

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

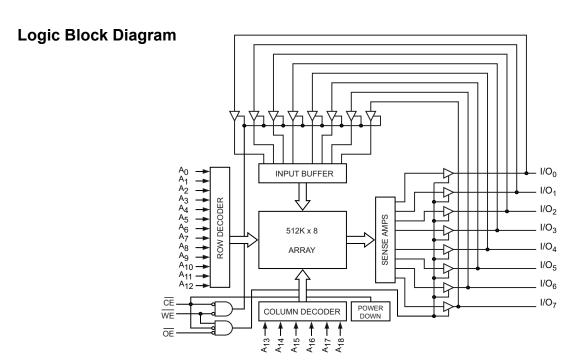
www.infineon.com

4-Mbit (512K × 8) Static RAM

Features

- Higher speed up to 55 ns
- Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V
- Ultra low standby power
 - □ Typical standby current: 2.5 µA
 - □ Maximum standby current: 7 µA
- Ultra low active power
 - □ Typical active current: 3.5 mA at f = 1 MHz
- Easy memory expansion with CE and OE features
- Automatic power-down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Available in Pb-free 32-pin shrunk thin small outline package (STSOP) package

Functional Description


The CY62148ESL is a high performance CMOS static RAM organized as 512K words by 8-bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life $^{\rm TM}$ (MoBL $^{\rm S}$) in portable applications. The device also has an automatic power-down feature that significantly reduces power consumption. Placing the device in standby mode reduces power consumption by more than 99 percent when deselected (CE HIGH). The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and $\overline{\rm WE}$ LOW).

 $\overline{\text{Lo}}$ write to the device, take Chip Enable $(\overline{\text{CE}})$ and Write Enable $(\overline{\text{WE}})$ inputs LOW. Data on the eight I/O pins $(I/O_0$ through I/O_7) is then written into the location specified on the address pins $(A_0$ through $A_{18})$.

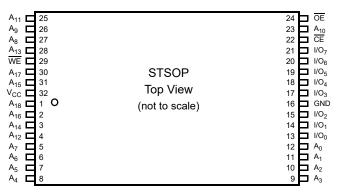
To read from the device, take Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins.

The CY62148ESL device is suitable for interfacing with processors that have TTL I/P levels. It is not suitable for processors that require CMOS I/P levels. Please see Electrical Characteristics on page 4 for more details and suggested alternatives.

For a complete list of related resources, click here.

Cypress Semiconductor Corporation
Document Number: 001-50045 Rev. *K

Contents


Pin Configuration	3
Product Portfolio	
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	
Capacitance	5
Thermal Resistance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	11

Ordering Information	12
Ordering Code Definitions	
Package Diagram	
Acronyms	14
Document Conventions	
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	17
Cypress Developer Community	17
Technical Support	

Pin Configuration

Figure 1. 32-pin STSOP (Top View) pinout

Product Portfolio

	Range V _{CC} Range (V) [1]					Power D	Dissipatio	on	
Product			Speed	ed Operating I _{CC} , (mA)		A)	Standby, I _{SB2} (µA)		
Troduct	Range	ACC Issuide (A)	(ns)	f = 1 MHz		Hz f = f _{max}		Ctanaby, iSB2 (μΑ)	
				Typ ^[2]	Max	Typ ^[2]	Max	Typ ^[2]	Max
CY62148ESL	Industrial/ Automotive-A	2.2 V to 3.6 V and 4.5 V to 5.5 V	55	3.5	6	15	20	2.5	7

Notes

Data sheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature-65 °C to +150 °C Ambient temperature with power applied ... 55 °C to +125 °C Supply voltage to ground potential -0.5 V to 6.0 V DC voltage applied to outputs in high Z state $^{[3,\ 4]}$ -0.5 V to 6.0 V DC input voltage [3, 4]-0.5 V to 6.0 V

Output current into outputs (low)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V cc ^[5]
CY62148ESL	Industrial/ Automotive-A		2.2 V to 3.6 V, and 4.5 V to 5.5 V

Electrical Characteristics

Over the operating range

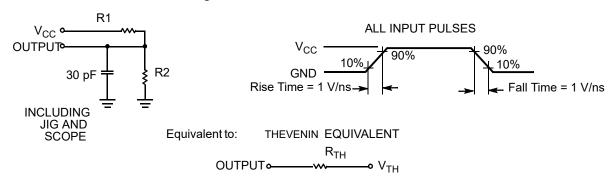
Davamatav	Description	Took Conditions	55 ns (Inc	55 ns (Industrial/Automotive-A)			
Parameter	Description	Test Conditions	Min	Typ ^[6]	Max	Unit	
V _{OH}	Output HIGH voltage	$2.2 \le V_{CC} \le 2.7$ $I_{OH} = -0.1 \text{ m/s}$	A 2.0	_	_	V	
		$2.7 \le V_{CC} \le 3.6$ $I_{OH} = -1.0 \text{ m/s}$	A 2.4	_	_	1	
		$4.5 \le V_{CC} \le 5.5$ $I_{OH} = -1.0 \text{ m/s}$	A 2.4	_	_	Ī	
		$4.5 \le V_{CC} \le 5.5$ $I_{OH} = -0.1 \text{ m/s}$	A –	_	3.4 ^[7]	Ī	
V _{OL}	Output LOW voltage	$2.2 \le V_{CC} \le 2.7$ $I_{OL} = 0.1 \text{ mA}$	_	_	0.4	V	
		$2.7 \le V_{CC} \le 3.6$ $I_{OL} = 2.1 \text{ mA}$	_	_	0.4	1	
		$4.5 \le V_{CC} \le 5.5$ $I_{OL} = 2.1 \text{ mA}$	_	_	0.4	Ī	
V _{IH}	Input HIGH voltage	2.2 ≤ V _{CC} ≤ 2.7	1.8	_	V _{CC} + 0.3	V	
		$2.7 \le V_{CC} \le 3.6$	2.2	_	V _{CC} + 0.3	Ī	
		$4.5 \le V_{CC} \le 5.5$	2.2	_	V _{CC} + 0.5	Ī	
V _{IL} ^[8]	Input LOW voltage	2.2 ≤ V _{CC} ≤ 2.7	-0.3	_	0.4	V	
		$2.7 \le V_{CC} \le 3.6$	-0.3	_	0.6	Ī	
		4.5 ≤ V _{CC} ≤ 5.5	-0.5	_	0.6	Ī	
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$	-1	_	+1	μA	
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, output disabled	_1	_	+1	μA	
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$ $V_{CC} = V_{CCmax}$	x –	15	20	mA	
		f = 1 MHz I _{OUT} = 0 mA, CMOS levels	-	3.5	6		
I _{SB1} ^[9]	Automatic CE power-down	$\overline{CE} \ge V_{CC} - 0.2 \text{ V},$	_	2.5	7	μA	
	current – CMOS inputs	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V},$ $f = f_{max}$ (address and data only), $f = 0$ (\overline{OE} and \overline{WE}), $V_{CC} = V_{CC(m)}$					
I _{SB2} ^[9]	Automatic CE power-down	$\overline{CE} \ge V_{CC} - 0.2 \text{ V},$	_	2.5	7	μA	
	current – CMOS inputs	$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$ $f = 0, V_{CC} = V_{CC(max)}$	_				

- 3. $V_{IL(min)} = -2.0 \text{ V}$ for pulse durations less than 20 ns.

- V_{IL(min)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.
 Typical values are included for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Please note that the maximum VOH limit does not exceed minimum CMOS VIH of 3.5 V. If you are interfacing this SRAM with 5 V legacy processors that require a
- minimum VIH of 3.5 V, please refer to Application Note AN6081 for technical details and options you may consider

 8. Under DC conditions the device meets a V_{IL} of 0.8 V (for V_{CC} range of 2.7 V to 3.6 V and 4.5 V to 5.5 V) and 0.6 V (for V_{CC} range of 2.2 V to 2.7 V). However, in dynamic conditions Input LOW voltage applied to the device must not be higher than 0.6 V and 0.4 V for the above ranges.
- 9. Chip enable (CE) must be HIGH at CMOS level to meet the I_{SB1}/I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter [10]	Description	cription Test Conditions		Unit
C _{IN}	Input capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(Typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter [10]	Description	Test Conditions	32-pin STSOP	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	49.02	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		14.07	°C/W

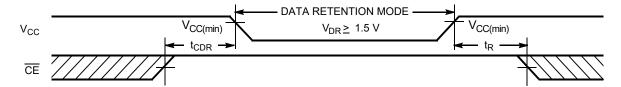
AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Parameter	2.5 V	3.0 V	5.0 V	Unit
R1	16667	1103	1800	Ω
R2	15385	1554	990	Ω
R _{TH}	8000	645	639	Ω
V _{TH}	1.20	1.75	1.77	V

Note

 $^{10. \} Tested \ initially \ and \ after \ any \ design \ or \ process \ changes \ that \ may \ affect \ these \ parameters.$


Data Retention Characteristics

Over the operating range

Parameter	Description	Conditions	Min	Typ [11]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	_	-	V
I _{CCDR} [12]	Data retention current		-A	3	8.8	μА
t _{CDR}	Chip deselect to data retention time		0	_	_	ns
t _R ^[13]	Operation recovery time		55	_	_	ns

Data Retention Waveform

Figure 3. Data Retention Waveform

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Chip enable (CE) must be HIGH at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 µs or stable at V_{CC(min)} ≥ 100 µs.

Switching Characteristics

Over the operating range

Parameter [14, 15]	Description	55 ns (Ir Autom	dustrial / otive-A)	Unit
	·	Min	Max	
Read Cycle		·		
t _{RC}	Read cycle time	55	_	ns
t _{AA}	Address to data valid	_	55	ns
t _{OHA}	Data hold from address change	10	_	ns
t _{ACE}	CE LOW to data valid	_	55	ns
t _{DOE}	OE LOW to data valid	_	25	ns
t _{LZOE}	OE LOW to low Z [16]	5	_	ns
t _{HZOE}	OE HIGH to high Z [16, 17]	_	20	ns
t _{LZCE}	CE LOW to low Z [16]	10	_	ns
t _{HZCE}	CE HIGH to high Z [16, 17]	_	20	ns
t _{PU}	CE LOW to power-up	0	_	ns
t _{PD}	CE HIGH to power-up	_	55	ns
Write Cycle [18, 1	9]			
t _{WC}	Write cycle time	55	-	ns
t _{SCE}	CE LOW to write end	40	_	ns
t _{AW}	Address setup to write end	40	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	40	_	ns
t _{SD}	Data setup to write end	25	-	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to high Z ^[16, 17]	_	20	ns
t _{LZWE}	WE HIGH to low Z [16]	10	-	ns

Notes

^{14.} In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the chip enable signal as described in the Application Note AN66311. However, the issue has been fixed and in production now, and hence, this Application Notes is no longer applicable. It is available for download on our website as it contains information on the date code of the parts, beyond which the fix has been in production.

^{15.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse

^{15.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 2 on page 5.
16. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any device.
17. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.
18. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.
19. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of t_{SD} and t_{HZWE}.

Switching Waveforms

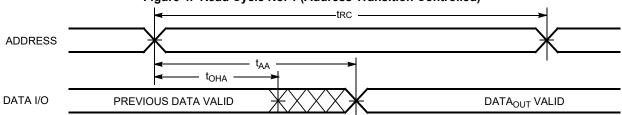
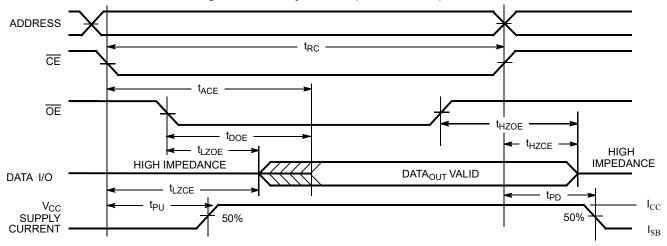



Figure 5. Read Cycle No. 2 (OE Controlled) [21, 22]

- 20. Device is continuously selected. OE, CE = V_{IL}.
 21. WE is HIGH for read cycles.
 22. Address valid before or simila<u>r to</u> CE transition LOW.
- 23. Data I/O is high impedance if $\overline{OE} = V_{|H:}$ 24. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in high impedance state.
 25. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (CE Controlled) [26, 27]

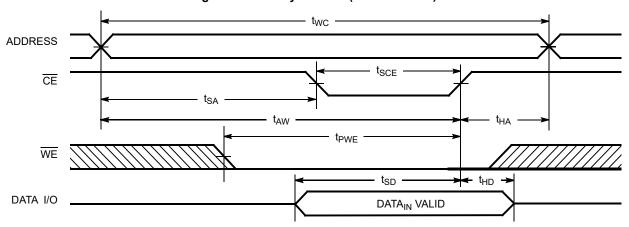
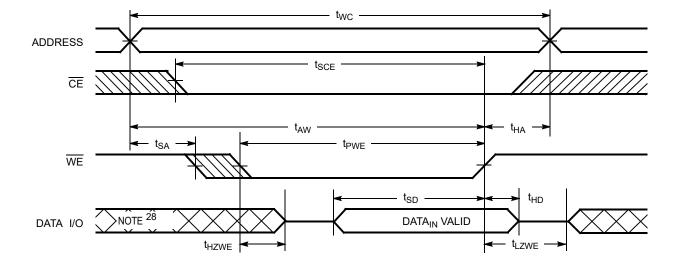
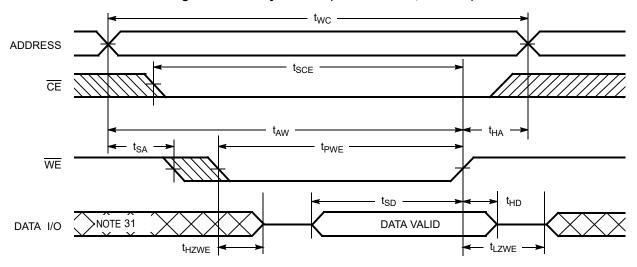



Figure 7. Write Cycle No. 2 (WE Controlled) [27]

Notes

26. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.


27. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in high impedance state.

28. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [29, 30]

^{29.} If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in high impedance state.

^{30.} The minimum write cycle pulse width should be equal to the sum of $t_{\rm SD}$ and $t_{\rm HZWE}$ -31. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

CE	WE	OE	I/O	Mode	Power
H ^[32]	Х	Х	High Z	Deselect/power-down	Standby (I _{SB})
L	Н	L	Data out	Read	Active (I _{CC})
L	Н	Н	High Z	Output disabled	Active (I _{CC})
L	L	Х	Data in	Write	Active (I _{CC})

Note 32. Chip enable ($\overline{\text{CE}}$) must be HIGH at CMOS level to meet the I_{SB1}/I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

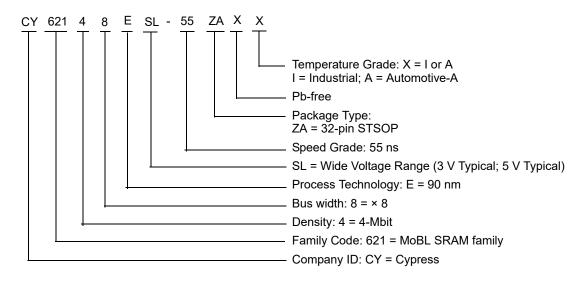
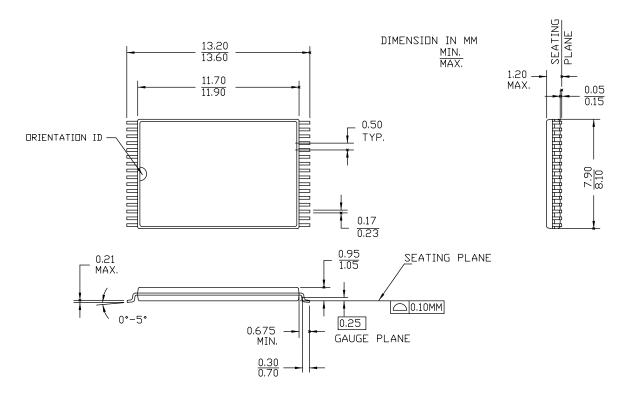

Ordering Information

Table 1 lists the CY62148ESL MoBL key package features and ordering codes. The table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products.

Table 1. Key features and Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package IVNE	Operating Range
55	CY62148ESL-55ZAXI	51-85094	32-pin STSOP (Pb-free)	Industrial
	CY62148ESL-55ZAXA	51-85094	32-pin STSOP (Pb-free)	Automotive-A


Ordering Code Definitions

Package Diagram

Figure 9. 32-pin STSOP (8 × 13.4 × 1.2 mm) ZA32 Package Outline, 51-85094

Acronyms

Acronym	Description		
BHE	Byte High Enable		
BLE	Byte Low Enable		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
TSOP	Thin Small Outline Package		
WE	Write Enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHz	megahertz		
μΑ	microampere		
mA	milliampere		
ns	nanosecond		
Ω	ohm		
pF	picofarad		
V	volt		
W	watt		

Document History Page

	Number: 00		4-Mbit (512K × 8) Static RAM
Rev.	ECN	Submission Date	Description of Change
**	2612938	01/21/2009	New data sheet.
*A	2800124	11/06/2009	Updated Product Portfolio (Included Automotive-A information). Updated Operating Range (Included Automotive-A information). Updated Ordering Information: Updated part numbers.
*B	2947039	06/10/2010	Updated Electrical Characteristics: Added Note 9 and referred the same note in I _{SB2} parameter. Updated Truth Table: Added Note 32 and referred the same note in "CE" column. Updated Package Diagram: spec 51-85094 – Changed revision from *D to *E.
*C	3006318	08/23/2010	Updated Electrical Characteristics: Updated Note 9 and referred the same note in I _{SB1} parameter. Updated Data Retention Characteristics: Added Note 12 and referred the same note in I _{CCDR} parameter. Updated Ordering Information: No change in part numbers. Added Ordering Code Definitions. Added Acronyms and Units of Measure. Updated to new template.
*D	3296704	06/29/2011	Updated Functional Description: Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines." at the end. Updated Ordering Information: No change in part numbers. Updated Ordering Code Definitions. Updated Package Diagram: spec 51-85094 – Changed revision from *E to *F.
*E	3515577	02/03/2012	Updated Switching Waveforms: Updated Figure 4. Updated Figure 5. Updated Figure 6. Updated Figure 7. Updated Figure 8. Completing Sunset Review.
*F	3548240	03/12/2012	Updated Electrical Characteristics: Updated Note 8 (Removed "Refer to AN13470 for details.").
*G	3897076	02/06/2013	Updated Switching Waveforms: Removed figure "Write Cycle No. 1 (WE Controlled, OE HIGH During Write)". Updated Figure 7 (Updated caption only). Completing Sunset Review.
*H	4039358	07/01/2013	Updated Functional Description: Updated description. Updated Electrical Characteristics: Added one more Test Condition "4.5 \leq V $_{CC}$ \leq 5.5" for V $_{OH}$ parameter and added maximur value corresponding to that Test Condition. Added Note 7 and referred the same note in maximum value for V $_{OH}$ parameter corresponding to Test Condition "4.5 \leq V $_{CC}$ \leq 5.5". Updated to new template.
*	4099182	08/19/2013	Updated Switching Characteristics: Added Note 14 and referred the same note in "Parameter" column.

Document History Page (continued)

Rev.	ECN	Submission Date	Description of Change
*J	4779516	05/28/2015	Updated Functional Description: Added "For a complete list of related resources, click here." at the end. Updated AC Test Loads and Waveforms: Updated Figure 2. Updated Switching Characteristics: Added Note 19 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Figure 8. Added Figure 8. Added Note 29, 30, 31 and referred the same note in Figure 8. Updated Package Diagram: spec 51-85094 – Changed revision from *F to *G. Updated to new template.
*K	6906316	06/26/2020	Updated Features: Changed value of Typical standby current from 1 μA to 2.5 μA. Changed value of Typical active current from 2 mA to 3.5 mA. Updated Product Portfolio: Changed typical value of Operating I_{CC} from 2 mA to 3.5 mA corresponding to "f = 1 MHz" Changed maximum value of Operating I_{CC} from 2.5 mA to 6 mA corresponding to "f = 1 MHz". Changed typical value of Standby, I_{SB2} from 1 μA to 2.5 μA. Updated Electrical Characteristics: Changed typical value of I_{CC} parameter from 2 mA to 3.5 mA corresponding to Test Condition "f = 1 MHz". Changed maximum value of I_{CC} parameter from 2.5 mA to 6 mA corresponding to Test Condition "f = 1 MHz". Changed typical value of I_{SB1} parameter from 1 μA to 2.5 μA. Changed typical value of I_{SB2} parameter from 1 μA to 2.5 μA. Updated Data Retention Characteristics: Changed typical value of I_{CCDR} parameter from 1 μA to 8.8 μA. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers

Wireless Connectivity

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2009–2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach."). Cypress disclaims any liability relating to any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure o

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-50045 Rev. *K Revised June 26, 2020 Page 17 of 17