB, compilation is

delayed (Driver)

The compiler is operating in demo mode. Some command-line options are disabled, the compilation

speed will be slower, and the maximum allowed code size is limited to 16kB.

(1015) missing "*" specification in chipinfo file "*" at line * (Driver)

This attribute was expected to appear at least once but was not defined for this chip.

(1016) missing argument* to "*" specification in chipinfo file "*" at line * (Driver)

This value of this attribute is blank in the chip configuration file.

(1017) extraneous argument* to "*" specification in chipinfo file "*" at line * (Driver)

There are too many attributes for the the listed specification in the chip configuration file.

(1018) illegal number of "*" specification* (* found; * expected) in chipinfo file "*" at line *

(Driver)

This attribute was expected to appear a certain number of times but it did not for this chip.

(1019) duplicate "*" specification in chipinfo file "*" at line * (Driver)

This attribute can only be defined once but has been defined more than once for this chip.

(1020) unknown attribute "*" in chipinfo file "*" at line * (Driver)

The chip configuration file contains an attribute that is not understood by this version of the com-

piler. Has the chip configuration file or the driver been replaced with an equivalent component from

another version of this compiler?

(1021) syntax error reading "*" value in chipinfo file "*" at line * (Driver)

The chip configuration file incorrectly defines the specified value for this device. If you are modify-

ing this file yourself, take care and refer to the comments at the beginning of this file for a description

on what type of values are expected here.

398

Error and Warning Messages

(1022) syntax error reading "*" range in chipinfo file "*" at line * (Driver)

The chip configuration file incorrectly defines the specified range for this device. If you are modify-

ing this file yourself, take care and refer to the comments at the beginning of this file for a description

on what type of values are expected here.

(1024) syntax error in chipinfo file "*" at line * (Driver)

The chip configuration file contains a syntax error at the line specified.

(1025) unknown architecture in chipinfo file "*" at line * (Driver)

The attribute at the line indicated defines an architecture that is unknown to this compiler.

(1026) missing architecture in chipinfo file "*" at line * (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor

must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(1027) activation was successful (Driver)

The compiler was successfully activated.

(1028) activation was not successful - error code (*) (Driver)

The compiler did not activated successfully.

(1029) compiler not installed correctly - error code (*) (Driver)

This compiler has failed to find any activation information and cannot proceed to execute. The com-

piler may have been installed incorrectly or incompletely. The error code quoted can help diagnose

the reason for this failure. You may be asked for this failure code if contacting HI-TECH Software

for assistance with this problem.

(1030) HEXMATE - Intel hex editing utility (Build 1.%i) (Hexmate)

Indicating the version number of the Hexmate being executed.

(1031) USAGE: * [input1.hex] [input2.hex]... [inputN.hex] [options] (Hexmate)

The suggested usage of Hexmate.

399

Error and Warning Messages

(1032) use –HELP=<option> for usage of these command line options (Hexmate)

More detailed information is available for a specific option by passing that option to the HELP

option.

(1033) available command-line options: (Hexmate)

This is a simple heading that appears before the list of available options for this application.

(1034) type "*" for available options (Hexmate)

It looks like you need help. This advisory suggests how to get more information about the options

available to this application or the usage of these options.

(1035) bad argument count (*) (Parser)

The number of arguments to a function is unreasonable. This is an internal compiler error. Contact

HI-TECH Software technical support with details.

(1036) bad "*" optional header length (0x* expected) (Cromwell)

The length of the optional header in this COFF file was of an incorrect length.

(1037) short read on * (Cromwell)

When reading the type of data indicated in this message, it terminated before reaching its specified

length.

(1038) string table length too short (Cromwell)

The specified length of the COFF string table is less than the minimum.

(1039) inconsistent symbol count (Cromwell)

The number of symbols in the symbol table has exceeded the number indicated in the COFF header.

(1040) bad checksum: record 0x*, checksum 0x* (Cromwell)

A record of the type specified failed to match its own checksum value.

400

Error and Warning Messages

(1041) short record (Cromwell)

While reading a file, one of the file’s records ended short of its specified length.

(1042) unknown * record type 0x* (Cromwell)

The type indicator of this record did not match any valid types for this file format.

(1043) unknown optional header (Cromwell)

When reading this Microchip COFF file, the optional header within the file header was of an incor-

rect length.

(1044) end of file encountered (Cromwell, Linker)

The end of the file was found while more data was expected. Has this input file been truncated?

(1045) short read on block of * bytes (Cromwell)

A while reading a block of byte data from a UBROF record, the block ended before the expected

length.

(1046) short string read (Cromwell)

A while reading a string from a UBROF record, the string ended before the specified length.

(1047) bad type byte for UBROF file (Cromwell)

This UBROF file did not begin with the correct record.

(1048) bad time/date stamp (Cromwell)

This UBROF file has a bad time/date stamp.

(1049) wrong CRC on 0x* bytes; should be * (Cromwell)

An end record has a mismatching CRC value in this UBROF file.

(1050) bad date in 0x52 record (Cromwell)

A debug record has a bad date component in this UBROF file.

401

Error and Warning Messages

(1051) bad date in 0x01 record (Cromwell)

A start of program record or segment record has a bad date component in this UBROF file.

(1052) unknown record type (Cromwell)

A record type could not be determined when reading this UBROF file.

(1058) assertion (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1059) rewrite loop (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1081) static initialization of persistent variable "*" (Parser, Code Generator)

A persistent variable has been assigned an initial value. This is somewhat contradictory as the initial

value will be assigned to the variable during execution of the compiler’s startup code, however the

persistent qualifier requests that this variable shall be unchanged by the compiler’s startup code.

(1082) size of initialized array element is zero (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1088) function pointer "*" is used but never assigned a value (Code Generator)

A function call involving a function pointer was made, but the pointer was never assigned a target

address, e.g.:

void (*fp)(int);

fp(23); /* oops -- what function does fp point to? */

(1089) recursive function call to "*" (Code Generator)

A recursive call to the specified function has been found. The call may be direct or indirect (using

function pointers) and may be either a function calling itself, or calling another function whose call

graph includes the function under consideration.

402

Error and Warning Messages

(1090) variable "*" is not used (Code Generator)

This variable is declared but has not been used by the program. Consider removing it from the

program.

(1091) main function "*" not defined (Code Generator)

The main function has not been defined. Every C program must have a function called main.

(1094) bad derived type (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1095) bad call to typeSub() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1096) type should be unqualified (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1097) unknown type string "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1098) conflicting declarations for variable "*" (*:*) (Parser, Code Generator)

Differing type information has been detected in the declarations for a variable, or between a declaratin

and the definition of a variable, e.g.:

extern long int test;

int test; /* oops -- which is right? int or long int ? */

(1104) unqualified error (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1118) bad string "*" in getexpr(J) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

403

Error and Warning Messages

(1119) bad string "*" in getexpr(LRN) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1121) expression error (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1137) match() error: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1157) W register must be W9 (Assembler)

The working register required here has to be W9, but an other working register was selected.

(1159) W register must be W11 (Assembler)

The working register required here has to be W11, but an other working register was selected.

(1178) the "*" option has been removed and has no effect (Driver)

This option no longer exists in this version of the compiler and has been ignored. Use the compiler’s

–help option or refer to the manual to find a replacement option.

(1179) interrupt level for function "*" may not exceed * (Code Generator)

The interrupt level for the function specified is too high. Each interrupt function is assigned a

unique interrupt level. This level is considered when analysing the call graph and re-entrantly called

functions. If using the interrupt_level pragma, check the value specified.

(1180) directory "*" does not exist (Driver)

The directory specified in the setup option does not exist. Create the directory and try again.

(1182) near variables must be global or static (Code Generator)

A variable qualified as near must also be qualified with static or made global. An auto variable

cannot be qualified as near.

404

Error and Warning Messages

(1183) invalid version number (Activation)

During activation, no matching version number was found on the HI-TECH activation server database

for the serial number specified.

(1184) activation limit reached (Activation)

The number of activations of the serial number specified has exceeded the maximum number allowed

for the license.

(1185) invalid serial number (Activation)

During activation, no matching serial number was found on the HI-TECH activation server database.

(1186) licence has expired (Driver)

The time-limited license for this compiler has expired.

(1187) invalid activation request (Driver)

The compiler has not been correctly activated.

(1188) network error * (Activation)

The compiler activation software was unable to connect to the HI-TECH activation server via the

network.

(1190) FAE license only - not for use in commercial applications (Driver)

Indicates that this compiler has been activated with an FAE licence. This licence does not permit the

product to be used for the development of commercial applications.

(1191) licensed for educational use only (Driver)

Indicates that this compiler has been activated with an education licence. The educational licence is

only available to educational facilities and does not permit the product to be used for the development

of commercial applications.

(1192) licensed for evaluation purposes only (Driver)

Indicates that this compiler has been activated with an evaluation licence.

405

Error and Warning Messages

(1193) this licence will expire on * (Driver)

The compiler has been installed as a time-limited trial. This trial will end on the date specified.

(1195) invalid syntax for "*" option (Driver)

A command line option that accepts additional parameters was given inappropriate data or insuffi-

cient data. For example an option may expect two parameters with both being integers. Passing a

string as one of these parameters or supplying only one parameter could result in this error.

(1198) too many "*" specifications; * maximum (Hexmate)

This option has been specified too many times. If possible, try performing these operations over

several command lines.

(1199) compiler has not been activated (Driver)

The trial period for this compiler has expired. The compiler is now inoperable until activated with

a valid serial number. Contact HI-TECH Software to purchase this software and obtain a serial

number.

(1200) Found %0*lXh at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)

All find, replace and mask attributes in this option must be of the same byte width. Check the

parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)

will result in an error, but masking with 00FFh (2 bytes) will be Ok.

(1202) unknown format requested in -FORMAT: * (Hexmate)

An unknown or unsupported INHX format has been requested. Refer to documentation for supported

INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading

zero was omitted. For example the value Fh contains only four bits of significant data and is not a

whole byte. The value 0Fh contains eight bits of significant data and is a whole byte.

406

Error and Warning Messages

(1204) * value must be between 1 and * bytes long (Hexmate)

An illegal length of data was given to this option. The value provided to this option exceeds the

maximum or minimum bounds required by this option.

(1205) using the configuration file *; you may override this with the environment variable

HTC_XML (Driver)

This is the compiler configuration file selected during compiler setup. This can be changed via

the HTC_XML environment variable. This file is used to determine where the compiler has been

installed.

(1207) some of the command line options you are using are now obsolete (Driver)

Some of the command line options passed to the driver have now been discontinued in this version

of the compiler, however during a grace period these old options will still be processed by the driver.

(1208) use –help option or refer to the user manual for option details (Driver)

An obsolete option was detected. Use –help or refer to the manual to find a replacement option that

will not result in this advisory message.

(1210) Visit the HI-TECH Software website (www.htsoft.com) for a possible update (Driver)

Visit our website to see if an update is available to address the issue(s) listed in the previous compiler

message. Please refer to the on-line self-help facilities such as the Frequently asked Questions or

search the On-line forums. In the event of no details being found here, contact HI-TECH Software

for further information.

(1212) Found * (%0*lXh) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1213) duplicate ARCH for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is

allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

407

Error and Warning Messages

(1218) can’t create cross reference file * (Assembler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the

file’s pathname is correct.

(1228) unable to locate installation directory (Driver)

The compiler cannot determine the directory where it has been installed.

(1230) dereferencing uninitialized pointer "*" (Code Generator)

A pointer that has not yet been assigned a value has been dereferenced. This can result in erroneous

behaviour at runtime.

(1235) unknown keyword * (Driver)

The token contained in the USB descriptor file was not recognised.

(1236) invalid argument to *: * (Driver)

An option that can take additional parameters was given an invalid parameter value. Check the usage

of the option or the syntax or range of the expected parameter.

(1237) endpoint 0 is pre-defined (Driver)

An attempt has been made to define endpoint 0 in a USB file. This channel c

(1238) FNALIGN failure on * (Linker)

Two functions have their auto/parameter blocks aligned using the FNALIGN directive, but one func-

tion calls the other, which implies that must not be aligned. This will occur if a function pointer is

assigned the address of each function, but one function calls the other. For example:

int one(int a) { return a; }

int two(int a) { return two(a)+2; } /* ! */

int (*ip)(int);

ip = one;

ip(23);

ip = two; /* ip references one and two; two calls one */

ip(67);

408

Error and Warning Messages

(1239) pointer * has no valid targets (Code Generator)

A function call involving a function pointer was made, but the pointer was never assigned a target

address, e.g.:

void (*fp)(int);

fp(23); /* oops -- what function does fp point to? */

(1240) unknown checksum algorithm type (%i) (Driver)

The error file specified after the -Efile or -E+file options could not be opened. Check to ensure

that the file or directory is valid and that has read only access.

(1241) bad start address in * (Driver)

The start of range address for the --CHECKSUM option could not be read. This value must be a

hexadecimal number.

(1242) bad end address in * (Driver)

The end of range address for the --CHECKSUM option could not be read. This value must be a

hexadecimal number.

(1243) bad destination address in * (Driver)

The destination address for the --CHECKSUM option could not be read. This value must be a hexadec-

imal number.

(1245) value greater than zero required for * (Hexmate)

The align operand to the HEXMATE -FIND option must be positive.

(1246) no RAM defined for variable placement (Code Generator)

No memory has been specified to cover the banked RAM memory.

(1247) no access RAM defined for variable placement (Code Generator)

No memory has been specified to cover the access bank memory.

409

Error and Warning Messages

(1248) symbol (*) encountered with undefined type size (Code Generator)

The code generator was asked to position a variable, but the size of the variable is not known. This

is an internal compiler error. Contact HI-TECH Software technical support with details.

(1255) conflicting paths for output directory (Driver)

The compiler has been given contradictory paths for the output directory via any of the -O or

--OUTDIR options, e.g.

--outdir=../../ -o../main.hex

(1256) undefined symbol "*" treated as hex constant (Assembler)

A token which could either be interpreted as a symbol or a hexadecimal value does not match any

previously defined symbol and so will be interpreted as the latter. Use a leading zero to avoid the

ambiguity, or use an alternate radix sepcifier such as 0x. For example:

mov a, F7h ; is this the symbol F7h, or the hex number 0xF7?

(1257) local variable "*" is used but never given a value (Code Generator)

An auto variable has been defined and used in an expression, but it has not been assigned a value

in the C code before its first use. Auto variables are not cleared on startup and their initial value is

undefined. For example:

void main(void) {

double src, out;

out = sin(src); /* oops -- what value was in src? */

(1259) can’t optimize for both speed and space (Driver)

The driver has been given contradictory options of compile for speed and compile for space, e.g.

--opt=speed,space

410

Error and Warning Messages

(1260) macro "*" redefined (Assembler)

More than one definition for a macro with the same name has been encountered, e.g.

MACRO fin

ret

ENDM

MACRO fin ; oops -- was this meant to be a different macro?

reti

ENDM

(1261) string constant required (Assembler)

A string argument is required with the DS or DSU directive, e.g.

DS ONE ; oops -- did you mean DS “ONE”?

(1264) unsafe pointer conversion (Code Generator)

A pointer to one kind of structure has been converted to another kind of structure and the structures

do not have a similar definition, e.g.

struct ONE {

unsigned a;

long b; /* ! */

} one;

struct TWO {

unsigned a;

unsigned b; /* ! */

} two;

struct ONE * oneptr;

oneptr = & two; /* oops --

was ONE meant to be same struct as TWO? */

(1267) fixup overflow referencing * * (0x*) into * byte* at 0x* (*** */0x*) (Linker)

See the following error message (1268) for more information..

411

Error and Warning Messages

(1268) fixup overflow storing 0x* in * byte* at 0x* (*** */0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an

assembler instruction with an absolute value. This takes place after positioning the psects (program

sections or blocks) into the available memory on the target device. Fixup overflow is when the

value determined for a symbol is too large to fit within the allocated space within the assembler

instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the

linker determines that the symbol that has been used to represent this address has the value 0x110,

then clearly this value cannot be inserted into the instruction.

(1269) there * * day* left until this licence will expire (Driver)

This compiler has not been activated and is running as a demo. The time indicated is how long the

demo period will continue.

(1273) Omniscient Code Generation not available in Lite mode (Driver)

When running in Lite mode, the advanced Omniscient Code Generation (OCG) features are disabled.

This will result in much larger code than would be produced when running in PRO mode.

(1274) delay exceeds maximum limit of * cycles (Code Generator)

The argument to the in-line delay routine (_delay) is limited to the maximum size indicated. Use

the routine consequtively, or place it is a loop to acheive the desired delay period.

(1284) malformed mapfile while generating summary: CLASS expected but not found(Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1285) malformed mapfile while generating summary: no name at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1286) malformed mapfile while generating summary: no link address at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1287) malformed mapfile while generating summary: no load address at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

412

Error and Warning Messages

(1288) malformed mapfile while generating summary: no length at position * (Driver)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(0) delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using the d key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

(0) incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

(0) incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

(0) library file names should have .lib extension: * (Libr)

Use the .lib extension when specifying a library filename.

(0) module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean

that part of the code was inadvertently removed or commented.

(0) replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using the r key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.

413

Error and Warning Messages

414

Appendix C

Chip Information

The following table lists all devices currently supported by HI-TECH C PRO for the PIC32 MCU

Family.

Table C.1: Devices supported by HI-TECH C PRO for the PIC32 MCU Family

DEVICE FLASH RAM BOOT FREQ

32MX300F032H 8000 2000 2FF0 28

32MX310F032H 8000 2000 2FF0 28

32MX320F032H 8000 2000 2FF0 28

32MX320F064H 10000 4000 2FF0 50

32MX320F128H 20000 4000 2FF0 50

32MX320F128L 20000 4000 2FF0 50

32MX340F128H 20000 8000 2FF0 50

32MX340F128L 20000 8000 2FF0 50

32MX340F256H 40000 8000 2FF0 50

32MX340F512H 80000 8000 2FF0 50

32MX360F256L 40000 8000 2FF0 50

32MX360F512L 80000 8000 2FF0 50

32MX420F032H 8000 2000 2FF0 28

32MX440F128H 20000 8000 2FF0 50

32MX440F128L 20000 8000 2FF0 50

32MX440F256H 40000 8000 2FF0 50

32MX440F512H 80000 8000 2FF0 50

32MX460F256L 40000 8000 2FF0 50

32MX460F512L 80000 8000 2FF0 50

32MXGENERIC 80000 8000 2FF0 50

415

Chip Information

416

Appendix D

Configuration Attributes

The following tables present the various configuration attributes available for the various config

words in PIC32 devices. These attributes are usable with the __CONFIG(n,x) macro.

GCP_ON Code Protection Enable

GCP_OFF

BWP_ON Boot Flash Write-protect

BWP_OFF

PWP_BLKS(k) Program Flash Write-protect bits -

creates the config setting for the

program write protection of the first k

4k blocks beginning at 0xBD000000. k

is an integer between 0 and 128.

PWP_OFF

ICESEL_PGx2 ICE/ICD Communication Channel

Select

ICESEL_PGx1

BKBUG_ON Background Debugger Enable

BKBUG_OFF

Configuration Word 0 (DEVCFG0)

417

Configuration Attributes

FWDTEN_ON WDT Enable

FWDTEN_OFF

WINDIS_ON Windowed WDT Disable

WINDIS_OFF

macro

__WDTPS(s)

The Macro WDTPS(s) creates the

config setting for the WDT postscale

bits where s gives a postscale of 1:2^(s).

s is an integer between 0 and 20

FCKSM_CSECME Clock Switching and Monitor Selection

Configuration

FCKSM_CSECMD

FCKSM_CSDCMD

FPBDIV_8 Peripheral Bus Clock Divisor Default

Value

FPBDIV_4

FPBDIV_2

FPBDIV_1

OSCIOFNC_ON CLK0 Enable Configuration

OSCIOFNC_OFF

POSCMD_OFF Primary Oscillator Configuration

POSCMD_HS

POSCMD_XT

POSCMD_EC

FSOSCEN_ON Secondary Oscillator Enable

FSOSCEN_OFF

FNOSC_FRC Oscillator Selection

FNOSC_FRCPLL

FNOSC_PRI

FNOSC_PIRPLL

FNOSC_SOSC

FNOSC_LPRC

FNOSC_FRCDIV

Configuration Word 1 (DEVCFG1)
418

Configuration Attributes

macro

__FPLL0DIV(s)

Oscillator Selection - creates the config

setting for the default postscaler for PLL

bits, where PLL output is divided by

2^(s). s is an integer between 0 and 7.

FPPL0DIV_256

FPLLMULT_15 Initial PLL Multiplier Value

FPLLMULT_16

FPLLMULT_17

FPLLMULT_18

FPLLMULT_19

FPLLMULT_20

FPLLMULT_21

FPLLMULT_24

FPLLIDIV_1 PLL Input Divider Value

FPLLIDIV_2

FPLLIDIV_3

FPLLIDIV_4

FPLLIDIV_5

FPLLIDIV_7

FPLLIDIV_10

FPLLIDIV_12

Configuration Word 2 (DEVCFG2)

macro USERID(id) Sets the User ID to (id).

User ID (DEVCFG3)

419

Configuration Attributes

420

Index

! macro quote character, 129

\ command file character, 21

. psect address symbol, 144

.as files, 22

.cmd files, 157

.crf files, 50, 111

.hex files, 23

.ini files, 66

.lib files, 155, 157

.lnk files, 148

.lst files, 49

.obj files, 112, 144, 157

.opt files, 111

.p1 files, 22

.pro files, 58

.sdb files, 36

.sym files, 35, 143, 146

/ psect address symbol, 144

;; comment suppression characters, 128

<> macro quote characters, 129

? character

in assembly labels, 117

??nnnn type symbols, 118, 129

@ command file specifier, 21

#asm directive, 92

#define, 42

#include directive, 20

#pragma directives, 100

#undef, 48

$ character

in assembly labels, 117

% macro argument prefix, 129

& assembly macro concatenation character, 128

_ character

in assembly labels, 117

_HTC_VER_MAJOR_, 97

_HTC_VER_MINOR_, 97

_HTC_VER_PATCH_, 97

_PIC32, 97

__Bxxxx type symbols, 107

__CONFIG macro, 66, 178, 417

__DATE__, 97

__FILE__, 97

__Hxxxx type symbols, 107

__LINE__, 97

__Lxxxx type symbols, 107

__PICC32__, 97

__TIME__, 98

__serial0 label, 61

PICC32

command format, 20

abs function, 179

abs PSECT flag, 123

absolute object files, 144

absolute psects, 123, 124

absolute variables, 80

bits, 70

accessing SFRs, 94

acos function, 180

421

INDEX INDEX

additional memory ranges, 59

addresses

byte, 168

link, 139, 144

load, 139, 144

word, 168

addressing unit, 123

ALIGN directive, 130

alignment

within psects, 130

ANSI standard

conformance, 62

divergence from, 65

implementation-defined behaviour, 65

argument area, 81

argument passing, 81

ASCII characters, 71

asctime function, 181

asin function, 183

asm() C directive, 92

assembler, 109

controls, 132

directives, 121

options, 110

pseudo-ops, 121

assembler control

COND, 133

EXPAND, 133

INCLUDE, 133

LIST, 134

NOCOND, 134

NOEXPAND, 134

NOLIST, 134

NOXREF, 134

PAGE, 135

SPACE, 135

SUBTITLE, 135

TITLE, 135

XREF, 135

assembler directive

ALIGN, 130

DABS, 127

DB, 126

DS, 127

DW, 126

ELSE, 127

ELSIF, 127

END, 33, 121

ENDIF, 127

ENDM, 128

EQU, 114, 125

FNSIZE, 91

GLOBAL, 91, 118, 121

IF, 127

IRP, 130

IRPC, 130

LOCAL, 118, 129

MACRO, 114, 128

ORG, 124

PROCESSOR, 91, 112, 131

PSECT, 91, 120, 121

REPT, 130

SET, 114, 126

SIGNAT, 105, 131

assembler files

preprocessing, 57

assembler listings, 49

assembler optimizer

debug information and, 112

enabling, 112

viewing output of, 111

assembler option

-A, 111

-C, 111

-Cchipinfo, 111

-E, 111

-Flength, 111

-H, 111

422

INDEX INDEX

-I, 111

-Llistfile, 112

-O, 112

-Ooutfile, 112

-Twidth, 112

-V, 112

-X, 112

-processor, 112

assembler-generated symbols, 118

assembly, 109

accessing C variables from, 93

C prototypes for, 89

called from C code, 89

character constants, 117

character set, 114

comments, 114

conditional, 127

constants, 116

default radix, 116

delimiters, 114

embedding in C code, 88

expressions, 118

generating from C, 48

identifiers, 117

data typing, 117

in-line, 93

include files, 133

initializing

bytes, 126

words, 126

labels, 89, 114, 118

line numbers, 112

multi-character constants, 117

operators, 118

psects for, 89

radix specifiers, 116

relocatable expression, 120

repeating macros, 130

reserving memory, 127

special characters, 114

special comment strings, 116

statement format, 114

strings, 117

volatile locations, 116

assembly labels, 89, 114, 118

? character, 117

$ character, 117

_chacrter, 117

making globally accessable, 121

scope, 118, 121

assembly listings

blank lines, 135

disabling macro expansion, 134

enabling, 134

excluding conditional code, 134

expanding macros, 111, 133

generating, 112

hexadecimal constants, 111

including conditional code, 133

new page, 135

page length, 111

page width, 112

radix specification, 111

subtitles, 135

titles, 135

assembly macros, 128

! character, 129

% character, 129

& symbol, 128

concatenation of arguments, 128

quoting characters, 129

suppressing comments, 128

assert function, 184

atan function, 185

atan2 function, 186

atof function, 187

atoi function, 188

atol function, 189

423

INDEX INDEX

auto variable area, 81

auto variables, 79

Avocet symbol file, 147

base specifier, see radix specifier

bases

C source, 67

biased exponent, 73

big endian format, 169

binary constants

assembly, 117

C, 67

bit PSECT flag, 123

bit types

absolute, 70

in assembly, 123

bit-addressable Registers, 70

bit-fields, 73

initializing, 74

unamed, 74

blocks, see psects

bootex psect, 86

bootloader, 59, 166, 172

bootloaders, 170

bsearch function, 190

bss psect, 30, 86, 138

clearing, 138

byte addresses, 168

C standard libraries, 27, 28

ceil function, 192

cgets function, 193

char types, 71

character constants, 69

assembly, 117

checksum endianism, 50, 169

checksum specifications, 158

checksums, 50, 165, 169

algorithms, 50, 169

endianism, 50, 169

chipinfo files, 66, 111

class PSECT flag, 123

classes, 141

address ranges, 141

boundary argument, 146

upper address limit, 146

clearing of variables, 30

clib suboption, 27

COD file, 56

command files, 21

command line driver, 19

command lines

HLINK, long command lines, 148

long, 21, 157

verbose option, 49

compiler errors

format, 38

compiler generated psects, 85

compiler-generate input files, 26

compiling

to assembly file, 48

to object file, 42

COND assembler contro, 133

COND assembler control, 133

conditional assembly, 127

config psect, 86

configuration

word, 86

configuration fuses, 66, 417

console I/O functions, 107

const psect, 86

const qualifier, 75

constants

assembly, 116

C specifiers, 67

character, 69

string, see string literals

context saving

424

INDEX INDEX

in-line assembly, 101

copyright notice, 48

cos function, 195

cosh function, 196

cp0 qualifier, 77

cputs function, 197

creating

libraries, 156

creating new, 85

CREF application, 111, 160

CREF option

-Fprefix, 160

-Hheading, 161

-Llen, 161

-Ooutfile, 161

-Pwidth, 161

-Sstoplist, 161

-Xprefix, 162

CREF options, 160

cromwell application, 162

cromwell option

-B, 165

-C, 164

-D, 163

-E, 165

-F, 164

-Ikey, 164

-L, 164

-M, 165

-N, 163

-Okey, 164

-P, 163

-V, 165

cromwell options, 162

cross reference

disabling, 134

generating, 160

list utility, 160

cross reference file, 111

generation, 111

cross reference listings, 50

excluding header symbols, 160

excluding symbols, 161, 162

headers, 161

output name, 161

page length, 161

page width, 161

cross referencing

enabling, 135

ctime function, 198

DABS directive, 127

data psect, 86, 138

copying, 139

data psects, 29

data types, 67

16-bit integer, 71

8-bit integer, 71

assembly, 117

char, 71

floating point, 72

int, 71

short, 71

DB directive, 126

debug information, 35, 44

assembler, 112

optimizers and, 112

default psect, 121

default radix

assembly, 116

delta PSECT flag, 123

delta psect flag, 142

dependencies, 61

dependency checking, 24

device selection, 50

directives

asm, C, 92

assembler, 121

425

INDEX INDEX

div function, 199

divide by zero

result of, 85

doprnt.c source file, 33

doprnt.pre, 35

driver

command file, 21

input files, 20

long command lines, 21

options, 20

single step compilation, 23

driver option

–ERRFORMAT=format, 51

–ERRORS=number, 51

–LANG=language, 54

–MSGFORMAT=format, 51

–NODEL, 23

–OUTPUT=type, 56

–PASS1, 22, 24, 25

–PRE, 25

–RUNTIME, 27

–RUNTIME=type, 29, 30, 60

–WARN=level, 63

–WARNFORMAT=format, 51

-C, 24, 42

-Efile, 43

-G, 35, 44

-I, 44

-L, 45

-M, 47

-O, 35

-S, 48

driver options

–WARNFORMAT=format, 64

DS directive, 127

DW directive, 126

ELSE directive, 127

ELSIF directive, 127

embedding serial numbers, 174

END directive, 33, 121

endasm directive, 92

ENDIF directive, 127

ENDM directive, 128

enhanced symbol files, 143

environment variable

HTC_ERR_FORMAT, 38

HTC_MSG_FORMAT, 38

HTC_WARN_FORMAT, 38

EQU directive, 114, 125

equating assembly symbols, 125

error files

creating, 142

error messages, 43

formatting, 38

LIBR, 158

eval_poly function, 200

exp function, 201

EXPAND assembler control, 133

exponent, 72

expressions

assemby, 118

relocatable, 120

fabs function, 202

file extensions, 20

file formats

assembler listing, 49

Avocet symbol, 147

command, 157

creating with cromwell, 162

cross reference, 111, 160

cross reference listings, 50

dependency, 61

DOS executable, 144

enhanced symbol, 143

library, 155, 157

link, 148

426

INDEX INDEX

object, 42, 144, 157

preprocessor, 57

prototype, 58

specifying, 56

symbol, 143

symbol files, 35

TOS executable, 144

files

intermediate, 55, 57

output, 56

temporary, 55, 56

fill memory, 165

filling unused memory, 52, 170

floating point data types, 72

biased exponent, 73

exponent, 73

format, 72

mantissa, 72

floating suffix, 69

floor function, 204

fmod function, 203

frexp function, 205

ftoa function, 206

function

return values, 81

stack frame, 82

function pointers, 79

function prototypes, 106, 132

function return values, 81

function signatures, 131

function stack frame, 82

functions

argument passing, 81

getch, 107

interrupt, 87

interrupt qualifier, 87

kbhit, 107

putch, 107

recursion, 65

return values, 81

signatures, 105

written in assembler, 88

getch function, 107, 207

getchar function, 208

getche function, 207

gets function, 209

GLOBAL directive, 91, 118, 121

global optimization, 56

global PSECT flag, 123

global symbols, 138

gmtime function, 210

hardware

initialization, 33

header files

htc.h, 71

problems in, 62

HEX file format, 172

HEX file map, 173

hex files

address alignment, 170

address map, 165

calculating check sums, 165

converting to other Intel formats, 165

data record, 169

detecting instruction sequences, 165

embedding serial numbers, 166

extended address record, 172

filling unused memory, 52, 165

find and replacing instructions, 165

merging multiple, 165

multiple, 142

record length, 165, 170, 172

hexadecimal constants

assembly, 116

hexmate application, 23, 165

hexmate option

427

INDEX INDEX

+prefix, 168

-CK, 169

-FILL, 170, 173

-FIND, 171

-FIND...,DELETE, 172

-FIND...,REPLACE, 172

-FORMAT, 172

-HELP, 173

-LOGFILE, 173

-MASK, 174

-O, 174

-SERIAL, 62, 174

-SIZE, 175

-STRING, 175

-STRPACK, 176

-addressing, 168

-break, 169

file specifications, 166

hexmate options, 166

HI-TIDE, 52

HI_TECH_C, 97

htc.h, 71, 94

HTC_ERR_FORMAT, 38

HTC_MSG_FORMAT, 38

HTC_WARN_FORMAT, 38

I/O

console I/O functions, 107

serial, 107

STDIO, 107

idata psect, 29, 60, 86

identifier length, 47

identifiers

assembly, 117

IEEE floating point format, 72

IF directive, 127

Implementation-defined behaviour, 65

division and modulus, 85

shifts, 84

in-line assembly, 93

INCLUDE assembler control, 133

include files

assembly, 133

incremental builds, 24

INHX32, 165, 172

INHX8M, 165, 173

init psect, 86

initialization of variables, 29

input files, 20

int data types, 71

integer suffix

long, 69

unsigned, 69

integral constants, 69

integral promotion, 83

Intermediate files, 57

intermediate files, 20, 24, 55

interrupt functions, 87

context saving, 101

interrupt keyword, 87

interrupts

handling in C, 87

IRP directive, 130

IRPC directive, 130

isa qualifier, 78

isalnum function, 212

isalpha function, 212

isatty function, 214

isdigit function, 212

islower function, 212

itoa function, 215

Japanese character handling, 100

JIS character handling, 100

jis pragma directive, 100

kbhit function, 107

keyword

428

INDEX INDEX

auto, 79

cp0, 77

extern, 91

interrupt, 87

ISA, 78

near, 76

persistent, 31, 76

sfr, 77

strictcall, 78

keywords

disabling non-ANSI, 62

l.obj output file, 23

label field, 114

labels

assembly, 89, 114, 118

local, 129

labs function, 216

language support, 37

ldexp function, 217

ldiv function, 218

LFSR instruction, 93

LIBR, 155, 156

command line arguments, 156

error messages, 158

listing format, 157

long command lines, 157

module order, 158

librarian, 155

command files, 157

command line arguments, 156, 157

error messages, 158

listing format, 157

long command lines, 157

module order, 158

libraries

adding files to, 156

creating, 156

deleting files from, 156

excluding, 60

format of, 155

linking, 147

listing modules in, 156

module order, 158

naming convention, 28

scanning additional, 45

used in executable, 144

library

difference between object file, 155

manager, 155

library function

__CONFIG, 178

abs, 179

acos, 180

asctime, 181

asin, 183

assert, 184

atan, 185

atan2, 186

atof, 187

atoi, 188

atol, 189

bsearch, 190

ceil, 192

cgets, 193

cos, 195

cosh, 196

cputs, 197

ctime, 198

div, 199

eval_poly, 200

exp, 201

fabs, 202

floor, 204

fmod, 203

frexp, 205

ftoa, 206

getch, 207

429

INDEX INDEX

getchar, 208

getche, 207

gets, 209

gmtime, 210

isalnum, 212

isalpha, 212

isatty, 214

isdigit, 212

islower, 212

itoa, 215

labs, 216

ldexp, 217

ldiv, 218

localtime, 219

log, 221

log10, 221

longjmp, 222

ltoa, 224

memcmp, 225

mktime, 227

modf, 229

persist_check, 230

persist_validate, 230

pow, 232

printf, 33

putch, 233

putchar, 234

puts, 236

qsort, 237

rand, 239

round, 241

scanf, 242

set_vector, 246

setjmp, 244

sin, 247

sinh, 196

sqrt, 248

srand, 249

strcat, 250

strchr, 251

strcmp, 253

strcpy, 255

strcspn, 256

strichr, 251

stricmp, 253

stristr, 267

strlen, 257

strncat, 258

strncmp, 260

strncpy, 262

strnicmp, 260

strpbrk, 264

strrchr, 265

strrichr, 265

strspn, 266

strstr, 267

strtod, 268

strtok, 272

strtol, 270

tan, 274

tanh, 196

time, 275

toascii, 277

tolower, 277

toupper, 277

trunc, 278

ungetc, 279, 280

ungetch, 281

utoa, 282

va_arg, 283

va_end, 283

va_start, 283

vscanf, 242

xtoi, 285

limit PSECT flag, 123

limiting number of error messages, 51

link addresses, 139, 144

linker, 137

430

INDEX INDEX

command files, 148

command line arguments, 139, 148

invoking, 148

long command lines, 148

passes, 155

symbols handled, 138

linker defined symbols, 107

linker errors

aborting, 143

undefined symbols, 144

linker option

-Aclass=low-high, 141, 146

-Cpsect=class, 141

-Dsymfile, 142

-Eerrfile, 142

-F, 142

-Gspec, 142

-H+symfile, 143

-Hsymfile, 143

-I, 144

-Jerrcount, 143

-K, 143

-L, 144

-LM, 144

-Mmapfile, 144

-N, 144

-Nc, 144

-Ns, 144

-Ooutfile, 144

-Pspec, 144

-Qprocessor, 146

-Sclass=limit[,bound], 146

-Usymbol, 147

-Vavmap, 147

-Wnum, 147

-X, 147

-Z, 147

linker options, 139

adjusting use driver, 45

numbers in, 140

linking programs, 104

LIST assembler control, 134

list files

assembler, 49

little endian format, 67, 71, 72, 169

load addresses, 139, 144

LOCAL directive, 118, 129

local PSECT flag, 124

local psects, 138

local symbols, 49

suppressing, 112, 147

local variables, 79

auto, 79

static, 79

localtime function, 219

location counter, 124

log function, 221

LOG10 function, 221

long data types, 72

long integer suffix, 69

longjmp function, 222

ltoa function, 224

MACRO directive, 114, 128

macros

disabling in listing, 134

expanding in listings, 111, 133

nul operator, 129

predefined, 97

repeat with argument, 130

undefining, 48

unnamed, 130

main function, 25, 28

mantissa, 72

map files, 144

generating, 47

processor selection, 146

segments, 149

431

INDEX INDEX

symbol tables in, 144

width of, 147

maximum number of errors, 51

MDF, 36

memcmp function, 225

memory

reserving, 59

specifying, 59

specifying ranges, 141

unused, 52, 144

memory pages, 124

memory summary, 63

merging hex files, 168

message

language, 37

message description files, 36

messages

disabling, 55

warning, 55

Microchip COF file, 56

mixing C and assembly, 88

mktime function, 227

modf function, 229

module, 20

modules

in library, 155

list format, 157

order in library, 158

used in executable, 144

MOVFF instruction, 93

MPLAB, 52

build options, 46

multi-character constants

assembly, 117

multiple hex files, 142

near keyword, 76

NOCOND assembler control, 134

NOEXPAND assembler control, 134

nojis pragma directive, 100

NOLIST assembler control, 134

non-volatile memory, 76, 86

non-volatile RAM, 75

NOXREF assembler control, 134

numbers

C source, 67

in linker options, 140

nvbit psect, 76, 86

nvram, 75

nvram psect, 76, 86

nvrram psect, 76

object code, version number, 144

object files, 42

absolute, 144

relocatable, 137

specifying name of, 112

suppressing local symbols, 112

symbol only, 142

OBJTOHEX, 158

command line arguments, 158

objtohex application, 23

operators

assembly, 118

Optimizations

assembler, 56

code generator, 56

debugging, 56

global, 56

optimizations

assembler, see assembler optimizer

optimizing assembly code, 111

options

assembler, 110

ORG directive, 124

output

specifying name of, 47

output directory, 56

432

INDEX INDEX

output file, 47

output file formats, 144

American Automation HEX, 56

Binary, 56

Bytecraft COD, 56

COFF, 56

ELF, 56

Intel HEX, 56

library, 56

Microchip COFF, 56

Motorola S19 HEX, 56

specifying, 56, 158

Tektronic, 56

UBROF, 56

output files, 56

l.obj, 23

names of, 21

overlaid memory areas, 143

overlaid psects, 124

ovrld PSECT flag, 124

p-code files, 20

PAGE assembler control, 135

parameter passing, 81

passing parameters to assembly, 89

persist_check function, 230

persist_validate function, 230

persistent keyword, 76

persistent qualifier, 31, 76

persistent variables, 86

PIC32 MCU assembly language, 113

PICC18

predefined macros, 97

PICC32 , see driver

PICC32

supported data types, 67

PICC32 options

–SUMMARY=type, 105

-C, 104

-S, 104

PICC32 output formats

American Automation Hex, 35

Binary, 35

Intel Hex, 35

Motorola Hex, 35

Tektronix Hex, 35

pointer

qualifiers, 78

pointers, 78

16bit, 78

32 bit, 78

function, 79

to functions, 78

pow function, 232

powerup psect, 86

powerup routine, 29, 33

powerup.as, 33

pragma directives, 100

predefined symbols

preprocessor, 97

preprocessing, 48

assembler files, 48

preprocessor

macros, 42

path, 44

preprocessor directive

asm, 92

endasm, 92

preprocessor directives, 97

in assembly files, 114

preprocessor symbols

predefined, 97

printf

format checking, 100

printf function, 26

printf_check pragma directive, 100

PROCESSOR directive, 112

processor selection, 50, 131, 146

433

INDEX INDEX

processor selections, 66

processors

adding new, 66

program entry point, 33, 121

program sections, 120

project name, 21

prototypes

for assembly code, 89

psect

bootex, 86

bss, 30, 86, 138

config, 86

const, 86

data, 86, 138

idata, 29, 60, 86

init, 86

nvbit, 76, 86

nvram, 76, 86

nvrram, 76

powerup, 86

rbit, 86

rbss, 87

rdata, 29

reset, 86

text, 86

PSECT directive, 120, 121

PSECT directive flag

limit, 146

PSECT directive flags, 121

abs, 123

bit, 123

class, 123

delta, 123

global, 123

limit, 123

local, 124

ovrld, 124

pure, 124

reloc, 124

size, 124

space, 124

with, 124

psects, 85, 120, 138

absolute, 123, 124

aligning within, 130

alignment of, 124

basic kinds, 138

class, 141, 146

compiler generated, 85

default, 121

delta value of, 142

differentiating ROM and RAM, 124

for assembly code, 89

linking, 137

listing, 63

local, 138

maximum size of, 124

page boundaries and, 124

specifying address ranges, 146

specifying addresses, 141, 144

pseudo-ops

assembler, 121

pure PSECT flag, 124

putch function, 107, 233

putchar function, 234

puts function, 236

qsort function, 237

qualifier

auto, 79

cp0, 77

mips16e, 78

mips32r2, 78

near, 76

persistent, 31, 76

sfr, 77

strictcall, 78

volatile, 116

434

INDEX INDEX

qualifiers, 75, 76

and auto variables, 79

const, 75

pointer, 78

volatile, 75

quiet mode, 48

radix specifiers

assembly, 116

binary, 67

C source, 67

decimal, 67

hexadecimal, 67

octal, 67

rand function, 239

rbit psect, 86

rbss psect, 87

rdata psect, 29

read-only variables, 75

recursion, 65

redirecting errors, 43

reference, 140, 149

regsused pragma directive, 101

RELOC, 142, 144

reloc PSECT flag, 124

relocatable

object files, 137

relocation, 137

relocation information

preserving, 144

REPT directive, 130

reserving memory, 59

reset

code executed after, 33

reset psect, 86

return values, 81

rotate operation, 65

round function, 241

runtime environment, 60

RUNTIME option

clear, 60

clib, 60

init, 60

keep, 60

no_startup, 60

runtime startup

variable initialization, 29

runtime startup code, 28

runtime startup module, 26, 60

scale value, 123

scanf function, 242

search path

header files, 44

segment selector, 142

segments, see psects, 142, 149

serial I/O, 107

serial numbers, 61, 174

accessing, 61

SET directive, 114, 126

set_vector function, 246

setjmp function, 244

sfr qualifier, 77

shift operations

result of, 84

sign extension when shifting, 84

SIGNAT directive, 91, 106, 131

signature checking, 105

signature values, 89

signatures, 132

sin function, 247

single step compilation, 23

sinh function, 196

size PSECT flag, 124

skipping applications, 62

source file, 20

SPACE assembler control, 135

space PSECT flag, 124

435

INDEX INDEX

special characters in assembly, 114

special function registers, 94

special type qualifiers, 76

sports cars, 118

sqrt function, 248

srand function, 249

stack

usage, 60

stack frame, 82

standard library files, 27, 28

standard type qualifiers, 75

startup module, 60

clearing bss, 138

data copying, 139

startup.as, 29

static variables, 79

STDIO, 107

storage class, 79

strcat function, 250

strchr function, 251

strcmp function, 253

strcpy function, 255

strcspn function, 256

strichr function, 251

stricmp function, 253

strictcall qualifier, 78

string literals, 69, 175

concatenation, 69

String packing, 176

strings

assembly, 117

storage location, 69, 175

type of, 69

stristr function, 267

strlen function, 257

strncat function, 258

strncmp function, 260

strncpy function, 262

strnicmp function, 260

strpbrk function, 264

strrchr function, 265

strrichr function, 265

strspn function, 266

strstr function, 267

strtod function, 268

strtok function, 272

strtol function, 270

structures

bit-fields, 73

qualifiers, 74

SUBTITLE assembler control, 135

SUMMARY option

class, 63

file, 63

hex, 63

mem, 63

psect, 63

switch pragma directive, 101

switch type

auto, 102

direct table lookup, 102

symbol files, 35, 44

Avocet format, 147

enhanced, 143

generating, 143

local symbols in, 147

old style, 142

removing local symbols from, 49

removing symbols from, 146

source level, 44

symbol tables, 144, 147

sorting, 144

symbols

assembler-generated, 118

global, 138, 156

linker defined, 107

undefined, 147

436

INDEX INDEX

table read instruction, 80

tan function, 274

tanh function, 196

temporary files, 56

text psect, 86

time function, 275

TITLE assembler control, 135

toascii function, 277

tolower function, 277

toupper function, 277

translation unit, 21

trunc function, 278

type checking

assembly routines, 89

type qualifier, 76

type qualifiers, 75

typographic conventions, 17

unamed structure members, 74

ungetc function, 279, 280

ungetch function, 281

unnamed psect, 121

unsigned integer suffix, 69

unused memory

filling, 165

utilities, 137

utoa function, 282

va_arg function, 283

va_end function, 283

va_start function, 283

variable initialization, 29

variables

absolute, 80

accessing from assembly, 93

auto, 79

char types, 71

floating point types, 72

int types, 71

local, 79

persistent, 86

static, 79

unique length of, 47

verbose, 49

version number, 63

volatile qualifier, 75, 116

vscanf function, 242

warning level, 63

setting, 147

warning message format, 64

warnings

level displayed, 64

suppressing, 147

with PSECT flag, 124

word addresses, 168

word boundaries, 124

XREF assembler control, 135

xtoi function, 285

437

INDEX INDEX

438

PICC32 Command-line Options

Option Meaning

-C Compile to object files only

-Dmacro Define preprocessor macro

-E+file Redirect and optionally append errors to a file

-Gfile Generate source-level debugging information

-Ipath Specify a directory pathname for include files

-Llibrary Specify a library to be scanned by the linker

-L-option Specify -option to be passed directly to the linker

-Mfile Request generation of a MAP file

-Nsize Specify identifier length

-Ofile Output file name

-P Preprocess assembler files

-Q Specify quiet mode

-S Compile to assembler source files only

-Usymbol Undefine a predefined preprocessor symbol

-V Verbose: display compiler pass command lines

-X Eliminate local symbols from symbol table

--ASMLIST Generate assembler .LST file for each compilation

--CALLGRAPH=type Select Callgraph type

--CHECKSUM=start-end@destination,

<specs>

Calculate a Checksum

--CHIP=processor Selects which processor to compile for

--CHIPINFO Displays a list of supported processors

--CODEOFFSET=address Offset program code to address

--CR=file Generate cross-reference listing

--DEBUGGER=type Select the debugger that will be used

--ECHO Echo command line before processing

--ERRFORMAT<=format> Format error message strings to the given style

--ERRORS=number Sets the maximun number of errors displayed

--FILL=opcode Fill unused program memory

--GETOPTION=app,file Get the command line options for the named applica-

tion

--HELP<=option> Display the compiler’s command line options

--IDE=ide Configure the compiler for use by the named IDE

--INTERRUPTS=suboption,<suboption>Specify the Interrupts scheme

continued. . .

PICC32 Command-line Options

Option Meaning

--ISA=<type> Specify the Instruction Set Architecture

--LANG=language Specify language for compiler messages

--MAPFILE<=file> Generates a map file

--MEMMAP=file Display memory summary information for the map

file

--MSGDISABLE=messagelist Disable warning messages

--MSGFORMAT<=format> Format general message strings to the given style

--NODEL Do not remove temporary files generated by the com-

piler

--NOEXEC Go through the motions of compiling without actually

compiling

--OBJDIR=path Specify intermediate files directory

--OPT<=type> Enable general compiler optimizations

--OUTDIR=path Specify output files directory

--OUTPUT=type Generate output file type

--PASS1 Compile to P-code

--PRE Produce preprocessed source files

--PROTO Generate function prototype information

--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges

--ROM=lo-hi<,lo-hi,...> Specify and/or reserve ROM ranges

--RUNTIME=type Configure the C runtime libraries to the specified type

--SCANDEP Generate file dependency “.DEP files”

--SETOPTION=app,file Set the command line options for the named applica-

tion

--STRICT Enable strict ANSI keyword conformance

--STRICTCALLS Strict MIPS parameter passing

--SUMMARY=type Selects the type of memory summary output

--TIME Report time taken for each phase of build process

--VER Display the compiler’s version number

--WARN=level Set the compiler’s warning level

--WARNFORMAT=format Format warning message strings to given style

	Table of Contents
	List of Tables
	Introduction
	Typographic conventions

	PICC32 Command-line Driver
	Invoking the Compiler
	Long Command Lines

	The Compilation Sequence
	Single-step Compilation
	Generating Intermediate Files
	Special Processing
	Printf check
	Assembly Code Requirements

	Runtime Files
	Library Files
	Standard Libraries
	Peripheral Libraries

	Runtime Startup Module
	Initialization of Data psects
	Clearing the Bss Psect
	System Coprocessor Initialization (--RUNTIME=cp0)
	General Purpose Register Intialization (--RUNTIME=gpr)
	The Stack and Heap (--RUNTIME=stack, --RUNTIME=heap)
	Default Configuration Words (--RUNTIME=config)
	Memory Performance (--RUNTIME=perform)

	The Powerup Routine
	The printf Routine

	Debugging Information
	Output File Formats
	Symbol Files

	Compiler Messages
	Messaging Overview
	Message Language
	Message Type
	Message Format
	Changing Message Behaviour
	Disabling Messages
	Changing Message Types

	PICC32 Driver Option Descriptions
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate Source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--CALLGRAPH=type: Select callgraph type
	--CHECKSUM=start-end@destination<,specs>: Calculate a checksum
	--CHIP=processor: Define Processor
	--CHIPINFO: Display List of Supported Processors
	--CR=file: Generate Cross Reference Listing
	--DEBUGGER=type: Select Debugger Type
	--ECHO: Echo command line before processing
	--ERRFORMAT=format: Define Format for Compiler Messages
	--ERRORS=number: Maximum Number of Errors
	--FILL=opcode: Fill Unused Program Memory
	--GETOPTION=app,file: Get Command-line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE being used
	--INTERRUPTS=suboption,<suboption>: Specify the Interrupts Scheme
	--ISA=<type>: Specify the Instruction Set Architecture
	--LANG=language: Specify the Language for Messages
	--MEMMAP=file: Display Memory Map
	--MSGDISABLE=messagelist: Disable Warning Messages
	--MSGFORMAT=format: Set Advisory Message Format
	--NODEL: Do not remove temporary files
	--NOEXEC: Don't Execute Compiler
	--OBJDIR=path: Specify a directory for Object files
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTDIR=path: Specify a directory for Output files
	--OUTPUT=type: Specify Output File Type
	--PASS1: Compile to P-code
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan for Dependencies
	--SERIAL=hexcode@address: Store a Value at this Program Memory Address
	--SETOPTION=app,file: Set the Command-line Options for Application
	--STRICT: Strict ANSI Conformance
	--STRICTCALLS: Strict MIPS Parameter Passing
	--SUMMARY=type: Select Memory Summary Output Type
	--TIME: Report time taken for each phase of build process
	--VER: Display The Compiler's Version Information
	--WARN=level: Set Warning Level
	--WARNFORMAT=format: Set Warning Message Format

	C Language Features
	ANSI Standard Issues
	Divergence from the ANSI C Standard
	Implementation-defined behaviour
	Non-ANSI Operations

	Processor-related Features
	Processor Support
	Configuration Fuses
	Multi-byte SFRs

	Supported Data Types and Variables
	Radix Specifiers and Constants
	Bit Data Types and Variables
	Using Bit-Addressable Registers
	8-Bit Integer Data Types and Variables
	16-Bit Integer Data Types
	32-Bit Integer Data Types and Variables
	Floating Point Types and Variables
	Structures and Unions
	Bit-fields in Structures
	Structure and Union Qualifiers

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	cp0 Type Qualifier
	sfr Type Qualifier
	__strictcall Function Qualifier
	ISA Function Qualifiers

	Pointer Types
	Pointers to Const
	Function Pointers

	Storage Class and Object Placement
	Local Variables
	Auto Variables
	Static Variables

	Absolute Variables
	Objects in Program Space

	Functions
	Absolute Functions
	Function Argument Passing
	Function Return Values
	Function Stack Frame

	Register Usage Conventions
	Operators
	Integral Promotion
	Shifts applied to integral types
	Division and modulus with integral types

	Psects
	Compiler-generated Psects

	Interrupt Handling in C
	Interrupt Functions
	Interrupt & Exception Types
	Runtime Startup Callback Sequence

	Mixing C and Assembly Code
	External Assembly Language Functions
	#asm, #endasm and asm()
	Accessing C objects from within Assembly Code
	Accessing special function register names from assembler

	Interaction between Assembly and C Code
	Absolute Psects
	Undefined Symbols

	Preprocessing
	C Language Comments
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma jis and nojis Directives
	The #pragma printf_check Directive
	The #pragma regsused Directive
	The #pragma switch Directive
	The #pragma warning Directive

	Linking Programs
	Replacing Library Modules
	Signature Checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O

	Macro Assembler
	Assembler Usage
	Assembler Options
	HI-TECH C Assembly Language
	Pre-defined Macros
	MIPS32r2 In-built Macro Instructions
	MIPS16E In-built Macro Instructions

	Instruction Operand Variants
	Statement Formats
	Characters
	Delimiters
	Special Characters

	Comments
	Special Comment Strings

	Constants
	Numeric Constants
	Character Constants and Strings

	Identifiers
	Significance of Identifiers
	Assembler-Generated Identifiers
	Symbolic Labels

	Expressions
	Program Sections
	Assembler Directives
	GLOBAL
	END
	PSECT
	ORG
	EQU
	SET
	DB
	DH
	DSTR
	DSTRZ
	DW
	DS
	DABS
	IF, ELSIF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	ALIGN
	REPT
	IRP and IRPC
	PROCESSOR
	SIGNAT

	Assembler Controls
	ASMOPT_ON
	ASMOPT_OFF
	FORCE_EXTEND
	NEVER_EXTEND
	AUTO_EXTEND
	COND
	EXPAND
	INCLUDE
	LIST
	NOCOND
	NOEXPAND
	NOLIST
	NOXREF
	PAGE
	SPACE
	SUBTITLE
	TITLE
	XREF

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Generation
	Contents
	General Information
	Psect Information listed by Module
	Psect Information listed by Class
	Segment Listing
	Unused Address Ranges
	Symbol Table

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname[,architecture]
	-N
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	specifications,filename.hex
	+ Prefix
	-ADDRESSING
	-BREAK
	-CK
	-FILL
	-FIND
	-FIND...,DELETE
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-MASK
	-Ofile
	-SERIAL
	-SIZE
	-STRING
	-STRPACK

	Library Functions
	__CONFIG
	ABS
	ACOS
	ASCTIME
	ASIN
	ASSERT
	ATAN
	ATAN2
	ATOF
	ATOI
	ATOL
	BSEARCH
	CEIL
	CGETS
	COS
	COSH
	CPUTS
	CTIME
	DIV
	EVAL_POLY
	EXP
	FABS
	FMOD
	FLOOR
	FREXP
	FTOA
	GETCH
	GETCHAR
	GETS
	GMTIME
	ISALNUM
	ISDIG
	ITOA
	LABS
	LDEXP
	LDIV
	LOCALTIME
	LOG
	LONGJMP
	LTOA
	MEMCMP
	MKTIME
	MODF
	POW
	PUTCH
	PUTCHAR
	PUTS
	QSORT
	RAND
	ROUND
	SETJMP
	SETVECTOR
	SIN
	SQRT
	SRAND
	STRCAT
	STRCHR
	STRCMP
	STRCPY
	STRCSPN
	STRLEN
	STRNCAT
	STRNCMP
	STRNCPY
	STRPBRK
	STRRCHR
	STRSPN
	STRSTR
	STRTOD
	STRTOL
	STRTOK
	TAN
	TIME
	TOLOWER
	TRUNC
	UDIV
	ULDIV
	UNGETCH
	UTOA
	VA_START
	XTOI

	Error and Warning Messages
	1...
	138...
	184...
	227...
	269...
	312...
	355...
	400...
	444...
	489...
	599...
	670...
	730...
	776...
	836...
	904...
	970...
	1031...
	1157...
	1242...

	Chip Information
	Configuration Attributes
	Index

