

INCH

METRIC

INOX STAINLESS INCH

INOX STAINLESS METRIC

STANDARD EXECUTIONS

- NT: zinc-plated steel.
- NT-SST: AISI 304 stainless steel.

CONFORMITY

UNI 5588 DIN 934.

NT.

Code	Description	44
90301021	NT-3/8-16	0.04
90301025	NT-1/2-13	0.04
90301035	NT-5/8-11	0.07
90301045	NT-3/4-10	0.12

141.				
Code	Description	44		
301015	NT-M8	16		
301021	NT-M10	18		
301025	NT-M12	20		
301031	NT-M14	24		
301035	NT-M16	30		
301045	NT-M20	55		
301055	NT-M24	93		
301065	NT-M30	105		

NT CCT

N1-331		
Code	Description	2,7
90321021	NT-SST-3/8-16	0.04
90321025	NT-SST-1/2-13	0.04
90321035	NT-SST-5/8-11	0.07
90321045	NT-SST-3/4-10	0.12

NT-SST	OA STEEL WILLIAM	
Code	Description	47
321015	NT-SST-M8	16
321021	NT-SST-M10	18
321025	NT-SST-M12	20
321031	NT-SST-M14	24
321035	NT-SST-M16	30
321045	NT-SST-M20	55
321055	NT-SST-M24	93

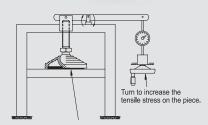
No-slip disks for levelling elements

It is extremely important that the no-slip disk must not detach from the base of the levelling element.

There are typical situations in which the conditions for the detachment of the no-slip disk could take place:

- case of eventual "sticking" of the no-slip disk to the floor while lifting the machinery for moving;
- case of side impacts against the levelling element with the no-slip disk during machinery transport.

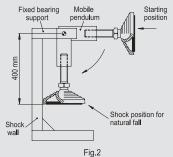
The assembling system created by Elesa consists of an anchoring in the central part of the disk, besides a particular slot along the


whole rim profile. Tests of separation, carried out in our labs with suitable equipment

simulating real conditions (Fig. 1 and Fig. 2), have given the following results, compared with the current anchoring systems: - detachment resistance in cases of adhesion (sticking) of the

- no-slip disk to the floor: fourfold increased;
- detachment resistance in case of side impacts: tenfold

The no-slip disks are supplied assembled to their plastic bases.



No-slip disk glued to the plate of the testing device

Fig.1

Test of no-slip disk separation with a no-slip disk "stuck" to the floor (case of machinery lifting for moving to another location)

Test of no-slip disk separation for transversal shock (case of machinery transport)

1283

ELESA