Features

Low-Jitter, Precision Clock Generator with Two Outputs

General Description

The MAX3622 is a low-jitter precision clock generator optimized for networking applications. The device integrates a crystal oscillator and a phase-locked loop (PLL) clock multiplier to generate high-frequency clock outputs for Ethernet and other networking applications.

Maxim's proprietary PLL design features ultra-low jitter (0.36ps_{RMS}) and excellent power-supply noise rejection, minimizing design risk for network equipment.

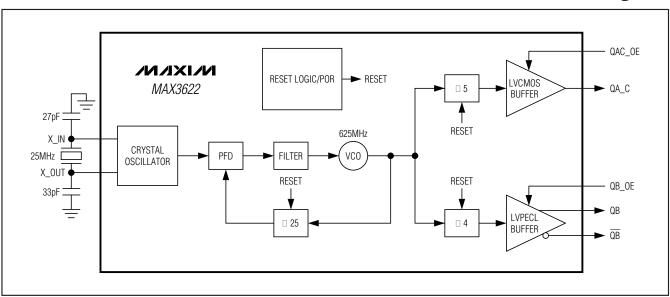
The MAX3622 has one LVPECL output and one LVCMOS output. It is available in a 16-pin TSSOP package and operates over the 0°C to +70°C temperature range.

Applications

Ethernet Networking Equipment

Typical Application Circuit and Pin Configuration appear at end of data sheet.

♦ Crystal Oscillator Interface: 25MHz Typical


- ♦ Output Frequencies: 125MHz and 156.25MHz
- **♦ Low Jitter**
 - 0.14ps_{RMS} (1.875MHz to 20MHz) 0.36ps_{RMS} (12kHz to 20MHz)
- **♦ Excellent Power-Supply Noise Rejection**
- ♦ No External Loop Filter Capacitor Required

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE	
MAX3622CUE+	0°C to +70°C	16 TSSOP	U16-2	

⁺Denotes a lead-free package.

Block Diagram

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range VCC, VCCA,	
VDDO_A, VCCO_B	0.3V to +4.0V
Voltage Range at QAC_OE, QB_OE,	
RES1, RES2	0.3V to $(V_{CC} + 0.3V)$
Voltage Range at X_IN Pin	0.3V to +1.2V
Voltage Range at GNDO_A	0.3V to +0.3V
Voltage Range at X_OUT Pin	0.3V to (V _{CC} - 0.6V)

Current into QA_C	±50mA
Current into QB, QB	56mA
Continuous Power Dissipation (T _A = +70°C)	
16-Pin TSSOP (derate 11.1mW/°C above +70°C)	.889mW
Operating Junction Temperature Range55°C to	+150°C
Storage Temperature Range65°C to	+160°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = 0 ^{\circ}\text{C} \text{ to } +70 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Current	Icc	(Note 3)		70	90	mA
CONTROL INPUT CHARACTER	ISTICS (QAC_	OE, QB_OE PINS)				
Input Capacitance	CIN			2		pF
Input Logic Bias Resistor	R _{BIAS}			50		kΩ
LVPECL OUTPUT SPECIFICAT	IONS (QB, QB	PINS)	·			
Output High Voltage	V _{OH}		V _{CC} - 1.13	V _{CC} - 0.98	V _{CC} - 0.83	V
Output Low Voltage	V _{OL}		V _{CC} - 1.85	V _{CC} - 1.7	V _{CC} - 1.55	V
Peak-to-Peak Output-Voltage Swing (Single-Ended)			0.6	0.72	0.9	V _{P-P}
Output Rise/Fall Time		20% to 80%	200	350	600	ps
Output Duty-Cycle Distortion			48	50	52	%
LVCMOS/LVTTL INPUT SPECIF	FICATIONS (Q	AC_OE, QB_OE PINS)				
Input-Voltage High	VIH		2.0			V
Input-Voltage Low	VIL				0.8	V
Input High Current	IIН	$V_{IN} = V_{CC}$			80	μΑ
Input Low Current	I₁∟	$V_{IN} = 0V$	-80			μΑ
LVCMOS OUTPUT SPECIFICAT	TIONS (QA_C	PIN)				
Output High Voltage	Voh	QA_C sourcing 12mA	2.6			V
Output Low Voltage	V _{OL}	QA_C sinking 12mA			0.4	V
Output Rise/Fall Time		(Note 4)	250	500	1000	ps
Output Duty-Cycle Distortion		(Note 4)	42	50	58	%
Output Impedance				14		Ω

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = 0 ^{\circ}\text{C} \text{ to } +70 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCK OUTPUT AC SPECIFICA	TIONS		•			
VCO Frequency Range			620	625	648	MHz
Random Jitter	RJ _{RMS}	12kHz to 20MHz		0.36	1.0	
nandom siller	NJRMS	1.875MHz to 20MHz		0.14		psrms
Deterministic Jitter Induced by		LVPECL output		4		202.5
Power-Supply Noise (Notes 5, 6)		LVCMOS output		19		psp-p
Spurs Induced by Power-Supply		LVPECL output		-57		dBc
Noise (Note 6)		LVCMOS output		-47		1 ubc
Nonharmonic and Subharmonic Spurs				-70		dBc
		f = 1kHz		-124		
Clock Output SSB Phase Noise at 125MHz		f = 10kHz		-126		
		f = 100kHz		-130		dBc/Hz
		f = 1MHz		-145		
		f > 10MHz		-153		

Note 1: A series resistor of up to 10.5Ω is allowed between V_{CC} and V_{CCA} for filtering supply noise when system power-supply tolerance is $V_{CC} = 3.3V \pm 5\%$. See Figure 2.

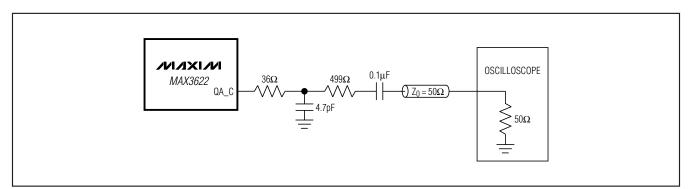
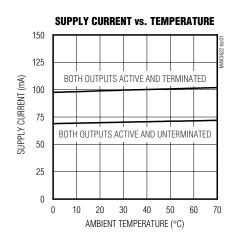
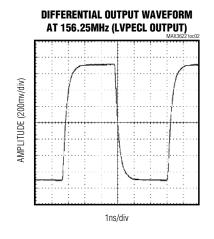
Note 2: LVPECL terminated with 50Ω load connected to $V_{TT} = V_{CC} - 2V$.

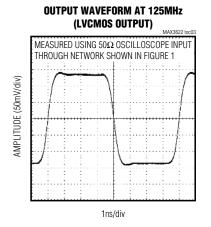
Note 3: Both outputs enabled and unloaded.

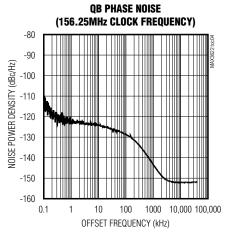
Note 4: Measured using setup shown in Figure 1 with V_{CC} = 3.3V ±5%.

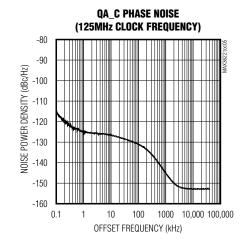
Note 5: Measured with Agilent DSO81304A 40GS/s real-time oscilloscope.

Note 6: Measured with 40mV_{P-P}, 100kHz sinusoidal signal on the supply with V_{CCA} connected as shown in Figure 2.


Figure 1. LVCMOS Output Measurement Setup


Typical Operating Characteristics


(Typical values are at $V_{CC} = +3.3V$, $T_A = +25$ °C, crystal frequency = 25MHz.)

Pin Description

PIN	NAME	FUNCTION
1	QAC_OE	LVCMOS/LVTTL Input. Enables/disables QA_C clock output. Connect pin high to enable QA_C. Connect low to set QA_C to a high-impedance state. Has internal $50k\Omega$ input impedance.
2	GNDO_A	Ground for QA_C Output. Connect to supply ground.
3	QA_C	LVCMOS Clock Output
4	V _{DDO_} A	Power Supply for QA_C Clock Output. Connect to +3.3V.
5, 6	RES1, RES2	Reserved. Do not connect.
7	V _{CCA}	Analog Power Supply for the VCO. Connect to $+3.3V$. For additional power-supply noise filtering, this pin can connect to V_{CC} through 10.5Ω as shown in Figure 2 (requires $V_{CC} = +3.3V \pm 5\%$).
8	Vcc	Core Power Supply. Connect to +3.3V.
9, 15	GND	Supply Ground
10	X_OUT	Crystal Oscillator Output
11	X_IN	Crystal Oscillator Input
12	VCCO_B	Power Supply for QB Clock Output. Connect to +3.3V.
13	QB	LVPECL, Inverting Clock Output
14	QB	LVPECL, Noninverting Clock Output
16	QB_OE	LVCMOS/LVTTL Input. Enables/disables QB clock output. Connect pin high to enable LVPECL clock output QB. Connect low to set QB to a logic 0. Has internal $50k\Omega$ input impedance.

Detailed Description

The MAX3622 is a low-jitter clock generator designed to operate at Ethernet frequencies. It consists of an on-chip crystal oscillator, PLL, LVCMOS output buffer, and an LVPECL output buffer. Using a 25MHz crystal as a reference, the internal PLL generates a high-frequency output clock with excellent jitter performance.

Crystal Oscillator

An integrated oscillator provides the low-frequency reference clock for the PLL. This oscillator requires a 25MHz crystal connected between X_IN and X_OUT.

DI I

The PLL takes the signal from the crystal oscillator and synthesizes a low-jitter, high-frequency clock. The PLL contains a phase-frequency detector (PFD), a lowpass filter, and a voltage-controlled oscillator (VCO). The VCO output is connected to the PFD input through a feedback divider. The PFD compares the reference frequency to the divided-down VCO output (fvco/25) and generates a control signal that keeps the VCO locked

to the reference clock. The high-frequency VCO output clock is sent to the output dividers. To minimize noise-induced jitter, the VCO supply (VCCA) is isolated from the core logic and output buffer supplies.

Output Dividers

The output dividers are set to divide-by-five for the LVCMOS output QA_C and divide-by-four for the LVPECL output QB.

LVPECL Driver

The differential PECL buffer (QB) is designed to drive transmission lines terminated with 50Ω to V_{CC} - 2.0V. The output goes to a logic 0 when disabled.

LVCMOS Driver

QA_C, the LVCMOS output, is designed to drive a single-ended high-impedance load. This output goes to a high-impedance state when disabled.

Reset Logic/POR

During power-on, the power-on reset (POR) signal is generated to synchronize all dividers.

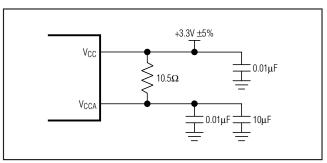


Figure 2. Analog Supply Filtering

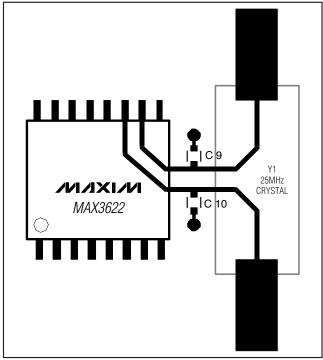


Figure 3. Crystal Layout

Applications Information Power-Supply Filtering

The MAX3622 is a mixed analog/digital IC. The PLL contains analog circuitry susceptible to random noise. In addition to excellent on-chip power-supply noise rejection, the MAX3622 provides a separate power-supply pin, VCCA, for the VCO circuitry. Figure 2 illustrates the recommended power-supply filter network for VCCA. The purpose of this design technique is to ensure clean input power supply to the VCO circuitry and to improve the overall immunity to power-supply noise. This network requires that the power supply is +3.3V ±5%. Decoupling capacitors should be used on all other supply pins for best performance.

Crystal Selection

The crystal oscillator is designed to drive a fundamental mode, AT-cut crystal resonator. See Table 1 for recommended crystal specifications. See Figure 4 for external capacitor connection.

Crystal Input Layout and Frequency Stability

The crystal, trace, and two external capacitors should be placed on the board as close as possible to the MAX3622's X_IN and X_OUT pins to reduce crosstalk of active signals into the oscillator.

The layout shown in Figure 3 gives approximately 3pF of trace plus footprint capacitance per side of the crystal (Y1). The dielectric material is FR-4 and dielectric thickness of the reference board is 15 mils. Using a 25MHz crystal and the capacitor values of C10 = 27pF and C9 = 33pF, the measured output frequency accuracy is -10ppm at +25°C ambient temperature.

Table 1. Crystal Selection Parameters

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Crystal Oscillation Frequency	fosc		25		MHz
Shunt Capacitance	Co		2.0	7.0	рF
Load Capacitance	CL		18		pF
Equivalent Series Resistance (ESR)	Rs			50	Ω
Maximum Crystal Drive Level				300	μW

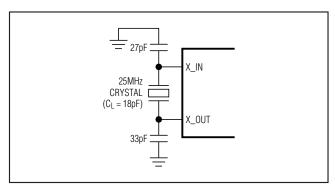


Figure 4. Crystal, Capacitors Connection

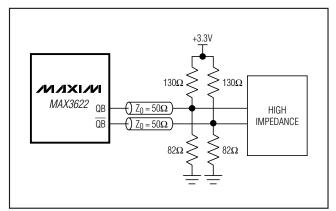


Figure 5. Thevenin Equivalent of Standard PECL Termination

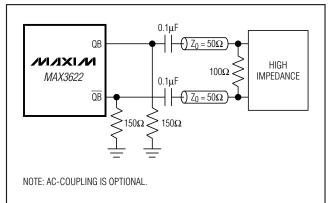


Figure 6. AC-Coupled PECL Termination

Interfacing with LVPECL Outputs

The equivalent LVPECL output circuit is given in Figure 7. This output is designed to drive a pair of 50Ω transmission lines terminated with 50Ω to $V_{TT} = V_{CC}$ - 2V. If a separate termination voltage (V_{TT}) is not available, other termination methods can be used such as shown in Figures 5 and 6. Unused outputs should be disabled and may be left open. For more information on LVPECL terminations and how to interface with other logic families, refer to Maxim Application Note *HFAN-01.0:* Introduction to LVDS, PECL, and CML.

Interface Models

Figure 7 and Figure 8 show examples of interface models.

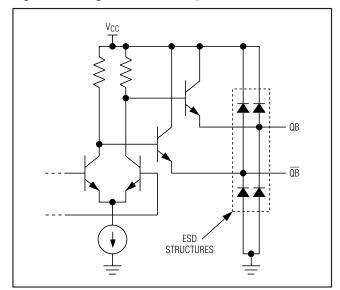


Figure 7. Simplified LVPECL Output Circuit Schematic

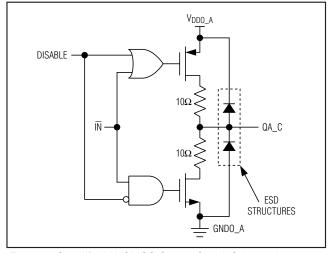
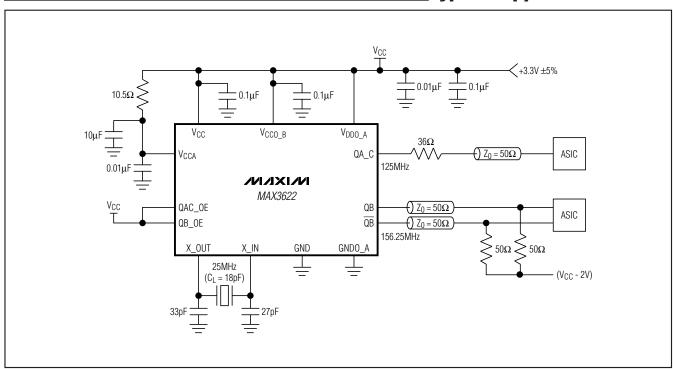
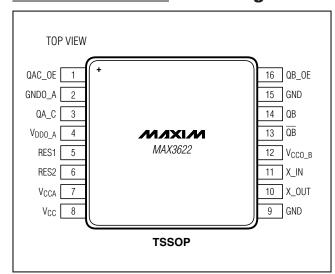


Figure 8. Simplified LVCMOS Output Circuit Schematic


Layout Considerations

The inputs and outputs are critical paths for the MAX3622, and care should be taken to minimize discontinuities on these transmission lines. Here are some suggestions for maximizing the MAX3622's performance:


- An uninterrupted ground plane should be positioned beneath the clock I/Os.
- Supply and ground pin vias should be placed close to the IC and the input/output interfaces to allow a return current path to the MAX3622 and the receive devices.
- Supply decoupling capacitors should be placed close to the MAX3622 supply pins.
- Maintain 100Ω differential (or 50Ω single-ended) transmission line impedance out of the MAX3622.
- Use good high-frequency layout techniques and a multilayer board with an uninterrupted ground plane to minimize EMI and crosstalk.

Refer to the MAX3622 Evaluation Kit for more information.

Typical Application Circuit

Pin Configuration

_Chip Information

TRANSISTOR COUNT: 10,490

PROCESS: BiCMOS

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	DOCUMENT NO.
16 TSSOP	<u>21-0066</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.