Spread Spectrum Frequency Timing Generator #### **Features** - Maximized EMI suppression using Cypress's Spread Spectrum technology - Generates a spread spectrum copy of the provided input - · Integrated loop filter components - Operates with a 3.3V or 5V supply - · Low-power CMOS design - Available in 8-pin SOIC (Small Outline Integrated Circuit) ### Overview The W42C31-09 incorporates the latest advances in PLL spread spectrum frequency synthesizer techniques. By frequency modulating the output with a low-frequency carrier, EMI is greatly reduced. Use of this technology allows systems to pass increasingly difficult EMI testing without resorting to costly shielding or redesign. In a system, not only is EMI reduced in the various clock lines, but also in all signals which are synchronized to the clock. Therefore, the benefits of using this technology increase with the number of address and data lines in the system. The Simplified Block Diagram shows a simple implementation. Table 1. Frequency Spread Selection | W42C | 31-09 | Input Frequency | Output Frequency | | | |------|------------------------------------|-----------------|-------------------------|--|--| | FS1 | FS0 | (MHz) | (MHz) | | | | 0 | 0 30 to 55 f _{IN} ±0.625% | | f _{IN} ±0.625% | | | | 0 | 1 | 30 to 55 | f _{IN} ±1.25% | | | | 1 | 0 | 30 to 55 | f _{IN} ±2.5% | | | | 1 | 1 | 30 to 55 | f _{IN} -3.75% | | | ### **Pin Definitions** | Pin Name | Pin No. | Pin
Type | Pin Description | |----------|---------|-------------|---| | CLKOUT | 7 | 0 | Output Modulated Frequency: Frequency modulated copy of the unmodulated input clock | | CLKIN | 1 | I | External Reference Frequency Input | | NC | 2 | I | No Connect: This pin must be left unconnected. | | SSON# | 8 | I | Spread Spectrum Control (Active LOW): Pulling this input signal LOW turns the internal modulation waveform on. This pin has an internal pull-down resistor. | | FS0:1 | 6, 4 | I | Frequency Selection Bit 0: These pins select the frequency spreading characteristics. Refer to Table 1. These pins have internal pull-up resistors. | | VDD | 5 | Р | Power Connection: Connected to 3.3V or 5V power supply. | | GND | 3 | G | Ground Connection: This should be connected to the common ground plane. | ### **Functional Description** The W42C31-09 uses a phase locked loop (PLL) to frequency modulate an input clock. The result is an output clock whose frequency is slowly swept over a narrow band near the input signal. The basic circuit topology is shown in Figure 1. The input reference signal is divided by Q and fed to the phase detector. A signal from the VCO is divided by P and fed back to the phase detector also. The PLL will force the frequency of the VCO output signal to change until the divided output signal and the divided reference signal match at the phase detector input. The output frequency is then equal to the ratio of P/Q times the reference frequency. (Note: For the W42C31-09 the output frequency is equal to the input frequency.) The unique feature of the Spread Spectrum Frequency Timing Generator is that a modulating waveform is superimposed at the input to the VCO. This causes the VCO output to be slowly swept across a predetermined frequency band. Because the modulating frequency is typically 1000 times slower than the fundamental clock, the spread spectrum process has little impact on system performance. #### Frequency Selection With SSFTG In Spread Spectrum Frequency Timing Generation, EMI reduction depends on the shape, modulation percentage, and frequency of the modulating waveform. While the shape and frequency of the modulating waveform are fixed, the modulation percentage may be varied. Using frequency select bits (FS1:0 pins), various spreading percentages can be chosen (see *Table 1*). A larger spreading percentage improves EMI reduction. However, large spread percentages may either exceed system maximum frequency ratings or lower the average frequency to a point where performance is affected. For these reasons, spreading percentages between $\pm 0.5\%$ and $\pm 2.5\%$ are most common. The W42C31 features the ability to select from various spread spectrum characteristics. Selections specific to the W42C31-09 are shown in *Table 1*. Other spreading characteristics are available (see separate data sheets) or can be created with a custom mask. Also, other devices in the W42C31 family offer frequency multiplication in addition to the spread spectrum function. This will allow the use of less expensive fundamental mode crystals. Figure 1. System Block Diagram (Concept, not actual implementation) # Spread Spectrum Frequency Timing Generation The benefits of using Spread Spectrum Frequency Timing Generation are depicted in *Figure 2*. An EMI emission profile of a clock harmonic is shown. Contrast the typical clock EMI with the Cypress Spread Spectrum Frequency Timing Generation EMI. Notice the spike in the typical clock. This spike can make systems fail quasi-peak EMI testing. The FCC and other regulatory agencies test for peak emissions. With spread spectrum enabled, the peak energy is much lower (at least 8 dB) because the energy is spread out across a wider bandwidth. ### **Modulating Waveform** The shape of the modulating waveform is critical to EMI reduction. The modulation scheme used to accomplish the maximum reduction in EMI is shown in *Figure 3*. The period of the modulation is shown as a percentage of the period length along the X axis. The amount that the frequency is varied is shown along the Y axis, also shown as a percentage of the total frequency spread. Cypress frequency selection tables express the modulation percentage in two ways. The first method displays the spreading frequency band as a percent of the programmed average output frequency, symmetric about the programmed average frequency. This method is always shown using the expression $f_{Center} \pm X_{MOD}\%$ in the frequency spread selection table. The second approach is to specify the maximum operating frequency and the spreading band as a percentage of this frequency. The output signal is swept from the lower edge of the band to the maximum frequency. The expression for this approach is $f_{MAX}-X_{MOD}\%$. Whenever this expression is used, Cypress has taken care to ensure that f_{MAX} will never be exceeded. This is important in applications where the clock drives components with tight maximum clock speed specifications. ### SSON# Pin An internal pull-down resistor defaults the chip into a spread spectrum mode. The SSON# pin enables the spreading feature when set LOW. The SSON# pin disables the spreading feature when set HIGH ($V_{\rm DD}$). Figure 2. Typical Clock and SSFTG Comparison Figure 3. Modulation Waveform Profile ## **Absolute Maximum Ratings** Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability | Parameter | Description | Rating | Unit | |-----------------------------------|--|--------------|------| | V _{DD} , V _{IN} | Voltage on any pin with respect to GND | -0.5 to +7.0 | V | | T _{STG} | Storage Temperature | -65 to +150 | .c | | T _A | Operating Temperature | 0 to +70 | °C | | T _B | Ambient Temperature under Bias | -55 to +125 | .c | | P _D | Power Dissipation | 0.5 | W | ## DC Electrical Characteristics: $0 \, ^{\circ}\!\text{C} < T_{A} < 70 \, ^{\circ}\!\text{C}, \ V_{DD} = 3.3 \text{V} \pm 10 \%$ | Parameter | Description | Test Condition | Min | Тур | Max | Unit | |--------------------------------|------------------------|--|-----|-----|------|------| | I _{DD} | Supply Current | | | 18 | 32 | mA | | t _{ON} | Power Up Time | First locked clock cycle after
Power Good | | | 5 | ms | | V _{IL} (Logic Inputs) | Input Low Voltage | | | | 0.8 | V | | V _{IL} (CLKIN) | Input Low Voltage | | | .4 | .5 | V | | V _{IH} (Logic Inputs) | Input High Voltage | | 2.4 | | | V | | V _{IH} (CLKIN) | Input High Voltage | | 2.8 | 2.6 | | V | | V _{OL} | Output Low Voltage | | | | 0.4 | V | | V _{OH} | Output High Voltage | | 2.5 | | | V | | I _{IL} | Input Low Current | Note 1 | | | -100 | μΑ | | I _{IH} | Input High Current | Note 1 | | | 10 | μΑ | | l _{OL} | Output Low Current | @ 0.4V, V _{DD} = 3.3V | | 15 | | mA | | I _{OH} | Output High Current | @ 2.4V, V _{DD} = 3.3V | | 15 | | mA | | C _I | Input Capacitance | All pins except CLKIN | | | 7 | pF | | C _I | Input Capacitance | CLKIN pin only | | 6 | 10 | pF | | R _P | Input Pull-Up Resistor | | | 500 | | kΩ | | Z _{OUT} | Clock Output Impedance | | | 25 | | Ω | #### Note: ^{1.} Inputs FS1:0 have a pull-up resistor, Input SSON# has a pull-down resistor. # DC Electrical Characteristics: $0\,^{\circ}\!C < T_A < 70\,^{\circ}\!C,\ V_{DD}$ = $5V\ \pm 10\%$ | Parameter | Description | Test Condition | Min | Тур | Max | Unit | |--------------------------------|------------------------|--|--------------------|-----|---------------------|------| | I _{DD} | Supply Current | | | 30 | 45 | mA | | t _{ON} | Power Up Time | First locked clock cycle after
Power Good | | | 5 | ms | | V _{IL} (Logic Inputs) | Input Low Voltage | | | | 0.15V _{DD} | ٧ | | V _{IL} (CLKIN) | Input Low Voltage | | | | 0.4 | ٧ | | V _{IH} (Logic Inputs) | Input High Voltage | | 0.7V _{DD} | | | ٧ | | V _{IH} (CLKIN) | Input High Voltage | | 4.2 | 3.8 | | ٧ | | V _{OL} | Output Low Voltage | | | | 0.4 | ٧ | | V _{OH} | Output High Voltage | | 2.5 | | | ٧ | | I _{IL} | Input Low Current | Note 1 | | | -100 | μΑ | | I _{IH} | Input High Current | Note 1 | | | 10 | μΑ | | I _{OL} | Output Low Current | @ 0.4V, V _{DD} = 5V | | 24 | | mA | | I _{OH} | Output High Current | @ 2.4V, V _{DD} = 5V | | 24 | | mA | | C _I | Input Capacitance | All pins except CLKIN | | | 7 | pF | | C _I | Input Capacitance | CLKIN pin only | | 6 | 10 | рF | | R _P | Input Pull-Up Resistor | | | 500 | | kΩ | | Z _{OUT} | Clock Output Impedance | | | 25 | | Ω | # AC Electrical Characteristics: $T_A = 0 \, ^{\circ}\! C$ to +70 $^{\circ}\! C$, $V_{DD} = 3.3 V \pm 10 \%$ | Symbol | Parameter | Test Condition | Min | Тур | Max | Unit | |-------------------|------------------------|---|-----|-----|-----|------| | f _{IN} | Input Frequency | Input Clock | 30 | 40 | 55 | MHz | | f _{OUT} | Output Frequency | Spread Off | 30 | 40 | 55 | MHz | | t _R | Output Rise Time | V, 15-pF load 0.8-2.4 | | 2 | 5 | ns | | t _F | Output Fall Time | V, 15-pF load 2.4 -0.8 | | 2 | 5 | ns | | t _{OD} | Output Duty Cycle | 15-pF load | 40 | | 60 | % | | t _{ID} | Input Duty Cycle | | 40 | | 60 | % | | t _{JCYC} | Jitter, Cycle-to-Cycle | | | 250 | 300 | ps | | | Harmonic Reduction | f _{out} = 40 MHz, third harmonic
measured, reference board,
15-pF load | 8 | | | dB | # AC Electrical Characteristics: $T_A = 0$ °C to +70 °C, $V_{DD} = 5V \pm 10$ % | Symbol | Parameter | Test Condition | Min | Тур | Max | Unit | |-------------------|------------------------|---|-----|-----|-----|------| | f _{IN} | Input Frequency | Input Clock | 30 | 40 | 55 | MHz | | f _{OUT} | Output Frequency | Spread Off | 30 | 40 | 55 | MHz | | t _R | Output Rise Time | V, 15-pF load 0.8-2.4 | | 2 | 5 | ns | | t _F | Output Fall Time | V, 15-pF load 2.4 -0.8 | | 2 | 5 | ns | | t _{OD} | Output Duty Cycle | 15-pF load | 40 | | 60 | % | | t _{ID} | Input Duty Cycle | | 40 | | 60 | % | | t _{JCYC} | Jitter, Cycle-to-Cycle | | | 250 | 300 | ps | | | Harmonic Reduction | f _{out} = 40 MHz, third harmonic
measured, reference board,
15-pF load | 8 | | | dB | ### **Application Information** ### **Recommended Circuit Configuration** For optimum performance in system applications the power supply decoupling scheme shown in *Figure 4* should be used. V_{DD} decoupling is important to both reduce phase jitter and EMI radiation. The 0.1- $\!\mu F$ decoupling capacitor should be placed as close to the V_{DD} pin as possible, otherwise the in- creased trace inductance will negate its decoupling capability. The 10- μ F decoupling capacitor shown should be a tantalum type. For further EMI protection, the V_{DD} connection can be made via a ferrite bead, as shown. #### **Recommended Board Layout** Figure 5 shows a recommended 2-layer board layout. Figure 4. Recommended Circuit Configuration Figure 5. Recommended Board Layout (2-Layer Board) ### **Ordering Information** | Ordering Code | Freq. Mask
Code | Package
Name | Package Type | |---------------|--------------------|-----------------|------------------------------| | W42C31 | 09 | G | 8-pin Plastic SOIC (150-mil) | Document #: 38-00799-A DETAIL A ### Package Diagram ### 8-Pin Small Outline Integrated Circuit (SOIC, 150-mil) | Y | | COMMO | 1 | | NOTE | | 3 | | 5 | |-----|----------------|------------|-------|-----|--------|------|------|------|----| | ¥ | D | DIMENSIONS | | | VARI- | | D | | N | | 3 | MIN. | NOM. | MAX. | *°, | ATIONS | MIN. | NOM. | MAX. | | | Α | .061 | .064 | .068 | | AA | .189 | .194 | .196 | 8 | | Α, | .004 | .006 | .0098 | | AB | .337 | .342 | .344 | 14 | | Α, | .055 | .058 | .061 | | AC | .386 | .391 | .393 | 16 | | В | .0138 | .016 | .0192 | | | | | | | | пП | .0075 | .008 | .0098 | | | Í | | | | | D | SEE VARIATIONS | | 3 | | 1 | | | | | | E | .150 | .155 | .157 | | | i | | | | | е | | .050 BSC | | | 1 | ļ | | | | | LH | .230 | .236 | .244 | | 1 | ļ | | | | | L h | .010 | .013 | .016 | | 1 | } | | | | | L | .016 | .025 | .035 | | Ì | | | | | | N | SEE VARIATIONS | | 5 | 1 | l | | | | | | Q, | 0° | 5° | 8° | |] | | | | | | Х | .085 | .093 | .100 | | | | | | | #### THIS TABLE IN MILLIMETERS | COMMON | | | | NOTE | | 3 | | 5 | |----------------|---|---|----------------|--|-----------------------|--------------------------------------|---|--| | | | | H ₀ | VARI- | | D | | N | | | | MAX. | Te | ATIONS | MIN. | NOM. | MAX. | | | | | 1.73 | | AA | 4.80 | 4.93 | 4.98 | -8 | | | 0.15 | | | | 8.58 | 8.69 | 8.74 | 14 | | | 1.47 | 1,55 | | AC | | | | 16 | | | 0.41 | 0.49 | | | | | | - 1 | | 0.19 | 0.20 | 0.25 | 1 | | | | | | | SEE VARIATIONS | | 3 | | | | | | | | 3.81 | 3.94 | 3.99 | | | | | | | | | 1.27 BSC | | | | | | | | | 5.84 | 5.99 | 6.20 | | | | | | | | 0.25 | 0.33 | 0.41 | | | ľ | | | | | 0.41 | 0.64 | 0.89 | | | | | | 1 | | SEE VARIATIONS | | 5 | | | | | | | | ° | 5° | 8° | | | | | | | | 2.16 | 2.36 | 2.54 | | | | | | | | | MIN.
1.55
0.127
1.40
0.35
0.19
SEE
3.81
5.84
0.25
0.41
SEE
0° | MIN. NOM. 1.55 1.63 0.127 0.15 1.40 1.47 0.35 0.41 0.19 0.20 SEE VARIATION 3.81 3.94 1.27 BSC 5.84 5.99 0.25 0.33 0.41 0.64 SEE VARIATION 0° 5° | 1.55 | MIN. NOM. MAX. 1.55 1.63 1.73 0.127 0.15 0.25 1.40 1.47 1.55 0.35 0.41 0.49 0.19 0.20 0.25 SEE VARIATIONS 3.81 3.94 3.99 1.27 BSC 5.84 5.99 6.20 0.25 0.33 0.41 0.64 0.89 SEE VARIATIONS 5.84 5.99 6.20 0.25 0.33 0.41 0.64 0.89 SEE VARIATIONS 5.99 6.20 0.55 0.33 0.41 0.64 0.89 SEE VARIATIONS 5.99 6.20 0.55 0.35 0.41 0.64 0.89 SEE VARIATIONS 5.99 6.20 0.55 0.55 8° | MIN NOM MAX 1.5 | MIN NOM MAX 1.5 ATIONS MIN | MIN. NOM. MAX. 1.e ATIONS MIN. NOM. 1.55 1.63 1.73 AA 4.80 4.93 0.127 0.15 0.25 AB 8.58 8.69 1.40 1.47 1.55 AC 9.80 9.93 0.35 0.41 0.49 0.19 0.20 0.25 SEE VARIATIONS 3 8.81 3.94 3.99 1.27 BSC 5.84 5.99 6.20 0.25 0.33 0.41 0.49 0.41 0.64 0.89 SEE VARIATIONS 5 0° 5° 8° | MIN. NOM. MAX. 1.5 AT ONS MIN. NOM. MAX. 1.55 1.63 1.73 AA 4.80 4.93 4.98 0.127 0.15 0.25 AB 8.58 8.69 8.74 1.40 1.47 1.55 AC 9.80 9.93 9.98 0.19 0.20 0.25 SEE VARIATIONS 3 8.81 3.94 3.99 1.27 BSC 5.84 5.99 6.20 0.25 0.33 0.41 0.49 0.41 0.64 0.89 SEE VARIATIONS 5 0° 5° 8° |