
CY8CKIT-001

 PSoC® Development Kit Guide

Doc. # 001-48651 Rev. *L

November 16, 2012

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

http://www.cypress.com

2 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice.

Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a

Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted

nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an

express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components

in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.

The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such

use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by

and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty

provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create

derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom soft-

ware and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci-

fied in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source

Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-

RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described

herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.

Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure

may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support sys-

tems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all

charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PSoC Designer™ and PSoC Creator™ are trademarks and PSoC® and CapSense® are registered trademark of Cypress

Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corpora-

tions.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its

family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used.

There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our

knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guaran-

tee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly

evolving. We at Cypress are committed to continuously improving the code protection features of our products.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 3

Contents

1. Introduction 7

1.1 Kit Overview...7

1.2 Kit Contents ...7

1.3 Installation..9

1.3.1 Before You Begin ...9

1.3.2 Prerequisites ..9

1.3.3 Installing PSoC 1 Development Software ..9

1.3.4 Installing PSoC 3 Development Software ..9

1.3.5 Installing PSoC 5LP Development Software..10

1.4 PSoC Development Board...11

1.4.1 Default Switch and Jumper Settings ..11

1.5 Kit Revision..13

1.6 Additional Resources...14

1.6.1 Beginner Resources...14

1.6.2 Engineers Looking for More ...14

1.6.3 Learning from Peers...14

1.6.4 More Code Examples...14

1.7 Document Conventions ...16

1.8 Document Revision History ..17

2. Loading My First PSoC Project 19

2.1 My First PSoC 1 (CY8C28) Project ...20

2.1.1 Loading My First PSoC 1 Project ...20

2.1.2 Building My First PSoC 1 Project ...21

2.1.3 Programming My First PSoC 1 Project ..22

2.1.4 Running My First PSoC 1 Project ..23

2.2 My First PSoC 1 (CY8C29) Project ...25

2.2.1 Loading My First PSoC 1 Project ...25

2.2.2 Building My First PSoC 1 Project ...26

2.2.3 Programming My First PSoC 1 Project ..27

2.2.4 Running My First PSoC 1 Project ..28

2.3 My First PSoC 3 (CY8C38) Project ...30

2.3.1 Loading My First PSoC 3 Project ...30

2.3.2 Building My First PSoC 3 Project ...31

2.3.3 Programming My First PSoC 3 Project ..32

2.3.4 Running My First PSoC 3 Project ..33

2.4 My First PSoC 5LP (CY8C58LP) Project...34

2.4.1 Loading my First PSoC 5LP Project...34

2.4.2 Building My First PSoC 5LP Project...35

2.4.3 Programming My First PSoC 5LP Project..36

2.4.4 Running My First PSoC 5LP Project ..37

4 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Contents

3. Sample Projects 39

3.1 CY8C28 Family Processor Module Code Examples ...39

3.1.1 My First PSoC 1 (CY8C28) Project..39

3.1.2 ADC to LCD Project ...47

3.1.3 ADC to UART with DAC...53

3.1.4 CapSense ..65

3.2 CY8C29 Family Processor Module Code Examples ...75

3.2.1 My First PSoC 1 (CY8C29) Project..75

3.2.2 ADC to LCD Project ...83

3.2.3 ADC to LCD with DAC and UART ...90

3.3 CY8C38 / CY8C58LP Family Processor Module Code Examples106

3.3.1 My First PSoC 3 / PSoC 5LP Project...106

3.3.2 ADC to LCD Project ... 114

3.3.3 ADC to UART with DAC...120

3.3.4 USB HID ..136

3.3.5 CapSense ..148

3.3.6 SAR ADC (PSoC 5LP Only) ..154

Appendix A. Board Specifications and Layout 171

A.1 PSoC Development Board ..171

A.1.1 Factory Default Configuration ..171

A.1.2 Power Supply Configuration Examples..172

A.1.3 Prototyping Components ...177

A.1.4 LCD Module...179

A.1.5 CapSense Elements ..180

A.1.6 Processor Module..180

A.1.7 Expansion Ports...183

A.2 Schematics ..187

A.2.1 CY8CKIT-001 PSoC Development Board ...187

A.2.2 CY8C28 Family Processor Module..188

A.2.3 CY8C29 Family Processor Module..189

A.2.4 CY8C38 Family Processor Module..190

A.2.5 CY8C58LP Family Processor Module ...191

A.2.6 Enabling Boost Component in PSoC 3 and PSoC 5LP Processor Modules192

A.3 Bill of Materials ..192

A.3.1 CY8CKIT-001 PSoC Development Board ...192

A.3.2 CY8C28 Family Processor Module..194

A.3.3 CY8C29 Family Processor Module..195

A.3.4 CY8C38 Family Processor Module..196

A.3.5 CY8C58LP Family Processor Module ...197

Appendix B. MiniProg3 199

B.1 MiniProg3 LEDs...199

B.2 Programming in Power Cycle Mode ..199

B.3 Interface Pin Assignment Table...199

B.4 Protection Circuitry ..200

B.5 Level Translation ...200

Appendix C. MiniProg3 Technical Description 201

C.1 Interfaces...202

C.1.1 ISSP...202

C.1.2 JTAG..202

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 5

Contents

C.1.3 SWD/SWV..202

C.1.4 I2C™..202

C.2 Connectors ..203

C.2.1 5-Pin Connector ...203

C.2.2 10-Pin Connector ...203

C.3 Power...204

Appendix D. PSoC Creator DWR 205

6 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Contents

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 7

1. Introduction

1.1 Kit Overview

The CY8CKIT-001 PSoC® Development Kit provides a common development platform where you

can prototype and evaluate different solutions using either the PSoC 1, PSoC 3, or PSoC 5LP

architectures. See table below which highlights the main difference between the three families of

PSoC. This guide gives you a practical understanding of PSoC technology. The kit also includes

several code examples with step-by-step instructions to enable you to easily develop PSoC

solutions. This kit includes PSoC CY8C28, CY8C38, and CY8C58LP family processor modules.

1.2 Kit Contents

The CY8CKIT-001 PSoC Development Kit includes:

■ PSoC development board

■ PSoC CY8C28 family processor module

■ PSoC CY8C38 family processor module

■ PSoC CY8C58LP family processor module

■ MiniProg3 programmer and debug tool

■ USB cable1

8 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Introduction

■ 12-V power supply adapter

■ Wire pack

■ Printed documentation

❐ Quick start guide

❐ Schematic and pinout of PSoC development board design

■ PSoC 1 software DVD (contents are installed in \PSoC Development Kit CY8C28):

❐ PSoC Designer™ IDE

❐ PSoC Programmer software

❐ CY8C28 datasheets

❐ Kit release notes

❐ Software release notes

❐ Code example files, firmware, and documentation

■ PSoC 3 and PSoC 5LP software DVD (contents are installed in the \CY8CKIT-009A folder for
PSoC 3 module kit and \CY8C58LP Family Processor Module folder for PSoC 5LP mod-
ule kit):

❐ PSoC Creator™ IDE

❐ PSoC Programmer software

❐ CY8C38 datasheet

❐ CY8C58LP datasheet

❐ Kit release notes

❐ Software release notes

❐ Code example files, firmware, and documentation

1. Any USB certified cable up to 2 meters in length can be used with the DVK.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 9

Introduction

1.3 Installation

Everything you need to use the PSoC Development Kit is included; you only need to install the soft-

ware for the processor module you plan to use.

Note CY8CKIT-008 CY8C29 family processor module is not part of this kit; you can purchase this

module from http://www.cypress.com.

1.3.1 Before You Begin

All Cypress software installations require administrator privileges, but this is not required to run the

installed software.

Shut down any currently running Cypress software.

Disconnect any ICE-Cube or MiniProg devices from your computer.

1.3.2 Prerequisites

PSoC Creator and PSoC Designer both use Microsoft .NET Framework, Adobe Acrobat Reader,

and a Windows Installer. If .NET Framework and Windows Installer are not on your computer, the

installation automatically installs them. If you do not have Adobe Acrobat Reader, download and

install it from the Adobe website.

1.3.3 Installing PSoC 1 Development Software

To use the CY8C28 or CY8C29 family processor module (PSoC 1), you need:

■ PSoC Designer 5.0 SP6 or higher

■ PSoC Programmer 3.12.3 or later

If PSoC Designer 5.0 is currently installed, uninstall it. Click Start Control Panel Add or

Remove Programs.

Insert the PSoC 1 Software DVD; using the menu, select Install Software for PSoC 1.

After installation, user guides and key documents are located in the \Documentation subdirectory

of the PSoC Designer installation directory.

1.3.4 Installing PSoC 3 Development Software

To use the CY8C38 family processor module (PSoC 3), you need:

■ PSoC Creator 1.0 Production or later

■ PSoC Programmer 3.12.3 or later

■ PSoC Development Kit example files

Insert the PSoC 3 or PSoC 5LP software DVD; in the menu, select Install Software for PSoC 3.

This option installs all three required software packages. The installers for PSoC Programmer and

PSoC Creator automatically start before the kit examples are installed.

For each installation, select Typical on the Installation Type page.

PSoC Creator uses the DP8051 Keil 8.16 compiler to build PSoC 3 applications. This compiler is

included on the DVD; if the installer does not detect the compiler, you will be prompted to install it.

Note The Keil compiler is distributed with a free license. You must activate this license within 30

days of installation. When the Cypress software installation is complete, and you run PSoC Creator,

activate the compiler license from Help Register Keil.

http://www.cypress.com/?rID=38239

10 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Introduction

Important for Win7 and Vista users: Rename the *_tools.ini file in <Install_Directory>:\
PSoC Creator\<version>\PSoC Creator\import\keil\pk51\<version> to "tools.ini" for

the Keil registration to be successful.

After installing PSoC Creator and PSoC Programmer, refer to the documentation as needed:

■ PSoC Creator Help Topics Getting Started

■ Programmer Documentation User Guide

Other documents included with this release are located in the \Documentation subdirectory of the

PSoC Creator installation directory. The default location is:

<Install_Directory>:\PSoC Creator\<version>\PSoC Creator\Documentation

You can access this directory from within PSoC Creator under Help Documentation. Documents

include (but are not limited to):

■ PSoC Creator Component Author Guide (component_author_guide.pdf)

■ Warp Verilog Reference Guide (warp_verilog_reference.pdf)

■ Customization API Reference (customizer_api.chm)

Note After the installation is complete, the kit contents are available at the following location:

<Install_Directory>:\CY8CKIT-009A\<version>

1.3.5 Installing PSoC 5LP Development Software

To use the CY8C58LP family processor module (PSoC 5LP), you need:

■ PSoC Creator 2.1 or later

■ PSoC Programmer 3.16 or later

■ PSoC Development Kit example files

Insert the PSoC 3 or PSoC 5LP Software DVD; in the menu, select Install Software for PSoC 5LP.

This option installs all three required software packages. The installers for PSoC Programmer and

PSoC Creator automatically start before the kit examples are installed.

For each installation, select Typical on the Installation Type page.

PSoC Creator uses the GNU GCC 4.4.1 compiler to build PSoC 5LP applications.

After installing PSoC Creator and PSoC Programmer, refer to the documentation as needed:

■ PSoC Creator Help Topics Getting Started

■ Programmer Documentation User Guide

Other documents included with this release are located in the \Documentation subdirectory of the

PSoC Creator installation directory. The default location is:

<Install_Directory>:\PSoC Creator\<version>\PSoC Creator\Documentation

You can access this directory from within PSoC Creator under Help Documentation. Documents

include (but are not limited to):

■ PSoC Creator Component Author Guide (component_author_guide.pdf)

■ Warp Verilog Reference Guide (warp_verilog_reference.pdf)

■ Customization API Reference (customizer_api.chm)

Note After the installation is complete, the kit contents are available at the following location:

<Install_Directory>:\CY8C58LP Family Processor Module\<version>

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 11

Introduction

1.4 PSoC Development Board

The CY8CKIT-001 PSoC Development Board is designed to aid hardware, firmware, and software

developers in building their own systems around Cypress’s PSoC devices. The flexibility to configure

the power domains is one of the foremost features of this board. Input power to the board is from one

of two sources:

■ 12 V 1-A power supply adapter

■ 9-V alkaline battery (not included)

Note Do not apply more than 15 V as input voltage. Also, do not power the board from test points.

This full-featured board incorporates three onboard linear regulators that power peripherals and

PSoC processor modules at voltages between 1.7 V and 5.0 V. These regulators include a fixed 5 V

1-A linear regulator, a fixed 3.3 V 300-mA linear regulator, and a 1.5 V to 3.3 V for 3.3-V supply and

1.5 V to 5 V for 5-V supply adjustable regulator. The board also provides the ability to separate the

PSoC core VDD rail into two separate rails, analog and digital. In addition, the board is able to

separate the I/O VDD rails, giving the flexibility to power the I/O ports at different voltages.

The board is equipped with a 2×16 alphanumeric LCD module capable of 1.8 V to 5.0 V I/O. In

addition, there is a mini-B full-speed USB interface and a female DB9 serial communications

interface. Also included is a 12-pin wireless radio module interface, which can be used to develop

CyFi™ low-power RF or other embedded RF solutions with this kit. The board also has a prototyping

area containing a small breadboard, complete with I/O port sockets nearby, multipurpose LEDs,

mechanical push buttons, and a multipurpose variable resistor. In addition, three capacitive sensing

elements (two buttons and a five segment slider) are included on the board to allow the evaluation of

CapSense® applications.

The board has four general-purpose I/O (GPIO) expansion slots, allowing the I/O to expand to exter-

nal boards.

The board is protected against reverse voltage and overvoltage on the 5-V and 3.3-V lines on the

expansion slots. See Protection Circuit on page 185 for more information.

The board is designed with modularity in mind and, as a result, supports removable processor mod-

ules. This allows you to plug different PSoC processor modules into the board based upon the

desired features of both 8-bit and 32-bit PSoC devices.

Note

■ The PSoC device may get hot or damaged if many I/O pins are configured as strong drive with

initial state HIGH and grounded externally using wires.

■ The PSoC device may get hot or damaged if many I/O pins are configured as strong drive with

initial state LOW and connected to Vcc externally using wires.

1.4.1 Default Switch and Jumper Settings

Jumpers on the CY8CKIT-001 PSoC development board have a default setting to operate at 3.3 V.

For default configuration, each of the jumpers must be set according to these instructions.

Note All CY8C28 and CY8C29 family processor module code examples are configured for 5 V. Con-

figure the board to 5 V, before creating the code examples.

12 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Introduction

SW3 - VDD Select. Default Position: 3.3 V (down position)

J8 - 5 V Source. Default Position: VREG (upper two pins)

J7, J6 - VDD Digital, VDD Analog. Default Position: VDD (upper two pins, both headers)

J12 - LCD Power. Default Position: ON (lower two pins)

J2-J5 - VDDIO Power Select. Default Position: VDD (upper left two pins)

J10 - RS-232 Power (Serial Communications). Default Position: Installed

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 13

Introduction

J14 - Radio Power. Default Position: Installed

J11 - Variable Resistor Power. Default Position: Installed

1.4.1.1 AC/DC Adaptor Specifications

Use adaptors with the following specifications:

■ Input voltage: 100 to 240 VAC, 50 Hz to 60 Hz, 1 A

■ Output voltage: 12 VDC, 1 A

■ Power output: 12 W

■ Polarization: Positive center

■ Certification: CE certified

Some recommended part numbers include EPSA120100U-P5P-EJ (CUI Inc.) and LTE12W-S2 (Li

Tone Electronics Co. Ltd).

1.4.1.2 Battery Specifications

Use batteries with the following specifications:

■ Battery type: 9 V

■ Output voltage: 9 VDC

■ Type: Non-rechargeable alkaline consumer batteries

■ RoHS status: RoHS compliant

■ Lead free status: Pb-free

Some recommended part numbers include 6LR61XWA/1SB (Panasonic), MN1604 (Duracell), and

6LR61 (Energizer).

1.5 Kit Revision

To know the kit revision, look for the white sticker on the bottom left on the back of the kit box. If the

revision reads CY8CKIT-001C Rev **, then congratulations, you own the latest version.

To upgrade CY8CKIT-001B to CY8CKIT-001C, the main DVK and kit DVD must be updated. Pur-

chase the latest development board and download the latest DVD ISO image at http://

www.cypress.com/go/CY8CKIT-001.

To upgrade CY8CKIT-001A to CY8CKIT-001C, besides the upgrades stated above, you need to

update the PSoC 3 processor module and kit DVD. Purchase the latest processor module at http://

www.cypress.com/go/CY8CKIT-009 and download the latest DVD ISO image at http://

www.cypress.com/go/CY8CKIT-001.

To upgrade CY8CKIT-001 to CY8CKIT-001C, besides the upgrades stated above, you need to pur-

chase the latest PSoC 5LP process module at http://www.cypress.com/go/CY8CKIT-010.

http://www.cypress.com/go/cy8ckit-009
http://www.cypress.com/go/cy8ckit-009
http://www.cypress.com/go/cy8ckit-001
http://www.cypress.com/go/cy8ckit-001
http://www.cypress.com/go/cy8ckit-010
http://www.cypress.com/go/CY8CKIT-001
http://www.cypress.com/go/CY8CKIT-001

14 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Introduction

1.6 Additional Resources

Visit http://www.cypress.com/go/training for additional learning resources in the form of datasheets,

technical reference manual, and application notes.

1.6.1 Beginner Resources

AN54181 - PSoC 3 - Getting Started with a PSoC 3 Design Project

PSoC Designer Training

PSoC Designer FAQ

PSoC Creator Training

1.6.2 Engineers Looking for More

AN54460 - PSoC 3 and PSoC 5 Interrupts

AN52705 - PSoC 3 and PSoC 5 - Getting Started with DMA

AN52701 - PSoC 3 - How to Enable CAN Bus Communication

AN54439 - PSoC 3 and PSoC 5 External Crystal Oscillators

AN52927 - PSoC 3: Segment LCD Direct Drive

Cypress continually strives to provide the best support. Click here to view a growing list of

application notes for PSoC 3 and PSoC 5LP.

1.6.3 Learning from Peers

Cypress Developer Community Forums

1.6.4 More Code Examples

PSoC Creator provides a host of example projects that makes the code development very fast and

easy. To access these example projects, click on the Find Example Project… under Example and

Kits section in Start Page of PSoC Creator or by navigating to File Open-Example Project…

http://www.cypress.com/go/training
http://www.cypress.com/?rID=39157
http://www.cypress.com/?rID=40543
http://www.cypress.com/?rid=53335
http://www.cypress.com/?rID=40547
http://www.cypress.com/?rID=38267
http://www.cypress.com/?rID=37793
http://www.cypress.com/?rID=37766
http://www.cypress.com/?rID=37884
http://www.cypress.com/?rID=37795
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=2232&applicationID=0&l=0
http://www.cypress.com/?app=forum&source=search_advanced

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 15

Introduction

The Find Example project has various filters that help you locate the most relevant project you are

looking for.

PSoC Creator provides several Starter Designs. These designs highlight features that are unique to

PSoC devices. They allow you to create a design with various components and code is also pro-

vided, instead of creating a new empty design. To use a starter design for your project, navigate to

File New Project and select the design required.

16 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Introduction

Note: The example projects and starter designs are designed for CY8CKIT-001 PSoC Development

Kit. However, these projects can be converted for use with CY8CKIT-030 PSoC 3 Development Kit

or CY8CKIT-050 PSoC 5 Development Kit by following the procedure in the knowledge base article

Migrating project from CY8CKIT-001 to CY8CKIT-030 or CY8CKIT-050.

Apart from the example projects and starter designs that are available within PSoC Creator, Cypress

continuously strives to provide the best support. Click here to view a growing list of application notes

for PSoC 3 and PSoC 5.

1.7 Document Conventions

These conventions are used throughout this guide.

Table 1-1. Documentation Conventions

Convention Usage

Courier New
Size 12

Displays file locations and source code:

C:\ …cd\icc\.

Italics Displays file names and reference documentation:

sourcefile.hex

[bracketed, bold] Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]

http://www.cypress.com/?id=2232&rtID=76
http://www.cypress.com/?id=4&rID=51598

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 17

Introduction

1.8 Document Revision History

Bold With Arrows Represents menu paths, user entered text:

File New Project Clone

Bold Displays commands and selections, and icon names in procedures:

Click the Debugger icon, and then click Next.

Note Displays functionality unique to PSoC Designer, PSoC Creator, or the PSoC

device.

WARNING: Displays cautions that are important to the subject.

Document Title: CY8CKIT-001 PSoC® Development Kit Guide

Document Number: 001-48651

Revision Issue Date
Origin of

Change
Description of Change

** 6/23/09 AESA New Guide

*A 7/22/09 AESA CDT based updates

*B 11/19/09 AESA CDT based updates

*C 05/21/10 AESA Updated with PSoC 5LP.

*D 01/05/11 RKAD
Updated images. Updated PSoC Creator and PSoC Programmer

versions

*E 02/10/11 RKAD Updated images. Added Kit Revision section

*F 12/16/11 RKAD Content updates throughout the document.

*G 12/30/11 RKAD
Updated installation directory path. Added Figure 2-4 and Figure 2-

10. Added note on Keil compilers in section 1.3.4.

*H 01/13/12 RKAD
Added note on USB cable in section 1.2 - Kit Contents. Appended

to note in section A.1.4 - LCD Module

*I 01/18/12 RKAD
Minor ECN to include attachments in pdf. No content updates

made.

*J 05/03/12 SASH Added the Additional Resources section

*K 07/04/12 SASH
Added Appendix D for PSoC Creator DWR. Updated images for

PSoC Creator version 2.1.

*L 11/08/2012 SASH
Added A.1.7.4 Protection Circuit. Updated 1.5 Kit Revision.

Updated figures in Chapter 3.

Table 1-1. Documentation Conventions (continued)

Convention Usage

18 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Introduction

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 19

2. Loading My First PSoC Project

The CY8CKIT-001 PSoC Development Kit supports projects across the PSoC 1, PSoC 3, and

PSoC 5 architectures. This section walks you through the high-level design process for opening,

building, programming, and running your first PSoC project using this kit.

Before beginning, follow each of these steps to make certain that your software and hardware

environments are properly configured and ready for these projects:

1. Install PSoC Designer using the steps listed in Installing PSoC 1 Development Software on

page 9.

2. Install PSoC Creator using the steps listed in Installing PSoC 3 Development Software on page 9.

3. Connect the MiniProg3 into your PC using the supplied USB cable. When you connect the

MiniProg3, Microsoft Windows® may indicate that it has found new hardware. All required drivers

are installed as part of the PSoC Programmer installation process; however, if Windows opens

the driver installation dialog boxes, accept the defaults and allow Windows to automatically find

the appropriate driver.

4. Close any open PSoC Creator or PSoC Designer applications and projects.

5. Configure the PSoC development board (jumper settings and switches) in its default configura-

tion, as described in Default Switch and Jumper Settings on page 11.

6. Use the PSoC CY8C28 family processor module or PSoC CY8C29 family processor module for

the PSoC 1 version of your first PSoC project (My First PSoC 1 (CY8C28) Project on page 20 or

My First PSoC 1 (CY8C29) Project on page 25).

7. Use the PSoC CY8C38 family processor module for the PSoC 3 version of your first PSoC proj-

ect (My First PSoC 3 (CY8C38) Project on page 30).

8. Use the PSoC CY8C58LP family processor module for the PSoC 5LP version of your first PSoC

project (My First PSoC 5LP (CY8C58LP) Project on page 34).

9. For a PSoC 1 project, use the ISSP header on the PSoC CY8C28 family processor module or

PSoC CY8C29 family processor module and connect the MiniProg3 ISSP port.

10.For a PSoC 3 or PSoC 5LP project, use the JTAG ribbon cable. Connect the ribbon cable to the

MiniProg3 and the CY8C38 family processor module or CY8C58LP family processor module into

the header labeled PROG on the processor module.

Note The MiniProg3 should not be "hot plugged" into processor modules that are attached to the

PSoC development board. In other words, do not plug the ribbon cable of the MiniProg3 into the

processor module while code is actively running on the module. Doing so may cause the PSoC

device to unintentionally reset. Power down the PSoC development board and module by

unplugging the power supply from the development board before attaching the MiniProg3 device

to the module board. When the ribbon cable is attached to the module board, power the system

by plugging in the power supply to the PSoC development board. This will avoid any undesirable

PSoC device resets.

11.Power the PSoC development board using the 12-V AC power supply adapter.

20 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

2.1 My First PSoC 1 (CY8C28) Project

This is a simple PSoC 1 project using a pulse width modulator (PWM) peripheral inside PSoC, and

software to control the blinking rates of two different LED outputs. For this project, be sure you have

the PSoC CY8C28 family processor module inserted into the PSoC development board and the

appropriate software installed. This section walks you through the steps to open, build, and program

a project.

2.1.1 Loading My First PSoC 1 Project

1. Open PSoC Designer.

2. In the Start Page, navigate to File Open Project/Workspace

3. Navigate to the project directory: <Install_Directory>:\PSoC Development Kit
CY8C28\<version>\Firmware\CY8C28.

4. Open the folder Ex1_LED_with_PWM.

5. Double-click Ex1_LED_with_PWM.app.

6. The project opens in the Chip Editor view. All project files are in the Workspace Explorer.

Figure 2-1. Chip Editor View

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 21

Loading My First PSoC Project

2.1.2 Building My First PSoC 1 Project

1. Select Build Generate/Build 'Ex1_LED_with_PWM' Project.

Figure 2-2. Build Project

2. PSoC Designer builds the project and displays comments in the Output window. When you see

the message that the project is built with 0 errors and 0 warnings, you are ready to program the

device.

Figure 2-3. Output Window

22 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

2.1.3 Programming My First PSoC 1 Project

Figure 2-4. Connect MiniProg3 to J5 on CY8C28 Family Processor Module

Programming using PSoC Designer

1. Open Program Part from within PSoC Designer by selecting Program Program Part.

2. In the Program Part window, ensure that MiniProg3 is selected in the Port Selection box.

3. In the Program Part window, set Acquire Mode to Reset.

4. In the Program Part window, set Verification to On. This ensures that downloaded checksum

matches the actual checksum.

5. In the Program Part window, click the program arrow to program the device.

Programming using PSoC Programmer

6. In PSoC Programmer, set AutoDetection to On to enable the software to automatically detect

and configure for the target device family and device. If PSoC Programmer is properly

configured, AutoDetection reports a device family of 28xxx.

Note Make sure ISSP protocol is selected.

7. Wait until programming is completed, to continue.

Note For debugging purposes, the CY8C28 family processor module is designed to accommodate

the use of the CY3215-DK In-Circuit Emulator (ICE-Cube). When using the ICE-Cube debugger,

make certain that PSoC Designer is configured so that the ICE-Cube does not provide power to the

processor module. Within the PSoC Designer application, select Project Settings and select

Debugger from the tree. Make sure that External only is selected under the Pod Power Source

section and select Execute Program from the Debug menu to start debugging.

Connect the processor module to the CY3215-DK ICE-Cube, as shown in Figure 2-5.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 23

Loading My First PSoC Project

Figure 2-5. ICE-Cube Connected to CY8C28 (PSoC 1) Processor Module

2.1.4 Running My First PSoC 1 Project

1. Connect P1[6] to LED1 and P1[7] to LED2. Verify that LED1 and LED2 are blinking based on the

project's use of the PWM and software. Now that the PSoC 1 device is programmed, reset the

PSoC development board by pressing and releasing the reset switch (SW4).

2. LED1 blinks approximately once every second and LED2 blinks about three times a second.

24 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

Figure 2-6. Connect P1[6] to LED1 and P1[7] to LED2

3. For more details regarding this project, see the detailed project instructions in My First PSoC 1

(CY8C28) Project on page 39.

P1[6]

P1[7]

LED1

LED2

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 25

Loading My First PSoC Project

2.2 My First PSoC 1 (CY8C29) Project

This is a simple PSoC 1 project using a PWM peripheral inside PSoC, and software to control the

blinking rates two different LED outputs. For this project, be sure you have the PSoC CY8C29 family

processor module inserted into the PSoC development board and the appropriate software installed.

This section walks you through the steps to open, build, and program a project.

2.2.1 Loading My First PSoC 1 Project

1. Open PSoC Designer.

2. In the Start Page, navigate to File Open Project/Workspace.

3. Navigate to the project directory: C:\Cypress\CY8CKIT-001\CY8C29 Projects.

4. Open the folder Example_My_First_PSoC_Project.

5. Double-click Example_My_First_PSoC_Project.app.

6. The project opens in the Chip Editor view. All project files are in the Workspace Explorer.

Figure 2-7. Chip Editor View

26 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

2.2.2 Building My First PSoC 1 Project

1. Select Build Generate/Build 'Example_My_First_PSoC_Project' Project.

Figure 2-8. Build Project

2. PSoC Designer builds the project and displays comments in the Output window. When you see

the message that the project is built with 0 errors and 0 warnings, you are ready to program the

device.

Figure 2-9. Output Window

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 27

Loading My First PSoC Project

2.2.3 Programming My First PSoC 1 Project

Figure 2-10. Connect MiniProg3 to J5 on CY8C29 Family Processor Module

1. Open PSoC Programmer from within PSoC Designer by selecting Program PSoC

Programmer.

2. In PSoC Programmer, make sure that MiniProg3 is selected in the Port Selection box.

3. In PSoC Programmer, set Programming Mode to Reset.

4. In PSoC Programmer, set Verification to On so that the software verifies that the downloaded

program's checksum matches the actual checksum of the flash memory after programming. This

is a precautionary check to verify that there is no data corruption during programming.

5. In PSoC Programmer, set AutoDetection to On to enable the software to automatically detect

and configure for the target device family and device. If PSoC Programmer is properly

configured, AutoDetection reports a device family of 29x66 and device of CY8C29466.

Note Make sure ISSP protocol is selected.

6. With these settings configured, click Program to program your PSoC 1 device.

7. Wait until programming is complete before continuing.

Note For debugging purposes, the CY8C29 family processor module is designed to accommodate

the use of the CY3215-DK In-Circuit Emulator (ICE-Cube). When using the ICE-Cube debugger,

make certain that PSoC Designer is configured so that the ICE-Cube does not provide power to the

processor module. Within the PSoC Designer application, select Project Settings and select

Debugger from the tree. Make sure that External only is selected under the Pod Power Source

section and select Execute Program from the Debug menu to start debugging.

Connect the processor module to the CY3215-DK ICE-Cube, as shown in Figure 2-11.

Connect USB cable between ICE-Cube and PC. Also Connect 12 V power supply to ICE-Cube

separately.

28 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

Figure 2-11. ICE-Cube Connected to CY8C29 (PSoC 1) Processor Module

2.2.4 Running My First PSoC 1 Project

1. Connect P0[7] to LED1 and P1[7] to LED2. Verify that LED1 and LED2 are blinking based on the

project's use of the PWM and software. Now that the PSoC 1 device is programmed, reset the

PSoC development board by pressing and releasing the reset switch (SW4).

2. LED1 blinks approximately once every second and LED2 blinks about three times a second.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 29

Loading My First PSoC Project

Figure 2-12. Connect P0[7] to LED1 and P1[7] to LED2

3. For more details regarding this project, see the detailed project instructions in My First PSoC 1

(CY8C29) Project on page 75.

P0[7]

P1[7]

LED1

LED2

30 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

2.3 My First PSoC 3 (CY8C38) Project

This is a PSoC 3 project using a PWM peripheral programmed from inside the PSoC 3 device to

control the blinking rates of two different LED outputs. For this project, insert the PSoC CY8C38 fam-

ily processor module in the PSoC development board and install the appropriate software. This sec-

tion shows you the steps to open, build, and program a project.

2.3.1 Loading My First PSoC 3 Project

1. Open PSoC Creator.

2. In the Start Page, under Examples and Kits expand Kits.

3. Under Kits, expand CY8CKIT-009A 2.1.

4. Click Ex1_LED_with_PWM.cywrk to open the project.

Figure 2-13. Kits List

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 31

Loading My First PSoC Project

5. Select the directory to store the project.

6. After the project opens, you can see the project files in Workspace Explorer (see Figure 2-14).

Figure 2-14. Workspace Explorer

2.3.2 Building My First PSoC 3 Project

1. Select Build Build Ex1_LED_with_PWM.

Figure 2-15. Build Window

2. PSoC Creator builds the project and displays the comments in the Output window. When you

see the message "Build Succeeded", you are ready to program the device.

32 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

Figure 2-16. Output Window

2.3.3 Programming My First PSoC 3 Project

Figure 2-17. Connect MiniProg3 to J5 on CY8C38 Family Processor Module

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 33

Loading My First PSoC Project

1. If this is your first time running PSoC Creator, follow these steps to configure the MiniProg3

device for these PSoC development kit projects. If these configurations are set, skip to the next

step and begin programming.

Note VTARG of the MiniProg3 is wired exclusively to VDDIO1 of the chip on the PSoC CY8C38

family processor module. Because of this, you cannot perform power cycle mode programming.

❐ From the Tools menu in PSoC Creator, click Options. The Options window opens.

❐ In the Options window, select Program/Debug Port Configuration MiniProg3 from the

list.

• Set Power to 3.3 V

• Set Active Protocol to SWD

• Set Connector to 10 Pin

• Set Acquire Mode to Reset

• Set Clock Speed to 3.2 MHz

• Click OK.

❐ From the Debug menu, select Select Debug Target. The Select Debug Target dialog box

opens.

❐ Expand the tree under MiniProg3 and click Port Acquire.

❐ Select the appropriate device and click Connect.

❐ Click Close.

2. In PSoC Creator, from the Debug menu, click Program.

3. The PSoC Creator status bar indicates that the device is programming.

4. Wait until programming is complete before continuing.

2.3.4 Running My First PSoC 3 Project

1. Unplug the development board, switch SW3 to 3.3 V and then reapply power to the board.

2. Connect P1[6] to LED1 and P1[7] to LED2. Verify that LED1 and LED2 are blinking based on the

project's use of the PWMs.

3. LED1 blinks approximately once every second and LED2 blinks about three times a second.

Figure 2-18. Connect P1[6] to LED1 and P1[7] to LED2

4. For more details regarding this project, review the detailed project instructions in My First PSoC 3

/ PSoC 5LP Project on page 106.

P1[7]

P1[6]

LED1

LED2

34 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

2.4 My First PSoC 5LP (CY8C58LP) Project

This project uses a PWM peripheral programmed from inside PSoC 5LP to control the blinking rates

of two different LED outputs. For this project, insert the PSoC CY8C58LP family processor module in

the PSoC development board and install the appropriate software. This section shows the steps to

open, build, and program a project.

2.4.1 Loading my First PSoC 5LP Project

1. Open PSoC Creator.

2. In the Start Page, under Examples and Kits expand Kits.

3. Under Kits, expand CY8CKIT-010LP 2.1.

4. Click Ex1_LED_with_PWM.cywrk to open the project.

Figure 2-19. Kits List

5. Select the directory to store the project.

6. After the project opens, you can see the project files in Workspace Explorer.

Figure 2-20. Workspace Explorer

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 35

Loading My First PSoC Project

2.4.2 Building My First PSoC 5LP Project

1. Select Build Build Ex1_LED_with_PWM.

Figure 2-21. Build Window

2. PSoC Creator builds the project and displays the comments in the Output window. When you see

the message "Build Succeeded", you are ready to program the device.

Figure 2-22. Output Window

36 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

2.4.3 Programming My First PSoC 5LP Project

Figure 2-23. Connect MiniProg3 to J5 on CY8C58LP Family Processor Module

1. If this is your first time running PSoC Creator, follow these steps to configure the MiniProg3

device for these PSoC development kit projects. If these configurations are set, skip to the next

step and begin programming.

Note VTARG of the MiniProg3 is wired exclusively to VDDIO1 of the chip on the PSoC

CY8C58LP family processor module. Because of this, you cannot perform power cycle mode

programming.

From the Tools menu in PSoC Creator, click Options.

In the Options window, select Program/Debug Port Configuration MiniProg3 from the

list.

• Set Power to 3.3 V

• Set Active Protocol to SWD

• Set Connector to 10 Pin

• Set Acquire Mode to Reset

• Set Clock Speed to 3.2 MHz

• Click OK

From the Debug menu, select Select Debug Target.

Expand the tree under MiniProg3 and click Port Acquire.

Select the appropriate device and click Connect.

Click Close.

2. In PSoC Creator, from the Debug menu, click Program.

3. The PSoC Creator status bar indicates that the device is programming.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 37

Loading My First PSoC Project

4. Wait until programming is complete before continuing.

2.4.4 Running My First PSoC 5LP Project

1. Unplug the development board, switch SW3 to 3.3 V and then reapply power to the board.

2. Connect P1[6] to LED1 and P1[7] to LED2. Verify that LED1 and LED2 are blinking based on the

project's use of the PWMs.

3. LED1 blinks approximately once every second and LED 2 blinks about three times a second.

Figure 2-24. Connect P1[6] to LED1 and P1[7] to LED2

P1[7]

P1[6]

LED1

LED2

38 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Loading My First PSoC Project

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 39

3. Sample Projects

This chapter shows you how to create the sample projects included with this kit.

Read these precautions before you create code examples:

All CY8C28 and CY8C29 family processor module code examples are configured for 5 V.

All CY8C38 and CY8C58LP family processor module code examples are configured for 3.3 V.

Close any open project in PSoC Creator before loading or creating a code example.

When working with code examples, use the 12-V power supply adapter.

Remove power before changing board jumpers for each code example. Reapply power after you

place jumpers on the breadboard.

When you complete each project make certain to save the project.

3.1 CY8C28 Family Processor Module Code Examples

3.1.1 My First PSoC 1 (CY8C28) Project

3.1.1.1 Creating My First PSoC 1 (CY8C28) Project

1. Open PSoC Designer.

2. To create a new project, click File New Project. The New Project window opens.

3. In the New Project window, select Chip-Level Project. Name the project Ex1_LED_with_PWM.

4. In the Location field, click Browse and navigate to the appropriate directory.

Figure 3-1. New Project Window

5. Click OK. The Select Project Type window opens.

40 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-2. Select Project Type Window

6. Under Select Target Device, click View Catalog.

7. The Device Catalog window opens. Click on the PSoC tab and scroll down to the CY8C28XXX

section.

8. In this section, click the CY8C28645-24LTXI device; click Select.

Figure 3-3. Device Catalog Window

9. Under Generate 'Main' File Using:, select C; then, click OK.

10.By default, the project opens in Chip view.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 41

Sample Projects

Figure 3-4. Default View.

11. In the User Modules window, expand the PWMs folder.

Figure 3-5. User Modules Window

12.In this folder, right-click on PWM8 and select Place. The user module (UM) is placed in the first

available digital block.

42 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-6. Place User Module PWM8

13.Click the placed PWM8_1 UM; the Properties window opens on the left side of the screen. Con-

figure the PWM with the settings shown in the following figure. If the Properties window does not

appear, click View Properties Window.

Figure 3-7. Properties Window

14.Next, route the PWM CompareOut signal to P1[7]. The first step is to configure the lookup table

(LUT) on Row_0_Output3.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 43

Sample Projects

Figure 3-8. Route PWM8 CompareOut Signal to P1[7]

15.Double-click the LUT, the Digital Interconnect window opens.

16.In this window, enable Row_0_Output_3_Drive_3 to connect to GlobalOutOdd_7.

Figure 3-9. Digital Interconnect Window

17.Click Close.

18.Click on GlobalOutOdd_7. In the window that appears, configure Pin for Port_1_7.

44 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-10. Configure Pin for Port_1_7

19.Click OK to continue.

20.In the User Modules window, expand the Misc Digital folder. In this folder, right-click LED and

select Place; this adds the UM to the project. This UM does not use digital or analog blocks. It

appears in Workspace Explorer Ex1_LED_with_PWM[CY8C28]

Ex1_LED_with_PWM[Chip] Loadable Configurations Ex1_LED_with_PWM - 2 User

Modules.

Figure 3-11. Workspace Explorer

21.Click the LED_1 UM and navigate to the Properties window. Configure the LED for P1[6].

Figure 3-12. Properties Window

22.Configure the Global Resources window to match the following figure.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 45

Sample Projects

Figure 3-13. Global Resources Window

23.Open the existing main.c file in Workspace Explorer. Replace the existing main.c content with the

content of the embedded CY8C28_main_Ex1.c file, which is available within the attachments fea-

ture of this PDF document.

Figure 3-14. Workspace Explorer

24.Save the project.

25.To build the project, click Build Generate/Build 'Ex1_LED_with_PWM' Project.

26.Disconnect power to the board.

27.Configure the DVK board SW3 to 5 V.

28.Configure the DVK breadboard using the included jumper wires:

P1[6] to LED1

P1[7] to LED2

29.Reapply power to the board.

30.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 22 to

program the device.

31.Reset the DVK and observe the blinking LEDs.

32.Save and close the project.

46 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.1.1.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C28_main_Ex1.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

#include <m8c.h> /* Part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the PWM and starts the PWM clock which will
* blink LED1. Then the main loop is entered which delays enough for LED2 to
* blink at a quicker rate than LED1.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 WORD i; /* Variable used for delay */

 PWM8_1_Start(); /* Turn on the PWM to blink LED on P1.6 */
 LED_1_Start(); /* Enable Software controlled LED */

 /* The following loop controls the software LED connected to P1.7 */
 while(1)
 {
 /* Delay time depends on compiler optimization levels and CPU clock */
 for (i = 0; i < 60000; i++);// Gives approximately 450 msec delay with Image-
Craft

// and 170 msec with HiTech
 #ifdef HI_TECH_C

for (i = 0; i < 60000; i++);// Give some more delay if HiTech compiler is used.
for (i = 0; i < 40000; i++);

 #else
#endif

 /* Switch the state of Software LED (on or off) */
 LED_1_Invert();
 } /* End of while(1) */
} /* End of main */

/* [] END OF FILE */

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 47

Sample Projects

3.1.2 ADC to LCD Project

This project demonstrates a 9-bit delta-sigma analog-to-digital converter (ADC) by measuring the

voltage of the potentiometer center tap wiper and displaying the result on the LCD. Connect the volt-

age potentiometer (VR) to the ADC input P0[1]. The program reads the 9-bit ADC result and prints it

to the LCD.

3.1.2.1 Creating ADC to LCD Project

1. Follow steps 1 to 10 in the section Creating My First PSoC 1 (CY8C28) Project on page 39;

change the project name to Ex2_ADC_to_LCD.

2. In the User Modules window, expand the ADCs folder and right-click DelSigPlus; select Place.

A window opens with multiple options for the DelSigPlus UM. Here, the DS1128 configuration is

used. Scroll down in the window to verify that this is the case.

Figure 3-15. Multiple User Module Window

3. Click OK.

4. Verify that the DelSigPlus_1 UM is placed in ASC10.

5. In the User Modules window, expand the Amplifiers window. Right-click PGA and select Place.

Ensure that the PGA is placed in ACC00.

48 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-16. Place PGA in ACC00

6. In the User Modules window, expand Misc Digital; right-click LCD and click Place.

7. Click PGA_1 and configure the properties to match this figure.

Figure 3-17. PGA_1 Properties

8. Click DelSigPlus_1 and configure the properties to match this figure.

Figure 3-18. DelSigPlus_1 Properties

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 49

Sample Projects

9. Click LCD_1 and configure the properties to match this figure.

Figure 3-19. LCD_1 Properties

10.Configure the Global Resources to match the following figure.

Figure 3-20. Global Resources

11.Ensure that AnalogColumn_InputMUX_0 is connected to Port_0_1. If it is not configured for

this port, double-click the mux and choose Port_0_1.

50 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-21. AnalogColumn_InputMUX_0 Connected to Port_0_1

12.Ensure that AnalogColumn_Clock_0 is connected to VC1. If it is not, double-click the mux and

choose VC1.

Figure 3-22. AnalogColumn_Clock_0 Connected to VC1

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 51

Sample Projects

13.Open the existing main.c file within Workspace Explorer. Replace the existing main.c content with

the content of the embedded CY8C28_main_Ex2.c file, which is available within the attachments

feature of this PDF document.

14.Save the project.

15.To build the project, click Build Generate/Build 'Ex2_ADC_to_LCD' Project.

16.Disconnect power to the board.

17.Configure the DVK SW3 to 5 V.

18.Configure the DVK breadboard using the included jumper wires:

P0[1] to VR

Figure 3-23. Connect P0[1] to VR

19.Reapply power to the board.

20.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 22 to

program the device.

21.After programming the device, press the reset button and vary the potentiometer (R20) to see the

results on the LCD.

VR

R20

RESET

P0[1]

52 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Note The ADC output values may not reach full range due to potentiometer and ADC limitations.

ADC values may fluctuate several counts due to system noise, and if the potentiometer voltage is

at the edge of an ADC count.

22.Save and close the project.

3.1.2.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C28_main_Ex2.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

#include <m8c.h> /* part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */

/***
* Function Name: main
**
*
* Summary:
* The main function initializes both the ADC and LCD, starts and waits for an
* ADC conversion, then it displays the raw counts to the LCD.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 WORD adcResult; /* Holds the integer ADC result */

 /* Initialize the PGA used to buffer input from the potentiometer (VR) on
 P0.1 to the ADC */
 PGA_1_Start(PGA_1_HIGHPOWER);
 DelSigPlus_1_Start(DelSigPlus_1_HIGHPOWER); /* Initialize the ADC */
 LCD_1_Start(); /* Initialize the LCD */

 LCD_1_Position(ROW_0, COLUMN_0); /* Set the LCD to (Row=0,Column=0) */
 LCD_1_PrCString("V Count: ");

 DelSigPlus_1_StartAD(); /* Start gathering conversions from the ADC */

 M8C_EnableGInt; /* Enable Global interrupts */

 /* This loop waits for a valid ADC result, and displays it on the LCD */

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 53

Sample Projects

 while (1)
 {
 /* Is there ADC data? */
 if(DelSigPlus_1_fIsDataAvailable())
 {
 /* Store result from ADC */
 adcResult = DelSigPlus_1_wGetDataClearFlag();
 LCD_1_Position(ROW_0, COLUMN_9); /* Set LCD to (Row=0,Column=9) */
 LCD_1_PrHexInt(adcResult); /* Print ADC result on LCD */
 }
 } /* End of while(1) */
} /* End of main */

/* [] END OF FILE */

3.1.3 ADC to UART with DAC

This project demonstrates sine wave generation by using a 6-bit digital-to-analog converter (DAC).

The sine wave period is based on the current value of the ADC. The firmware reads the voltage

output by the DVK board potentiometer and displays the raw counts on the DVK board character

LCD display similar to those shown in the previous project. A 6-bit DAC outputs a table generated

sine wave at a frequency proportional to the ADC count. The frequency outputs to an oscilloscope. A

38400 Baud UART outputs the current ADC count as ASCII formatted into a hexadecimal number.

3.1.3.1 Creating ADC to UART with DAC Project

1. Follow steps 1 to 10 in the section Creating My First PSoC 1 (CY8C28) Project on page 39;

change the project name to Ex3_ADC_to_UART_with_DAC.

2. In the User Modules window expand the ADCs folder and right-click DelSigPlus; select Place.

A window opens with multiple options for the DelSigPlus UM. Here, the DS1128 configuration is

used. Scroll down in the window to verify that this is the case.

3. Click OK.

4. Verify that the UM is placed in ASC10.

5. In the User Modules window, expand the Amplifiers window. Right-click PGA and select Place.

Ensure that the PGA is placed in ACC00.

54 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-24. Place PGA in ACC00

6. In the User Modules window, expand Misc Digital, right-click LCD, and select Place.

7. In the User Modules window, expand Counters, right-click Counter16, and select Place.

8. In the User Modules window, expand Digital Comm, right-click TX8, and select Place.

9. In the User Modules window, expand DACs, right-click DAC6, and select Place. User module is

placed in ASD20 analog block by default. Drag and drop it to ASC21 block.

10.Move the UMs so that they match the configuration shown in Figure 3-25.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 55

Sample Projects

Figure 3-25. Configure User Modules

11.Click on DelSigPlus_1 and configure it to match this figure.

Figure 3-26. DelSigPlus_1 Properties

Counter16_1

Counter16_1

TX8_1

PGA_1

DelSigPlus_1

DAC6_1

56 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

12.Click PGA_1 and configure it to match this figure.

Figure 3-27. PGA_1 Properties

13.Click DAC6_1 and configure it to match this figure.

Figure 3-28. DAC6_1 Properties

14.Click LCD_1 and configure it to match this figure.

Figure 3-29. LCD_1 Properties

15.Click on Counter16_1 and configure it to match this figure.

Figure 3-30. Counter16_1 Properties

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 57

Sample Projects

16.Click TX8_1 and configure it to match this figure.

Figure 3-31. TX8_1 Properties

17.Click RO0[2] LUT, enable Row_0_Output_2_Drive_2 to connect GlobalOutOdd_2.

Figure 3-32. Digital Interconnect Window

18.Click GlobalOutOdd_2. In the window that appears, configure Pin for Port_1_2.

Figure 3-33. Configure Pin for Port_1_2

58 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

19.Click OK to continue.

20.Click AnalogOutBuf_1 and configure it for Port_0_5.

Figure 3-34. Configure AnalogOutBuf_1

21.Verify that AnalogColumn_InputMUX_0 is connected to Port_0_1. If it is not configured for this

port, double-click the mux and choose Port_0_1.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 59

Sample Projects

Figure 3-35. AnalogColumn_InputMUX_0 Connection

60 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

22.Verify that AnalogColumn_Clock_0 and AnalogColumn_Clock_1 are connected to VC2. If it is

not, double-click the mux and chose VC2.

Figure 3-36. AnalogColumn_Clock_0 Connection

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 61

Sample Projects

23.Configure Global Resources to match the following figure.

Figure 3-37. Configure Global Resources

24.Open the existing main.c file within Workspace Explorer. Replace the existing main.c content with

the content of the embedded CY8C28_main_Ex3.c file, which is available within the attachments

feature of this PDF document.

25.Save the project.

26.To generate the project, click Build Generate/Build 'Ex3_ADC_to_UART_with_DAC' Proj-

ect.

27.Open your boot.tpl file in the project folder Files Open File. Select All Files for Files of the

type:.

28.Select boot.tpl in the list of files and click Open.

29.Find the line '@INTERRUPT_9' (for PSoC Block DBC01) and replace that line with:

ljmp_Counter16_C_ISR

30.Save the project.

31.To build the project, click Build Build 'Ex3_ADC_to_UART_with_DAC' Project.

32.Disconnect power to the board.

33.Configure the DVK SW3 to 5 V.

34.Configure the DVK breadboard using the included jumper wires as follows:

P0[1] to VR

P1[2] to TX

P0[5] to Oscilloscope

Note An LED (P0[5] to LED1) by nature does not accurately show the changes in frequency

the best way to see this is to use a Oscilloscope (P0[5] to Oscilloscope).

62 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-38. Connect P0[1] to VR, P1[2] to TX, and P0[5] to LED1

35.Connect a serial cable to the PC and the DVK board.

36.On the DVK board, verify that RS232_PWR(J10) is jumpered to ON.

37.Reapply power to the board.

38.Use a terminal application such as TeraTerm or HyperTerminal with these setup parameters.

Baud Rate: 38400

Data: 8-bit

Parity: none

Stop: 1bit

Flow Control: none

39.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 22 to

program the device.

After programming the device, press Reset and vary the pot to see the result on the LCD as well

as in the terminal application. View the DAC output on a scope or with an LED.

Note The ADC output values may not reach full range due to potentiometer and ADC limitations.

ADC values may fluctuate several counts due to system noise, and if the potentiometer voltage is

at the edge of an ADC count.

40.Save and close the project.

P0[1]

VR

P1[2]

TX

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 63

Sample Projects

3.1.3.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C28_main_Ex3.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

#include <m8c.h> /* part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/* Counter16 Interrupt Handler */
#pragma interrupt_handler Counter16_C_ISR

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */

const BYTE sinTable[]=
{
 0, 0, 1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23, 26, 29,
 31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55, 56, 58, 59, 59, 60,
 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44, 42, 39, 36, 33,
 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3, 2, 1, 0, 0
};

BYTE tablePos = 0;

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the ADC, PGA, LCD, Counter, DAC and UART.
* In the main loop, it continuously checks for an ADC conversion. If there is
* one then it displays the ADC raw count to the LCD, transmits the raw count
* serially, and updates the Counter16 period (based on the raw count) for the
* DAC output.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 /* Variable for holding ADC result, and updating counter period */
 WORD adcResult;

 Counter16_1_Start(); /* Enable the counter used for DAC update rate */
 Counter16_1_EnableInt(); /* Enable DAC update interrupt */

64 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

 /* Start the TX8 UM with no parity (baud rate = 38400) */
 TX8_1_Start(TX8_1_PARITY_NONE);

 /* Enable to PGA to buffer signal from VR to ADC */
 PGA_1_Start(PGA_1_HIGHPOWER);

 DAC6_1_Start(DAC6_1_HIGHPOWER); /* Start the DAC */
 DelSigPlus_1_Start(DelSigPlus_1_HIGHPOWER); /* Start the ADC */
 DelSigPlus_1_StartAD(); /* Start reading values on the ADC */
 LCD_1_Start(); /* Start the character LCD */

 LCD_1_Position(ROW_0, COLUMN_0); /* Set the LCD to (Row=0,Column=0) */
 LCD_1_PrCString("V Count: ");

 M8C_EnableGInt; /* Enable Global Interrupts */

 while(1)
 {
 /* Step 1: Get BYTE data from the ADC
 Step 2: Write BYTE data from ADC to the counter to
 change the DAC update rate
 Step 3: Move the LCD cursor back to the beginning and display new
 ADC data
 Step 4: Write ADC data out the TX port, and then send a return
 */

 /* Is new data available from the ADC? */
 if (DelSigPlus_1_fIsDataAvailable())
 {
 adcResult = DelSigPlus_1_wGetDataClearFlag(); /* Get new ADC data */

 /* Change DAC update rate counter */
 Counter16_1_WritePeriod((adcResult << 4) + 200);

 LCD_1_Position(ROW_0, COLUMN_9); /* Move LCD (row=0,column=0) */
 LCD_1_PrHexInt(adcResult); /* Print ADC result to LCD */
 TX8_1_PutSHexInt(adcResult); /* Write LCD result to TX8 -> PC */
 TX8_1_PutCRLF(); /* Write return character to TX8 */
 }
 } /* End of while(1) */
} /* End of Main */

/***
* Function Name: Counter16_C_ISR
**
*
* Summary:
* This is the interrupt service routine for the Counter16 usermodule written
* in C. The boot.tpl has been modified to jump to this ISR every terminal
* count. The related #pragma above is necessary for the boot.asm file to jump
* to it. Every time a terminal count is reached the DAC will get the next
* value from the sinTable.
*
* Parameters:
* void
*
* Return:
* void

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 65

Sample Projects

*
***/
#ifdef HI_TECH_C
void Counter16_C_ISR(void) @ 0x24
#else
void Counter16_C_ISR(void)
#endif
{
 // Check to see if we have reached the //
 if (tablePos >= sizeof(sinTable))
 {
 tablePos = 0;
 }
 DAC6_1_WriteBlind(sinTable[tablePos++]);
}

/* [] END OF FILE */

3.1.4 CapSense

This project demonstrates CapSense. The firmware displays the CapSense button presses on the

LCD (row 1) and associated LEDs. It also displays the CapSense slider position on the LCD (row 2).

Note that this project uses IDAC. But if you are using an external Rb with CSD, then populate R15

(connected to P3[1]). Rb can range from 2 k to 10 k. See the CapSense user module datasheet for

more information on using Rb.

3.1.4.1 Creating CapSense Project

1. Follow steps 1 to 10 in the section Creating My First PSoC 1 (CY8C28) Project on page 39;

change the project name to Ex4_CapSense.

2. In the User Modules window, expand the Cap Sensors folder. Right-click CSD and select Place.

A window appears with the option to use the default configuration.

Figure 3-39. Select Multi User Module Window

3. Select Yes and click OK.

4. Right-click the CSD user module in the workspace explorer and select CSD Wizard.

66 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-40. Select CSD Wizard

5. The CapSense Wizard window opens.

Figure 3-41. CapSense Wizard

6. In the CapSense Wizard window, under the Global Settings tab, set the # of buttons to ‘2’.

7. Select P0[7] as the Modulator Capacitor Pin.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 67

Sample Projects

Figure 3-42. CapSense Wizard Place Buttons

8. Click and hold SW0 and drag it to P0[5].

9. Click and hold SW1 and drag it to P0[6].

Figure 3-43. CapSense Wizard Slider Sensors

68 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

10. Repeat for each slider sensor and corresponding pin.

S0[0] to P0[0]

S0[1] to P0[1]

S0[2] to P0[2]

S0[3] to P0[3]

S0[4] to P0[4]

11.Select the Sensors Settings tab.

12.Set the Resolution to 80.

Figure 3-44. Sensors Settings Tab

13.Click OK.

14.In the User Modules window, expand Misc Digital, right-click LCD, and select Place.

15.In the User Modules window, expand Misc Digital, right-click LED, and select Place.

16.In the User Modules window, expand Misc Digital, right-click LED, and select Place.

17.Click CSD_1 and configure it to match this figure.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 69

Sample Projects

Figure 3-45. CSD_1 Properties

18. Click LCD_1 and configure it to match this figure.

Figure 3-46. LCD_1 Properties

19. Click LED_1 and configure it to match this figure.

Figure 3-47. LED_1 Properties

20.Click LED_2 and configure it to match this figure.

Figure 3-48. LED_2 Properties

21.Configure Global Resources to match the following figure.

70 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-49. Configure Global Resources

22.Open the existing main.c file within Workspace Explorer. Replace the existing main.c content with

the content of the embedded CY8C28_main_Ex4.c file, which is available within the attachments

feature of this PDF document.

23.Save the project.

24.To generate and build the project, click Build Generate/Build 'Ex4_CapSense' Project.

25.Disconnect power to the board.

26.Configure the DVK board SW3 to 5 V.

27.Configure the DVK breadboard using the included jumper wires:

P1[6] to LED1

P1[7] to LED2

28.Ensure that P0[1], P0[5], and P0[7] are disconnected.

29.Reapply power to the board.

30.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 22 to

program the device.

31.Reset the DVK. An LED lights up when either CapSense button is pushed. If B1 (P0[5]) is

pushed, it also displays "Button1" in the top row of the LCD display. Similarly, if B2 (P0[6]) is

pushed, it displays "Button2" in the top row of the LCD display. The bottom row of the LCD dis-

plays the slider position with a horizontal bargraph.

32.Save and close the project.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 71

Sample Projects

3.1.4.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C28_main_Ex4.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

#include <m8c.h> /* part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define NUM_CHARACTERS 16 /* Number of characters on LCD */

/* For clearing a row of the LCD*/
#define CLEAR_ROW_STR " "
/* Button 1 only string for row 0 of the LCD */
#define BUTTON_1_STR "Button1 "
/* Button 2 only string for row 0 of the LCD */
#define BUTTON_2_STR " Button2"
/* Button 1 and 2 string for row 0 of the LCD */
#define BUTTON_1_2_STR "Button1 Button2"
/* Default string for button row of the LCD */
#define DEFAULT_ROW_0_STR "Touch Buttons "
/* Default string for slider row of the LCD */
#define DEFAULT_ROW_1_STR "Touch The Slider"

/* CapSense specific */
#define SLIDER_RESOLUTION 80
#define SCANSENSOR_BTN_B1 0
#define SCANSENSOR_BTN_B2 1

void UpdateButtonState(BYTE sensor_1, BYTE sensor_2);
void UpdateSliderPosition(BYTE value);

/***
* Function Name: main
**
*
* Summary:
* The main function initializes CapSense and the LCD. Then it continuously
* scans all CapSense sensors (slider sensors and buttons), gets the state of
* the buttons and slider and updates the LCD with the current state.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{

72 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

 BYTE pos; /* Slider Position */
 BYTE stateB_1; /* Button1 State */
 BYTE stateB_2; /* Button2 State */

 M8C_EnableGInt; /* Enable Global Interrupts */

 /* LCD Initialization */
 LCD_1_Start();
 /* For Bargraph display on LCD */
 LCD_1_InitBG(LCD_1_SOLID_BG);

 /* LED1 Initialization */
 LED_1_Start();
 /* LED2 Initialization */
 LED_2_Start();

 /* CapSense Initialization */
 CSD_1_Start();
 /* Initialize the baselines by scanning all sensors and getting the initial
 raw data values */
 CSD_1_InitializeBaselines();
 /* Load finger thresholds set in user module parameters */
 CSD_1_SetDefaultFingerThresholds();

 while(1)
 {
 /* Scan each CapSense sensor and update their raw data value */
 CSD_1_ScanAllSensors();
 /* Update baselines for each sensor */
 CSD_1_UpdateAllBaselines();

 /* Update state to active/inactive for each button sensor */
 stateB_1 = CSD_1_bIsSensorActive(SCANSENSOR_BTN_B1);
 stateB_2 = CSD_1_bIsSensorActive(SCANSENSOR_BTN_B2);

 /* Get Linear Slider Position */
 pos = CSD_1_wGetCentroidPos(1);

 /* Update LCD and LED's with current Button and Linear Slider states */
 UpdateButtonState(stateB_1, stateB_2);
 UpdateSliderPosition(pos);
 }
}

/***
* Function Name: UpdateButtonState
**
*
* Summary:
* Updates the LCD screen with the current button state by displaying which
* button is being touched on row 0. LED's are also updated according to button
* state.
*
* Parameters:
* sensor_1: Button state for B1
* sensor_2: Button state for B2
*
* Return:

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 73

Sample Projects

* void
*
***/
void UpdateButtonState(BYTE sensor_1, BYTE sensor_2)
{
 LCD_1_Position(ROW_0,COLUMN_0);

 /* Check the state of the buttons and update the LCD and LEDs */
 if (sensor_1 && sensor_2)
 {
 /* Display both Button strings on LCD if both button sensors are active */
 LCD_1_PrCString(BUTTON_1_2_STR);
 /* Both LED's are on in this state */
 LED_1_On();
 LED_2_On();
 }
 else if (sensor_1 || sensor_2)
 {
 if (sensor_1)
 {
 /* Display Button 1 state on LCD and LED1 */
 LCD_1_PrCString(BUTTON_1_STR);
 LED_1_On();
 /* Button 2 is not active */
 LED_2_Off();
 }
 else // sensor_2
 {
 /* Display Button 2 state on LCD and LED2 */
 LCD_1_PrCString(BUTTON_2_STR);
 LED_2_On(); /* Turn on LED2 */
 LED_1_Off(); /* Turn off the LED1 */
 }
 }
 else
 {
 /* Display default string on LCD and set LED's to off */
 LCD_1_PrCString(DEFAULT_ROW_0_STR);
 /* Set both LED's off in this state */
 LED_1_Off();
 LED_2_Off();
 }
}

/***
* Function Name: UpdateSliderPosition
**
*
* Summary:
* Updates the LCD screen with the current slider position by displaying the
* horizontal bargraph.
*
* Parameters:
* value: Centroid position from CapSense slider.
*
* Return:
* void
*

74 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

***/
void UpdateSliderPosition(BYTE value)
{
 /* The slider position is 0xFF if there is no finger present on the slider */
 if (value > SLIDER_RESOLUTION)
 {
 /* Clear old slider position (2nd row of LCD) */
 LCD_1_Position(ROW_1, COLUMN_0);
 LCD_1_PrCString(DEFAULT_ROW_1_STR);
 }
 else
 {
 /* Update the bargraph with the current finger position */
 LCD_1_DrawBG(ROW_1, COLUMN_0, NUM_CHARACTERS, value + 1);
 }
}

/* [] END OF FILE */

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 75

Sample Projects

3.2 CY8C29 Family Processor Module Code Examples

3.2.1 My First PSoC 1 (CY8C29) Project

3.2.1.1 Creating My First PSoC 1 (CY8C29) Project

1. Open PSoC Designer

2. To create a new project, click File New Project. The New Project window opens.

3. In the New Project window, select the Chip-Level Project. Name the project

Example_My_First_PSoC_Project.

4. In the Location field, click Browse and navigate to the appropriate directory.

Figure 3-50. New Project Window

5. Click OK. The Select Project Type window opens.

76 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-51. Select Project Type Window

6. In this window, under Select Target Device, click View Catalog.

7. The Device Catalog window opens. Click on the PSoC tab, and scroll down to the CY8C29466,

CY8C29566,… section.

8. For this project, click any device in this section and then click Select.

Figure 3-52. Device Catalog Window

9. Under Generate 'Main' File Using:, select C, then click OK.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 77

Sample Projects

10.By default, the project opens in Chip view.

Figure 3-53. Default View.

11. In the User Modules window, expand the PWMs folder.

Figure 3-54. User Modules Window

12.In this folder, right-click on PWM8 and select Place. The User Module (UM) is placed in the first

available digital block.

78 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-55. Place User Module PWM8

13.Double-click the placed PWM8_1 UM; the Properties window opens on the left side of the

screen. Configure the PWM with the settings as in the following figure. If the Properties window

does not appear, click View Properties Window.

Figure 3-56. Properties Window

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 79

Sample Projects

14.Next, route the PWM CompareOut signal to P0[7]. The first step is to configure the lookup table

(LUT) on Row_0_Output3.

Figure 3-57. Route the PWM CompareOut signal to P0[7]

15.Double-click the LUT, the Digital Interconnect window opens.

16.In this window, enable Row_0_Output_3_Drive_1 to connect to GlobalOutEven_7.

Figure 3-58. Digital Interconnect Window

17.Click Close.

18.Click on GlobalOutEven_7. In the window that appears, configure Pin for Port_0_7.

80 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-59. Configure Pin for Port_0_7

19.Click OK to continue.

20.In the User Modules window expand the Misc Digital folder. In this folder, right-click the LED

and select Place; this adds the UM to the project. This UM does not use digital or analog blocks.

It appears in Workspace Explorer Example_My_First_PSoC_Project[CY8C29]

Example_My_First_PSoC_Project[Chip] Loadable Configurations

example_my_first_psoc_project - 2 User Modules.

Figure 3-60. Workspace Explorer

21.Double-click the LED_1 UM and navigate to the Properties window. Configure the LED for

Port_1_7.

Figure 3-61. Properties Window

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 81

Sample Projects

22.Configure the Global Resources window to match the following figure.

Figure 3-62. Global Resources Window

23.Open the existing main.c file within Workspace Explorer. Replace the existing main.c content with

the content of the embedded CY8C29_main_Ex1.c file, which is available within the attachments

feature of this PDF document.

Figure 3-63. Workspace Explorer

24.Save the project.

25.To build the project, click Build Generate/Build 'Example_My_First_PSoC_Project' Project.

26.Disconnect power to the board.

27.Configure the DVK board SW3 to 5 V.

28.Configure the DVK breadboard using the included jumper wires:

P0[7] to LED1

P1[7] to LED2

29.Reapply power to the board.

30.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 27 to pro-

gram the device.

31.Reset the DVK, and observe the blinking LEDs.

32.Save and close the project.

82 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.2.1.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C29_main_Ex1.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

/***
* File Name: main.c
*
* Description:
* This file provides source code for My First PSoC Project example. The
* firmware blinks one LED at about 3.6 Hz with a PWM, and blinks another LED
* with a software timing loop.
*
**/

/**
* PWM Settings:
*
* Input Clock = VC3 //VC3 = 24 MHz/16/16/256 =366.2 Hz
* Enable = High
* CompareOut = ROW_0_Output_3
* TerminalCountOut = None
* Period = 100 Output period = (Period+1)*(1/Input Clock) = 101/
366.2 = .275 sec

or 3.6 Hz
* PulseWidth = 50
* CompareType = Less Than Or Equal
* InterruptType = Terminal Count
* ClockSync = Sync to SysClk
* InvertEnable = Normal
*

/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

unsigned int i; // Variable used for delay

void main(void)
{
 PWM8_1_Start();// Turn on the PWM to blink LED on P0.7

LED_1_Start();// Enable Software controlled LED

// The following loop controls the software LED connected to P1.7
while(1)
{

for (i=0;i<60000;i++){} //Length of delay depends on compiler and CPU clock
LED_1_Invert(); //Switch the state of Software LED, if on turn it off,
 //if off turn it on

} //End of while(1)
}//End of main

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 83

Sample Projects

3.2.2 ADC to LCD Project

This project demonstrates a 9-bit Delta-Sigma ADC by measuring the voltage of the potentiometer

center tap wiper and displaying the result on the LCD. Connect the voltage potentiometer (VR) to the

ADC input P0[1]. The program reads the 9-bit ADC result and prints it to the LCD.

3.2.2.1 Creating ADC to LCD Project

1. Follow steps 1 to 10 in the section Creating My First PSoC 1 (CY8C29) Project on page 75;

change the project name to Example_ADC_to_LCD.

2. In the User Modules window, expand the ADCs folder; right-click DelSig and select Place. A

window opens with multiple options for the DelSig UM. Scroll down, if necessary, and select the

DS1128 configuration. Click OK.

Figure 3-64. Select Multi User Module Window

3. Click OK.

4. Verify that the DelSig_1 UM is placed in ASC10.

5. In the User Modules window, expand the Amplifiers window. Right-click PGA and select Place.

Ensure that the PGA is placed in ACB00.

84 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-65. Place PGA in ACB00

6. In the User Modules window, expand Misc Digital; right-click LCD and select Place.

7. Double-click PGA_1 and configure the properties to match this figure.

Figure 3-66. PGA_1 Properties

8. Double-click DelSig_1 and configure the properties to match this figure.

Figure 3-67. DelSig_1 Properties

9. Double-click LCD_1 and configure the properties to match this figure.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 85

Sample Projects

Figure 3-68. LCD_1 Properties

10.Configure the Global Resources to match the following figure.

Figure 3-69. Global Resources Properties

11.Ensure that AnalogColumn_InputMUX_0 is connected to Port_0_1. If it is not configured for

this port, double-click the mux and choose Port_0_1.

86 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-70. AnalogColumn_InputMUX_0 is Connected to Port_0_1

12.Ensure that AnalogColumn_Clock_0, is connected to VC1. If it is not, double-click the mux and

chose VC1.

Figure 3-71. AnalogColumn_Clock_0 is connected to VC1

13.Open the existing main.c file within Workspace Explorer. Replace the existing main.c content with

the content of the embedded CY8C29_main_Ex2.c file, which is available within the attachments

feature of this PDF document.

14.Save the project.

15.To build the project, click Build Generate/Build 'Example_ADC_to_LCD' Project.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 87

Sample Projects

16.Disconnect power to the board.

17.Configure the DVK SW3 to 5 V.

18.Configure the DVK breadboard using the included jumper wires:

P0[1] to VR

Figure 3-72. Connect P0[1] to VR

19.Reapply power to the board.

20.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 27 to pro-

gram the device.

21.After programming the device, press the reset button and vary the potentiometer (R20) to see the

results on the LCD.

Note The ADC output values may not reach full range due to potentiometer and ADC limitations.

ADC values may fluctuate several counts due to system noise, and if the potentiometer voltage is

at the edge of an ADC count.

22.Save and close the project.

P0[1]

VR

R20

RESET

88 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.2.2.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C29_main_Ex2.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.
/***
* File Name: main.c
*
* Description:
* This file provides source code for the ADC to LCD code example. The
* firmware takes a voltage output from a potentiometer and displays the raw
* counts on an LCD.
*
**

/**
* PGA Settings:(The PGA buffers the potentiometer voltage on P0.1 into the ADC)
*
* Gain = 1
* Input = AnalogColumn_InputMUX_0 (P0.1)
* Reference = AGND
* AnalogBus = Disable
***/
/**
* LCD Settings:
* LCDPort = Port_2
* BarGraph = Disable
***/
/**
* DelSig Settings:
* The ADC can read full range values from 0-5 V, if the Ref Mux setting is
selected
* as (Vdd/2)+/- (Vdd/2) and Vdd = 5 V. The ADC is configured for a resolution of
9 bits,
* this is achieved by selecting the appropriate configuration when placing the
UM.
*
* DataFormat = Unsigned
* DataClock = VC1 // VC1 = 24MHz/12 = 2MHz
* ClockPhase = Normal
* PosInput = ACB00 (PGA_1)
* NegInput = ACB00 *Note, this parameter is unused
* NegInputGain = Disconnected
* PWM Output = None
* PulseWidth = 1 *Note, this parameter is unused
***/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

unsigned int wADCResult; // Holds the integer ADC result

void main(void)
{

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 89

Sample Projects

 PGA_1_Start(PGA_1_HIGHPOWER);//Initialize the PGA, PGA used to buffer input
from the VR on P0.1 to the ADC

DelSig_1_Start(DelSig_1_HIGHPOWER); //Initialize the ADC
LCD_1_Start(); //Initialize the LCD

LCD_1_Position(0,0);//Set the LCD to (Row=0,Column=0)

LCD_1_PrCString("V Count: ");

DelSig_1_StartAD();//Start gathering conversions from the ADC

M8C_EnableGInt; //Enable Global interrupts

//This loop waits for a valid ADC result, and then displays it on the LCD
while (1)
{

while (!(DelSig_1_fIsDataAvailable()));//Wait for ADC data to be ready
wADCResult=DelSig_1_wGetDataClearFlag();//Store result from ADC
LCD_1_Position(0,9); //Set LCD to (Row=0,Column=9)
LCD_1_PrHexInt(wADCResult);//Print ADC result on LCD

}

}

90 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.2.3 ADC to LCD with DAC and UART

This project demonstrates sine wave generation by using a 6-bit DAC. The sine wave period is

based on the current value of the ADC. The firmware reads the voltage output by the DVK board

potentiometer and displays the raw counts on the DVK board character LCD display similar to those

shown in the previous project. A 6-bit DAC outputs a table generated sine wave at a frequency

proportional to the ADC count. The frequency is in the approximate range of 15 Hz to 350 Hz and

outputs to port to observe on scope. A 38400 Baud UART outputs the current ADC count as ASCII

formatted into a hexadecimal number.

3.2.3.1 Creating ADC to LCD with DAC and UART Project

1. Follow steps 1 to 10 in the section Creating My First PSoC 1 (CY8C29) Project on page 75;

change the project name to Example_ADC_to_LCD_with_DAC_and_UART.

2. In the User Modules window, expand the ADCs folder; right-click DelSig and select Place. A

window opens with multiple options for the DelSig UM. Scroll down, if necessary, and select the

DS232 configuration. Click OK.

Figure 3-73. Select Multi User Module Window

3. Click OK.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 91

Sample Projects

4. Verify that the UM is placed in ASC10.

5. In the User Modules window, expand the Amplifiers window. Right-click PGA and select Place.

Ensure that the PGA is placed in ACB00.

Figure 3-74. Place PGA in ACB00

6. In the User Modules window, expand Misc Digital, right-click LCD, and select Place.

7. In the User Modules window, expand Counters, right-click Counter8, and select Place.

Complete this step twice to place two Counter8s.

8. In the User Modules window, expand Digital Comm, right-click TX8, and select Place.

9. In the User Modules window, expand DACs, right-click DAC6, and select Place.

10.Move the UMs so that they match the configuration shown in Figure 3-75 on page 92.

92 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-75. Configure User Modules

Counter8_1

Counter8_2

TX8_1

PGA_1

DelSig_1

DAC6_1

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 93

Sample Projects

11.Double-click DelSig_1 and configure it to match this figure.

Figure 3-76. DelSig_1 Properties

12.Double-click PGA_1 and configure it to match this figure.

Figure 3-77. PGA_1 Properties

13.Double-click DAC6_1 and configure it to match this figure.

Figure 3-78. DAC6_1 Properties

14.Double-click LCD_1 and configure it to match this figure.

Figure 3-79. LCD_1 Properties

94 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

15.Double-click Counter8_1 and configure it to match this figure.

Figure 3-80. Counter8_1 Properties

16.Double-click Counter8_2 and configure it to match this figure.

Figure 3-81. Counter8_2 Properties

17.Double-click TX8_1 and configure it to match this figure.

Figure 3-82. TX8_1 Properties

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 95

Sample Projects

18.Double-click RO2[0] LUT, enable Row_2_Output_0_Drive_1 to connect GlobalOutEven_4.

Figure 3-83. Digital Interconnect Window

96 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

19.Double-click GlobalOutEven_4. In the window that appears, configure Pin for Port_0_4.

Figure 3-84. Configure Pin for Port_0_4

20.Click OK to continue.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 97

Sample Projects

21.Click AnalogOutBuf_1 and configure it for Port_0_5.

Figure 3-85. Configure AnalogOutBuf_1

22.Verify that AnalogColumn_InputMUX_0 is connected to Port_0_1. If it is not configured for this

port, double-click the mux and choose Port_0_1.

Figure 3-86. AnalogColumn_InputMUX_0 Connection

98 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

23.Verify that AnalogColumn_Clock_0 is connected to VC2. If it is not, double-click the mux and

chose VC2.

Figure 3-87. AnalogColumn_Clock_0 Connection

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 99

Sample Projects

24.Configure Global Resources to match the following figure.

Figure 3-88. Configure Global Resources

25.Open the existing main.c file within Workspace Explorer. Replace the existing main.c content with

the content of the embedded CY8C29_main_Ex3.c file, which is available within the attachments

feature of this PDF document.

26.Save the project.

27.To generate the project, click Build Generate/Build

'Example_ADC_to_LCD_with_DAC_and_UART' Project.

28.Open your Counter8_1INT.asm file in Files lib Library Source Files. Copy the code found

in the Counter8_1INT.asm file in PDF attachment.

29.Save the project.

30.To build the project, click Build Build 'Example_ADC_to_LCD_with_DAC_and_UART' Proj-

ect.

Note If prompted to reload an out of date file, select Yes.

31.Disconnect power to the board.

32.Configure the DVK SW3 to 5 V.

33.Configure the DVK breadboard using the included jumper wires as follows:

P0[1] to VR

P0[4] to TX

P0[5] to Scope

Note An LED (P0[5] to LED1) by nature does not accurately show the changes in frequency;

the best way to see this is to use a Scope(P0[5] to Scope).

100 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-89. Connect P0[1] to VR, P0[4] to TX, and P0[5] to LED1

34.Connect a serial cable to the PC and the DVK board.

35.On the DVK board, verify that RS232_PWR(J10) is jumpered to ON.

36.Reapply power to the board.

37.Use a terminal application such as TeraTerm or HyperTerminal with these setup parameters.

Baud Rate: 38400

Data: 8-bit

Parity: none

Stop: 1 bit

Flow Control: none

38.Use PSoC Designer as described in Programming My First PSoC 1 Project on page 27 to pro-

gram the device.

After programming the device, press Reset and vary the potentiometer to see the result on the

LCD as well as in the terminal application. View the DAC output on a scope or with an LED.

Note The ADC output values may not reach full range due to potentiometer and ADC limitations.

ADC values may fluctuate several counts due to system noise, and if the potentiometer voltage is

at the edge of an ADC count.

39.Save and close the project.

P0[1]

VR

P0[4]

TX

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 101

Sample Projects

3.2.3.2 main.c

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C29_main_Ex3.c file,

which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

/***
* File Name: main.c
*
* Description:
* This file provides source code for the ADC to LCD with DAC and UART example
* project. The firmware takes a voltage output from a potentiometer and
* displays the ADC raw count on an LCD. The raw count is also transmitted
* serially. The raw count also determines the clock divider value of the clock
* driving the DAC update rate.

/**
* PGA_1 Settings:(The PGA buffers the potentiometer voltage on P0.1 into the ADC)
*
* Gain = 1
* Input = AnalogColumn_InputMUX_0 (P0.1)
* Reference = AGND
* AnalogBus = Disable
*
***/
/**
* LCD_1 Settings:
* LCDPort = Port_2
* BarGraph = Disable
*
***/
/**
* DelSig_1 Settings:
* The ADC can read full range values from 0-5 V, if the Ref Mux setting is
selected
* as (Vdd/2)+/- (Vdd/2) and Vdd = 5 V. The ADC is configured for a resolution of
8 bits,
* this is achieved by selecting the appropriate configuration when placing the
UM.
*
* DataFormat = Unsigned
* DataClock = VC2 //VC2 = 24MHz/16/16 = 250kHz
* ClockPhase = Normal
* PosInput = ACB00 (PGA_1)
* NegInput = ACB00 *Note this parameter is not used
* NegInputGain = Disconnected
* PWM Output = None
* PulseWidth = N/A *Note this parameter is not used
*
***/
/**
* Counter8_1 Settings:
* The Counter8_1 controls the update rate of the DAC. The DAC is updated during
ever

102 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

* TerminalCount ISR. The frequency of the TerminalCount ISR is determined by the
* Counter Input Clock divided by the (Period value +1). The Period Value of the
counter
* is changed by the ADC reading. Thus the frequency of the TerminalCount ISR can
range
* from 125kHz (Period Value=1) to 977Hz (Period Value = 255)
*
* Clock = VC2 // VC2 = 24MHz/16/16 = 250kHz
* ClockSync = Sync to SysClk
* Enable = High
* CompareOut = None
* TerminalCountOut = None
* Period = 255 *Note this parameter is updated in the main loop
* CompareValue = 0 *Note this parameter is not used
* CompareType = Less Than or Equal
* InterruptType = Terminal Count
* InvertEnable = Normal
*
***/
/**
* Counter8_2 Settings:
* The Counter8_1 provides a clock to the TX8 UM to achieved a desired baud rate.
* For this project the desired baud rate is 38400. The TX8 UM derives the baud
rate
* by dividing its input clock by 8. Thus the input clock to the TX8 needs to be
around
* 307.2 kHz to achieve a baud rate of 38400. The Counter8_1 UM provides this
clock by dividing
* VC3 (12MHz) by 39 to get 307.7 kHz.
*
* Clock = VC3 //VC3 = 24MHz/2 = 12MHz
* ClockSync = Sync to SysClk
* Enable = High
* CompareOut = None
* TerminalCountOut = Row_2_Output_1
* Period = 38
* CompareValue = 0*Note this parameter is not used
* CompareType = Less Than or Equal
* InterruptType = Terminal Count
* InvertEnable = Normal
*
***/
/**
* TX8_1 Settings:
* The TX8 UM provides serial communication of the ADC data to another device or
PC.
* The TX8 UM send data out at a baud rate of 38400. This baud rate is derived
* by dividing the UM's input clock by 8.
*
* Clock = Row_2_Output_1 (From Counter8_1)
* Output = Row_2_Output_0
* Tx Interrupt Mode = TXComplete
* ClockSync = Sync to SysClk
* Data Clock Out = None

***/
/**
* DAC6 Settings:

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 103

Sample Projects

* The DAC6 outputs a sine wave on P0.5. The shape of the sine wave is determined
* by a 64 element lookup table found in SINtable.asm. The update rate of the DAC6
* is determined by the Counter8 terminal count ISR. The frequency of the DAC out-
put
* equals the Counter8 Terminal Count frequency divided by 64 (the number of ele-
ments in the table).
*
* AnalogBus = AnalogOutBus_1
* ClockPhase = Normal
* DataFormat = OffsetBinary
*
***/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

const BYTE SINtable[]=
{
 31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55, 56, 58, 59, 59,
 60, 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44, 42, 39,
 36, 33, 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3, 2, 1, 0,
 0, 0, 0, 1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23, 26, 29
};

BYTE bADCvalue;//Variable for holding ADC result, and updating counter period

void main(void)
{
 Counter8_1_Start();//Enable the counter used for DAC update rate

Counter8_1_EnableInt();//Enable DAC update interrupt
Counter8_2_Start();//Enable counter for TX8 clock rate divider
TX8_1_Start(TX8_1_PARITY_NONE);//Start the TX8 UM with no parity (baud rate =

38400)
PGA_1_Start(PGA_1_HIGHPOWER);//Enable to PGA to buffer signal from VR to ADC
DAC6_1_Start(DAC6_1_HIGHPOWER);//Start the DAC
DelSig_1_Start(DelSig_1_HIGHPOWER);//Start the ADC
DelSig_1_StartAD();//Start reading values on the ADC
LCD_1_Start(); //Start the character LCD

M8C_EnableGInt; // Enable Global Interrupts

while(1)
{

/* Step 1: Get BYTE data from the ADC
 Setp 2: Write BYTE data from ADC to the counter to change the DAC

update rate
 Step 3: Move the LCD cursor back to the beginning and display new ADC

data
 Setp 4: Write ADC data out the TX port, and then send a return

 */
if (DelSig_1_fIsDataAvailable())//Is new data available from the ADC?
{

bADCvalue = DelSig_1_bGetDataClearFlag(); // Get new data from ADC
Counter8_1_WritePeriod(bADCvalue); // Update DAC update rate counter
LCD_1_Position(0,0); // Move LCD (row=0,column=0)
LCD_1_PrHexByte(bADCvalue); // Print ADC result to LCD

104 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

TX8_1_PutSHexByte(bADCvalue); // Write LCD result out TX8 to PC
TX8_1_PutCRLF(); // Send a return character

}
} //end of while(1)

} //End of Main

3.2.3.3 Counter8_1INT.asm

1. Open your Counter8_1INT.asm file in Files lib Library Source Files.

2. Replace the existing Counter8_1INT.asm content with the content of the embedded file, which is

available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

;;***
;;***
;; FILENAME: Counter8_1INT.asm
;; Version: 2.5, Updated on 2009/3/31 at 12:2:49
;; Generated by PSoC Designer 5.0.423.0
;;
;; DESCRIPTION: Counter8 Interrupt Service Routine
;;---
;; Copyright (c) Cypress MicroSystems 2000-2004. All Rights Reserved.
;;***
;;***

include "m8c.inc"
include "memory.inc"
include "Counter8_1.inc"

;---
; Global Symbols
;---
export _Counter8_1_ISR

AREA InterruptRAM (RAM,REL,CON)

;@PSoC_UserCode_INIT@ (Do not change this line.)
;---
; Insert your custom declarations below this banner
;---
export bTablePos// Stores last table position index
export _bTablePos

;------------------------
; Includes
;------------------------

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 105

Sample Projects

;------------------------
; Constant Definitions
;------------------------

;------------------------
; Variable Allocation
;------------------------
area bss(RAM)
bTablePos:blk 1
_bTablePos:
;---
; Insert your custom declarations above this banner
;---
;@PSoC_UserCode_END@ (Do not change this line.)

AREA UserModules (ROM, REL)

;---
; FUNCTION NAME: _Counter8_1_ISR
;
; DESCRIPTION: Unless modified, this implements only a null handler stub.
;
;---
;

_Counter8_1_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)
 ;---
 ; Insert your custom code below this banner
 ;---
 ; NOTE: interrupt service routines must preserve
 ; the values of the A and X CPU registers.

push A
push X

dec [bTablePos] ;Go to the next element in the table
mov A, [bTablePos]
jnz SINlookup ;If we are at the end go back to the beginning
mov [bTablePos], 64

SINlookup:
index _SINtable;Get the value in the SINtable pointed to by [bTablePos]
lcall DAC6_1_WriteBlind;Write value from SINtable (stored in A) to the DAC

pop X
pop A

 ;---
 ; Insert your custom code above this banner
 ;---
 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

; end of file Counter8_1INT.asm

106 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3 CY8C38 / CY8C58LP Family Processor Module Code Examples

3.3.1 My First PSoC 3 / PSoC 5LP Project

This project demonstrates basic hardware and software functionality with the PSoC 3 or PSoC 5LP

device. It flashes two LEDs independently, one using hardware, the other with software. The hard-

ware LED uses a hardware enabled digital port and a PWM to generate a duty cycle and flash the

LED. The software LED uses a software enabled digital port and a simple delay in the main.c to flash

the LED at a known rate.

This code example uses these components:

DigitaL Output Pin (Component Catalog Ports and Pins Digital Output Pin)

PWM (Component Catalog Digital Functions PWM)

Clock (Component Catalog System Clock)

Logic Low (Component Catalog Digital Logic Logic Low)

Logic High (Component Catalog Digital Logic Logic High)

3.3.1.1 Creating My First PSoC 3 / PSoC 5LP Project

1. Open PSoC Creator.

2. Create a new project by clicking Create New Project… in the Start Page of PSoC Creator.

3. In the New Project window, select the Empty PSoC3 Design template for a PSoC 3 design, or

Empty PSoC5 Design template for a PSoC 5LP design and name the project

Ex1_LED_with_PWM.

4. In the Location field, type the path where you want to save the project, or click the button

and navigate to the appropriate directory.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 107

Sample Projects

Figure 3-90. New Project Window

5. By default, the design window opens TopDesign.cysch. This is the project's schematic entry file

within PSoC Creator.

Figure 3-91. Ex1_LED_with_PWM

108 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.1.2 Placing and Configuring PWM

1. Drag and drop the PWM component (Component Catalog Digital Functions PWM) to-

workspace.

2. Double-click the PWM_1 component in the schematic to open the configuration window.

3. Configure the PWM as follows:

Configure Tab

Name: PWM_1

Resolution: 8-Bit

PWM Mode: One Output

Period: 100

CMP Value 1: 50

CMP Value Type 1: Less or Equal

Figure 3-92. PWM Component Configuration

Advanced Tab

Enable Mode: Hardware Only

Interrupt On Terminal Count Event: Select

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 109

Sample Projects

Figure 3-93. PWM Component Advanced Tab Configuration

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

3.3.1.3 Placing and Configuring Digital Output Pin Hardware

1. Drag and drop the Digital Output Pin component (Component Catalog Ports and Pins

Digital Output Pin).

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the digital output pin:

Type Tab

Name: LED1

Select Digital Output check box

Select HW Connection check box

Figure 3-94. LED1 Component Configuration

110 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

General Tab

Drive Mode: Strong Drive

Leave the remaining parameters as default

Figure 3-95. Pins - LED1 Component Configuration

For more information about what the parameters mean, click the Datasheet button in the

configuration window.

3.3.1.4 Placing and Configuring Software Digital Output Pin

1. Drag and drop the Digital Output Pin component (Component Catalog Ports and Pins

Digital Output Pin).

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the digital output pin:

Type Tab

Name: LED2

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 111

Sample Projects

Figure 3-96. LED2 Component Configuration

General Tab

Drive Mode: Strong Drive

Leave the remaining parameters as default

Figure 3-97. Pins - LED2 Component Configuration

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

3.3.1.5 Connecting the Components Together

1. Using the Wire Tool , connect pwm (in the PWM component) to hardware connection point of

LED1.

2. Connect a Logic High component (Component Catalog Digital Logic Logic High) to

the enable on the PWM.

112 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3. Connect a Logic Low component (Component Catalog Digital Logic Logic Low) to the

reset on the PWM.

4. Connect a Clock component (Component Catalog System Clock) to the clock on the

PWM.

5. Double-click the Clock_1 component to configure.

6. Configure the clock:

Configure Clock Tab

Name: Clock_1

Source: ILO (1.000 kHz)

Select Divider and set the value as 10

Leave the remaining parameters as default

Figure 3-98. Clock Component Configuration

7. When complete, the schematic looks similar to Figure 3-99.

Figure 3-99. Connected Components

3.3.1.6 Configuring Pins

1. From the Workspace Explorer, double-click the Ex1_LED_with_PWM.cydwr file (see

Figure 3-100).

2. Click the Pins tab.

3. Select pin P1[6] for LED1.

4. Select pin P1[7] for LED2.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 113

Sample Projects

Figure 3-100. Pin Assignments

3.3.1.7 Creating main.c File

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C38_main_Ex1.C for

PSoC 3 module and CY8C58LP_main_Ex1.C for PSoC 5 module file, which is available within

the attachments feature of this PDF document.

Note

To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

3. From the Build menu, select Build Ex1_LED_with_PWM.

4. PSoC Creator builds the project and displays the comments in the Output dialog box. When you

see the message "Build Succeeded", the build is complete.

3.3.1.8 Configuring and Programming PSoC Development Board

1. Disconnect power to the board.

2. Configure the DVK SW3 to 3.3 V.

3. Configure the following on the PSoC development board's prototyping area using the included

jumper wires:

P1[6] to LED1

P1[7] to LED2

4. Apply power to the board.

5. Use PSoC Creator as described in Programming My First PSoC 3 Project on page 32 or

Programming My First PSoC 5LP Project on page 36 to program the device.

6. After programming the device, press the Reset button on the PSoC development board. The

PWM causes the LED1 to blink at approximately 1 Hz due to PSoC Creator's PWM component

and LED2 blinks at a faster rate using a software timing loop to toggle the LED.

7. Save and close the project.

114 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.2 ADC to LCD Project

This project demonstrates the Delta-Sigma ADC by measuring the voltage of the potentiometer on

the board and displays the result on the character LCD of the PSoC development board.

The ADC is clocked by the internal clock of 3 MHz and the sampling rate is set to 10,000 sps. Con-

nect the voltage potentiometer (labeled "VR" on the PSoC development board) to the ADC input

(programmed to P0[7] for this example). The program reads the ADC result and prints it to the LCD.

The instructions that follow assume that you have completed My First PSoC 3 / PSoC 5LP Project

and therefore have a basic understanding of the PSoC Creator software environment.

This code example uses these components:

Delta Sigma ADC (Component Catalog Analog ADC Delta Sigma ADC)

Character LCD (Component Catalog Display Character LCD)

Analog Pin (Component Catalog Ports and Pins Analog Pin)

3.3.2.1 Creating ADC to LCD Project

1. Open PSoC Creator.

2. Create a new project by clicking Create New Project… in the Start Page of PSoC Creator.

3. In the New Project window, select the Empty PSoC3 Design template for a PSoC 3 design, or

Empty PSoC5 Design template for a PSoC 5LP design and name the project

Ex2_ADC_to_LCD.

4. In the Location field, type the path where you want to save the project, or click and navi-

gate to the appropriate directory.

5. By default, the design window opens TopDesign.cysch. This is the project's schematic entry file

within PSoC Creator.

3.3.2.2 Placing and Configuring Delta Sigma ADC

1. Drag and drop the Delta Sigma ADC component (Component Catalog Analog ADC

Delta Sigma ADC).

2. Double-click the ADC_DelSig_1 component in the schematic to open the configuration window.

3. Configure the Delta Sigma ADC as follows:

Configure Tab

Name: ADC_DelSig_1

Conversion Mode: Continuous

Configs: 1

Resolution: 8

Conversion Rate: 10000

Input Range: Vssa to Vdda

Buffer Gain: 1

Reference: Internal Vref

Clock Source: Internal

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 115

Sample Projects

Figure 3-101. ADC Component Configuration

3.3.2.3 Placing and Configuring an Analog Pin

1. Drag and drop the analog pin component (Component Catalog Ports and Pins Analog

Pin).

2. Double-click on the Pin_1 component in the schematic to open the configuration window.

3. Configure the analog pin as follows:

Type Tab

Name: POT

Select Analog check box only

For more information about what the parameters mean, click the Datasheet button in the

configuration window.

116 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-102. Analog Pin Component Configuration

General Tab

Drive Mode: High Impedance Analog

Leave the remaining parameters as default

Figure 3-103. Select High Impedance Analog Drive Mode

3.3.2.4 Placing and Configuring Character LCD

1. Drag and drop the character LCD component (Component Catalog Display Character

LCD)

2. Double-click the LCD_Char_1 component in the schematic to open the configuration window.

3. Configure the character LCD:

Name: LCD_Char_1

LCD Custom Character Set: None

Include ASCII to Number Conversion Routines: check box

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 117

Sample Projects

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-104. Configure LCD_Char_1

3.3.2.5 Connecting the Components Together

1. Using the Wire Tool , connect POT to ADC_DelSig (ADC_DelSig_1).

2. When complete, the schematic looks similar to Figure 3-105.

Figure 3-105. Connected Components

3.3.2.6 Configuring Pins

1. From the Workspace Explorer, double-click the Ex2_ADC_to_LCD.cydwr file.

2. Click the Pins tab.

3. Select pins P2[6:0] for LCD_Char_1.

4. Select pin P0[7] for POT.

118 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-106. Pins Assignments

3.3.2.7 Creating main.c File

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C38_main_Ex2.C for

PSoC 3 module and CY8C58LP_main_Ex2.C for PSoC 5 module file, which is available within

the attachments feature of this PDF document.

Note

To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

3. From the Build menu, select Build Ex2_ADC_to_LCD. PSoC Creator builds the project and dis-

plays the comments in the Output dialog box. When you see the message "Build Succeeded",

the build is complete.

3.3.2.8 Configuring and Programming the PSoC Development Board

1. Disconnect power to the board.

2. Configure the DVK SW3 to 3.3 V.

3. Using the jumper wires included, configure the PSoC development board's prototyping.

P0[7] to VR

4. Verify that VR_PWR (J11) is jumpered to ON.

5. Apply power to the board.

6. Use PSoC Creator as described in Programming My First PSoC 3 Project on page 32 or

Programming My First PSoC 5LP Project on page 36 to program the device.

7. After programming the device, press the Reset button on the PSoC development board to see

the output of the ADC displayed on the LCD. Turning the potentiometer results in the LCD value

changing.

Move VDD SELECT
Switch to 3.3 V

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 119

Sample Projects

Note The ADC output values may not reach full range due to potentiometer and ADC limitations.

ADC values may fluctuate several counts due to system noise, and if the potentiometer voltage is

at the edge of an ADC count.

8. Save and close the project.

120 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.3 ADC to UART with DAC

This project demonstrates sine wave generation by using an 8-bit DAC and DMA. The sine wave

period is based on the current value of the ADC value of the potentiometer.

The firmware reads the voltage output by the DVK board potentiometer and displays the raw counts

on the DVK board character LCD display similar to that shown in the previous project. An 8-bit DAC

outputs a table generated sine wave to an LED using DMA at a frequency proportional to the ADC

count. A 9600 Baud 8N1 UART outputs the current ADC count as ASCII formatted into a

hexadecimal number.

The following instructions assume that you have completed My First PSoC Project and ADC to LCD

Project and therefore have a basic understanding of the PSoC Creator software environment.

This code example uses the following components:

Delta Sigma ADC (Component Catalog Analog ADC Delta Sigma ADC)

Voltage DAC (Component Catalog Analog DAC Voltage DAC)

Opamp (Component Catalog Analog Amplifiers Opamp)

DMA (Component Catalog System DMA)

Character LCD (Component Catalog Display Character LCD)

UART (Component Catalog Communications UART)

Analog Pin (Component Catalog Ports and Pins Analog Pin)

Digital Output Pin (Component Catalog Ports and Pins Digital Output Pin)

Clock (Component Catalog System Clock)

Logic Low (Component Catalog Digital Logic Logic Low)

3.3.3.1 Creating ADC to UART with DAC Project

1. Open PSoC Creator.

2. Create a new project by clicking Create New Project… in the Start Page of PSoC Creator.

3. In the New Project window, select the Empty PSoC3 Design template for a PSoC 3 design, or

Empty PSoC5 Design template for a PSoC 5LP design and name the project

Ex3_ADC_to_UART_with_DAC.

4. In the Location field, type the path where you want to save the project, or click and navi-

gate to the appropriate directory.

5. By default, the design window opens TopDesign.cysch. This is the project's schematic entry file

within PSoC Creator.

3.3.3.2 Configuring Clock for ADC to UART with DAC Project

1. Open the Ex3_ADC_to_UART_with_DAC.cydwr file from Workspace Explorer. See figure below

Figure 3-107. Workspace Explorer

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 121

Sample Projects

2. Select the Clocks tab and click on Edit Clock….

Figure 3-108. Edit Clock

3. In the 'Configure System Clocks' window, enable and configure the XTAL to 24 MHz with accu-

racy as ± 6%.

Figure 3-109. Configure XTAL

4. Set the IMO source to XTAL.

5. Select PLL source to IMO (24.000 MHz) and the desired output value to 33 MHz.

6. Select PLL_OUT (33.000 MHz) as the source clock to Master Clock.

7. Set ILO to KHz and select OK.

122 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-110. Configure System Clocks

Now, go back to TopDesign.cysch to place and connect the components required for the project.

3.3.3.3 Placing and Configuring Delta Sigma ADC

1. Drag and drop the Delta Sigma ADC component (Component Catalog Analog ADC

Delta Sigma ADC)

2. Double-click the ADC_DelSig_1 component in the schematic to open the configuration window.

3. Configure the Delta Sigma ADC as follows:

Configure Tab

Name: ADC_DelSig_1

Conversion Mode: Continuous

Configs: 1

Resolution: 8

Conversion Rate: 10000

Input Range: Vssa to Vdda

Buffer Gain: 1

Reference: Internal Vref

Clock Source: Internal

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 123

Sample Projects

Figure 3-111. Delta Sigma ADC Component Configuration

3.3.3.4 Placing and Configuring an Analog Pin

1. Drag and drop the Analog Pin component (Component Catalog Ports and Pins Analog

Pin)

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the analog pin:

Type Tab

Name: POT

Select Analog check box only

124 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-112. POT Component Configuration

General Tab

Drive Mode: High Impedance Analog

Leave the remaining parameters as default

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

3.3.3.5 Placing and Configuring Character LCD

1. Drag and drop the character LCD component (Component Catalog Display Character

LCD)

2. Double-click the LCD_Char_1 component in the schematic to open the configuration window.

3. Configure the character LCD:

Name: LCD_Char_1

LCD Custom Character Set: None

Include ASCII to Number Conversion Routines: check box

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 125

Sample Projects

Figure 3-113. Character LCD Component Configuration

3.3.3.6 Placing and Configuring Voltage DAC

1. Drag and drop the Voltage DAC component (Component Catalog Analog DAC Voltage

DAC)

2. Double-click the VDAC8_1 component in the schematic to open the configuration window.

3. Configure the VDAC:

Basic Tab

Name: VDAC8_1

Data_Source: CPU or DMA (Data Bus)

Strobe_Mode: Register Write

VDAC_Range: 0 - 4.080V (16mV/bit)

VDAC_Speed: Slow Speed

Value_mV: 1600

Value_8 bit hex: 64

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

126 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-114. Voltage DAC Component Configuration

3.3.3.7 Placing and Configuring Opamp

1. Drag and drop the Opamp component (Component Catalog Analog Amplifiers

Opamp)

2. Double-click the Opamp_1 component in the schematic to open the configuration window.

3. Configure the Opamp:

Basic Tab

Name: Opamp_1

Mode: Follower

Power: High Power

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 127

Sample Projects

Figure 3-115. Opamp Component Configuration

3.3.3.8 Placing and Configuring Analog Pin

1. Drag and drop the analog pin component (Component Catalog Ports and Pins Analog

Pin)

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the analog pin:

Type Tab

Name: LED

Select Analog check box only

Figure 3-116. LED Component Configuration

General Tab

Drive Mode: High Impedance Analog

Leave the remaining parameters as default

128 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-117. LED Component Configuration

3.3.3.9 Placing and Configuring UART

1. Drag and drop the UART component (Component Catalog Communications UART)

2. Double-click the UART_1 component in the schematic to open the configuration window.

3. Configure the UART:

Advanced Tab

Clock: External

Figure 3-118. Advanced Tab

Configure Tab

Name: UART_1

Mode: TxOnly

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 129

Sample Projects

Leave the remaining parameters to default

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-119. UART Component Configuration

3.3.3.10 Placing and Configuring Digital Output Pin

1. Drag and drop the Digital Output Pin component (Component Catalog Ports and Pins

Digital Output Pin)

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the digital output pin:

Type Tab

Name: TX_OUT

Select HW Connection check box

Figure 3-120. TX_OUT Component Configuration

130 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

General Tab

Under Drive Mode: Strong Drive

Leave the remaining parameters as default

Figure 3-121. Pins - TX_OUT Component Configuration

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

3.3.3.11 Placing and Configuring Clock for UART

1. Connect a clock component (Component Catalog System Clock) to the UART clock.

2. Double-click the Clock component.

3. Configure the clock:

Name: Clock_2

Source: XTAL (24.000 MHz)

Desired Frequency: 76.9 kHz

Leave the remaining parameters at default.

Note The desired frequency of the clock is 76.9 kHz because this value should be eight times

the required baud rate: 76900/8 = 9612.5, which is approximately 9600 (required baud rate).

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 131

Sample Projects

Figure 3-122. Configure UART Clock

Figure 3-123. UART Configure Window After Assigning Clock Source - Configure Tab

132 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-124. UART Configure Window After Assigning Clock Source - Advanced Tab

3.3.3.12 Placing and Configuring DMA

1. Drag and drop the DMA component (Component Catalog System DMA)

2. Double-click the DMA_1 component in the schematic to open the configuration window.

3. Configure the DMA:

Basic Tab

Name: DMA_1

Hardware Request: Rising Edge

Leave the remaining parameters as default

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-125. DMA Component Configuration

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 133

Sample Projects

3.3.3.13 Connecting the Components Together

1. Connect a Logic Low component (Component Catalog Digital Logic Logic Low) to the

reset of the UART

2. Connect a Clock component (Component Catalog System Clock) to the drq of the DMA.

3. Double-click the Clock component to configure.

4. Configure the clock:

Configure Clock Tab

Name: Clock_1

Source: IMO (24.000 MHz)

Desired Frequency: 3 MHz

Leave the remaining parameters set to their default values

Figure 3-126. Clock Component Configuration

5. Using the Wire Tool , connect tx (in the UART component) to HW connection of the TX_OUT

digital output pin (TX_OUT).

6. Using the Wire Tool , connect VDAC8 (VDAC8_1) to Opamp (Opamp_1).

7. Using the Wire Tool , connect POT to ADC_DelSig (ADC_DelSig_1).

8. Right-click the LED analog pin, select the Shape menu option and then Flip Horizontal. This

allows the LED pin to line up with the Opamp output.

9. When complete, the schematic looks similar to Figure 3-127.

134 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-127. Connected Components

3.3.3.14 Configuring Pins

1. From the Workspace Explorer, double-click the Ex3_ADC_to_UART_with_DAC.cydwr file.

2. Click the Pins tab.

3. Select pins P2[6:0] for LCD_Char_1

4. Select pin P0[7] for POT

5. Select pin P1[6] for LED

6. Select pin P1[2] for TX_OUT

Figure 3-128. Pin Assignments

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 135

Sample Projects

3.3.3.15 Creating main.c File

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C38_main_Ex3.C for

PSoC 3 module and CY8C58LP_main_Ex3.C for PSoC 5 module file, which is available within

the attachments feature of this PDF document.

Note

To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

3. From the Build menu, select Build Ex3_ADC_to_UART_with_DAC. PSoC Creator builds the

project and displays the comments in the Output dialog box. When you see the message "Build

Succeeded", the build is complete.

3.3.3.16 Configuring and Programming the PSoC Development Board

1. Disconnect power to the board.

2. Configure the DVK SW3 to 5 V.

3. Using the jumper wires included, configure the PSoC development board's prototyping area to:

P0[7] to VR

P1[2] to TX

P1[6] to LED1

4. Verify that VR_PWR (J11) is jumpered to ON.

5. Verify that RS232_PWR (J10) is jumpered to ON.

6. Connect a serial cable from the PSoC development board to a PC.

7. Apply power to the board.

8. Install a terminal application such as TeraTerm or HyperTerminal with these setup parameters:

Baud Rate: 9600

Data: 8-bit

Parity: none

Stop: 1-bit

Flow Control: none

136 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-129. HyperTerminal Settings

9. Use PSoC Creator as described in Programming My First PSoC 3 Project on page 32 or

Programming My First PSoC 5LP Project on page 36 to program the device.

10.After programming the device, press the Reset button on the PSoC development board to see

the output of the ADC displayed on the LCD and in the terminal application. LED1 is a sine wave

output whose period is based on the ADC. Turning the potentiometer results in the LCD and

observed terminal value change.

Note ADC values may fluctuate several counts due to system noise, and if the potentiometer

voltage is at the edge of an ADC count.

11.Save and close the project.

3.3.4 USB HID

This project demonstrates a simple HID keyboard. The firmware begins enabling global interrupts,

setting up the button (SW), and initializing USB for 3 V operation. The firmware, after allowing the

HID device to enumerate, continuously checks for a button press to see if it needs to send the

keyboard key sequences for the Cypress website. When you press the button, LED1 also toggles.

3.3.4.1 Creating USB HID Project

1. Open PSoC Creator.

2. Create a new project by clicking on Create New Project… in the Start Page of PSoC Creator.

3. In the New Project window, select the Empty PSoC3 Design template for a PSoC 3 design, or

Empty PSoC5 Design template for a PSoC 5LP design and name the project Ex4_USB_HID.

4. In the Location field, type the path where you want to save the project, or click and navi-

gate to the appropriate directory.

5. By default, the design window opens TopDesign.cysch. This is the project's schematic entry file

within PSoC Creator.

3.3.4.2 Placing and Configuring USBFS

1. Drag and drop a USBFS component from the Components Catalog Communication

USBFS to the workspace.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 137

Sample Projects

2. Double-click the USBFS_1 component.

3. Select the HID Descriptor tab.

Figure 3-130. USBFS Component Configuration

4. Click to import a report.

138 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-131. USB Template

Figure 3-132. HID Descriptor Configuration

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 139

Sample Projects

5. Select the String Descriptor tab.

Figure 3-133. String Descriptor Configuration

6. Select String Descriptors in the left window.

7. Click Add String.

8. Click Add String a second time to add a total of two strings.

9. Click the String that shows up at the top in the left window.

10. Type Cypress Semiconductor in the Value field.

11. Click the String that shows up at the bottom in the left window.

12. Type PSoC Development Kit in the Value field.

13. Select the Device Descriptor tab.

14. Select Device Descriptor

15. Set the Product ID to F11E.

16. Set the Manufacturing String to Cypress Semiconductor.

17. Set the Product String to PSoC Development Kit.

140 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-134. Device Descriptor Configuration

18. Select Configuration Descriptor.

19. Set Device Power to Self Powered.

20. Set Max Power to 100 mA.

Figure 3-135. Configuration Descriptor Configuration

21. Select Alternate Setting 0.

22. Set Class to HID.

Figure 3-136. Interface Descriptor Configuration

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 141

Sample Projects

23. Select HID Class Descriptor.

24. Set HID Report to Keyboard w/LED Feature Report.

25. Select Endpoint Descriptor.

26. Set Direction to IN and Transfer Type to INT.

3.3.4.3 Placing and Configuring Software Digital Input Pin

1. Drag and drop a Digital Input Pin component (Component Catalog Ports and Pins

Digital Input Pin)

2. Configure as follows.

Type Tab

❐ Name: Button

Figure 3-137. SW Digital Input Pin Configuration

General Tab

❐ Drive Mode: Resistive Pull up

❐ Initial State: Low (0)

❐ Leave the remaining parameters as default

142 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-138. Pins - SW Digital Input Pin Configuration

3. Click OK.

3.3.4.4 Placing and Configuring LED

1. Drag and drop a Digital Output Pin component (Component Catalog Ports and Pins Dig-

ital Output Pin)

2. Configure as follows:

Type Tab

Name: LED

Figure 3-139. LED Component Configuration

General Tab

Drive Mode: Strong Drive

Leave the remaining parameters as default

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 143

Sample Projects

Figure 3-140. Pins - LED Component Configuration

3.3.4.5 Configuring Clocks for CY8C38 Family Processor Module

1. From the Workspace Explorer, open the Ex4_USB_HID.cydwr window and select the Clocks

tab.

2. Click on Edit Clock to open the Configure System Clocks window.

3. Click on IMO from the listed rows and set

Osc: 24.000 MHz

4. Click the PLL Clock block and select IMO (48.000 MHz) for the Input.

5. Set Desired: to 48 MHz for the PLL clock

6. Enable the USB clock.

7. Set the ILO clock to 100 kHz

144 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-141. Configure System Clocks

8. Click OK.

3.3.4.6 Configuring Clocks for CY8C58LP Family Processor Module

1. From the Workspace Explorer, open the Ex4_USB_HID.cydwr window and select the Clocks

tab.

2. Click on Edit Clock to open the Configure System Clocks window.

3. Enable and configure XTAL to 24 MHz frequency.

Note A 24-MHz crystal is installed on the board.

4. Select the IMO source as XTAL.

5. Enable the USB block and select IMOx2 – 48.000 MHz as input source.

6. Set ILO at 100 KHz.

7. In the PLL block, set the desired frequency as 33 MHz.

8. For Master Clock, select PLL_OUT (33 MHz) as input with Divider as 1.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 145

Sample Projects

Figure 3-142. Configure System Clock

Figure 3-143. XTAL Configuration

3.3.4.7 Configuring Pins

1. From the Workspace Explorer, double-click the Ex4_USB_HID.cywrk file.

2. Click the Pins tab.

3. Select and assign the pins as follows:

Assign USBFS_dp to P15[6]

Assign USBFS_dm to P15[7]

Assign LED to P1[6]

Assign Button to P1[5]

146 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-144. Pin Assignments

3.3.4.8 Creating main.c File

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C38_main_Ex4.C for

PSoC 3 module and CY8C58LP_main_Ex4.C for PSoC 5 module file, which is available within

the attachments feature of this PDF document.

Note

To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

3. From the Build menu, select Build Ex4_USB_HID. PSoC Creator builds the project and displays

the comments in the Output dialog box. When you see the message "Build Succeeded", the

build is complete.

3.3.4.9 Configuring and Programming the PSoC Development Board

Note Due to the nature of the PSoC development board, powering the system from USB 'VBUS' can

potentially reset other USB devices on the same hub. See the Appendix A, section titled Setting a

3.3-V Supply from VBUS on page 174.

1. Disconnect power to the board.

2. Configure the DVK SW3 to 5 V.

3. Configure the DVK breadboard using the jumper wires.

P1[5] to SW1

P1[6] to LED1

4. Connect the USB cable to the PC and to the USB port (J9)

5. Reapply power to the board.

6. Use PSoC Creator as described in section Programming My First PSoC 3 Project on page 32 or

Programming My First PSoC 5LP Project on page 36 to program the device.

7. After programming the device, press Reset.

8. The PSoC development board is detected as a HID keyboard device. Wait until the device gets

completely installed.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 147

Sample Projects

9. When button SW1 is pressed, the Windows Run window opens and the keyboard key sequence

for the Cypress website is sent to open the Cypress website. When you press the button, LED1

also toggles.

10.Save and close the project.

Note The power setting of USB can be configured to either 3 V or 5 V mode in the firmware in the

USBFS_Start API. If the USB is configured for 3 V operation in firmware, ensure that the power

switch (SW3) on the development kit is set to 3.3 V operation for the device to be detected (enumer-

ated) on the PC.

148 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.5 CapSense

This project demonstrates CapSense. The firmware begins by initializing the LCD and CapSense

components. In the main loop it scans the two buttons for activity. If there is a signal from either or

both buttons, the corresponding LED lights up.

3.3.5.1 Creating CapSense Project

1. Open PSoC Creator.

2. Create a new project by clicking Create New Project… in the Start Page of PSoC Creator.

3. In the New Project window, select the Empty PSoC3 Design template for a PSoC 3 design, or

Empty PSoC5 Design template for a PSoC 5LP design and name the project Ex5_CapSense.

4. In the Location field, type the path where you want to save the project, or click and navi-

gate to the appropriate directory.

5. By default, the design window opens TopDesign.cysch. This is the project's schematic entry file

within PSoC Creator.

3.3.5.2 Placing and Configuring CapSense

1. Drag and drop a CapSense component from the Component Catalog CapSense

CapSense_CSD to the workspace.

2. Double-click the CapSense_1 component

3. Configure CapSense as follows:

General Tab

Name: CapSense

Set parameters as shown in the following figure

Figure 3-145. CapSense Component Configuration

4. Select the Widget Config Tab.

5. Add two buttons by clicking on Add Button. Leave the button parameters as default.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 149

Sample Projects

Figure 3-146. Buttons - CapSense Component Configuration

6. Select Linear Slider and click on Add Linear Slider.

7. Change API resolution parameter to 80.

Figure 3-147. Slider Configuration

8. Select Tuner Helper tab and uncheck the Enable Tune Helper box.

150 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-148. Scan Slots Slider Terminals Configuration

3.3.5.3 Placing and Configuring Character LCD

1. Drag and drop a character LCD component from the Component Catalog Display

Character LCD to the workspace.

2. Double-click the LCD_Char_1 component.

3. Set the parameter LCD Custom Character Set to Horizontal Bargraph.

4. Select Include ASCII to Number Conversion Routines.

5. Click OK

Figure 3-149. Horizontal Bargraph Configuration

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 151

Sample Projects

3.3.5.4 Placing and Configuring Digital Output Pin

1. Drag and drop two Digital Output Pin components from the Component Catalog Ports and

Pins Digital Output Pin to the workspace.

2. Configure the two Digital Port components for LED1 and LED2.

Type Tab

❐ Name: LED1

Figure 3-150. LED Configuration

General Tab

❐ Drive Mode: Strong Drive

❐ Leave the remaining parameters as default

Figure 3-151. Pins - LED Configuration

3. Click OK.

4. Configure LED2 similar to LED1.

152 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.5.5 Configuring Pins

1. From the Workspace Explorer, double-click the Ex5_CapSesne.cywrk file.

2. Click the Pins tab

3. Select and assign the pins as follows:

❐ Cmod to P2[7] for CY8C38 Family Processor Module and Cmod to P15[5] for CY8C58LP

Family Processor Module

❐ B1 to P0[5]

❐ B2 to P0[6]

❐ Position_e0 to P0[0]

❐ Position_e1 to P0[1]

❐ Position_e2 to P0[2]

❐ Position_e3 to P0[3]

❐ Position_e4 to P0[4]

❐ LED1 to P1[6]

❐ LED2 to P1[7]

❐ LCD_Char_1 to P2[0] to P2[6] (Drag it to P2[0] and PSoC Creator assigns the pin correctly.)

Figure 3-152. Pin Assignment for CY8C38 Family Processor Module

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 153

Sample Projects

Figure 3-153. Pin Assignment for CY8C58LP Family Processor Module

3.3.5.6 Creating main.c File

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C38_main_Ex5.C for

PSoC 3 module and CY8C58LP_main_Ex5.C for PSoC 5 module file, which is available within

the attachments feature of this PDF document.

Note

To access the embedded attachments feature in the PDF, click on the paper clip icon located in

the lower left corner of the Adobe Reader application.

3. From the Build menu, select Build CapSense. PSoC Creator builds the project and displays the

comments in the Output dialog box. When you see the message "Build Succeeded", the build is

complete.

3.3.5.7 Configuring and Programming the PSoC Development Board

1. Disconnect power to the board.

2. Configure the DVK SW3 to 3.3 V.

3. Using the jumper wires, configure the PSoC development board's prototyping area:

❐ P1[6] to LED1

❐ P1[7] to LED2

4. Use PSoC Creator as described in Programming My First PSoC 3 Project on page 32 or

Programming My First PSoC 5LP Project on page 36 to program the device.

5. After programming the device, press Reset.

6. When running the project, an LED lights up when either CapSense button is pushed. If B1 (P0[5])

is pushed, it also displays “Button1” in the top row of the LCD display. Similarly, if B2 (P0[6]) is

pushed, it displays “Button2” in the top row of the LCD display. The bottom row of the LCD dis-

plays the slider position with a horizontal bargraph.

7. Save and close the project.

154 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.6 SAR ADC (PSoC 5LP Only)

This project demonstrates sine wave generation by using an 8-bit DAC and DMA. The sine wave

period is based on the current value of the ADC value of the potentiometer.

The firmware reads the voltage output by the DVK board potentiometer and displays the raw counts

on the DVK board character LCD display similar to that shown in the previous project. An 8-bit DAC

outputs a table generated sine wave to an LED using DMA at a frequency proportional to the ADC

count. A 9600 Baud 8N1 UART outputs the current ADC count as ASCII formatted into a

hexadecimal number.

The following instructions assume that you have completed My First PSoC Project and ADC to LCD

Project and therefore have a basic understanding of the PSoC Creator software environment.

This code example uses the following components:

■ SAR ADC (Component Catalog Analog ADC SAR ADC)

■ Voltage DAC (Component Catalog Analog DAC Voltage DAC)

■ Opamp (Component Catalog Analog Amplifiers Opamp)

■ DMA (Component Catalog System DMA)

■ Character LCD (Component Catalog Display Character LCD)

■ UART (Component Catalog Communications UART)

■ Analog Pin (Component Catalog Ports and Pins Analog Pin)

■ Digital Output Pin (Component Catalog Ports and Pins Digital Output Pin)

■ Clock (Component Catalog System Clock)

■ Logic Low (Component Catalog Digital Logic Logic Low)

■ Logic High (Component Catalog Digital Logic Logic High)

3.3.6.1 Creating ADC to UART with DAC Project

1. Open PSoC Creator.

2. Create a new project by clicking Create New Project… in the Start Page of PSoC Creator.

3. In the New Project window, select the Empty PSoC5 Design template and name the project

Ex6_SAR_to_UART_with_DAC.

4. In the Location field, type the path where you want to save the project, or click and navi-

gate to the appropriate directory.

5. By default, the design window opens TopDesign.cysch. This is the project's schematic entry file

within PSoC Creator.

3.3.6.2 Configuring Clock for ADC to UART with DAC Project

1. Open the Ex3_ADC_to_UART_with_DAC.cydwr file from Workspace Explorer. See figure below

Figure 3-154. Workspace Explorer

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 155

Sample Projects

2. Select the Clocks tab and click on Edit Clock….

Figure 3-155. Edit Clock

3. In the 'Configure System Clocks' window, enable and configure the XTAL to 24 MHz with accu-

racy as ± 6%.

Figure 3-156. Configure XTAL

4. Set the IMO source to XTAL.

5. Select PLL source to IMO (24.000 MHz) and the desired output value to 33 MHz.

6. Select PLL_OUT (33.000 MHz) as the source clock to Master Clock.

7. Set ILO to KHz and select OK.

156 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-157. Configure System Clocks

Now, go back to TopDesign.cysch to place and connect the components required for the project.

3.3.6.3 Placing and Configuring SAR ADC

1. Drag and drop the SAR ADC component (Component Catalog Analog ADC SAR ADC)

2. Double-click the ADC_SAR_1 component in the schematic to open the configuration window.

3. Configure the SAR ADC as follows:

Configure Tab

❐ Name: ADC_SAR_1

❐ Power: High Power

❐ Resolution: 12

❐ Conversion Rate: 100000

❐ Clock Frequency: 1800

❐ Input Range: Vssa to Vdda (Single Ended)

❐ Reference: Internal Vref

❐ Voltage Reference: 1.0240

❐ Sample Mode: Free Running

❐ Clock Source: Internal

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 157

Sample Projects

Figure 3-158. SAR ADC Component Configuration

3.3.6.4 Placing and Configuring an Analog Pin

1. Drag and drop the Analog Pin component (Component Catalog Ports and Pins Analog

Pin)

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the analog pin:

Type Tab

❐ Name: POT

❐ Select Analog check box only

Figure 3-159. POT Component Configuration

General Tab

❐ Drive Mode: High Impedance Analog

❐ Leave the remaining parameters as default

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

158 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.6.5 Placing and Configuring Character LCD

1. Drag and drop the Character LCD component (Component Catalog Display Character

LCD)

2. Double-click the LCD_Char_1 component in the schematic to open the configuration window.

3. Configure the Character LCD:

❐ Name: LCD_Char_1

❐ LCD Custom Character Set: None

❐ Include ASCII to Number Conversion Routines: check box

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-160. Character LCD Component Configuration

3.3.6.6 Placing and Configuring Voltage DAC

1. Drag and drop the Voltage DAC component (Component Catalog Analog DAC Voltage

DAC)

2. Double-click the VDAC8_1 component in the schematic to open the configuration window.

3. Configure the VDAC:

Basic Tab

❐ Name: VDAC8_1

❐ Data_Source: CPU or DMA (Data Bus)

❐ Initial_Value: 1600

❐ Value_mv: Register Write

❐ Value_8 bit hex: 64

❐ VDAC_Range: 0 - 4.080 V (16 mV/bit)

❐ VDAC_Speed: Slow Speed

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 159

Sample Projects

Figure 3-161. Voltage DAC Component Configuration

3.3.6.7 Placing and Configuring Opamp

1. Drag and drop the Opamp component (Component Catalog Analog Amplifiers

Opamp)

2. Double-click the Opamp_1 component in the schematic to open the configuration window.

3. Configure the Opamp:

Basic Tab

❐ Name: Opamp_1

❐ Mode: Follower

❐ Power: High Power

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-162. Opamp Component Configuration

160 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.6.8 Placing and Configuring Analog Pin

1. Drag and drop the analog pin component (Component Catalog Ports and Pins Analog

Pin)

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the analog pin:

Type Tab

❐ Name: LED

❐ Select Analog check box only

Figure 3-163. LED Component Configuration

General Tab

❐ Drive Mode: High Impedance Analog

❐ Leave the remaining parameters as default

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 161

Sample Projects

Figure 3-164. LED Component Configuration

3.3.6.9 Placing and Configuring UART

1. Drag and drop the UART component (Component Catalog Communications UART)

2. Double-click the UART_1 component in the schematic to open the configuration window.

3. Configure the UART:

Advanced Tab

❐ Clock: External

Figure 3-165. Advanced Tab

Configure Tab

❐ Name: UART_1

❐ Mode: TxOnly

❐ Leave the remaining parameters to default

162 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-166. UART Component Configuration

3.3.6.10 Placing and Configuring Digital Output Pin

1. Drag and drop the Digital Output Pin component (Component Catalog Ports and Pins

Digital Output Pin)

2. Double-click the Pin_1 component in the schematic to open the configuration window.

3. Configure the digital output pin:

Type Tab

❐ Name: TX_OUT

❐ Select HW Connection check box

Figure 3-167. TX_OUT Component Configuration

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 163

Sample Projects

General Tab

❐ Under Drive Mode: Strong Drive

❐ Leave the remaining parameters as default

Figure 3-168. Pins - TX_OUT Component Configuration

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

3.3.6.11 Placing and Configuring Clock for UART

4. Connect a clock component (Component Catalog System Clock) to the UART clock.

5. Double-click the Clock component.

6. Configure the clock:

❐ Name: Clock_2

❐ Source: XTAL (24.000 MHz)

❐ Desired Frequency: 76.9 kHz

❐ Leave the remaining parameters at default

Note The desired frequency of the clock is 76.9 kHz because this value should be eight times

the required baud rate: 76900/8 = 9612.5, which is approximately 9600 (required baud rate).

164 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

Figure 3-169. Configure UART Clock

Figure 3-170. UART Configure Window After Assigning Clock Source - Configure Tab

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 165

Sample Projects

Figure 3-171. UART Configure Window After Assigning Clock Source - Advanced Tab

3.3.6.12 Placing and Configuring DMA

1. Drag and drop the DMA component (Component Catalog System DMA)

2. Double-click the DMA_1 component in the schematic to open the configuration window.

3. Configure the DMA:

Basic Tab

❐ Name: DMA_1

❐ Hardware Request: Rising Edge

❐ Leave the remaining parameters to default

For more information about what the parameters mean, click the Datasheet button in the config-

uration window.

Figure 3-172. DMA Component Configuration

166 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.6.13 Connecting the Components Together

1. Connect a Logic Low component (Component Catalog Digital Logic Logic Low) to the

reset of the UART

2. Connect a Clock component (Component Catalog System Clock) to the clock of the

DMA.

3. Double-click the Clock component to configure.

4. Configure the clock:

Configure Clock Tab

❐ Name: Clock_1

❐ Source: IMO (24.000 MHz)

❐ Desired Frequency: 3 MHz

❐ Leave the remaining parameters set to their default values

Figure 3-173. Clock Component Configuration

5. Using the Wire Tool , connect tx (in the UART component) to HW connection of the TX_OUT

digital output pin (TX_OUT).

6. Using the Wire Tool , connect VDAC8 (VDAC8_1) to Opamp (Opamp_1).

7. Using the Wire Tool , connect POT to ADC_SAR (ADC_SAR_1).

8. Right-click the LED analog pin, select the Shape menu option and then Flip Horizontal. This

allows the LED pin to line up with the Opamp output.

9. When complete, the schematic looks similar to Figure 3-174.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 167

Sample Projects

Figure 3-174. Connected Components

3.3.6.14 Configuring Pins

1. From the Workspace Explorer, open the Ex6_SAR_to_UART_with_DAC.cydwr file.

2. Click the Pins tab.

3. Select pins P2[6:0] for LCD_Char_1.

4. Select pin P0[7] for POT.

5. Select pin P1[6] for LED.

6. Select pin P1[2] for TX_OUT.

Figure 3-175. Pin Assignments

168 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

3.3.6.15 Creating main.c File

1. Open the existing main.c file within Workspace Explorer.

2. Replace the existing main.c content with the content of the embedded CY8C58LP_main_Ex6.c

file, which is available within the attachments feature of this PDF document.

Note To access the embedded attachments feature in the PDF, click on the paper clip icon

located in the lower left corner of the Adobe Reader application.

3. From the Build menu, select Build Ex6_SAR_to_UART_with_DAC. PSoC Creator builds the

project and displays the comments in the Output dialog box. When you see the message "Build

Succeeded", the build is complete.

3.3.6.16 Configuring and Programming the PSoC Development Board

1. Disconnect power to the board.

2. Configure the DVK SW3 to 5 V.

3. Using the jumper wires included, configure the PSoC Development Board's prototyping area to:

❐ P0[7] to VR

❐ P1[2] to TX

❐ P1[6] to LED1

4. Verify that VR_PWR (J11) is jumpered to ON.

5. Verify that RS232_PWR (J10) is jumpered to ON.

6. Connect a serial cable from the PSoC development board to a PC.

7. Apply power to the board.

8. Install a terminal application such as TeraTerm or HyperTerminal with these setup parameters:

❐ Baud Rate: 9600

❐ Data: 8-bit

❐ Parity: none

❐ Stop: 1-bit

❐ Flow Control: none

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 169

Sample Projects

Figure 3-176. HyperTerminal Settings

9. Use PSoC Creator as described in Programming My First PSoC 5LP Project on page 36 to pro-

gram the device.

10.After programming the device, press the Reset button on the PSoC Development Board to see

the output of the ADC displayed on the LCD and in the terminal application. LED1 is a sine wave

output whose period is based on the ADC. Turning the potentiometer results in the LCD and

observed terminal value change.

11.Save and close the project.

170 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Sample Projects

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 171

Appendix A. Board Specifications and Layout

This appendix gives detailed specifications of the PSoC Development Kit board components

A.1 PSoC Development Board

A.1.1 Factory Default Configuration

A.1.1.1 Power Supply

The board has several power nets. Following are the definitions of the different power nets.

VIN (9 V or 12 V) - This is the input power before it is fed to any of the regulators. A 9-V to 12-V

power supply adapter or a 9-V battery is used as the source.

VREG (5 V) - This is fed by VIN and is the output of the onboard 5-V regulator. VREG can be

selected as the main 5-V source by using the J8 header.

VBUS (5 V) - This is power derived from the USB interface via a USB host. VBUS can be selected

as the main 5-V source by using the J8 header.

VDD (3.3 V or 5 V) - This is fed by VREG, VBUS, or the onboard 3.3-V regulator. VDD can be cho-

sen either to be 3.3 V or 5 V by the simple positioning of the VDD select switch.

VADJ (1.5 V to 3.3 V for 3.3-V supply and 1.5 V to 5 V for 5-V supply) - This is fed by VDD and is the

output of the onboard adjustable regulator. It is mainly used when the PSoC core must be powered

at lower voltages. An adjustable resistor R11 is used for adjusting the voltage.

VDD DIG - This is power derived from either VDD or VADJ. It is used to power the PSoC core. The

source for VDD DIG can be chosen as VDD or VADJ using the J7 header.

VDD ANLG - This is power derived from either VDD or VADJ. It is mainly used to separate the ana-

log power from the digital power. The source for VDD ANLG can be chosen as VDD or VADJ using

the J6 header.

VDDIO - This is power derived from either VDD or VADJ. It is used to power digital I/O on the PSoC

device. There are four sections of GPIO, which can be powered to 5 V, 3.3 V, or VADJ using four

headers. It enables you to power the PSoC GPIOs at different voltages.

172 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.1.2 Power Supply Configuration Examples

A.1.2.1 Setting a 5-V Supply from VREG

1. Place the jumper on J8 header to select VREG as the source.

2. Move the VDD select switch to select the 5 V.

3. Place the jumper on J6 header to select VDD as source for VDD ANLG.

4. Place the jumper on J7 header to select VDD as source for VDD DIG.

Figure A-1. Setting a 5-V Supply from VREG

A.1.2.2 Setting a 3.3-V Supply from VREG

1. Place the jumper on J8 header to select VREG as the source.

2. Move the VDD select switch to select 3.3 V.

3. Place the jumper on J6 header to select VDD as source for VDD ANLG.

4. Place the jumper on J7 header to select VDD as source for VDD DIG.

Figure A-2. Setting a 3.3-V Supply from VREG

MOVE VDD SELECT
SWITCH TO 5 V

SELECT VDD AS SOURCE
FOR VDD ANLG

SELECT VDD AS SOURCE

SELECT VREG AS SOURCE

FOR VDD DIG

MOVE VDD SELECT
SWITCH TO 3.3 V

SELECT VDD AS SOURCE
FOR VDD ANLG

SELECT VDD AS SOURCE

SELECT VREG AS SOURCE

FOR VDD DIG

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 173

Board Specifications and Layout

A.1.2.3 Setting VDD ANLG as VADJ and VDD DIG as VDD for VDD = 3.3 V

1. Place the jumper on J8 header to select VREG as the source.

2. Move the VDD select switch to select 3.3 V.

3. Place the jumper on J6 header to select VADJ as source for VDD ANLG.

4. Place the jumper on J7 header to select VDD as source for VDD DIG.

Figure A-3. Setting VDD ANLG as VADJ and VDD DIG as VDD for VDD = 3.3 V

This helps to separate the analog supply from the digital supply and VDD.

A.1.2.4 Setting VDD DIG as VADJ and VDD ANLG as VDD for VDD = 3.3 V

1. Place the jumper on J8 header to select VREG as the source.

2. Move the VDD select switch to select 3.3 V.

3. Place the jumper on J6 header to select VDD as source for VDD ANLG.

4. Place the jumper on J7 header to select VADJ as source for VDD DIG.

Figure A-4. Setting VDD DIG as VADJ and VDD ANLG as VDD for VDD = 3.3 V

This helps to separate the digital supply from the analog supply and VDD.

MOVE VDD SELECT
SWITCH TO 3.3 V

SELECT VADJ AS SOURCE
FOR VDD ANLG

SELECT VDD AS SOURCE

SELECT VREG AS SOURCE

FOR VDD DIG

MOVE VDD SELECT
SWITCH TO 3.3 V

SELECT VDD AS SOURCE
FOR VDD ANLG

SELECT VADJ AS SOURCE

SELECT VREG AS SOURCE

FOR VDD DIG

174 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.1.2.5 Setting a 5-V Supply from VBUS

1. Place the jumper on J8 header to select VBUS as the source.

2. Move the VDD select switch to select the 5 V.

3. Place the jumper on J6 header to select VDD as source for VDD ANLG.

4. Place the jumper on J7 header to select VDD as source for VDD DIG.

Figure A-5. Setting a 5-V Supply from VBUS

A.1.2.6 Setting a 3.3-V Supply from VBUS

Due to the nature of the PSoC development board, powering the system from USB 'VBUS' can

potentially reset other USB devices on the same hub.

By design, the PSoC development board is capable of drawing more than 500 mA of current during

normal operation, which exceeds USB bus power limits. Additionally, the development board

exceeds inrush current limits due to 'VBUS' capacitance greater than 10 uF. As a result, plugging the

PSoC development board into a USB hub can potentially cause other devices on the same hub to

reset due to excessive inrush currents. Take care when powering the PSoC development board from

'VBUS'. It is good practice to plug the board into a host root hub, or a "self-powered" external hub

when doing USB development. Bus powered applications done outside the realm of the PSoC devel-

opment board should comply with the USB specification for inrush current limits and recommended

bulk capacitance on 'VBUS'. See the Universal Serial Bus Specification Revision 2.0 for more

details.

1. Place the jumper on J8 header to select VBUS as the source.

2. Move the VDD select switch to select 3.3 V.

3. Place the jumper on J6 header to select VDD as source for VDD ANLG.

4. Place the jumper on J7 header to select VDD as source for VDD DIG.

MOVE VDD SELECT
SWITCH TO 5 V

SELECT VDD AS SOURCE
FOR VDD ANLG

SELECT VDD AS SOURCE

SELECT VBUS AS SOURCE

FOR VDD DIG

http://www.usb.org/developers/docs/

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 175

Board Specifications and Layout

Figure A-6. Setting a 3.3-V supply from VBUS

You can measure current from VREG, VBUS, VDD ANLG, VDD DIG and VDDIOs by removing the

jumpers and connecting the meter across the respective header.

A.1.2.7 J1 - DC Power Jack

Figure A-7. DC Power Jack

Use a 12 V/1 A power supply adapter when powering from the barrel power jack. This input power is

VIN.

A.1.2.8 9-V Battery Terminals

Figure A-8. Battery Terminals

Use a 9-V alkaline battery to connect to the 9-V battery terminals. This input power is VIN.

A.1.2.9 J8 - 5-V Source

This header allows you to select the 5 V source from either the onboard 5 V regulator (VREG) or

from the USB 5 V rail (VBUS).

A.1.2.10 VDD Select Switch

This switch allows you to select either 5 V or 3.3 V. VDD feeds VDD DIG, VDD ANLG, and VDDIO.

MOVE VDD SELECT
SWITCH TO 3.3 V

SELECT VDD AS SOURCE
FOR VDD ANLG

SELECT VDD AS SOURCE

SELECT VBUS AS SOURCE

FOR VDD DIG

176 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.1.2.11 J7 - VDD DIG Select

This header allows you to select the PSoC core source power. To power the PSoC core at either 5 V

or 3.3 V (based on the position of the VDD select switch), place the jumper on the upper two pins. To

power the PSoC core at lower voltages (1.7 V to 4.95 V), place the jumper on the lower two pins.

When the jumper is on the lower two pins, you must adjust R11 to tune the adjustable regulator to

output the desired voltage.

A.1.2.12 J6 - VDD ANLG Select

To separate the analog power from the digital power, you can position the jumper on the upper two

pins to source analog power at 5 V or 3.3 V (based on the position of the VDD select switch), or on

the lower two pins to source analog power at lower voltages (1.5 V to 3.3 V for 3.3-V supply and

1.5 V to 5 V for 5-V supply).

A.1.2.13 R11 - Adjustable Regulator Variable Resistor

This adjustable resistor is used to tune the VADJ voltage. Turning this variable resistor swings the

VADJ voltage between 1.6 V and 3.29 V when the VDD select switch is in the 3.3 V position. When

the VDD select switch is in the 5 V position, turning this variable resistor swings the VADJ voltage

between 1.7 V and 4.95 V.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 177

Board Specifications and Layout

A.1.3 Prototyping Components

A.1.3.1 Prototyping Area

Note CY8C38 family modules have a 2200-pF capacitor connected between P2[7] and ground.

CY8C58LP family modules have a 2200-pF capacitor connected between P15[5] and ground. These

configurations provide an external modulator capacitor for CapSense designs. To use P2[7] on

CY8C38 family modules or P15[5] on CY8C58LP family modules for anything other than CapSense,

it is recommended that C18 on these modules be removed, to avoid disrupting digital or analog sig-

nals on this I/O pin.

J10-RS-232 POWER

P15-DB9 SERIAL

SW1

SW2

CAPSENSE BUTTONSCAPSENSE SLIDER

J11-VARIABLE

RESISTOR POWER

R20-VARIABLE
RESISTOR

P17-WirelessUSB

LP RADIO MODULE

CONNECTOR

J14-RADIO POWER

J9-FULL SPEED

USB PORT

COMMUNICATION

PORT

178 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.1.3.2 P15 - DB9 Serial Communications Port

This is a standard female DB9 serial communications connector. Four signals are brought from the

RS-232 transceiver to receptacle P16. These signals are Rx, Tx, Clear To Send, and Request To

Send. To connect these signals to the PSoC I/O pins, use wires to jumper from P16 to P19, where

sockets for ports zero and one are available.

A.1.3.3 J10 - Serial Port Power

Header J10 must be connected to use the serial communications port. Placing a jumper on J10 pro-

vides VDD power to the RS-232 transceiver. This power can be either 3.3 V or 5 V, depending on the

position of the VDD select switch.

A.1.3.4 J9 - Full Speed USB Port

The board has a mini-B full speed USB connector. There are also two test points for the differential

pair signals D– and D+. These signals are routed to the processor module socket P1, pins 6 and 8

respectively. The power net VBUS is brought into the board through this interface.

A.1.3.5 P17 - Artaflex WirelessUSB LP Radio Module Receptacle

Receptacle P17 is used specifically for the Artaflex AWP24S WirelessUSB module. Eight signals are

routed from this receptacle to P12 receptacle. These signals are four serial peripheral interface (SPI)

signals MISO (master-in-slave-out), MOSI (master-out-slave-in), nSS (slave select), SCK (serial

clock), an IRQ (interrupt request) and RD_RESET (radio reset). The other two signals are radio

transmit and receive signals.

Note These I/O signals must not be greater than 3.3 V.

Table A-1. Connector Pin Assignments - RS-232 (DTE) Serial Communications Socket

Pin Number P15

1 (Empty)

2 TX

3 RX

4 (Empty)

5 GND

6 (Empty)

7 CTS

8 RTS

9 (Empty)

Table A-2. Connector Pin Assignments - Wireless Radio Module Socket

Pin Number P17

1 GND

2 V3_3

3 IRQ

4 RD_RESET

5 MOSI

6 nSS

7 SCK

8 MISO

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 179

Board Specifications and Layout

A.1.3.6 J14 - Wireless Radio Module Power

Header J14 must be connected to use the Artaflex radio module. Placing a jumper on J14 provides

3.3 V power to the P17 module socket. This power is drawn directly from the 3.3 V regulator.

A.1.3.7 R20 - Multipurpose Variable Resistor

The board is equipped with a 10 k thumbwheel variable resistor referenced to ground. The high

side of the resistor is tied to jumper J11. The wiper is tied to a receptacle pin on P14.

A.1.3.8 J11 - Variable Resistor Power

Header J11 must be connected to use the variable resistor. Placing a jumper on J11 provides VDD

ANLG power to the high side of the resistor.

A.1.3.9 SW1, SW2, SW5, and SW6 - Multipurpose Push Button Switches

The board has four multipurpose mechanical push buttons, SW1, SW2, SW3, and SW6, that are ref-

erenced to ground. The other sides of the switches are tied to receptacle pins on P14 and P9. The

switches follow an inverted logic as they connect ground to receptacle pins on P14 or P9 when

pressed.

Note SW3 is VDD SELECT, SW4 is RESET switch.

A.1.4 LCD Module

The board has a 2×16 alpha-numeric LCD. I/Os of the module are connected to port two of the

PSoC device and are routed to the processor module socket P2. This LCD is rated for 5 V. However,

the I/Os have a level translator inline so that signaling may be as low as 1.8 V and still be recognized

by the LCD. The header J12 must be connected for the LCD module to be powered; otherwise, it

removes power from the level translator. If the LCD module is removed, the receptacle pins of P18

can be used as port 2.

Note You can connect R40 (0E resistor, no load part) or short the pads given for R40 to switch the

LCD back-light on. The current consumption of the LCD with backlight is around 70 mA; this should

be considered when you budget the power supply of the design. You may use the backlight LCD

from Lumex Inc (part number: LCM-S01602DSF/A).

9 GND

10 (Empty)

11 TxPA

12 RxPA

Table A-2. Connector Pin Assignments - Wireless Radio Module Socket (continued)

Pin Number P17

180 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.1.4.1 R31 - LCD Contrast Adjustment

The board is equipped with an LCD contrast adjustment resistor R31. Turning the wiper counter-

clockwise increases the contrast, while turning the wiper clockwise decreases the contrast.

A.1.4.2 J12 - LCD Module Power

Power for the LCD module is provided through header J12. Placing a jumper on the upper two pins

shorts the VCC pin of the module to ground. Placing the jumper on the lower two pins provides 5 V

to the VCC pin of the module. This 5 V power is taken directly from the onboard 5 V regulator.

A.1.5 CapSense Elements

The prototyping area has three capacitive sensing elements. There are two CapSense buttons con-

nected directly to port zero pins. In addition, there is a five-segment CapSense slider also connected

directly to port zero. Series resistors are placed on these port zero I/Os and should be loaded with

appropriate values. A value of 0 is used for general-purpose CapSense applications, but a value of

560 should be used to achieve best performance. The board is loaded with 0 series resistors by

default. The presence of CapSense elements does not affect the general purpose use of port zero

pins.

A.1.6 Processor Module

A.1.6.1 J2, J3, J4, and J5 - VDDIO Select

These four headers allow you to power the PSoC GPIOs at different voltages. For instance, some of

the I/O may be powered at 5 V, some at 3.3 V, and some at 1.8 V. There are four blocks of GPIO,

each having its own source power. Each VDDIO header provides power to specific GPIOs and is

selectable from VDD, 3.3 V, or VADJ. For details on which GPIOs are powered by which VDDIO

header, see the datasheet for the PSoC device used with this board.

Table A-3. Connector Pin Assignments - LCD Module Socket

Pin Number P18

1 GND

2 VCC_LCD

3 VO

4 RS

5 R/nW

6 EN

7 D0

8 D1

9 D2

10 D3

11 D4

12 D5

13 D6

14 D7

15 BACKLT LED ANODE

16 BACKLT LED CATHODE

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 181

Board Specifications and Layout

For example, VDDIO_0 is configured to VDD, VDDIO_1 is configured to 3.3 V, and VDDIO_2 is con-

figured to VADJ by placing the jumpers in the respective positions, as shown in Figure A-9.

Figure A-9. VDDIO Select

A.1.6.2 SW4 - Processor Reset Button

The board has a push button switch that resets the PSoC device attached to the processor module.

One side of the switch is tied to the XRES pin of the processor module socket. The other end of the

switch is tied to the HW_RESET pin of the processor module socket. This allows the module

designer to tie the HW_RESET line either high or low, depending on which direction the processor

reset is active.

Note PSoC 1 devices are active-high reset. Therefore, a light pull-down resistor may be necessary

on the XRES pin of designs with these devices to avoid unintentional device resets. PSoC 3 and

PSoC 5LP devices are active-low reset. Therefore, a light pull-up resistor may be necessary on the

XRES pin of designs with these devices to avoid unintentional device resets.

A.1.6.3 U8 - External MHz Oscillator

The board supports the use of an external high frequency 8-pin PDIP oscillator. The speed of the

oscillator supported is dependent on the specifications of the PSoC device used. The output of this

oscillator is routed to P15[4] on receptacle P2 and TP62 near P2 of the DVK board.

A.1.6.4 P1, P2, P3, and P4 - Processor Module Receptacles

Processor modules provide modularity to this board. Sockets P1 to P4 are used to connect a proces-

sor module to the board. All supported GPIOs (including special I/Os), along with VDD DIG, VDD

ANLG, 5 V, 3.3 V, VBUS, and VBAT (only connected to a surface mount pad on the board) are con-

nected to these receptacles. In addition, each of the VDDIO power pins are connected to these

receptacles. The full speed USB D+ and D– signals are also connected to one of the sockets. Pro-

cessor reset is connected to P1. Any "no connect" pins are brought out to surface mount test pads.

Table A-4. Connector Pin Assignments - Processor Module Sockets

Pin Number P1 (West) P2 (North) P3 (East) P4 (South)

1 GND GND GND GND

2 VDDD GND GND P7[7]

3 V5_0 P6[1] P12[2] NC7

4 GND P6[0] P12[3] NC8

5 VBAT P6[3] P8[0] NC5

6 DM P6[2] P8[1] NC6

7 V3_3 P15[5] P4[0] NC3

 VDDIO_0=VDD(5 V/3.3 V) VDDIO_1=3.3 V VDDIO_2=VADJ

182 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

Figure A-10. Mechanical Layout Details for Processor Module Connector

8 DP P15[4] P4[1] NC4

9 VBUS P9[2] P8[2] P7[6]

10 VDDIO1 P9[0] P8[3] P7[5]

11 P5[6] P2[1] P0[0] P12[0]

12 P5[7] P2[0] P0[1] P12[1]

13 P5[4] P2[3] P0[2] P3[6]

14 P5[5] P2[2] P0[3] P3[7]

15 P12[6] VDDIO2 VDDIO0 P7[4]

16 P12[7] P9[3] VDDA VDDIO3

17 P1[6] P2[5] P0[4] P3[4]

18 P1[7] P2[4] P0[5] P3[5]

19 P1[4] P2[7] P0[6] P3[2]

20 P1[5] P2[6] P0[7] P3[3]

21 HW_RESET P9[4] P8[4] P3[0]

22 P1[3] P9[5] P8[5] P3[1]

23 P1[1] P12[5] P8[6] P7[2]

24 P1[2] P12[4] P8[7] P7[3]

25 P1[0] P9[6] P4[2] (Empty)

26 P5[3] P9[7] P4[3] (Empty)

27 P5[2] P6[5] P4[4] P7[0]

28 P5[1] P6[4] P4[5] P7[1]

29 P5[0] P6[7] P4[6] NC1

30 XRES P6[6] P4[7] NC2

31 GND GND GND GND

32 GND GND P9[1] GND

Table A-4. Connector Pin Assignments - Processor Module Sockets (continued)

Pin Number P1 (West) P2 (North) P3 (East) P4 (South)

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 183

Board Specifications and Layout

A.1.7 Expansion Ports

The board accommodates I/O expandability. Around the upper, lower, and right sides of the board

are 0.100-inch pitch, dual row right angle receptacles, each having at least three full 8-bit ports (one

has four full ports). Each also has four special I/O pins available. Three of the ports have power and

ground pins as well. The fourth is simply I/O and ground exclusively. These sockets can be used to

join the processor module I/Os with external I/Os through the use of daughter boards.

Table A-5. Connector Pin Assignments - Expansion Port Sockets

Pin Number P5 (PORT B) P6 (PORT A') P7 (PORT A) P8 (PORT C)

1 P1[7] P6[7] P3[7] P9[7]

2 P1[6] P6[6] P3[6] P9[6]

3 P1[5] P6[5] P3[5] P9[5]

4 P1[4] P6[4] P3[4] P9[4]

5 P1[3] P6[3] P3[3] P9[3]

6 P1[2] P6[2] P3[2] P9[2]

7 P1[1] P6[1] P3[1] P9[1]

8 P1[0] P6[0] P3[0] P9[0]

9 GND GND GND GND

10 RESRV3 RESRV8 RESRV11 RESRV14

Port C

Port A

Port A‘

Port B

184 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.1.7.1 Expansion Ports A and A'

Expansion port A can be used as I/O ports with three full 8-bit ports: port3, port4, and port5. It has

four special I/Os as well as ground and voltage pins. It can be used to join processor module I/Os

port3, port4, and port5 with external I/Os through the use of daughter boards.

11 P2[7] P2[7] P5[7] P8[7]

12 P2[6] P2[6] P5[6] P8[6]

13 P2[5] P2[5] P5[5] P8[5]

14 P2[4] P2[4] P5[4] P8[4]

15 P2[3] P2[3] P5[3] P8[3]

16 P2[2] P2[2] P5[2] P8[2]

17 P2[1] P2[1] P5[1] P8[1]

18 P2[0] P2[0] P5[0] P8[0]

19 GND GND GND GND

20 RESRV2 RESRV7 RESRV10 RESRV13

21 P0[7] P0[7] P4[7] P7[7]

22 P0[6] P0[6] P4[6] P7[6]

23 P0[5] P0[5] P4[5] P7[5]

24 P0[4] P0[4] P4[4] P7[4]

25 P0[3] P0[3] P4[3] P7[3]

26 P0[2] P0[2] P4[2] P7[2]

27 P0[1] P0[1] P4[1] P7[1]

28 P0[0] P0[0] P4[0] P7[0]

29 GND GND GND GND

30 RESRV1 RESRV6 RESRV9 RESRV12

31 P12[3] P7[7] P12[3] P12[3]

32 P12[2] P7[6] P12[2] P12[2]

33 P12[1] P7[5] P12[1] P12[1]

34 P12[0] P7[4] P12[0] P12[0]

35 V3_3 P7[3] V3_3 V3_3

36 VADJ P7[2] VADJ VADJ

37 GND P7[1] GND GND

38 V5_0 P7[0] V5_0 V5_0

39 VIN GND VIN VIN

40 GND RESRV5 GND GND

41 x P12[5] x x

42 x P12[4] x x

43 x P12[7] x x

44 x P12[6] x x

45 x GND x x

46 x RESRV4 x x

Table A-5. Connector Pin Assignments - Expansion Port Sockets (continued)

Pin Number P5 (PORT B) P6 (PORT A') P7 (PORT A) P8 (PORT C)

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 185

Board Specifications and Layout

Expansion port A' can be used as I/O ports with four full 8-bit ports: port0, port2, port6, and port7. It

has four special I/Os as well as ground pins. It has no voltage pins. It can be used to join processor

module I/Os port0, port2, port6, and port7 with external I/Os through the use of daughter boards.

The main use of port A' is that it can be used together with port A to join processor module I/Os

port0, port2, port3, port4, port5, port6, and port7 with external I/Os through the use of daughter

boards.

A.1.7.2 Expansion Port B

Expansion port B can be used as I/O ports with three full 8-bit ports: port0, port1, and port2. It has

four special I/Os as well as ground and voltage pins. It can be used to join processor module I/Os

port0, port1, and port2 with external I/Os through the use of daughter boards. It is mainly used in

devices with fewer I/Os.

A.1.7.3 Expansion Port C

Expansion port C can be used as I/O ports with three full 8-bit ports: port7, port8, and port9. It has

four special I/Os as well as ground and voltage pins. It can be used to join processor module I/Os

port7, port8, and port9 with external I/Os through the use of daughter boards. It is used for devices

with a high I/O count.

A.1.7.4 Protection Circuit

The protection circuit consists of two P-channel MOSFET on the power line allowing the power/cur-

rent to flow from input to output depending on the voltages applied at the external board connectors.

This circuit protects the board from voltages above 5.5 V (over voltage) and reversing the power and

ground terminals (reverse voltage) while powering the board from external connectors. Figure A-11

and Figure A-12 are protection circuits placed between EBK and the on-board components on the 5-

V and 3.3-V line.

Figure A-11. Schematic for Protection Circuit on 5-V Power Line

Connector

Side

186 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

Figure A-12. Schematic for Protection Circuit on 3.3-V Power Line

Functional Description of Circuit

The protection circuit will protect from a maximum over-voltage or reverse-voltage of 12 Volts. The

cut-off voltage on the 5-V line is 5.7 V and on the 3.3-V line is 3.6 V. This means, if you apply more

than this voltage level from the external board connector side, the p-MOS Q5 will turn off, thus pro-

tecting the PSoC and other on-board components. The current consumption of these protection cir-

cuits is less than 6 mA.

When voltage from the external connector is between 1.8 V and 3.3 V, the p-MOS Q4 conducts.

Because the voltage across D9 and R4 is the same, the p-MOS Q6 conducts, allowing voltage sup-

ply to the DVK.

When the external power supply exceeds 3.3 V, the p-MOS Q5 starts conducting. This eventually

turns off p-MOS Q6 at 3.6 V, protecting the DVK from over-voltage.

When a reverse voltage is applied across the protection circuit from the external connector side, Q4

P-MOS will turn off, thus protecting the components on the board from reverse voltage.

If you intend to use the regulator power supply from the board to power the external modules, both

the P-MOS Q4 and Q5 will always be on, allowing the flow of current with a maximum of 22 mV drop

across the circuit when the current consumed by the external module is 150 mA.

Note The working of protection circuit on the 3.3-V line and 5-V line is as described above. For the

purpose of explanation, the annotation of 3.3-V protection circuitry (Figure A-12) is used.

Connector

Side

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 187

Board Specifications and Layout

A.2 Schematics

A.2.1 CY8CKIT-001 PSoC Development Board
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

M
H
z

O
s
c
i
l
l
a
t
o
r

8
D
I
P

S
o
c
k
e
t

E
x
p
a
n
s
i
o
n

P
o
r
t

S
o
c
k
e
t
s

P
r
o
c
e
s
s
o
r

M
o
d
u
l
e

S
o
c
k
e
t
s

V
I
O

S
e
l
e
c
t

H
e
a
d
e
r
s

1
.
2
5
V

-

4
.
9
V

L
D
O

A
d
j
u
s
t
a
b
l
e

R
e
g
u
l
a
t
o
r

V
D
D
A
,

V
D
D
D

S
e
l
e
c
t

H
e
a
d
e
r
s

V
D
D

S
e
l
e
c
t

S
w
i
t
c
h

5
V

L
i
n
e
a
r

R
e
g
u
l
a
t
o
r

3
.
3
V

L
i
n
e
a
r

R
e
g
u
l
a
t
o
r

+
9
V
/
+
1
2
V

I
n
p
u
t

1
A

P
o
w
e
r

S
t
a
t
u
s

L
E
D

9
V

B
a
t
t
e
r
y

T
e
r
m
i
n
a
l
s

5
V

S
e
l
e
c
t

H
e
a
d
e
r

-

V
B
U
S

o
r

V
R
E
G

F
u
l
l

S
p
e
e
d

U
S
B

M
i
n
i
-
B

I
n
t
e
r
f
a
c
eR
S
2
3
2

T
r
a
n
s
c
e
i
v
e
r

R
S
2
3
2

P
o
w
e
r

S
e
l
e
c
t

L
C
D

P
o
w
e
r

S
e
l
e
c
t

A
r
t
a
f
l
e
x

R
a
d
i
o

M
o
d
u
l
e

S
o
c
k
e
t

P
S
o
C

R
e
s
e
t

B
u
t
t
o
n

L
C
D

L
o
g
i
c

L
e
v
e
l

S
h
i
f
t
e
r

P
O
R
T

C

P
O
R
T

A
'

P
O
R
T

A

P
O
R
T

B

P
D
C
R
-
9
4
6
1

R
E
V

*
B

1
2
1
R
-
4
6
1
0
0

R
E
V

*
C

D
N
I

D
N
I

V
B

U
S

D
M

D
P

T
X

S
E

R
IA

L
_
T

X
S

E
R

IA
L
_
R

X

V
C

C
_
R

S
2
3
2

R
T

S

C
T

S
R

X

T
X

R
X

C
T

S
R

T
S

S
E

R
IA

L
_
T

X
S

E
R

IA
L
_
R

X

S
E

R
IA

L
_
C

T
S

S
E

R
IA

L
_
R

T
S

S
E

R
IA

L
_
C

T
S

S
E

R
IA

L
_
R

T
S

L
C

D
_
D

4
L
C

D
_
D

5
L
C

D
_
D

6
L
C

D
_
D

7
L
C

D
_
E

L
C

D
_
R

S
L
C

D
_
R

W

P
0
_
0

P
0
_
1

P
0
_
2

P
0
_
3

P
0
_
4

P
0
_
5

P
0
_
6

P
0
_
7

PBSW1
PBSW2

V3_3

VR

VADJ

V5_0

P
2
_
0

P
2
_
1

P
2
_
2

P
2
_
3

P
2
_
4

P
2
_
5

P
2
_
6

L
C

D
_
D

4
L
C

D
_
D

5
L
C

D
_
D

6
L
C

D
_
D

7
L
C

D
_
E

L
C

D
_
R

S
L
C

D
_
R

W

V
R

P
6
_
1

P
6
_
3

P
6
_
5

P
6
_
7

P
1
2
_
7

P
1
2
_
5

P
1
2
_
6

P
1
2
_
4

P
0
_
3

P
0
_
1

P
0
_
5

P
0
_
7

R
E

S
R

V
4

P
0
_
6

P
6
_
2

P
0
_
0

P
0
_
4

P
0
_
2

P
6
_
0

P
6
_
6

P
6
_
4

R
E

S
R

V
5

R
E

S
R

V
6

R
E

S
R

V
7

R
E

S
R

V
8

V
3
_
3
_
E

X
T

R
E

S
R

V
1
2

P
1
2
_
2

V
IN

V
A

D
J

V
5
_
0
_
E

X
T

P
1
2
_
3

P
1
2
_
0

P
1
2
_
1

R
E

S
R

V
1
3

R
E

S
R

V
1
4

P
7
_
1

P
7
_
3

P
7
_
5

P
7
_
7

P
7
_
0

P
7
_
2

P
7
_
4

P
7
_
6

X
R

E
S

P
1
_
7

P
1
_
1

P
1
_
4

P
1
_
3

P
1
_
5

P
1
_
0

P
1
_
6

P
1
_
2

P
B

S
W

1

P
B

S
W

2

M
X

T
A

L
I/
P

1
5
_
4

P
2
_
1

P
2
_
5

P
2
_
3

P
2
_
7

P
2
_
4

P
2
_
0

P
2
_
6

P
2
_
2

n
S

S
IR

Q

R
xP

A

M
IS

O

P
7
_
3

P
7
_
5

P
7
_
1

P
7
_
7

P
7
_
0

P
7
_
2

P
7
_
4

P
7
_
6

P
8
_
6

P
8
_
4

P
8
_
2

P
8
_
0

P
8
_
7

P
8
_
5

P
8
_
3

P
8
_
1

P
9
_
6

P
9
_
4

P
9
_
0

P
9
_
2

P
9
_
7

P
9
_
5

P
9
_
3

P
9
_
1

V
A

D
J

V
A

D
J

M
O

S
I

S
C

K

T
xP

A

R
D

_
R

E
S

E
T

IR
Q

R
D

_
R

E
S

E
T

M
O

S
I

n
S

S

S
C

K

M
IS

O

T
xP

A
R

xP
A

V
B

U
S

V
R

E
G

H
W

_
R

E
S

E
T

P
3
_
4

N
C

8

P
3
_
6

P
3
_
3

P
3
_
0

P
3
_
1

P
3
_
2

N
C

7

N
C

4

P
1
2
_
0

N
C

6

P
7
_
7

P
7
_
1

P
7
_
5

P
7
_
3

P
7
_
4

P
7
_
2

P
7
_
0

P
7
_
6

P
3
_
5

P
1
2
_
1

P
3
_
7

N
C

3
N

C
5

H
W

_
R

E
S

E
T

X
R

E
S

P
5
_
5

P
5
_
7

P
5
_
1

P
5
_
3

P
5
_
6

P
5
_
0

P
5
_
2

P
5
_
4

P
1
_
7

P
1
_
1

P
1
_
4

P
1
_
3

P
1
2
_
7

P
1
2
_
6

P
1
_
5

P
1
_
0

P
1
_
6

P
1
_
2

V
5
_
0

V
D

D
IO

1

V
D

D
D

V
3
_
3

V
B

A
T

D
M

D
P

V
B

U
S

M
X

T
A

L
I/
P

1
5
_
4

P
2
_
6

P
2
_
0

P
2
_
4

P
2
_
7

P
6
_
1

P
2
_
2

P
2
_
3

P
1
5
_
5

P
1
2
_
5

P
2
_
5

P
2
_
1

V
D

D
IO

2

P
1
2
_
4

P
6
_
0

P
6
_
2

P
6
_
5

P
6
_
7

P
6
_
3

P
9
_
4

P
9
_
6

P
9
_
3

P
9
_
5

P
9
_
7

P
9
_
2

P
9
_
0

P
6
_
6

P
6
_
4

P
8
_
6

P
8
_
4

P
8
_
2

P
4
_
4

P
4
_
6

P
0
_
4

P
0
_
0

P
0
_
6

P
0
_
2

P
1
2
_
2

P
4
_
0

V
D

D
IO

0

P
4
_
2

P
8
_
0

N
C

1
N

C
2

V
D

D
IO

3

P
3
_
4

P
3
_
6

P
3
_
2

P
3
_
0

R
E

S
R

V
1
1

R
E

S
R

V
1
0

P
5
_
5

P
5
_
7

P
1
2
_
1

P
3
_
1

P
3
_
3

P
3
_
5

P
3
_
7

P
1
2
_
3

P
4
_
1

P
4
_
3

P
4
_
5

P
4
_
7

P
5
_
1

P
5
_
3

P
5
_
6

P
1
2
_
2

P
1
2
_
0

P
4
_
0

P
4
_
2

P
4
_
4

P
4
_
6

P
5
_
0

P
5
_
2

P
5
_
4

R
E

S
R

V
9

V
3
_
3
_
E

X
T

V
IN

V
A

D
J

P
0
_
3

V
3
_
3
_
E

X
T

P
2
_
1

R
E

S
R

V
1

R
E

S
R

V
2

P
1
_
7

P
1
_
1

P
1
_
4

P
1
_
3

P
1
_
5

P
1
_
0

P
1
_
6

P
1
_
2

P
2
_
5

P
0
_
1

P
0
_
5

P
1
2
_
2

P
1
2
_
3

P
1
2
_
0

P
1
2
_
1

V
IN

R
E

S
R

V
3

P
2
_
3

P
2
_
7

P
0
_
7

V
A

D
J

P
0
_
4

P
0
_
0

P
2
_
4

P
2
_
0

P
0
_
6

P
0
_
2

P
2
_
6

P
2
_
2

P0_5

P0_6

P0_0

P0_1

P0_2

P0_3

P0_4

P
8
_
7

P
8
_
5

P
8
_
3

P
4
_
5

P
4
_
7

P
0
_
5

P
0
_
1

P
0
_
7

P
0
_
3

P
1
2
_
3

P
4
_
1

V
D

D
A

P
4
_
3

P
8
_
1

P
9
_
1

P
2
_
7

V
5
_
0

V
5
_
0
_
E

X
T

V
5
_
0
_
E

X
T

V
3
_
3

P
B

S
W

3

P
B

S
W

4

V
A

D
J

V
3
_
3

V
5
_
0

V
B

U
S

P
B

S
W

3
P

B
S

W
4

V
5
_
0
_
E

X
T

V
3
_
3
_
E

X
T

V
D

D
IO

1
V

3
_
3

V
D

D

V
5
_
0

V
A

D
J

V
C

C
_
R

S
2
3
2

V
C

C
_
L
C

D

V
C

C
_
L
C

D

V
D

D
A

V
R

E
G

V
D

D
V

A
D

J

V
C

C
_
L
C

D

V
3
_
3

V
5
_
0

V
D

D

V
D

D
IO

2

V
3
_
3

V
A

D
J

V
A

D
J

V
A

D
J

V
D

D
IO

0
V

3
_
3

V
D

D
V

D
D

IO
2

V
3
_
3

V
D

D
V

D
D

IO
3

V
3
_
3

V
D

D

V
D

D
A

V
D

D
D

V
5
_
0

V
3
_
3

V
C

C
_
L
C

D

V
C

C
_
L
C

D

V
3
_
3

V
5
_
0

V
5
_
0

V
IN

T
it
le

S
iz

e
D

o
c
u
m

e
n
t
N

u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

C
Y

P
R

E
S

S
 S

E
M

IC
O

N
D

U
C

T
O

R

©
 2

0
1

2

R
E

F
-1

4
6
4
7

*C

C
Y

8
C

K
IT

-0
0
1
 P

S
o

C
 D

e
v
e
lo

p
m

e
n
t
B

o
a
rd

C
u
s
to

m

1
1

M
o

n
d
a
y
,
F

e
b
ru

a
ry

 0
6
,
2
0
1
2

T
it
le

S
iz

e
D

o
c
u
m

e
n
t
N

u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

C
Y

P
R

E
S

S
 S

E
M

IC
O

N
D

U
C

T
O

R

©
 2

0
1

2

R
E

F
-1

4
6
4
7

*C

C
Y

8
C

K
IT

-0
0
1
 P

S
o

C
 D

e
v
e
lo

p
m

e
n
t
B

o
a
rd

C
u
s
to

m

1
1

M
o

n
d
a
y
,
F

e
b
ru

a
ry

 0
6
,
2
0
1
2

T
it
le

S
iz

e
D

o
c
u
m

e
n
t
N

u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

C
Y

P
R

E
S

S
 S

E
M

IC
O

N
D

U
C

T
O

R

©
 2

0
1

2

R
E

F
-1

4
6
4
7

*C

C
Y

8
C

K
IT

-0
0
1
 P

S
o

C
 D

e
v
e
lo

p
m

e
n
t
B

o
a
rd

C
u
s
to

m

1
1

M
o

n
d
a
y
,
F

e
b
ru

a
ry

 0
6
,
2
0
1
2

T
P

3
8

B
L
A

C
K

T
P

3
8

B
L
A

C
K

0603

R
3
5

6
.0

4
K

0603

R
3
5

6
.0

4
K

0
6
0
3

R
2
5

1
K

0
6
0
3

R
2
5

1
K

J
1
2

3
 P

IN
 H

D
R

J
1
2

3
 P

IN
 H

D
R1

2
3

T
P

4
1

T
P

4
1

T
P

6
5

T
P

6
5

P
6

2
3
x2

 R
E

C
P

 R
A

P
6

2
3
x2

 R
E

C
P

 R
A

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

3
2

5
2

7
2

9
3

1
3

3
3

5
3

7
3

9

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
1

4
2

4
3

4
4

4
5

4
6

T
P

2
0

T
P

2
0

T
P

3
2

B
L
A

C
K

T
P

3
2

B
L
A

C
K

T
P

6
4

T
P

6
4

0603

R
4
7

ZERO

0603

R
4
7

ZERO

0
6
0
3

R
1
7

1
0
0
 o

h
m

0
6
0
3

R
1
7

1
0
0
 o

h
m

U
5

S
N

6
5
2
2
0

U
5

S
N

6
5
2
2
0

N
C

_
A

1 2
G

N
D

1
N

C
_

B
3

B
4

G
N

D
2

5
A

6

0
6
0
3

C
4

1
.0

 u
F

d

2
5
V

0
6
0
3

C
4

1
.0

 u
F

d

2
5
V

T
P

7
T

P
7

P
7

2
0
x2

 R
E

C
P

 R
A

P
7

2
0
x2

 R
E

C
P

 R
A

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

3
2

5
2

7
2

9
3

1
3

3
3

5
3

7
3

9

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

R
4

4
4
2
 o

h
m

R
4

4
4
2
 o

h
m

R
3

1
K

 o
h
m

R
3

1
K

 o
h
m

1206

D
4

L
E

D
 R

e
d

1206

D
4

L
E

D
 R

e
d

P
3

1
6
x2

 R
E

C
P

P
3

1
6
x2

 R
E

C
P

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

T
P

1
R

E
D

T
P

1
R

E
D

T
P

3
7

B
L
A

C
K

T
P

3
7

B
L
A

C
K

0603

R
1
0

1
2
0
 5

%

0603

R
1
0

1
2
0
 5

%

+
B

C
3

1
0
 u

F
d
 2

5
v

+
B

C
3

1
0
 u

F
d
 2

5
v

D
9

Vz=1.8V(BZT52C2V0-7-F)

D
9

Vz=1.8V(BZT52C2V0-7-F)

0603

R
2
1

1
K

0603

R
2
1

1
K

0
6
0
3

C
1
1

0
.1

 u
F

d
0
6
0
3

C
1
1

0
.1

 u
F

d

S
W

3
S

P
D

T
S

W
3

S
P

D
T

2
1

3

D
2

D
IO

D
E

 S
C

H
O

T
T

K
Y

 4
0
V

D
2

D
IO

D
E

 S
C

H
O

T
T

K
Y

 4
0
V

T
P

2
2

T
P

2
2

0
8
0
5

R
4
0

N
O

 L
O

A
D

0
8
0
5

R
4
0

N
O

 L
O

A
D

P
1
7

6
x2

 R
E

C
P

 2
m

m
 S

M
T

P
1
7

6
x2

 R
E

C
P

 2
m

m
 S

M
T

1
1

3
3

5
5

7
7

9
9

1
1

1
1

2
2

4
4

6
6

8
8

1
0

1
0

1
2

1
2

0
6
0
3

C
2
5

1
.0

 u
F

d

2
5
V

0
6
0
3

C
2
5

1
.0

 u
F

d

2
5
V

0603

R
2
2

1
K

0603

R
2
2

1
K

0603

R
4
6

ZERO

0603

R
4
6

ZERO

0
6
0
3

C
2
8

0
.1

 u
F

d
0
6
0
3

C
2
8

0
.1

 u
F

d

P
1
4

1
2
X

1
 R

E
C

P

P
1
4

1
2
X

1
 R

E
C

P

1
2
3
4
5
6
7
8
9
10
11
12

R
1
1

5
0
0
 O

h
m

R
1
1

5
0
0
 O

h
m

1 3

2

1
2
1
0

F
1

1
0
0
m

A

1
2
1
0

F
1

1
0
0
m

A

P
9

R
E

C
P

 8
X

1

P
9

R
E

C
P

 8
X

1

1 2 3 4 5 6 7 8

1
2
1
0

C
1
2

1
0
 u

F
d
 1

6
v

1
2
1
0

C
1
2

1
0
 u

F
d
 1

6
v

1 2

8
M
S
O
P

U
4

L
P

3
9
8
2
IM

M
-A

D
J

8
M
S
O
P

U
4

L
P

3
9
8
2
IM

M
-A

D
J V

O
U

T
1

1

GND
3

V
IN

2

V
O

U
T

2
4

S
E

T
5

C
C

6

n
S

H
D

N
7

n
F

A
U

L
T

8

J
3

3
x2

 H
E

A
D

E
R

J
3

3
x2

 H
E

A
D

E
R

1
3

2
4

56

1206

D
3

L
E

D
 R

e
d

1206

D
3

L
E

D
 R

e
d

R
3
1

P
O

T
 1

0
K

R
3
1

P
O

T
 1

0
K

0603

R
4
2

Z
E

R
O

0603

R
4
2

Z
E

R
O

T
P

2
R

E
D

T
P

2
R

E
D

0
6
0
3

R
3
0

1
K

0
6
0
3

R
3
0

1
K

0603

R
3
4

6
.0

4
K

0603

R
3
4

6
.0

4
K

0603

R
2
3

1
K

0603

R
2
3

1
K

T
P

1
2

T
P

1
2

T
P

6
2

T
P

6
2

T
P

6
8

T
P

6
8

T
P

3
6

B
L
A

C
K

T
P

3
6

B
L
A

C
K

L
C
D

G
N
D

V
C
C

V
O

R
S

R
/
n
W

E
N

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

M
O
D
U
L
E

A K

P
1
8

L
C

D
 H

E
A

D
E

R
 W

/B
A

C
K

L
IG

H
T

L
C
D

G
N
D

V
C
C

V
O

R
S

R
/
n
W

E
N

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

M
O
D
U
L
E

A K

P
1
8

L
C

D
 H

E
A

D
E

R
 W

/B
A

C
K

L
IG

H
T

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

0
8
0
5

C
2
3

0
.1

 u
F

d
0
8
0
5

C
2
3

0
.1

 u
F

d

C
S

S
1

C
a
p
S

e
n
s
e
 L

in
e
a
r

S
lid

e
r

5
 S

e
g

C
S

S
1

C
a
p
S

e
n
s
e
 L

in
e
a
r

S
lid

e
r

5
 S

e
g

1

2

3

4

5

0603

R
2
4

1
K

0603

R
2
4

1
K

S
W

2

S
W

 P
U

S
H

B
U

T
T

O
N

S
W

2

S
W

 P
U

S
H

B
U

T
T

O
N

3 4
1 2

0603

R
4
5

ZERO

0603

R
4
5

ZERO

Q
4 PMOS(DMP3098L-7)

Q
4 PMOS(DMP3098L-7)

T
P

2
3

T
P

2
3

+
B

C
9

1
0
 u

F
d
 2

5
v

+
B

C
9

1
0
 u

F
d
 2

5
v

0
6
0
3

R
1
8

Z
E

R
O

0
6
0
3

R
1
8

Z
E

R
O

T
P

3
0

B
L
A

C
K

T
P

3
0

B
L
A

C
K

S
O
T
-
8
9
R

U
1
1

A
P

1
3
0
-3

3
Y

R
L
-1

3
S
O
T
-
8
9
R

U
1
1

A
P

1
3
0
-3

3
Y

R
L
-1

3

G
N

D
1

V
IN

2
V

O
U

T
3

C
S

B
2

C
a
p
S

e
n
s
e

C
S

B
2

C
a
p
S

e
n
s
e

1

J
6

3
 P

IN
 H

D
R

J
6

3
 P

IN
 H

D
R

1
2
3

T
P

6
3

T
P

6
3

Q
6

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

Q
6

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)
9
V

B
H

1
B

A
T

 9
V

 M
A

L
E

9
V

B
H

1
B

A
T

 9
V

 M
A

L
E

1
N

E
G

P
1

1
6
x2

 R
E

C
P

P
1

1
6
x2

 R
E

C
P

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

0
6
0
3

R
2
9

1
K

0
6
0
3

R
2
9

1
K

Q
2

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

Q
2

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

T
P

1
8

W
H

IT
E

T
P

1
8

W
H

IT
E

J
7

3
 P

IN
 H

D
R

J
7

3
 P

IN
 H

D
R

1
2
3

0
6
0
3

R
2
6

1
K

0
6
0
3

R
2
6

1
K

0
6
0
3

C
2
7

0
.1

 u
F

d
0
6
0
3

C
2
7

0
.1

 u
F

d

R
2
0

1
0
K

R
2
0

1
0
K

T
P

4
0

T
P

4
0

P
2

1
6
x2

 R
E

C
P

P
2

1
6
x2

 R
E

C
P

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

S
W

4

S
W

 P
U

S
H

B
U

T
T

O
N

S
W

4

S
W

 P
U

S
H

B
U

T
T

O
N3 4

1 2

J
1
1

2
 P

IN
 H

D
R

J
1
1

2
 P

IN
 H

D
R

1
2

J
5

3
x2

 H
E

A
D

E
R

J
5

3
x2

 H
E

A
D

E
R

1
3

2
4

56

0
6
0
3

R
2
7

N
O

 L
O

A
D

0
6
0
3

R
2
7

N
O

 L
O

A
D

1
2

T
P

4
4

T
P

4
4

+
B

C
1

1
0
 u

F
d
 2

5
v

+
B

C
1

1
0
 u

F
d
 2

5
v

B
H

2
B

A
T

 9
V

 F
E

M
A

L
E

B
H

2
B

A
T

 9
V

 F
E

M
A

L
E

1
P

O
S

0
6
0
3

C
1
6

0
.1

 u
F

d
0
6
0
3

C
1
6

0
.1

 u
F

d

0
8
0
5

R
5
0

Z
E

R
O

0
8
0
5

R
5
0

Z
E

R
O

T
P

3
R

E
D

T
P

3
R

E
D

0
6
0
3

R
1
5

2
0
0
 o

h
m

0
6
0
3

R
1
5

2
0
0
 o

h
m

P
1
5

D
B

9
 F

E
M

A
L
E

P
1
5

D
B

9
 F

E
M

A
L
E

5 9 4 8 3 7 2 6 1

10 11

T
P

4
3

T
P

4
3

0603

R
4
4

ZERO

0603

R
4
4

ZERO

T
P

3
5

B
L
A

C
K

T
P

3
5

B
L
A

C
K

0603

R
4
9

N
O

 L
O

A
D

0603

R
4
9

N
O

 L
O

A
D

1 2

J
1

P
O

W
E

R
 J

A
C

K
 P

-5

J
1

P
O

W
E

R
 J

A
C

K
 P

-5

1 23

T
P

6
6

T
P

6
6

0
6
0
3

R
1
6

Z
E

R
O

0
6
0
3

R
1
6

Z
E

R
O

P
1
1

B
re

a
d
b
o

a
rd

P
1
1

B
re

a
d
b
o

a
rd

0
6
0
3

C
2
6

0
.1

 u
F

d
0
6
0
3

C
2
6

0
.1

 u
F

d

C
S

B
1

C
a
p
S

e
n
s
e

C
S

B
1

C
a
p
S

e
n
s
e

1

0
8
0
5

C
2
0

0
.1

 u
F

d
0
8
0
5

C
2
0

0
.1

 u
F

d

T
P

1
4

R
E

D T
P

1
4

R
E

D

R
2

2
2
0
 o

h
m

R
2

2
2
0
 o

h
m

J
1
4

2
 P

IN
 H

D
R

J
1
4

2
 P

IN
 H

D
R

12

J
9

U
S

B
 M

IN
I
B

J
9

U
S

B
 M

IN
I
B

V
B

U
S

1

D
M

2

D
P

3

G
N

D
5

ID
4

S1
6

S2
7 S3

8

S4
9

T
P

1
9

W
H

IT
E

T
P

1
9

W
H

IT
E

T
P

2
4

T
P

2
4

S
W

1

S
W

 P
U

S
H

B
U

T
T

O
N

S
W

1

S
W

 P
U

S
H

B
U

T
T

O
N

3 4
1 2

0
6
0
3

C
2
4

3
3
 n

F
d

0
6
0
3

C
2
4

3
3
 n

F
d

T
P

5
6

W
H

IT
E

T
P

5
6

W
H

IT
E

J
8

3
 P

IN
 H

D
R

J
8

3
 P

IN
 H

D
R1

2
3

P
1
6

4
x1

 R
E

C
P

P
1
6

4
x1

 R
E

C
P

1 2 3 4

T
P

6
7

T
P

6
7

0603

R
3
3

6
.0

4
K

0603

R
3
3

6
.0

4
K

P
5

2
0
x2

 R
E

C
P

 R
A

P
5

2
0
x2

 R
E

C
P

 R
A

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

3
2

5
2

7
2

9
3

1
3

3
3

5
3

7
3

9

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

0603
R

1
1
K

0603
R

1
1
K

U
6

S
N

6
5
C

3
2
3
2

U
6

S
N

6
5
C

3
2
3
2

C
1

+
1

V
+

2

C
1

-
3

C
2

+
4

C
2

-
5

V
-

6

T
R

2
O

U
T

7

R
X

2
IN

8

VCC
16

GND
15

T
R

1
O

U
T

1
4

R
X

1
IN

1
3

R
X

1
O

U
T

1
2

T
R

1
IN

1
1

T
R

2
IN

1
0

R
X

2
O

U
T

9

J
4

3
x2

 H
E

A
D

E
R

J
4

3
x2

 H
E

A
D

E
R

1
3

2
4

56

T
V

S
1

5
V

 3
5
0
W

T
V

S
1

5
V

 3
5
0
W

0
6
0
3

C
2
2

0
.1

 u
F

d
0
6
0
3

C
2
2

0
.1

 u
F

d

D
7

3
.6

V
 5

0
0
m

W

D
7

3
.6

V
 5

0
0
m

W

0
6
0
3

C
1
5

0
.1

 u
F

d
0
6
0
3

C
1
5

0
.1

 u
F

d

T
P

6
0

T
P

6
0

T
P

2
5

T
P

2
5

T
P

3
4

B
L
A

C
K

T
P

3
4

B
L
A

C
K

T
P

4
2

T
P

4
2

P
4

1
6
x2

 R
E

C
P

P
4

1
6
x2

 R
E

C
P

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

R
5

1
K

 o
h
m

R
5

1
K

 o
h
m

D
8

Vz=4.3V(PTZTE254,SOD-106)

D
8

Vz=4.3V(PTZTE254,SOD-106)

0603

R
3
6

6
.0

4
K

0603

R
3
6

6
.0

4
K

0603

R
4
1

Z
E

R
O

0603

R
4
1

Z
E

R
O

T
P

4
R

E
D

T
P

4
R

E
D

T
P

5
9

T
P

5
9

P
1
2

R
E

C
P

 8
X

1

P
1
2

R
E

C
P

 8
X

1

1 2 3 4 5 6 7 8

T
P

4
5

T
P

4
5

1206

D
6

L
E

D
 R

e
d

1206

D
6

L
E

D
 R

e
d

+
B

C
3
0

1
0
 u

F
d
 2

5
v

+
B

C
3
0

1
0
 u

F
d
 2

5
v

0603

R
3
7

6
.0

4
K

0603

R
3
7

6
.0

4
K

U
8

8
 P

IN
 D

IP
 S

O
C

K
E

T

U
8

8
 P

IN
 D

IP
 S

O
C

K
E

T

1
1

3
3

5
5

7
7

2
2

4
4

6
6

8
8

T
P

3
9

B
L
A

C
K

T
P

3
9

B
L
A

C
K

1206

D
1L
E

D
 G

re
e
n

1206

D
1L
E

D
 G

re
e
n

J
2

3
x2

 H
E

A
D

E
R

J
2

3
x2

 H
E

A
D

E
R

1
3

2
4

56

0
6
0
3

C
2
1

0
.1

 u
F

d
0
6
0
3

C
2
1

0
.1

 u
F

d

S
W

6

S
W

 P
U

S
H

B
U

T
T

O
N

S
W

6

S
W

 P
U

S
H

B
U

T
T

O
N

3 4
1 2

1
2
1
0

C
2
9

1
0
 u

F
d
 1

6
v

1
2
1
0

C
2
9

1
0
 u

F
d
 1

6
v

1 2

0
6
0
3

R
2
8

1
K

0
6
0
3

R
2
8

1
K

0603

R
4
8

1
0
0
K

1
%

0603

R
4
8

1
0
0
K

1
%

0
8
0
5

C
1
7

0
.3

3
 u

F
d

0
8
0
5

C
1
7

0
.3

3
 u

F
d

P
1
9

1
7
X

1
 R

E
C

P

P
1
9

1
7
X

1
 R

E
C

P

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7

S
W

5

S
W

 P
U

S
H

B
U

T
T

O
N

S
W

5

S
W

 P
U

S
H

B
U

T
T

O
N

3 4
1 2

T
P

3
3

B
L
A

C
K

T
P

3
3

B
L
A

C
K

0603

R
4
3

ZERO

0603

R
4
3

ZERO

T
P

5
8

W
H

IT
E

T
P

5
8

W
H

IT
E

0603

R
3
2

6
.0

4
K

0603

R
3
2

6
.0

4
K

0
8
0
5

R
5
1

Z
E

R
O

0
8
0
5

R
5
1

Z
E

R
O

0603
R

3
9

2
0
0
K

 5
%

0603
R

3
9

2
0
0
K

 5
%

0402

C
1
0 1
0
 n

F
d

0402

C
1
0 1
0
 n

F
d

P
8

2
0
x2

 R
E

C
P

 R
A

P
8

2
0
x2

 R
E

C
P

 R
A

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

3
2

5
2

7
2

9
3

1
3

3
3

5
3

7
3

9

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

Q
5

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

Q
5

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

T
P

5
7

T
P

5
7

Q
1 PMOS(DMP3098L-7)

Q
1 PMOS(DMP3098L-7)

0
4
0
2

R
1
4

1
0
0
K

0
4
0
2

R
1
4

1
0
0
K

J
1
0

2
 P

IN
 H

D
R

J
1
0

2
 P

IN
 H

D
R

1
2

1206

D
5

L
E

D
 R

e
d

1206

D
5

L
E

D
 R

e
d

+
D
8

C
2

3
3
0
 u

F
d
 2

5
v

+
D
8

C
2

3
3
0
 u

F
d
 2

5
v

T
P

5
T

P
5

0603

R
3
8

6
.0

4
K

0603

R
3
8

6
.0

4
K

0
6
0
3

C
1
4

0
.1

 u
F

d
0
6
0
3

C
1
4

0
.1

 u
F

d
0
6
0
3

C
1
3

0
.1

 u
F

d
0
6
0
3

C
1
3

0
.1

 u
F

d

T
O
-
2
5
2

U
2

A
P

1
1
1
7
D

5
0
L

T
O
-
2
5
2

U
2

A
P

1
1
1
7
D

5
0
L GND

1

V
O

U
T

2
V

IN
3

Q
3

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

Q
3

P
M

O
S

(
D

M
P

3
0
9
8
L
-7

)

0
6
0
3

R
1
9

1
0
0
 o

h
m

0
6
0
3

R
1
9

1
0
0
 o

h
m

T
P

6
1

T
P

6
1

D
8

G
R
E
F

G
N
D

S
8

S
R
E
F

D
R
E
F

S
1

S
2

D
1

D
2

S
3

D
4

S
4

D
5

S
5

D
6

S
6

D
7

S
7

D
3

U
7 G

T
L
2
0
0
3
P

W

D
8

G
R
E
F

G
N
D

S
8

S
R
E
F

D
R
E
F

S
1

S
2

D
1

D
2

S
3

D
4

S
4

D
5

S
5

D
6

S
6

D
7

S
7

D
3

U
7 G

T
L
2
0
0
3
P

W

81 2 3 4 65 7 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

188 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.2.2 CY8C28 Family Processor Module
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

N
O

L
O
A
D

N
O

L
O
A
D

C
Y
8
C
K
I
T
-
0
2
0

2
8
x
x
x

P
R
O
C
E
S
S
O
R

M
O
D
U
L
E

(
E
M
E
R
A
L
D
)

E
X
T
E
R
N
A
L

B
A
T
T
E
R
Y

C
L
I
P

P
D
C
-
0
9
5
4
7

R
E
V

*
*

1
2
0
-
0
9
5
4
7
-
0

R
E
V

*
*

R
b

C
m
o
d

R
b

C
m
o
d

N
O

L
O
A
D

X
R

E
S

P
1
_
1

P
1
_
0

O
C

D
_
D

E
O

C
D

_
D

O
O

C
D

_
H

C
L
K

O
C

D
_
C

C
L
K

X
R

E
S

P
0
_
0

P
0
_
1

P
0
_
2

P
0
_
3

P
0
_
4

P
0
_
5

P
0
_
6

P
1
_
0

P
1
_
1

P
1
_
2

P
1
_
3

P
1
_
4

P
1
_
5

P
1
_
6

P
2
_
0

P
2
_
1

P
2
_
2

P
2
_
3

P
2
_
4

P
2
_
5

P
2
_
6

P
2
_
7

P
3
_
0

P
3
_
1

P
3
_
2

P
3
_
3

P
3
_
4

P
3
_
5

P
3
_
6

P
3
_
7

P
4
_
0

P
4
_
1

P
4
_
2

P
4
_
3

P
4
_
4

P
4
_
5

P
4
_
6

P
5
_
0

P
5
_
1

P
5
_
2

P
5
_
3

IC
E

_
D

O

IC
E

_
R

S
T

IC
E

_
H

C
L
K

IC
E

_
C

C
L
K

IC
E

_
D

E

IC
E

_
D

E

IC
E

_
D

O

IC
E

_
H

C
L
K

IC
E

_
C

C
L
K

X
R

E
S

O
C

D
_
C

C
L
K

O
C

D
_
H

C
L
K

O
C

D
_
D

E

IC
E

_
R

S
T

O
C

D
_
D

O

H
W

_
R

E
S

E
T

P
2
_
6

P
2
_
0

P
2
_
4

P
2
_
7

P
2
_
2

P
2
_
3

P
2
_
5

P
2
_
1

P
3
_
4

P
3
_
6

P
3
_
3

P
3
_
0

P
3
_
1

P
3
_
2

P
3
_
5

P
3
_
7

P
0
_
7

P
4
_
1

P
0
_
5

P
0
_
1

P
0
_
3

P
4
_
7

P
4
_
4

P
4
_
6

P
0
_
4

P
0
_
0

P
0
_
6

P
0
_
2

P
4
_
3

P
4
_
5

V
D

D

P
4
_
0

P
4
_
2

X
R

E
S

P
5
_
1

P
5
_
3

P
5
_
0

P
5
_
2

P
1
_
7

P
1
_
1

P
1
_
4

P
1
_
3

P
1
_
5

P
1
_
0

P
1
_
6

P
1
_
2

P
1
_
7

P
4
_
7

P
3
_
0

V
5
_
0

V
3
_
3

P
3
_
1

S
D

A
S

C
L

P
1
_
1

P
1
_
0

P
0
_
7

V
D

D

V
D

D

V
D

D

V
D

D

V
D

D

V
D

D

V
D

D

T
it
le

S
iz

e
D

o
c
u
m

e
n
t
N

u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

C
Y

P
R

E
S

S
 S

E
M

IC
O

N
D

U
C

T
O

R

©

 2
0
0
9

R
E

F
-1

5
0
5
2

**

C
Y

8
C

K
IT

-0
2
0
 2

8
X

X
X

 P
ro

c
e
s
s
o
r

M
o
d
u
le

 (
E

m
e
ra

ld
)

C

1
1

M
o
n
d
a
y
,
O

c
to

b
e
r

2
6
,
2
0
0
9

T
it
le

S
iz

e
D

o
c
u
m

e
n
t
N

u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

C
Y

P
R

E
S

S
 S

E
M

IC
O

N
D

U
C

T
O

R

©

 2
0
0
9

R
E

F
-1

5
0
5
2

**

C
Y

8
C

K
IT

-0
2
0
 2

8
X

X
X

 P
ro

c
e
s
s
o
r

M
o
d
u
le

 (
E

m
e
ra

ld
)

C

1
1

M
o
n
d
a
y
,
O

c
to

b
e
r

2
6
,
2
0
0
9

T
it
le

S
iz

e
D

o
c
u
m

e
n
t
N

u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

C
Y

P
R

E
S

S
 S

E
M

IC
O

N
D

U
C

T
O

R

©

 2
0
0
9

R
E

F
-1

5
0
5
2

**

C
Y

8
C

K
IT

-0
2
0
 2

8
X

X
X

 P
ro

c
e
s
s
o
r

M
o
d
u
le

 (
E

m
e
ra

ld
)

C

1
1

M
o
n
d
a
y
,
O

c
to

b
e
r

2
6
,
2
0
0
9

S
O
T
2
3

D
1

Z
H

C
S

S
O
T
2
3

D
1

Z
H

C
S

0
6
0
3R

1
0

Z
E

R
O

0
6
0
3R

1
0

Z
E

R
O

T
P

5
R

E
D

T
P

5
R

E
D

0603

R
1
1

1
K

0603

R
1
1

1
K

R
3

5
6
 O

h
m

s

R
3

5
6
 O

h
m

s

0
8
0
5

C
1
2

N
o
 L

o
a
d

0
8
0
5

C
1
2

N
o
 L

o
a
d

0
4
0
2

C
1
0

1
0
0
 p

F
d

0
4
0
2

C
1
0

1
0
0
 p

F
d

0
8
0
5

C
1

1
0
 u

F
d
 1

6
V

0
8
0
5

C
1

1
0
 u

F
d
 1

6
V

0603

R
2

1
K

0603

R
2

1
K

0
6
0
3

C
2

0
.1

 u
F

d
0
6
0
3

C
2

0
.1

 u
F

d

0603

R
6

1
K

0603

R
6

1
K

R
1

5
6
 O

h
m

s

R
1

5
6
 O

h
m

s

0
6
0
3

R
1
5

N
O

 L
O

A
D

0
6
0
3

R
1
5

N
O

 L
O

A
D

0
6
0
3

C
1
6

2
2
0
0
p
F

 5
0
V

0
6
0
3

C
1
6

2
2
0
0
p
F

 5
0
V

Y
1

3
2
.7

6
8
 k

H
z
 X

T
A

L
Y

1
3
2
.7

6
8
 k

H
z
 X

T
A

L
1

2

3

L
1

2
.2

u
H

L
1

2
.2

u
H

0
6
0
3

R
1
6

Z
E

R
O

0
6
0
3

R
1
6

Z
E

R
O

T
P

3
R

E
D

T
P

3
R

E
D

0
6
0
3

R
1
2

N
O

 L
O

A
D

0
6
0
3

R
1
2

N
O

 L
O

A
D

0
4
0
2

R
9

Z
E

R
O

0
4
0
2

R
9

Z
E

R
O

T
P

2
B

L
A

C
K

T
P

2
B

L
A

C
K

J
1

1
6
x
2
 H

E
A

D
E

R

J
1

1
6
x
2
 H

E
A

D
E

R

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

0603

R
1
8

Z
E

R
O

0603

R
1
8

Z
E

R
O

0
6
0
3

R
1
7

Z
E

R
O

0
6
0
3

R
1
7

Z
E

R
O

0
6
0
3

C
1
5

N
O

 L
O

A
D

0
6
0
3

C
1
5

N
O

 L
O

A
D

0
8
0
5

C
1
4

N
o
 L

o
a
d

0
8
0
5

C
1
4

N
o
 L

o
a
d

J
2

1
6
x
2
 H

E
A

D
E

R

J
2

1
6
x
2
 H

E
A

D
E

R

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

T
P

7
T

P
7

J
3

1
6
x
2
 H

E
A

D
E

R

J
3

1
6
x
2
 H

E
A

D
E

R

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

0
6
0
3

R
1
3

N
O

 L
O

A
D

0
6
0
3

R
1
3

N
O

 L
O

A
D

T
P

1
R

E
D

T
P

1
R

E
D

J
5

H
D

R
 1

x
5

J
5

H
D

R
 1

x
5

1
1

3
3

2
2

4
4

5
5

0
6
0
3

C
6

0
.1

 u
F

d
0
6
0
3

C
6

0
.1

 u
F

d

R
7

5
6
 O

h
m

s

R
7

5
6
 O

h
m

s

0
6
0
3

R
1
4

N
O

 L
O

A
D

0
6
0
3

R
1
4

N
O

 L
O

A
D

0603

R
4

1
K

0603

R
4

1
K

J
4

1
6
x
2
 H

E
A

D
E

R

J
4

1
6
x
2
 H

E
A

D
E

R

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

0
8
0
5

C
1
3

N
o
 L

o
a
d

0
8
0
5

C
1
3

N
o
 L

o
a
d

C
Y

8
C

2
8
0
0
0
-2

4
P

V
X

I

U
1

C
Y

8
C

2
8
0
0
0
-2

4
P

V
X

I

U
1

P
4

_
4

4
6

P
2

_
6

5
1

P
4

_
2

4
5

P
1

_
4

3
3

P
1

_
2

3
2

P
1

_
0

3
1

N
C

4
3

0
P

1
_

1
2

7

N
C

2
2

5
P

1
_

5
2

4

P
3

_
1

2
0

P
3

_
7

1
7

P
3

_
0

3
7

P
2

_
3

8
P

2
_

5
7

P
0

_
5

3

P
4

_
0

4
4

P
0

_
7

2
N

C
1

1

N
C

3
2

9
V

S
S

2
8

C
C

L
K

4
3

P
1

_
3

2
6

P
1

_
6

3
4

P
3

_
4

3
9

O
C

D
O

1
5

O
C

D
E

1
4

S
M

P
1

6

P
3

_
6

4
0

P
4

_
1

1
3

P
4

_
3

1
2

P
4

_
5

1
1

P
0

_
1

5
P

0
_

3
4

X
R

E
S

4
1

P
4

_
7

1
0

P
2

_
1

9

P
2

_
7

6

P
3

_
3

1
9

P
3

_
5

1
8

P
5

_
3

2
1

P
1

_
7

2
3

P
5

_
1

2
2

H
C

L
K

4
2

P
5

_
2

3
6

P
5

_
0

3
5

P
4

_
6

4
7

P
2

_
0

4
8

P
2

_
2

4
9

P
2

_
4

5
0

P
0

_
0

5
2

P
0

_
2

5
3

P
0

_
4

5
4

P
0

_
6

5
5

P
3

_
2

3
8

V
D

D
5

6

T
P

4
B

L
A

C
K

T
P

4
B

L
A

C
K

0603

R
8

1
K

0603

R
8

1
K

P
1

2
0
 P

in
 H

ir
o
s
e
 R

e
c
p

P
1

2
0
 P

in
 H

ir
o
s
e
 R

e
c
p

1 3 5 7 9

2 4 6 8 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

R
5

5
6
 O

h
m

s

R
5

5
6
 O

h
m

s
T

P
6

T
P

6

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 189

Board Specifications and Layout

A.2.3 CY8C29 Family Processor Module

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

N
O

L
O
A
D

N
O

L
O
A
D

C
Y
8
C
2
9

F
A
M
I
L
Y

P
R
O
C
E
S
S
O
R

M
O
D
U
L
E

E
X
T
E
R
N
A
L

B
A
T
T
E
R
Y

C
L
I
P

P
D
C
R
-
9
4
6
4

R
E
V

*
A

1
2
1
R
-
4
6
4
0
0

R
E
V

*
B

k
H
z

C
r
y
s
t
a
l

C
a
n
i
s
t
e
r

S
w
i
t
c
h

M
o
d
e

P
u
m
p

C
o
m
p
o
n
e
n
t
s

O
n
-
C
h
i
p

D
e
b
u
g
g
e
r

I
n
t
e
r
f
a
c
e

I
S
S
P

P
r
o
g
r
a
m
m
i
n
g

I
n
t
e
r
f
a
c
e

B
u
l
k

a
n
d

B
y
p
a
s
s

C
a
p
a
c
i
t
o
r
s

X
R

E
S

P
1

_
1

P
1

_
0

O
C

D
_

D
E

O
C

D
_

D
O

O
C

D
_

H
C

L
K

O
C

D
_

C
C

L
K

X
R

E
S

P
0

_
0

P
0

_
1

P
0

_
2

P
0

_
3

P
0

_
4

P
0

_
5

P
0

_
6

P
0

_
7

P
1

_
0

P
1

_
1

P
1

_
2

P
1

_
3

P
1

_
4

P
1

_
5

P
1

_
6

P
1

_
7

P
2

_
0

P
2

_
1

P
2

_
2

P
2

_
3

P
2

_
4

P
2

_
5

P
2

_
6

P
2

_
7

P
3

_
0

P
3

_
1

P
3

_
2

P
3

_
3

P
3

_
4

P
3

_
5

P
3

_
6

P
3

_
7

P
4

_
0

P
4

_
1

P
4

_
2

P
4

_
3

P
4

_
4

P
4

_
5

P
4

_
6

P
4

_
7

P
5

_
0

P
5

_
1

P
5

_
2

P
5

_
3

P
5

_
4

P
5

_
5

P
5

_
6

P
5

_
7

P
6

_
0

P
6

_
1

P
6

_
2

P
6

_
3

P
6

_
4

P
6

_
5

P
6

_
6

P
6

_
7

P
7

_
0

P
7

_
1

P
7

_
2

P
7

_
3

P
7

_
4

P
7

_
5

P
7

_
6

P
7

_
7

P
X

1
_

1
P

X
1

_
0

P
1

_
1

P
1

_
0

IC
E

_
D

O

IC
E

_
R

S
T

IC
E

_
H

C
L

K

IC
E

_
C

C
L

K

IC
E

_
D

E

IC
E

_
D

E

IC
E

_
D

O

IC
E

_
H

C
L

K

IC
E

_
C

C
L

K

X
R

E
S

O
C

D
_

C
C

L
K

O
C

D
_

H
C

L
K

O
C

D
_

D
E

IC
E

_
R

S
T

O
C

D
_

D
O

H
W

_
R

E
S

E
T

P
2

_
6

P
2

_
0

P
2

_
4

P
2

_
7

P
6

_
1

P
2

_
2

P
2

_
3

P
2

_
5

P
2

_
1

P
6

_
0

P
6

_
2

P
6

_
5

P
6

_
7

P
6

_
3

P
6

_
6

P
6

_
4

P
3

_
4

P
3

_
6

P
3

_
3

P
3

_
0

P
3

_
1

P
3

_
2

P
7

_
7

P
7

_
1

P
7

_
5

P
7

_
3

P
7

_
4

P
7

_
2

P
7

_
0

P
7

_
6

P
3

_
5

P
3

_
7

P
0

_
7

P
4

_
1

P
0

_
5

P
0

_
1

P
0

_
3

P
4

_
7

P
4

_
4

P
4

_
6

P
0

_
4

P
0

_
0

P
0

_
6

P
0

_
2

P
4

_
3

P
4

_
5

V
D

D

P
4

_
0

P
4

_
2

X
R

E
S

P
5

_
5

P
5

_
7

P
5

_
1

P
5

_
3

P
5

_
6

P
5

_
0

P
5

_
2

P
5

_
4

P
1

_
7

P
X

1
_

1

P
1

_
4

P
1

_
3

P
1

_
5

P
X

1
_

0

P
1

_
6

P
1

_
2

V
5

_
0

V
3

_
3

V
D

D

V
D

D

V
D

D
V

D
D

V
D

D

V
D

D

V
D

D

V
D

D

V
D

D

T
it
le

S
iz

e
D

o
c
u

m
e

n
t

N
u

m
b

e
r

R
e

v

D
a

te
:

S
h

e
e

t
o

f

R
E

F
-1

4
7

4
2

*B

C
Y

8
C

2
9

 F
a

m
ily

 P
ro

c
e

s
s
o

r
M

o
d

u
le

C

1
1

T
h

u
rs

d
a

y
,

A
u

g
u

s
t

0
6

,
2

0
0

9

T
it
le

S
iz

e
D

o
c
u

m
e

n
t

N
u

m
b

e
r

R
e

v

D
a

te
:

S
h

e
e

t
o

f

R
E

F
-1

4
7

4
2

*B

C
Y

8
C

2
9

 F
a

m
ily

 P
ro

c
e

s
s
o

r
M

o
d

u
le

C

1
1

T
h

u
rs

d
a

y
,

A
u

g
u

s
t

0
6

,
2

0
0

9

T
it
le

S
iz

e
D

o
c
u

m
e

n
t

N
u

m
b

e
r

R
e

v

D
a

te
:

S
h

e
e

t
o

f

R
E

F
-1

4
7

4
2

*B

C
Y

8
C

2
9

 F
a

m
ily

 P
ro

c
e

s
s
o

r
M

o
d

u
le

C

1
1

T
h

u
rs

d
a

y
,

A
u

g
u

s
t

0
6

,
2

0
0

9

J
2

1
6

x
2

 H
E

A
D

E
R

J
2

1
6

x
2

 H
E

A
D

E
R

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

S
O
T
2
3D
1

B
A

T
5

4

S
O
T
2
3D
1

B
A

T
5

4

0
6
0
3

R
1

0

Z
E

R
O

0
6
0
3

R
1

0

Z
E

R
O

U
1

C
Y

8
C

2
9

0
0

0
 T

Q
F

P
1

0
0

U
1

C
Y

8
C

2
9

0
0

0
 T

Q
F

P
1

0
0

P
1
_
0
/X

T
A

L
O

U
T

P
1
_
1
/X

T
A

L
IN

P
1
_
2

P
1
_
3

P
1
_
4
/E

X
T

C
L
K

P
1
_
5
/S

D
A

P
1
_
6

P
1
_
7
/S

C
L

P
2
_
0
/A

I
P

2
_
1
/A

I
P

2
_
2
/A

I
P

2
_
3
/A

I
P

2
_
4
/A

G
N

D
P

2
_
5

P
2
_
6
/V

R
E

F
P

2
_
7

X
R

E
S

S
M

P

P
0
_
0
/A

I
P

0
_
1
/A

I
P

0
_
2
/A

IO
P

0
_
3
/A

IO
P

0
_
4
/A

IO

N
C

2
N

C
1

VDD1
GND1

P
3
_
0

P
3
_
1

P
3
_
2

P
3
_
3

P
3
_
4

P
3
_
5

P
3
_
6

P
3
_
7

P
4
_
0

P
4
_
1

P
4
_
2

P
4
_
3

P
4
_
4

P
4
_
5

P
4
_
6

P
4
_
7

P
5
_
0

P
5
_
1

P
5
_
2

P
5
_
3

P
0
_
5
/A

IO
P

0
_
6
/A

I
P

0
_
7
/A

I

O
C

D
E

O
C

D
O

N
C

3
N

C
4

N
C

5
N

C
6

N
C

7
N

C
8

N
C

9
N

C
1
0

N
C

1
1

N
C

1
2

H
C

L
K

C
C

L
K

N
C

1
3

N
C

1
4

N
C

1
5

N
C

1
6

N
C

1
7

N
C

1
8

N
C

1
9

N
C

2
0

N
C

2
1

N
C

2
2

GND2
GND3
GND4
GND5

VDD2
VDD3

P
5
_
4

P
5
_
5

P
5
_
6

P
5
_
7

P
6
_
0

P
6
_
1

P
6
_
2

P
6
_
3

P
6
_
4

P
6
_
5

P
6
_
6

P
6
_
7

P
7
_
0

P
7
_
1

P
7
_
2

P
7
_
3

P
7
_
4

P
7
_
5

P
7
_
6

P
7
_
7

0603

R
1

1
1

K

0603

R
1

1
1

K

J
1

1
6

x
2

 H
E

A
D

E
R

J
1

1
6

x
2

 H
E

A
D

E
R

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

0
6
0
3

R
3

5
6

 o
h

m

0
6
0
3

R
3

5
6

 o
h

m

0
8
0
5

C
1

2

N
o

 L
o

a
d

0
8
0
5

C
1

2

N
o

 L
o

a
d

0
4
0
2

C
1

0
1

0
0

 p
F

d
0
4
0
2

C
1

0
1

0
0

 p
F

d

0
8
0
5

C
1

1
0

 u
F

d
 1

6
V

0
8
0
5

C
1

1
0

 u
F

d
 1

6
V

0603

R
2

1
K

0603

R
2

1
K

0
6
0
3

R
1

2

Z
E

R
O

0
6
0
3

R
1

2

Z
E

R
O

J
4

1
6

x
2

 H
E

A
D

E
R

J
4

1
6

x
2

 H
E

A
D

E
R

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

0
6
0
3

C
2

0
.1

 u
F

d
0
6
0
3

C
2

0
.1

 u
F

d

0603

R
6

1
K

0603

R
6

1
K

0
6
0
3

R
1

5
6

 o
h

m

0
6
0
3

R
1

5
6

 o
h

m

J
3

1
6

x
2

 H
E

A
D

E
R

J
3

1
6

x
2

 H
E

A
D

E
R

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

L
1

2
.2

u
H

L
1

2
.2

u
H

0
4
0
2

R
9

Z
E

R
O

0
4
0
2

R
9

Z
E

R
O

T
P

2
B

L
A

C
K

T
P

2
B

L
A

C
K

0
6
0
3

C
3

0
.1

 u
F

d
0
6
0
3

C
3

0
.1

 u
F

d

0
8
0
5

C
1

4

N
o

 L
o

a
d

0
8
0
5

C
1

4

N
o

 L
o

a
d

Y
1

3
2

.7
6

8
 k

H
z
 X

T
A

L

Y
1

3
2

.7
6

8
 k

H
z
 X

T
A

L

0
6
0
3

C
4

0
.1

 u
F

d
0
6
0
3

C
4

0
.1

 u
F

d

0
6
0
3

R
1

3

Z
E

R
O

0
6
0
3

R
1

3

Z
E

R
O

T
P

3
R

E
D

T
P

3
R

E
D

T
P

1
R

E
D

T
P

1
R

E
D

J
5

H
D

R
 1

x
5

J
5

H
D

R
 1

x
5

1
1

3
3

2
2

4
4

5
5

0
6
0
3

C
6

0
.1

 u
F

d
0
6
0
3

C
6

0
.1

 u
F

d

0
6
0
3

R
7

5
6

 o
h

m

0
6
0
3

R
7

5
6

 o
h

m

0603

R
4

1
K

0603

R
4

1
K

0
8
0
5

C
1

3

N
o

 L
o

a
d

0
8
0
5

C
1

3

N
o

 L
o

a
d

0603

R
8

1
K

0603

R
8

1
K

P
1

2
0

 P
in

 H
ir
o

s
e

 R
e

c
p

P
1

2
0

 P
in

 H
ir
o

s
e

 R
e

c
p

1 3 5 7 9

2 4 6 8 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

0
6
0
3

R
5

5
6

 o
h

m

0
6
0
3

R
5

5
6

 o
h

m

190 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.2.4 CY8C38 Family Processor Module
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

E
X
T
E
R
N
A
L

B
A
T
T
E
R
Y

C
L
I
P

P
D
C
R
-
9
4
9
4

R
E
V

*
*

1
2
1
R
-
4
9
4
0
0

R
E
V

*
D

I
n
t
e
r
n
a
l

B
o
o
s
t

C
o
n
v
e
r
t
e
r

B
y
p
a
s
s

C
a
p
a
c
i
t
o
r
s

S
t
o
r
a
g
e

C
a
p
a
c
i
t
o
r
s

M
H
z

C
r
y
s
t
a
l

C
a
n
i
s
t
e
r

S
o
l
d
e
r

X
T
A
L

C
a
s
e

T
o

G
r
o
u
n
d

P
l
a
n
e

D
i
r
e
c
t
l
y

k
H
z

C
r
y
s
t
a
l

C
a
n
i
s
t
e
r

C
Y
8
C
3
8

F
A
M
I
L
Y

P
R
O
C
E
S
S
O
R

M
O
D
U
L
E

S
h
u
n
t

R
e
s
i
s
t
o
r

C
A
P
S
E
N
S
E

T
U
N
I
N
G

C
I
R
C
U
I
T
R
Y

D
e
f
a
u
l
t

L
o
a
d
e
d

F
o
r

C
S
D

1
0
-
p
i
n

P
r
o
g
r
a
m
m
i
n
g

a
n
d

D
e
b
u
g
g
e
r

H
e
a
d
e
r

Ind

P
1
5
_
2

X
R

E
S

P
5
_
1

P
5
_
3

H
W

_
R

E
S

E
T

P
5
_
0

P
5
_
2

T
C

K

V
5
_
0

V
3
_
3

X
R

E
S

T
D

I
T

D
O

T
C

K
T

M
S

P0_4

P2_4
P2_3
P2_2
P2_1
P2_0
P15_5
P15_4
P6_3
P6_2
P6_1
P6_0

VCCD
P4_7
P4_6
P4_5
P4_4
P4_3
P4_2
P0_7
P0_6
P0_5

P
2
_
5

P
2
_
6

P
2
_
7

P
1
2
_
4

P
1
2
_
5

P
6
_
4

P
6
_
5

P
6
_
6

P
6
_
7

In
d

V
b
o
o
s
t

V
B

A
T

X
R

E
S

P
5
_
0

P
5
_
1

P
5
_
2

P
5
_
3

T
M

S
T

C
K

P
1
_
2

T
D

O
T

D
I

P
1
_
5

P
0
_
3

P
0
_
2

P
4
_
1

P
4
_
0

P
1
2
_
3

P
1
2
_
2

P
1
5
_
3

P
1
5
_
2

P
1
2
_
1

P
1
2
_
0

P1_6
P1_7
P12_6
P12_7
P5_4
P5_5
P5_6
P5_7

DP
DM

VCCD

P15_0
P15_1
P3_0
P3_1
P3_2
P3_3
P3_4
P3_5

T
M

S

T
D

O
T

D
I

P
1
_
5

P
1
_
2

D
M

D
P

P
5
_
7

P
5
_
6

P
5
_
4

P
5
_
5

P
1
2
_
6

P
1
2
_
7

P
1
_
6

P
1
_
7

P
3
_
0

P
3
_
1

P
3
_
2

P
3
_
3

P
3
_
4

P
3
_
5

P
1
2
_
0

P
1
2
_
1

P
1
2
_
2

P
1
2
_
3

P
4
_
0

P
4
_
1

P
4
_
6

P
4
_
7

P
4
_
4

P
4
_
5

P
4
_
2

P
4
_
3

P
0
_
6

P
0
_
7

P
0
_
5

P
0
_
4

P
0
_
2

P
0
_
3

P
6
_
7

P
6
_
6

P
6
_
5

P
6
_
4

P
1
2
_
5

P
1
2
_
4

P
2
_
7

P
2
_
6

P
2
_
5

P
2
_
4

P
2
_
3

P
2
_
2

P
2
_
1

P
2
_
0

P
1
5
_
5

P
6
_
3

P
6
_
1

P
1
5
_
4

P
6
_
2

P
6
_
0

V
D

D
IO

3

V
D

D
IO

1

V
D

D
IO

2

V
D

D
IO

0

V
b
o
o
s
t

P
1
5
_
3

NC2
NC1

N
C

8
N

C
7

N
C

6
N

C
5

N
C

4
N

C
3

N
C

1
N

C
2

N
C

4
N

C
3

N
C

6
N

C
5

N
C

8
N

C
7

V
B

A
T

P
1
5
_
1

P
1
5
_
0

P
0
_
1

P
0
_
0

P
3
_
6

P
3
_
7

P
3
_
6

P
3
_
7

P
0
_
1

P
0
_
0

V
C

C
A

V
D

D
D

V
D

D
D

V
D

D
D

V
D

D
D

V
D

D
D

V
D

D
A

V
D

D
A

V
D

D
A

V
D

D
A

V
D

D
D

V
D

D
D

V
D

D
A

V
D

D
IO

1
V

D
D

IO
1

V
D

D
IO

1

V
B

A
T

V
D

D
IO

0
V

D
D

IO
1

V
D

D
IO

2
V

D
D

IO
3

V
D

D
IO

3
V

D
D

IO
1

V
D

D
IO

2

V
D

D
IO

0

V
D

D
D

V
D

D
D

V
D

D
D

V
D

D
A

V
D

D
IO

0
V

D
D

IO
1

V
D

D
IO

2
V

D
D

IO
3

T
it
le

S
iz

e
D

o
c
u
m

e
n
t

N
u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

R
E

F
-1

4
8
8
9

*D

C
Y

8
C

3
8
 F

a
m

ily
 P

ro
c
e
s
s
o
r

M
o
d
u
le

C

1
1

F
ri
d
a
y
,

M
a
rc

h
 1

1
,

2
0
1
1

T
it
le

S
iz

e
D

o
c
u
m

e
n
t

N
u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

R
E

F
-1

4
8
8
9

*D

C
Y

8
C

3
8
 F

a
m

ily
 P

ro
c
e
s
s
o
r

M
o
d
u
le

C

1
1

F
ri
d
a
y
,

M
a
rc

h
 1

1
,

2
0
1
1

T
it
le

S
iz

e
D

o
c
u
m

e
n
t

N
u
m

b
e
r

R
e
v

D
a
te

:
S

h
e
e
t

o
f

R
E

F
-1

4
8
8
9

*D

C
Y

8
C

3
8
 F

a
m

ily
 P

ro
c
e
s
s
o
r

M
o
d
u
le

C

1
1

F
ri
d
a
y
,

M
a
rc

h
 1

1
,

2
0
1
1

R
1
0

N
O

 L
O

A
D

R
1
0

N
O

 L
O

A
D

C
2

1
.0

 u
F

C
2

1
.0

 u
F

R
3
2

Z
E

R
OR
3
2

Z
E

R
O

C
2
4

0
.1

 u
F

C
2
4

0
.1

 u
F

R
4
3

N
O

 L
O

A
D

R
4
3

N
O

 L
O

A
D

T
P

7

R
E

D

T
P

7

R
E

D

T
P

6
R

E
D

T
P

6
R

E
D

R6

NO LOAD

R6

NO LOAD

R
4
1

Z
E

R
O

R
4
1

Z
E

R
O

C
2
8

1
.0

 u
F

C
2
8

1
.0

 u
F

C
9

0
.1

 u
F

C
9

0
.1

 u
F

C
7

1
.0

 u
F

C
7

1
.0

 u
F

C
5

1
.0

 u
F

C
5

1
.0

 u
F

J
2

H
e
a
d
e
r

2
x
1
6J
2

H
e
a
d
e
r

2
x
1
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

R16

NO LOAD

R16

NO LOAD

C
1
9

2
2
 p

F
C

1
9

2
2
 p

F

R
3
5

N
O

 L
O

A
D

R
3
5

N
O

 L
O

A
D

R
9

2
2
 O

h
m

s
R

9
2
2
 O

h
m

s

U
1

C
Y

8
C

3
8
6
6
A

X
I-

0
4
0

U
1

C
Y

8
C

3
8
6
6
A

X
I-

0
4
0

P
2
_
5

1

P
2
_
6

2

P
2
_
7

3

P
1
2
_
4
 I
2
C

0
_
S

C
L

4

P
1
2
_
5
 I
2
C

0
_
S

D
A

5

P
6
_
4

6

P
6
_
5

7

P
6
_
6

8

P
6
_
7

9

V
S

S
b

1
0

In
d

1
1

V
b
o
o
s
t

1
2

V
b
a
t

1
3

V
S

S
d

1
4

X
R

E
S

1
5

P
5
_
0

1
6

P
5
_
1

1
7

P
5
_
2

1
8

P
5
_
3

1
9

P
1
_
0
 T

M
S

2
0

P
1
_
1
 T

C
K

2
1

P
1
_
2

2
2

P
1
_
3
 T

D
O

2
3

P
1
_
4
 T

D
I

2
4

P
1
_
5
 n

T
R

S
T

2
5

VDDio1
26

P1_6
27

P1_7
28

P12_6
29

P12_7
30

P5_4
31

P5_5
32

P5_6
33

P5_7
34

P15_6 DP
35

P15_7 DM
36

VDDd
37

VSSd
38

VCCd
39

NC1
40

NC2
41

P15_0 MXo
42

P15_1 MXi
43

P3_0
44

P3_1
45

P3_2
46

P3_3
47

P3_4
48

P3_5
49

VDDio3
50

V
D

D
io

0
7
5

P
0
_
3

7
4

P
0
_
2

7
3

P
0
_
1

7
2

P
0
_
0

7
1

P
4
_
1

7
0

P
4
_
0

6
9

P
1
2
_
3

6
8

P
1
2
_
2

6
7

V
S

S
d

6
6

V
D

D
a

6
5

V
S

S
a

6
4

V
C

C
a

6
3

N
C

8
6
2

N
C

7
6
1

N
C

6
6
0

N
C

5
5
9

N
C

4
5
8

N
C

3
5
7

K
X

i
P

1
5
_
3

5
6

K
X

o
 P

1
5
_
2

5
5

I2
C

1
_
S

D
A

 P
1
2
_
1

5
4

I2
C

1
_
S

C
L
 P

1
2
_
0

5
3

P
3
_
7

5
2

P
3
_
6

5
1

P2_4
99

P2_3
98

P2_2
97

P2_1
96

P2_0
95

P15_5
94

P15_4
93

P6_3
92

P6_2
91

P6_1
90

P6_0
89

VDDd
88

VSSd
87

VCCd
86

P4_7
85

P4_6
84

P4_5
83

P4_4
82

P4_3
81

P4_2
80

P0_7
79

P0_6
78

P0_5
77

P0_4
76

VDDio2
100

R15

NO LOAD

R15

NO LOAD

R
4
2

Z
E

R
OR
4
2

Z
E

R
O

R
3
8

Z
E

R
O

R
3
8

Z
E

R
O

T
P

5

R
E

D

T
P

5

R
E

D

R7

NO LOAD

R7

NO LOAD

R
3
1

Z
E

R
OR
3
1

Z
E

R
O

C
1
1

1
.2

 u
F

C
1
1

1
.2

 u
F

C
1
2

2
2
 u

F
C

1
2

2
2
 u

F

J
3

H
e
a
d
e
r

2
x
1
6J
3

H
e
a
d
e
r

2
x
1
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

T
P

2

B
L
A

C
K

T
P

2

B
L
A

C
K

C
1
8

2
2
0
0
 p

F
C

1
8

2
2
0
0
 p

F

C
1
7

0
.1

 u
F

C
1
7

0
.1

 u
F

C
2
1

0
.1

 u
F

C
2
1

0
.1

 u
F

C
1

1
0
 u

F
C

1
1
0
 u

F

D
1

Z
H

C
S

1
0
0
0
T

A

D
1

Z
H

C
S

1
0
0
0
T

A

2
1

C
2
5

0
.1

 u
F

C
2
5

0
.1

 u
F

C
2
2

0
.1

 u
F

C
2
2

0
.1

 u
F

C
4

1
.0

 u
F

C
4

1
.0

 u
F

R
4
0

Z
E

R
OR
4
0

Z
E

R
O

L
1

2
2
 u

H

L
1

2
2
 u

H

C
3

1
.0

 u
F

C
3

1
.0

 u
F

Y
1

3
2
k
H

z
 X

T
A

L

Y
1

3
2
k
H

z
 X

T
A

L

1
2

3

R17

NO LOAD

R17

NO LOAD

T
P

4

R
E

D

T
P

4

R
E

D

J
4

H
e
a
d
e
r

2
x
1
6J
4

H
e
a
d
e
r

2
x
1
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

C
2
0

2
2
 p

F
C

2
0

2
2
 p

F

R
3
4

N
O

 L
O

A
D

R
3
4

N
O

 L
O

A
D

C
6

1
.0

 u
F

C
6

1
.0

 u
F

R
8

2
2
 O

h
m

s
R

8
2
2
 O

h
m

s

C
1
6

0
.1

 u
F

C
1
6

0
.1

 u
F

C
8

1
.2

 u
F

C
8

1
.2

 u
F

T
P

1

R
E

D

T
P

1

R
E

D

R
3
9

Z
E

R
OR
3
9

Z
E

R
O

R14

NO LOAD

R14

NO LOAD

C
2
6

1
2
P

F
C

2
6

1
2
P

F
C

2
7

1
2
P

F
C

2
7

1
2
P

F

T
P

3
R

E
D

T
P

3
R

E
D

R
3
7

N
O

 L
O

A
D

R
3
7

N
O

 L
O

A
D

J
5

H
e
a
d
e
r

K
e
y
e
d
 5

0
m

il
S

M
D

J
5

H
e
a
d
e
r

K
e
y
e
d
 5

0
m

il
S

M
D

1 3 5 7 9

2 4 6 8
1
0

C
2
3

0
.1

 u
F

C
2
3

0
.1

 u
F

R
3
6

Z
E

R
O

R
3
6

Z
E

R
O

Y
2

2
4
 M

H
z
 C

ry
s
ta

l

Y
2

2
4
 M

H
z
 C

ry
s
ta

l

C
1
4

1
0
 u

F
C

1
4

1
0
 u

F
C

1
5

0
.1

 u
F

C
1
5

0
.1

 u
F

J
1

H
e
a
d
e
r

2
x
1
6J
1

H
e
a
d
e
r

2
x
1
6

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

2
3

1
9

1
7

2
7

2
9

2
5

2
1

3
1

3
2

C
1
0

2
2
 u

F
C

1
0

2
2
 u

F

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 191

Board Specifications and Layout

A.2.5 CY8C58LP Family Processor Module
5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

EXTERNAL BATTERY CLIP

PDCR-9546 REV**
121R-54600 REV*B

Bypass CapacitorsStorage Capacitors

MHz Crystal
Canister

Solder XTAL Case To Ground Plane Directly

kHz Crystal
 Canister

CY8C58 FAMILY
PROCESSOR MODULE

Keyed Sides Toward
Center of Board

10-pin Programming and Debugger Header

Shunt
Resistor

CAPSENSE TUNING CIRCUITRY
Default Loaded For CSD10-pin Trace Header

Internal Boost Converter

Layout Considerations/Requirements:

1. Board Layers: 2
2. Board Thickness: 0.062"
3. Board Size: 2.0" x 2.5"
4. Impedance matching for USB signals

In
d

P15_2

XRES
P5_1
P5_3

HW_RESET

P5_0
P5_2

TCK

V5_0

V3_3

XRES
TDI
TDO
TCK
TMS

P
0
_
4

P
2
_
4

P
2
_
3

P
2
_
2

P
2
_
1

P
2
_
0

P
1
5
_
5

P
1
5
_
4

P
6
_
3

P
6
_
2

P
6
_
1

P
6
_
0

V
C

C
D

P
4
_
7

P
4
_
6

P
4
_
5

P
4
_
4

P
4
_
3

P
4
_
2

P
0
_
7

P
0
_
6

P
0
_
5

P2_5

P3_6

P2_6
P2_7P2_7
P12_4
P12_5
P6_4
P6_5
P6_6
P6_7

Ind
Vboost
VBAT

XRES
P5_0
P5_1
P5_2
P5_3
TMS
TCK
P1_2
TDO
TDI
P1_5

P0_3
P0_2
P0_1
P0_0
P4_1
P4_0
P12_3
P12_2

P15_3
P15_2
P12_1
P12_0
P3_7

P
1
2
_
6

P
1
2
_
7

P
5
_
4

P
5
_
5

P
5
_
6

P
5
_
7

D
P

D
M

V
C

C
D

P
1
5
_
0

P
1
5
_
1

P
3
_
0

P
3
_
1

P
3
_
2

P
3
_
3

P
3
_
4

P
3
_
5

TMS

TDO
TDI P1_5

P1_2

DM
DP

P5_7P5_6
P5_4 P5_5
P12_6 P12_7
P1_6 P1_7

P3_0 P3_1
P3_2 P3_3
P3_4 P3_5

P3_6 P3_7
P12_0 P12_1

P12_2 P12_3

P4_0 P4_1

P4_6 P4_7
P4_4 P4_5
P4_2 P4_3

P0_6 P0_7
P0_5P0_4

P0_2 P0_3
P0_1P0_0

P6_7 P6_6
P6_5 P6_4

P12_5 P12_4

P2_7 P2_6
P2_5 P2_4

P2_3 P2_2
P2_1 P2_0

P15_5
P6_3
P6_1

P15_4
P6_2
P6_0

VDDIO3

VDDIO1

VDDIO2

VDDIO0

Vboost

P15_3

N
C

2
N

C
1

NC8
NC7
NC6
NC5
NC4
NC3

NC1 NC2

NC4NC3
NC6NC5
NC8NC7

VBAT

P
1
_
7

P
1
_
6

P15_1P15_0

TR_CLK
TR_D0
TR_D1
TR_D2
TR_D3 P2_7

P2_6
P2_5
P2_4
P2_3

P15_5

VCCA

VDDD

VDDD

VDDD

VDDD

VDDD

VDDA

VDDA

VDDAVDDA VDDD

VDDD

VDDA

VDDIO1 VDDIO1 VDDIO1

VBAT

VDDIO0 VDDIO1 VDDIO2 VDDIO3

VDDIO3VDDIO1

VDDIO2

VDDIO0

VDDD VDDD VDDDVDDAVDDIO0 VDDIO1 VDDIO2 VDDIO3

VDDIO2

Title

Size Document Number Rev

Date: Sheet of

CYPRESS SEMICONDUCTOR © 2012

REF-15051 *B

CY8C58 Family Processor Module

C

2 3Monday, October 08, 2012

Title

Size Document Number Rev

Date: Sheet of

CYPRESS SEMICONDUCTOR © 2012

REF-15051 *B

CY8C58 Family Processor Module

C

2 3Monday, October 08, 2012

Title

Size Document Number Rev

Date: Sheet of

CYPRESS SEMICONDUCTOR © 2012

REF-15051 *B

CY8C58 Family Processor Module

C

2 3Monday, October 08, 2012

R
6

N
O

 L
O

A
D

TP8

RED

R
1
6

N
O

 L
O

A
D

TP4

RED

C17
0.1 uF

C28
1.0 uF

C20
22 pF

C21
0.1 uF

R32

ZERO

C14
10 uF

R36

ZERO

C11
1.0 uF

U1

CY8C5868AXI-LP035

P2_5
1

P2_6
2

P2_7
3

P12_4 I2C0_SCL
4

P12_5 I2C0_SDA
5

P6_4
6

P6_5
7

P6_6
8

P6_7
9

VSSb
10

Ind
11

Vboost
12

Vbat
13

VSSd
14

XRES
15

P5_0
16

P5_1
17

P5_2
18

P5_3
19

P1_0 TMS
20

P1_1 TCK
21

P1_2
22

P1_3 TDO
23

P1_4 TDI
24

P1_5 nTRST
25

V
D

D
io

1
2
6

P
1
_
6

2
7

P
1
_
7

2
8

P
1
2
_
6

2
9

P
1
2
_
7

3
0

P
5
_
4

3
1

P
5
_
5

3
2

P
5
_
6

3
3

P
5
_
7

3
4

P
1
5
_
6
 D

P
3
5

P
1
5
_
7
 D

M
3
6

V
D

D
d

3
7

V
S

S
d

3
8

V
C

C
d

3
9

N
C

1
4
0

N
C

2
4
1

P
1
5
_
0
 M

X
o

4
2

P
1
5
_
1
 M

X
i

4
3

P
3
_
0

4
4

P
3
_
1

4
5

P
3
_
2

4
6

P
3
_
3

4
7

P
3
_
4

4
8

P
3
_
5

4
9

V
D

D
io

3
5
0

VDDio0
75

P0_3
74

P0_2
73

P0_1
72

P0_0
71

P4_1
70

P4_0
69

P12_3
68

P12_2
67

VSSd
66

VDDa
65

VSSa
64

VCCa
63

NC8
62

NC7
61

NC6
60

NC5
59

NC4
58

NC3
57

KXi P15_3
56

KXo P15_2
55

I2C1_SDA P12_1
54

I2C1_SCL P12_0
53

P3_7
52

P3_6
51

P
2
_
4

9
9

P
2
_
3

9
8

P
2
_
2

9
7

P
2
_
1

9
6

P
2
_
0

9
5

P
1
5
_
5

9
4

P
1
5
_
4

9
3

P
6
_
3

9
2

P
6
_
2

9
1

P
6
_
1

9
0

P
6
_
0

8
9

V
D

D
d

8
8

V
S

S
d

8
7

V
C

C
d

8
6

P
4
_
7

8
5

P
4
_
6

8
4

P
4
_
5

8
3

P
4
_
4

8
2

P
4
_
3

8
1

P
4
_
2

8
0

P
0
_
7

7
9

P
0
_
6

7
8

P
0
_
5

7
7

P
0
_
4

7
6

V
D

D
io

2
1
0
0

C25
0.1 uF

R37

NO LOAD

C1
10 uF

Y2

24 MHz Crystal

Y1

32kHz XTAL

1 2

3

R41

ZERO

R46 ZERO

R38

ZERO

R
1
7

N
O

 L
O

A
D

TP3
RED

C18
2200 pF

C8
1.0 uF

TP1

RED

C23
0.1 uF

R
7

N
O

 L
O

A
D

R39

ZERO

J5

Header Keyed 50mil SMD

1
3
5
7
9

2
4
6
8

10

C22
0.1 uF

R8
22 Ohms

R47 ZERO

TP2

BLACK

C15
0.1 uF

R9
22 Ohms

C4
1.0 uF

C10
22 uF

TP9

BLACK

C29
0.1 uF

J4

Header 2x16

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

18
20
22
24
26
28
30

23

19
17

27
29

25

21

31 32

L1

22 uH

D1

ZHCS1000TA

2 1

TP5

RED

J2

Header 2x16

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

18
20
22
24
26
28
30

23

19
17

27
29

25

21

31 32

C5
1.0 uF

R
1
4

N
O

 L
O

A
D

R10

NO LOAD

TP7

RED

R40

ZERO

C9
0.1 uF

C24
0.1 uF

R48 ZERO

C6
1.0 uF

C16
0.1 uF

C12
22 uF

C3
1.0 uF

C2
1.0 uF

R35

NO LOAD

C7
1.0 uF

J3

Header 2x16

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

18
20
22
24
26
28
30

23

19
17

27
29

25

21

31 32

R44
0

R42

ZERO

J1

Header 2x16

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

18
20
22
24
26
28
30

23

19
17

27
29

25

21

31 32

R
1
5

N
O

 L
O

A
D

TP10

C27
12PF

TP6

RED

R43
NO LOAD

R45 ZERO

R49 ZERO

R31

ZERO

R34

NO LOAD

J6

Header Keyed 50mil SMD

1
3
5
7
9

2
4
6
8

10

C26
12PF

C19
22 pF

192 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.2.6 Enabling Boost Component in PSoC 3 and PSoC 5LP Processor Modules

To enable the boost convertor functionality, make the following hardware changes on the board.

■ Populate resistors R6, R7, R14, R15, R16, R17, and R38 with 0- resistors.

■ Ensure that R37 and R43 are removed.

The input power supply to the boost convertor must be provided through the Vbat. After making

these changes, you can make a boost convertor based design by making the appropriate configura-

tions in the project.

A.3 Bill of Materials

A.3.1 CY8CKIT-001 PSoC Development Board

Item Qty Reference Description Manufacturer Mfr Part Number

1 1 N/A Schematic N/A REF-14647 REV *C

2 1 N/A Assembly Drawing N/A 121R-46100 REV *C

3 1 N/A Fab Drawing N/A N/A

4 1 N/A Assembly Adhesive Label N/A 121R-46100 REV *C

5 1 PCB PRINTED CIRCUIT BOARD Cypress Semiconductor PDCR-9461 REV *B

6 1 BH1 BATTERY HOLDER 9V Male PC MT Keystone Electronics 593

7 1 BH2 BATTERY HOLDER 9V Female PC MT Keystone Electronics 594

8 4 C1,C3,C9,C30 CAP ELECT 10UF 25V VS SMD size B Panasonic - ECG EEE-1EA100WR

9 1 C2 CAP ELECT 330UF 25V FK SMD Panasonic - ECG EEE-FK1E331P

10 2 C4,C25 CAP CERAMIC 1.0UF 25V X5R 0603 10% Taiyo Yuden TMK107BJ105KA-T

11 1 C10 CAP 10000PF 16V CERAMIC X7R 0402 Yageo America 04022R103K7B20D

12 10

C11,C13,C14,C15

,C16,C21,C22,C2

6,C27,C28

CAP .10UF 16V CERAMIC X7R 0603 Kemet C0603C104J4RACTU

13 2 C12,C29 CAP 10UF 16V CERAMIC X5R 1210 Panasonic - ECG ECJ-4YB1C106K

14 1 C17 CAP .33UF 16V CERAMIC X7R 0805 Panasonic - ECG ECJ-2YB1C334K

15 2 C20,C23 CAP .1UF 50V CERAMIC X7R 0805 Panasonic - ECG ECJ-2YB1H104K

16 1 C24 CAP 33nF 50V CERAMIC X8R 0603 TDK Corporation C1608X8R1H333K

17 1 D1 LED GREEN CLEAR 1206 SMD
Chicago Miniature Lamp,

Inc
CMD15-21VGC/TR8

18 1 D2 DIODE SCHOTTKY 40V 1.5A SMA Vishay IR 10MQ040NTRPBF

19 4 D3,D4,D5,D6 LED HI EFF RED CLEAR 1206 SMD
Chicago Miniature Lamp,

Inc
CMD15-21VRC/TR8

20 1 D7 DIODE ZENER 3.6V 500MW SOD123 ON Semiconductor MMSZ4685T1G

21 1 D8 DIODE ZENER 4.3V 1W SOD-106 Rohm Semiconductor PTZTE254.3B

22 1 D9 DIODE ZENER 2V 500MW SOD-123 Diodes Inc BZT52C2V0-7-F

23 1 F1 FUSE RESETTABLE .10A 30V HLD SMD Bourns MF-USMF010-2

24 1 J1 CONN JACK POWER 2.1mm PCB RA CUI PJ-102A

25 4 J2,J3,J4,J5 CONN HEADER 6POS .100 STR 15AU FCI 67996-206HLF

26 4 J6,J7,J8,J12 CONN HEADR BRKWAY .100 03POS STR Tyco Electronics/Amp 9-146280-0-03

27 1 J9 CONN USB MINI B SMT RIGHT ANGLE Tyco 1734035-2

28 3 J10,J11,J14 CONN HEADR BRKWAY .100 02POS STR Tyco Electronics 9-146280-0-02

29 4 P1,P2,P3,P4 CONN FMALE 32POS DL .050 SMT GOLD Samtec RSM-116-02-S-D-LC

30 3 P5,P7,P8 CONN FMALE 40POS DL .100 R/A GOLD Sullins Electronics Corp. PPPC202LJBN-RC

31 1 P6 CONN FMALE 46POS DL .100 R/A GOLD Sullins Electronics Corp. PPPC232LJBN-RC

32 1 P11 SOLDERLESS BREADBOARD 1.8x1.35 3M 923273-I

33 2 P12,P9 CONN RECT 8POS .100 VERT 3M 929850-01-08-RA

34 1 P14 CONN RECT 12POS .100 VERT 3M 929850-01-12-RA

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 193

Board Specifications and Layout

35 1 P15 CONN D-SUB RCPT R/A 9POS 30GOLD AMP Division of TYCO 5747844-4

36 1 P16 CONN RECEPT 4POS .100 VERT GOLD 3M 929850-01-04-RA

37 1 P17 CONN RECEPT 12POS 2mm SMD TIN Hirose Electric Co. LTD. DF11Z-12DS-2V(20)

38 1 P18 CONN REC .100 14POS for LCM-S01602DSR/A 3M 929850-01-14-RA

39 1 P19 CONN RECT 17POS .100 VERT 3M 929850-01-17-RA

40 6
Q1,Q2,Q3,Q4,Q5,

Q6
MOSFET P-CH 30V 3.8A SOT23-3 Diodes Inc DMP3098L-7

41 12

R1,R3,R5,R21,R2

2,R23,R24,R25,R

26,R28,R29,R30

RES 1.0K OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ102V

42 1 R2 RES 220 OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF2200V

43 1 R4 RES 442 OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF4420V

44 1 R10 RES 120 OHM 1/10W 5% 0603 SMD Panasonic-ECG ERJ-3GEYJ121V

45 1 R11 TRIMPOT 500 OHM 6mm SQ SMD Bourns Inc. 3361P-1-501GLF

46 1 R14 RES 100K OHM 1/16W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ104X

47 1 R15 RES 200 OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ201V

48 9

R16,R18,R41,R4

2,R43,R44,R45,R

46,R47

RES ZERO OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEY0R00V

49 2 R17,R19 RES 100 OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ101V

50 1 R20 POT 10K OHM 1/8W CARB VERTICAL CTS Electrocomponents 296UD103B1N

51 1 R31 POT 10K CARBON LAYDOWN (103) Panasonic - ECG EVN-D8AA03B14

52 7
R32,R33,R34,R3

5,R36,R37,R38
RES 6.04K OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF6041V

53 1 R39 RES 200K OHM 1/10W 5% 0603 SMD Panasonic-ECG ERJ-3GEYJ204V

54 1 R48 RES 100K OHM 1/10W 1% 0603 SMD Yageo RC0603FR-07100KL

55 5
SW1,SW2,SW4,S

W5,SW6
SWITCH TACT 6mm MOM 150GF Omron B3F-1022

56 1 SW3 SWITCH SLIDE MINI SPDT PCMNT SLV APEM Components GH36P010001

57 5
TP1,TP2,TP3,TP

4,TP14
TEST POINT 43 HOLE 65 PLATED RED Keystone Electronics 5000

58 4
TP18,TP19,TP56,

TP58
TEST POINT 43 HOLE 65 PLATED WHITE Keystone Electronics 5002

59 9

TP30,TP32,TP33,

TP34,TP35,TP36,

TP37,TP38,TP39

TEST POINT 43 HOLE 65 PLATED BLACK Keystone Electronics 5001

60 1 TVS1 TVS 5.0 VOLT 350 WATT SOD-323 Semtech SD05.TCT

61 1 U2 IC REG LDO 1.0A 5.0V TO-252 Diodes Inc AP1117D50L-13

62 1 U4 IC REG LDO 0.3A ADJ 8MSOP National Semiconductor LP3982IMM-ADJ/NOPB

63 1 U5 IC SINGLE USB PORT TVS SOT-23-6 Texas Instruments SN65220DBV

64 1 U6 IC LINE DRVR/RCVR RS232 16-SOIC Texas Insturments SN65C3232ED

65 1 U7 IC XLATR 8BIT LV 20-TSSOP NXP Semiconductors GTL2003PW

66 1 U8 IC SOCKET 8PIN MS TIN/TIN .300 Mill-Max Manufacturing 110-44-308-41-001000

67 1 U11 IC REG LDO 300mA 3.3V SOT89R Diodes Inc AP130-33YRL-13

68 1 NA 5V LCD Module 16POS w/14 pin header installed Lumex LCM-S01602DSR/A

69 5 NA BUMPER WHITE .500X.23 SQUARE Richco Plastics Co. RBS-3R

70 11 NA SHUNT GOLD W/HANDLE, BLACK Kobiconn 151-8030-E

DO NOT INSTALL

71 2 R27,R49 RES NO LOAD 0603 SMD NA NA

72 2 R50,R51 RES 0.0 OHM 1/10W 5% 0805 SMD Panasonic - ECG ERJ-6GEY0R00V

73 1 R40 RES NO LOAD 0805 SMD NA NA

Item Qty Reference Description Manufacturer Mfr Part Number

194 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.3.2 CY8C28 Family Processor Module

Item Qty Reference Description Manufacturer Mfr Part Number

1 1 PCB PRINTED CIRCUIT BOARD Cypress Semiconductor PDC-09547 REV **

2 1 C1 CAP CER 10UF 16V X5R 0805
Murata Electronics North

America
GRM21BR61C106KE15L

3 2 C2,C6 CAP .10UF 16V CERAMIC X7R 0603 Kemet C0603C104J4RACTU

4 1 C10 CAP 100PF 50V CERAMIC 0402 SMD Panasonic - ECG ECJ-0EC1H101J

5 1 C16 CAP CER 2200PF 50V 5% C0G 0603 Murata GRM1885C1H222JA01D

6 4 J1,J2,J3,J4
CONN MALE 32POS DL .050 TH SHRD

GOLD

Centronic Precision Elec-

tronic Co.
HHLHS32GB1

7 1 J5 CONN HEADER 5POS 0.1 VERT KEYED Molex 22-23-2051

8 1 P1 HDR VERT 20POS HIROSE Hirose DF12-5.0-20DP-0.5V-81

9 4
R1,R3,R5,R

7
RES 56 OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ560V

10 5
R2,R4,R6,R

8,R11
RES 1.0K OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ102V

11 1 R9 RES ZERO OHM 1/16W 0402 SMD Panasonic - ECG ERJ-2GE0R00X

12 4
R10,R16,

R17,R18
RES ZERO OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEY0R00V

13 3
TP1,TP3,

TP5
TEST POINT 43 HOLE 65 PLATED RED Keystone Electronics 5000

14 2 TP2,TP4 TEST POINT 43 HOLE 65 PLATED BLACK Keystone Electronics 5001

15 2 NA SMT Spacer/nut PEM SMTSO-440-8ET

16 1 U1 IC, 56 PIN SSOP OCD Cypress Semiconductor CY8C28000-24PVXI

17 1 LABEL1 PCA # Label 120-09547-0 REV **

No Load Components

18 3
C12,C13,

C14
CAP NO LOAD 0805 NA NA

19 1 C15 CAP 0603 NO LOAD NA NA

20 4
R12,R13,

R14,R15
RES NO LOAD 0603 SMD NA NA

21 1 D1 DIODE SCHOTTKY 40V 1.0A SOT23-3 Zetex ZHCS1000TA

22 1 L1 INDUCTOR FIXED SMD 2.2uH 10% Panasonic-ECG ELJ-FC2R2KF

23 1 Y1 CRYSTAL 32.768 kHz CYL 12.5PF
Citizen America Corpo-

ration
CFS206 32.768KDZF-UB

24 2 TP6,TP7 TEST POINT 43 HOLE 65 PLATED WHITE Keystone Electronics 5002

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 195

Board Specifications and Layout

A.3.3 CY8C29 Family Processor Module

Item Qty Reference Description Manufacturer Mfr Part Number

1 1 C1 CAP CER 10UF 16V X5R 0805 Murata Electronics North

America

GRM21BR61C106KE15L

2 4 C2,C3,C4,C

6

CAP .10UF 16V CERAMIC X7R 0603 Kemet C0603C104J4RACTU

3 1 C10 CAP 100PF 50V CERAMIC 0402 SMD Panasonic - ECG ECJ-0EC1H101J

4 4 J1,J2,J3, J4 CONN MALE 32POS DL .050 TH SHRD

GOLD

Centronic Precision Elec-

tronic Co.

HHLHS32GB1

5 1 J5 CONN HEADER 5POS 0.1 VERT KEYED Molex 22-23-2051

6 1 P1 RECP VERT 20POS HIROSE Hirose DF12-5.0-20DP-0.5V-81

7 4 R1,R3,R5,R

7

RES 56 OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ560V

8 5 R2,R4,R6,R

8,R11

RES 1.0K OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ102V

9 1 R9 RES ZERO OHM 1/16W 0402 SMD Panasonic - ECG ERJ-2GE0R00X

10 3 R10,R12,

R13

RES ZERO OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEY0R00V

11 2 TP1,TP3 TEST POINT 43 HOLE 65 PLATED RED Keystone Electronics 5000

12 1 TP2 TEST POINT 43 HOLE 65 PLATED BLACK Keystone Electronics 5001

13 1 U1 PSoC Mixed-Signal Array Cypress Semiconductor CY8C29000-24AXI

14 2 NA SMT Spacer/nut PEM SMTSO-440-8ET

15 1 PCB PRINTED CIRCUIT BOARD Cypress Semiconductor PDCR-9464 REV*A

16 1 LABEL1 PCA # Label 121R-46400 REV*B

No Load Components

17 3 C12,C13,

C14

CAP NO LOAD 0805 NA NA

18 1 D1 DIODE SCHOTTKY 30V 200mW SOT23 Diodes Inc BAT54-7-F

19 1 L1 INDUCTOR FIXED SMD 2.2uH 10% Panasonic-ECG ELJ-FC2R2KF

20 1 Y1 CRYSTAL 32.768 kHz CYL 12.5PF Citizen America Corporation CFS206 32.768KDZF-UB

196 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

A.3.4 CY8C38 Family Processor Module

Item Qty Reference Description Manufacturer Mfr Part Number

1 1 N/A Schematic N/A REF-14889 REV *D

2 1 N/A Assembly Drawing N/A 121R-49400 REV *D

3 1 N/A Fab Drawing N/A N/A

4 1 N/A Assembly Adhesive Label N/A 121R-49400 REV *D

5 1 N/A PCB Cypress Semiconductor PDCR-9494 REV **

6 2 C1,C14 CAP CER 10UF 16V X5R 0805 Murata Electronics North

America

GRM21BR61C106KE15L

7 7 C2,C3,C4,C

5,C6,C7,C28

CAP CERAMIC 1.0UF 10V X5R 0603 Kemet C0603C105K8PACTU

8 2 C8,C11 CAP CERAMIC 1.2UF 10V X5R 0805 Kemet C0805C125K8PACTU

9 2 C9,C25 CAP .10UF 16V CERAMIC X7R 0603 Kemet C0603C104J4RACTU

10 2 C10,C12 CAP CER 22UF 10V 10% X5R 1210 Kemet C1210C226K8PACTU

11 7 C15,C16,C1

7,C21,C22,C

23,C24

CAP .10UF 10V CERAMIC X5R 0402 Kemet C0402C104K8PACTU

12 1 C18 CAP CER 2200PF 50V 5% C0G 0603 Murata GRM1885C1H222JA01D

13 2 C19,C20 CAP CERAMIC 22PF 50V 0603 SMD Panasonic - ECG ECJ-1VC1H220J

14 1 D1 DIODE SCHOTTKY 40V 1A SOT23 Zetex ZHCS1000TA

15 4 J1,J2,J3,J4 CONN MALE 32POS DL .050 TH SHRD

GOLD

Centronic Precision Elec-

tronic Co.

HHLHS32GB1

16 1 J5 CONN HEADER 10 PIN 50MIL KEYED SMD Samtec FTSH-105-01-L-DV-K

17 1 L1 INDUCTOR SHIELD PWR 22UH 7032 TDK Corporation SLF7032T-220MR96-2-PF

18 2 R8,R9 RES 22 OHM 1/16W 1% 0603 SMD Panasonic - ECG ERJ-3EKF22R0V

19 8 R31,R32,R3

6,R38,R39,R

40,R41,R42

RES ZERO OHM 1/16W 5% 0603 SMD Panasonic - ECG ERJ-3GEY0R00V

20 6 TP1,TP3,TP

4,TP5,TP6,T

P7

TEST POINT 43 HOLE 65 PLATED RED Keystone Electronics 5000

21 1 TP2 TEST POINT 43 HOLE 65 PLATED BLACK Keystone Electronics 5001

22 1 U1 PSoC3 Mixed-Signal Array Cypress Semiconductor CY8C3866AXI-040

23 1 Y1 CRYSTAL 32.768 kHz CYL 12.5PF Citizen America Corporation CFS206 32.768KDZF-UB

24 2 C26,C27 CAP, CER, 12 pF, 50V, 5%, COG, 0603, SMD Murata Electronics North

America

GRM1885C1H120JA01D

25 1 Y2 CRYSTAL, 24 MHz, 30 ppm, HC49, SMD ECS Inc. ECS-240-12-5PX-TR

Do Not Install

26 6 R6,R7,R14,

R15,R16,R1

7

RES NO LOAD 0805 SMD NA NA

27 5 R10,R34,R3

5,R37,R43

RES NO LOAD 0603 SMD NA NA

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 197

Board Specifications and Layout

A.3.5 CY8C58LP Family Processor Module

Item Qty CY Part Number Reference Description Manufacturer Mfr Part Number

1 1 630-60082-01 REV** N/A Schematic N/A 630-60082-01

REV**

2 1 620-60083-01 REV** N/A Assembly Drawing N/A 620-60083-01

REV**

3 1 610-60081-01 REV** N/A Fab Drawing N/A 610-60081-01

REV**

4 1 620-60083-01 REV** N/A Assembly Adhesive

Label

N/A 620-60083-01

REV**

5 1 600-60083-01 REV** N/A PCB N/A 600-60083-01

REV**

6 2 700-00105 C1,C14 CAP, CER, 10 uF, 16 V,

5%, X5R, 0805, SMD

Murata

Electronics North

America

GRM21BR61C106K

E15L

7 7 700-00111 C2,C3,C4,C5,C

6,C7,C28

CAP, CER, 1.0 uF, 10

V, 10%, X5R, 0603,

SMD

Kemet C0603C105K8PACT

U

8 2 700-00118 C8,C11 CAP, CER, 1.0 uF, 10

V, 10%, X5R, 0805,

SMD

Murata GRM219R61A105KC

01D

9 2 700-00104 C9,C25 CAP, CER, 0.1 uF, 16

V, 5%, X7R, 0603,

SMD

Kemet C0603C104J4RACT

U

10 2 700-00112 C10,C12 CAP, CER, 22 uF, 10 V,

10%, X5R, 1210, SMD

Kemet C1210C226K8PACT

U

11 8 700-00001 C15,C16,C17,C

21,C22,C23,C2

4,C29

CAP, CER, 0.1 uF, 16

V, 10%, X7R, 0402,

SMD

Kemet C0402C104K4RACT

U

12 1 700-00094 C18 CAP, CER, 2200 pF,

50V, 5%, COG, 0603,

SMD

Murata GRM1885C1H222JA

01D

13 2 700-00012 C19,C20 CAP, CER, 22 pF, 50V,

5%, COG, 0603, SMD

Panasonic - ECG ECJ-1VC1H220J

14 1 810-00007 D1 DIODE, SCHOTTKY,

40 V, 1 A,

ZHCS1000TA, SOT-23,

SMD

Zetex ZHCS1000TA

15 4 400-00051 J1,J2,J3,J4 CONN, HDR, 2x16,

0.05", GOLD, TH

Centronic

Precision

Electronic Co.

HHLHS32GB1

16 2 400-00061 J5,J6 CONN, HDR, KEYED,

2x5, 0.050", Gold, SMD

Digilent 161-026

198 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

Board Specifications and Layout

17 1 820-00006 L1 IND, FIXED, 22 uH,

20%, .960 A, 7032,

SMD

TDK Corporation SLF7032T-

220MR96-2-PF

18 2 600-00208 R8,R9 RES 22 OHM 1/16W 1%

0603 SMD

Panasonic - ECG ERJ-3EKF22R0V

19 13 620R-10519 R31,R32,R36,R

38,R39,R40,R4

1,R42,R45,R46,

R47,R48,R49

RES ZERO OHM

1/10W 5% 0603 SMD

Panasonic - ECG ERJ-3GEY0R00V

20 1 600-00165 R44 RES, 0.0 Ohms, 1/8 W,

5%, 0805, SMD

Panasonic - ECG ERJ-6GEY0R00V

21 7 400-00001 TP1,TP3,TP4,T

P5,TP6,TP7,TP

8

CONN, TEST POINT,

RED, TH

Keystone

Electronics

5000

22 2 400-00002 TP2,TP9 CONN, TEST POINT,

BLACK, TH

Keystone

Electronics

5001

23 1 CY8C5868AXI-LP035 U1 IC,

PSoC5LP,CY8C5868A

XI-LP035, TQFP-100,

SMD

Cypress

Semiconductor

CY8C5868AXI-

LP035

24 1 850R-13480 Y1 CRYSTAL 32.768 KHZ

CYL 12.5PF CFS308

Citizen America

Corporation

CFS206

32.768KDZF-UB

25 2 700-00048 C26,C27 CAP, CER, 12 pF, 50V,

5%, COG, 0603, SMD

Murata

Electronics North

America

GRM1885C1H120JA

01D

26 1 850-00003 Y2 CRYSTAL, 24 MHz, 30

ppm, HC49, SMD

ECS Inc. ECS-240-12-5PX-TR

DO NOT INSTALL

27 6 NA R6,R7,R14,R15

,R16,R17

RES NO LOAD 0805 SMD NA NA

28 5 NA R10,R34,R35,R

37,R43

RES NO LOAD 0603 SMD NA NA

29 1 NA TP10 TEST POINT 43 HOLE 65

PLATED WHITE

NA NA

Additional assembly instructions:

1. Assemble primary side (TOP SIDE) through hole components first. Then assemble secondary side (BOTTOM SIDE)

components last.

2. Ensure J5 and J6 are installed with the keyed side of the header facing the inside of the board.

Item Qty CY Part Number Reference Description Manufacturer Mfr Part Number

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 199

Appendix B. MiniProg3

B.1 MiniProg3 LEDs

MiniProg3 provides five indicator LEDs:

■ Upper Left - Busy: A red LED that lights when an operation (such as programming or debug) is in

progress.

■ Lower Left - Status: A green LED that lights when the device is enumerated on the USB bus and

flashes when the MiniProg3 receives USB traffic.

■ Upper Right - Target Power: A red LED that lights to indicate that the MiniProg3 is supplying

power to the target connectors. Note that it does not light when target power is detected but not

being supplied by MiniProg3.

■ Lower Right - Aux: A yellow LED reserved for future use.

■ Middle - No Label: A yellow LED that indicates the configuration state of the device. It flashes

briefly during the initial configuration of the device. If this LED lights solid, a configuration error

has occurred and MiniProg3 must be disconnected from the USB port and reconnected.

B.2 Programming in Power Cycle Mode

Do not perform power cycle mode programming with PSoC Programmer on the CY8CKIT-001. This

is due to the design of the CY8C38 family module. VTARG of the MiniProg3 is wired exclusively to

VDDIO1 of the chip on the module. For power cycle programming to work, VTARG needs to be

wired to VDDD.

B.3 Interface Pin Assignment Table

5-Pin # * 10-Pin # * JTAG ** SWD SWV ISSP I2C

1 1 Vtarg Vtarg Vtarg Vtarg Vtarg

2 3,5,7,9 GND GND GND GND GND

3 10 TRST SWO XRES INT

4 4 TCK SCK SCLK SCLK

5 2 TMS SDIO SDAT SDAT

6 TDO

8 TDI

Notes: * The 5- and 10-pin connectors are NOT connected together on the I/O pins

** JTAG is supported only on the 10-pin connector

*** Future upgrades may be possible to support these modes

200 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

MiniProg3

B.4 Protection Circuitry

The Vtarg and I/O pins of the two interface connectors are protected from ESD events and momen-

tary short circuits by a group of TVS (Transient Voltage Suppressor) diodes. These diodes provide a

15 KV ESD event protection for each pin, and will clamp the pin levels to a safe voltage in the event

of a short circuit. The Vtarg pins are protected by a shared, 5 V clamp device capable of shunting

350 W of transient power. Each I/O pin is similarly protected by a 5 V, 30 W device.

B.5 Level Translation

The design provides level translators that interfaces with any I/O voltage in the range of 1.2 V to

5.5 V without damage and function properly. There are two different level translators used in the

design.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 201

Appendix C. MiniProg3 Technical Description

The MiniProg3 is a protocol translation device. It enables PC host software to communicate through

high-speed USB to the target device to be programmed or debugged. This is shown in Figure C-1.

The device side communication protocol can be one of several standards, and can occur over either

of two connectors. Table C-1 lists the protocols that are supported by each connector. MiniProg3

enables communication with target devices using I/O voltage levels from 1.5 V to 5.5 V. In addition,

MiniProg3 can provide power to a simple target board, at one of four voltage levels.

Figure C-1. System Block Diagram

Table C-1. Connectors / Communication Protocol Support

Connector ISSP JTAG SWD and SWVa

a. SWV trace is only available with SWD debugging.

I2C

5-pin Supported N/A SWD Supported

10-pin N/A Supported SWD and SWV N/A

PC

MiniProg3

Target Board

USB Cable

10-pin Ribbon
Cable or 5-pin

Direct Connection

202 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

MiniProg3 Technical Description

C.1 Interfaces

C.1.1 ISSP

In-System Serial Programming (ISSP) is a Cypress legacy interface used to program the PSoC 1

family of microcontrollers. MiniProg3 supports programming PSoC 1 devices through the 5-pin

connector only.

For more information about the ISSP interface, see the PSoC 1 Technical Reference Manual.

C.1.2 JTAG

The Joint Test Action Group (JTAG) standard interface is supported by many high end

microcontrollers, including the PSoC 3 and PSoC 5LP families. This interface allows a daisy chain

bus of multiple JTAG devices. MiniProg3 supports programming and debugging PSoC 3 and

PSoC 5 LP devices using JTAG, through the 10-pin connector only.

C.1.3 SWD/SWV

Recent ARM based devices have introduced a new serial debugging standard called Serial Wire

Debug (SWD). The PSoC 3 and PSoC 5LP family implements this standard, which offers the same

programming and debug functions as JTAG, except the boundary scan and daisy chain. SWD uses

fewer pins of the device than the JTAG standard. MiniProg3 supports programming and debugging

PSoC 3 and PSoC 5LP devices, using SWD, through the 5-pin or 10-pin connector.

The Single Wire Viewer (SWV) interface, also introduced by ARM, is used for program and data

monitoring, where the firmware may output data in a method similar to 'printf' debugging on PCs,

using a single pin. MiniProg3 supports monitoring of PSoC 3 and PSoC 5LP firmware, using SWV,

through the 10-pin connector and in conjunction with SWD only.

C.1.4 I2C™

A common serial interface standard is the Inter-IC Communication (I2C) standard by Philips. It is

mainly used for communication between microcontrollers and other ICs on the same board, but can

also be used for intersystem communications. MiniProg3 implements an I2C multimaster host

controller that allows the tool to exchange data with I2C enabled devices on the target board. For

example, this feature may be used to tune CapSense designs.

For more information on the PSoC 3 and PSoC 5LP JTAG, SWD, SWV, and I2C interfaces, see the

PSoC 3 and PSoC 5LP Technical Reference Manual. For more information on PSoC 1 interfaces,

see the PSoC 1 Technical Reference Manual.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 203

MiniProg3 Technical Description

C.2 Connectors

Warning It is recommended that a keyed 10-pin or 5-pin connector be used on the target board

applications as programmer/debugger headers for the MiniProg3. The I/Os of the MiniProg3 have

very limited series protection against over current. Therefore, plugging the MiniProg3 into a pro-

gramming/debugger header backwards can potentially damage the MiniProg3.

C.2.1 5-Pin Connector

The 5-pin connector is configured as a single row with a 100-mil pitch. It is designed to mate with a

Molex model 22-23-2051 (straight) or 22-05-3051 (right angle) male header, with key tab. The signal

assignment is shown in this figure.

Figure C-2. 5-Pin Connector with Pin Assignments

C.2.2 10-Pin Connector

The 10-pin connector is configured as a dual row with a 50-mil pitch. It is used with a ribbon cable

(provided) to mate to a similar connector on the target board. The recommended mating connectors

are the Samtec FTSH-105-01-L-DV-K (surface mount) and the FTSH-105-01-L-D-K (through hole)

or similar available from other vendors. The signal assignment is shown in this figure.

Figure C-3. 10-Pin Connector with Pin Assignments

MiniProg3

(End View)

Mating

Connector

SDAT

SCLK

XRES

GND

VTARG

nTRST

TDI

TDO

TCK

TMS

VTARG

GND

Pin 1

Note: The ribbon cable

connector extends

beyond the body of the

connector. Be sure to

allow room.

GND

GND

GND

nTRST

TDI

TDO

TCK

TMS

VTARG

GND

Pin 1

Note: The ribbon cable

connector extends

beyond the body of the

connector. Be sure to

allow room.

GND

GND

GND

204 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

MiniProg3 Technical Description

Here is a summary of the protocols and related pin assignments.

C.3 Power

MiniProg3 requires a connection to the Vddio supply of the target device to set the voltage level used

for communication. This is required regardless of the communication protocol and the port selected.

One of the connectors' VTARG pins must be connected to the Vddio supply of the target device. For

PSoC 3 and PSoC 5LP, this is the Vddio1 supply, because this is the supply used to drive the debug

pins. Failing to connect VTARG, or connecting it to the wrong supply results in the MiniProg3 being

unable to communicate with the target device.

On boards where there is a single power supply for the entire board, the MiniProg3 can, in some

cases, supply power to the board. This supply is limited to approximately 200 mA and is protected

against excess current draw. The power supply voltage can be selected from one of 1.8 V, 2.5 V,

3.3 V, or 5 V. The 5-V supply may be as low as 4.25 V or as high as 5.5 V, as it is supplied directly

from the USB port.

Table Appendix C-2. Communication Protocol Pin Assignments

Protocol Signal 5-Pin 10-Pin

ISSP

SCLK 4

SDAT 5

XRES 3

JTAG

TMS 2

TCK 4

TDO 6

TDI 8

XRES 10

SWD / SWV

SDIO 5 2

SCK 4 4

SWVa

a. SWV trace is only available in conjunction with SWD debugging.

6

XRES 3 10

I2C
SCK 4

SDA 5

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 205

Appendix D. PSoC Creator DWR

The PSoC Creator Design-Wide Resources (DWR) system provides a single location to manage all

the resources in your design. These resources include pins, clocks, interrupts, DMA, and so on.

Each new design project provides a default design-wide resources file (.cydwr) file with the same

name as the project.

A brief explanation of each tab is provided here. See Help > Topics > Using Design Entry Tools >

Design-Wide Resources for more details of each editor in the DWR file.

The Pins tab of the DWR file or the Pin Editor allows you to manually assign the pins used in the

schematic to the PSoC.

Figure Appendix D-1. DWR File - Pin Editor

The Analog tab or the Analog Device Editor provides an interconnect view of the PSoC 3 and

PSoC 5 devices along with place-and-route results for a particular design. The editor also allows for

manual place-and-route with the ability to lock-down all or some of the results.

206 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

PSoC Creator DWR

Figure Appendix D-2. DWR File - Analog Device Editor

The Clocks tab or the Clock Editor is a design-wide resources tool to create and edit clocks. This tool

allows you to view all clocks, add and delete design-wide clocks, as well as edit design-wide and

system clocks.

Figure Appendix D-3. DWR File - Clock Editor

The Interrupts tab or the Interrupt Editor allows you to change the priority of interrupt service routines

(ISRs) in your design.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 207

PSoC Creator DWR

Figure Appendix D-4. DWR File - Interrupt Editor

Note If no interrupts are used in your design, the Interrupt Editor gives the message, as shown in

the following figure.

Figure Appendix D-5. Message for No Interrupts

The DMA tab or the DMA Editor displays all the direct memory access (DMA) components that have

been directly placed in the design, as well as all the DMA components "inside" placed components.

208 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

PSoC Creator DWR

Figure Appendix D-6. DWR File - DMA Editor

Similar to the Interrupt editor, if there is no DMA component used in the design DMA editor shows

the message that there is no DMA component being used.

Figure Appendix D-7. No DMA Component

The System tab or the System Editor is used to edit various system properties. It contains a table

with different categories of properties, such as Configuration, Programming/Debugging, and Operat-

ing Conditions. The available categories change based on your design.

CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L 209

PSoC Creator DWR

Figure Appendix D-8. DWR File - System Editor

The Directives tab or the Directives Editor is used to add, remove, and edit directives. Directives may

be used to influence the implementation of a design. They are used in an iterative fashion to refine,

improve, or constrain the results of synthesis. Directives may be applied to components that have

been either instantiated in a schematic or inferred by the synthesizer from Verilog HDL code.

See Help > Topics > PSoC Creator > Building a PSoC Creator Project > Directives for more

information on the directives available in PSoC Creator.

Figure Appendix D-9. DWR File - Directives Editor

210 CY8CKIT-001 PSoC® Development Kit Guide, Doc. # 001-48651 Rev. *L

PSoC Creator DWR

The Flash security tab or the Flash Security Editor allows you to control the read/write access to the

device memory. The flash rows are displayed as a table where each editable cell in the table repre-

sents a single row of flash (256 bytes). Each flash row can have its protection level independently

set.

Figure Appendix D-10. DWR File - Flash Security Editor

	PSoC® Development Kit Guide
	Contents
	1. Introduction
	1.1 Kit Overview
	1.2 Kit Contents
	1.3 Installation
	1.3.1 Before You Begin
	1.3.2 Prerequisites
	1.3.3 Installing PSoC 1 Development Software
	1.3.4 Installing PSoC 3 Development Software
	1.3.5 Installing PSoC 5LP Development Software

	1.4 PSoC Development Board
	1.4.1 Default Switch and Jumper Settings
	1.4.1.1 AC/DC Adaptor Specifications
	1.4.1.2 Battery Specifications

	1.5 Kit Revision
	1.6 Additional Resources
	1.6.1 Beginner Resources
	1.6.2 Engineers Looking for More
	1.6.3 Learning from Peers
	1.6.4 More Code Examples

	1.7 Document Conventions
	1.8 Document Revision History

	2. Loading My First PSoC Project
	2.1 My First PSoC 1 (CY8C28) Project
	2.1.1 Loading My First PSoC 1 Project
	2.1.2 Building My First PSoC 1 Project
	2.1.3 Programming My First PSoC 1 Project
	2.1.4 Running My First PSoC 1 Project

	2.2 My First PSoC 1 (CY8C29) Project
	2.2.1 Loading My First PSoC 1 Project
	2.2.2 Building My First PSoC 1 Project
	2.2.3 Programming My First PSoC 1 Project
	2.2.4 Running My First PSoC 1 Project

	2.3 My First PSoC 3 (CY8C38) Project
	2.3.1 Loading My First PSoC 3 Project
	2.3.2 Building My First PSoC 3 Project
	2.3.3 Programming My First PSoC 3 Project
	2.3.4 Running My First PSoC 3 Project

	2.4 My First PSoC 5LP (CY8C58LP) Project
	2.4.1 Loading my First PSoC 5LP Project
	2.4.2 Building My First PSoC 5LP Project
	2.4.3 Programming My First PSoC 5LP Project
	2.4.4 Running My First PSoC 5LP Project

	3. Sample Projects
	3.1 CY8C28 Family Processor Module Code Examples
	3.1.1 My First PSoC 1 (CY8C28) Project
	3.1.1.1 Creating My First PSoC 1 (CY8C28) Project
	3.1.1.2 main.c

	3.1.2 ADC to LCD Project
	3.1.2.1 Creating ADC to LCD Project
	3.1.2.2 main.c

	3.1.3 ADC to UART with DAC
	3.1.3.1 Creating ADC to UART with DAC Project
	3.1.3.2 main.c

	3.1.4 CapSense
	3.1.4.1 Creating CapSense Project
	3.1.4.2 main.c

	3.2 CY8C29 Family Processor Module Code Examples
	3.2.1 My First PSoC 1 (CY8C29) Project
	3.2.1.1 Creating My First PSoC 1 (CY8C29) Project
	3.2.1.2 main.c

	3.2.2 ADC to LCD Project
	3.2.2.1 Creating ADC to LCD Project
	3.2.2.2 main.c

	3.2.3 ADC to LCD with DAC and UART
	3.2.3.1 Creating ADC to LCD with DAC and UART Project
	3.2.3.2 main.c
	3.2.3.3 Counter8_1INT.asm

	3.3 CY8C38 / CY8C58LP Family Processor Module Code Examples
	3.3.1 My First PSoC 3 / PSoC 5LP Project
	3.3.1.1 Creating My First PSoC 3 / PSoC 5LP Project
	3.3.1.2 Placing and Configuring PWM
	3.3.1.3 Placing and Configuring Digital Output Pin Hardware
	3.3.1.4 Placing and Configuring Software Digital Output Pin
	3.3.1.5 Connecting the Components Together
	3.3.1.6 Configuring Pins
	3.3.1.7 Creating main.c File
	3.3.1.8 Configuring and Programming PSoC Development Board

	3.3.2 ADC to LCD Project
	3.3.2.1 Creating ADC to LCD Project
	3.3.2.2 Placing and Configuring Delta Sigma ADC
	3.3.2.3 Placing and Configuring an Analog Pin
	3.3.2.4 Placing and Configuring Character LCD
	3.3.2.5 Connecting the Components Together
	3.3.2.6 Configuring Pins
	3.3.2.7 Creating main.c File
	3.3.2.8 Configuring and Programming the PSoC Development Board

	3.3.3 ADC to UART with DAC
	3.3.3.1 Creating ADC to UART with DAC Project
	3.3.3.2 Configuring Clock for ADC to UART with DAC Project
	3.3.3.3 Placing and Configuring Delta Sigma ADC
	3.3.3.4 Placing and Configuring an Analog Pin
	3.3.3.5 Placing and Configuring Character LCD
	3.3.3.6 Placing and Configuring Voltage DAC
	3.3.3.7 Placing and Configuring Opamp
	3.3.3.8 Placing and Configuring Analog Pin
	3.3.3.9 Placing and Configuring UART
	3.3.3.10 Placing and Configuring Digital Output Pin
	3.3.3.11 Placing and Configuring Clock for UART
	3.3.3.12 Placing and Configuring DMA
	3.3.3.13 Connecting the Components Together
	3.3.3.14 Configuring Pins
	3.3.3.15 Creating main.c File
	3.3.3.16 Configuring and Programming the PSoC Development Board

	3.3.4 USB HID
	3.3.4.1 Creating USB HID Project
	3.3.4.2 Placing and Configuring USBFS
	3.3.4.3 Placing and Configuring Software Digital Input Pin
	3.3.4.4 Placing and Configuring LED
	3.3.4.5 Configuring Clocks for CY8C38 Family Processor Module
	3.3.4.6 Configuring Clocks for CY8C58LP Family Processor Module
	3.3.4.7 Configuring Pins
	3.3.4.8 Creating main.c File
	3.3.4.9 Configuring and Programming the PSoC Development Board

	3.3.5 CapSense
	3.3.5.1 Creating CapSense Project
	3.3.5.2 Placing and Configuring CapSense
	3.3.5.3 Placing and Configuring Character LCD
	3.3.5.4 Placing and Configuring Digital Output Pin
	3.3.5.5 Configuring Pins
	3.3.5.6 Creating main.c File
	3.3.5.7 Configuring and Programming the PSoC Development Board

	3.3.6 SAR ADC (PSoC 5LP Only)
	3.3.6.1 Creating ADC to UART with DAC Project
	3.3.6.2 Configuring Clock for ADC to UART with DAC Project
	3.3.6.3 Placing and Configuring SAR ADC
	3.3.6.4 Placing and Configuring an Analog Pin
	3.3.6.5 Placing and Configuring Character LCD
	3.3.6.6 Placing and Configuring Voltage DAC
	3.3.6.7 Placing and Configuring Opamp
	3.3.6.8 Placing and Configuring Analog Pin
	3.3.6.9 Placing and Configuring UART
	3.3.6.10 Placing and Configuring Digital Output Pin
	3.3.6.11 Placing and Configuring Clock for UART
	3.3.6.12 Placing and Configuring DMA
	3.3.6.13 Connecting the Components Together
	3.3.6.14 Configuring Pins
	3.3.6.15 Creating main.c File
	3.3.6.16 Configuring and Programming the PSoC Development Board

	Appendix A. Board Specifications and Layout
	A.1 PSoC Development Board
	A.1.1 Factory Default Configuration
	A.1.1.1 Power Supply

	A.1.2 Power Supply Configuration Examples
	A.1.2.1 Setting a 5-V Supply from VREG
	A.1.2.2 Setting a 3.3-V Supply from VREG
	A.1.2.3 Setting VDD ANLG as VADJ and VDD DIG as VDD for VDD = 3.3 V
	A.1.2.4 Setting VDD DIG as VADJ and VDD ANLG as VDD for VDD = 3.3 V
	A.1.2.5 Setting a 5-V Supply from VBUS
	A.1.2.6 Setting a 3.3-V Supply from VBUS
	A.1.2.7 J1 - DC Power Jack
	A.1.2.8 9-V Battery Terminals
	A.1.2.9 J8 - 5-V Source
	A.1.2.10 VDD Select Switch
	A.1.2.11 J7 - VDD DIG Select
	A.1.2.12 J6 - VDD ANLG Select
	A.1.2.13 R11 - Adjustable Regulator Variable Resistor

	A.1.3 Prototyping Components
	A.1.3.1 Prototyping Area
	A.1.3.2 P15 - DB9 Serial Communications Port
	A.1.3.3 J10 - Serial Port Power
	A.1.3.4 J9 - Full Speed USB Port
	A.1.3.5 P17 - Artaflex WirelessUSB LP Radio Module Receptacle
	A.1.3.6 J14 - Wireless Radio Module Power
	A.1.3.7 R20 - Multipurpose Variable Resistor
	A.1.3.8 J11 - Variable Resistor Power
	A.1.3.9 SW1, SW2, SW5, and SW6 - Multipurpose Push Button Switches

	A.1.4 LCD Module
	A.1.4.1 R31 - LCD Contrast Adjustment
	A.1.4.2 J12 - LCD Module Power

	A.1.5 CapSense Elements
	A.1.6 Processor Module
	A.1.6.1 J2, J3, J4, and J5 - VDDIO Select
	A.1.6.2 SW4 - Processor Reset Button
	A.1.6.3 U8 - External MHz Oscillator
	A.1.6.4 P1, P2, P3, and P4 - Processor Module Receptacles

	A.1.7 Expansion Ports
	A.1.7.1 Expansion Ports A and A'
	A.1.7.2 Expansion Port B
	A.1.7.3 Expansion Port C
	A.1.7.4 Protection Circuit

	A.2 Schematics
	A.2.1 CY8CKIT-001 PSoC Development Board
	A.2.2 CY8C28 Family Processor Module
	A.2.3 CY8C29 Family Processor Module
	A.2.4 CY8C38 Family Processor Module
	A.2.5 CY8C58LP Family Processor Module
	A.2.6 Enabling Boost Component in PSoC 3 and PSoC 5LP Processor Modules

	A.3 Bill of Materials
	A.3.1 CY8CKIT-001 PSoC Development Board
	A.3.2 CY8C28 Family Processor Module
	A.3.3 CY8C29 Family Processor Module
	A.3.4 CY8C38 Family Processor Module
	A.3.5 CY8C58LP Family Processor Module

	Appendix B. MiniProg3
	B.1 MiniProg3 LEDs
	B.2 Programming in Power Cycle Mode
	B.3 Interface Pin Assignment Table
	B.4 Protection Circuitry
	B.5 Level Translation

	Appendix C. MiniProg3 Technical Description
	C.1 Interfaces
	C.1.1 ISSP
	C.1.2 JTAG
	C.1.3 SWD/SWV
	C.1.4 I2C™

	C.2 Connectors
	C.2.1 5-Pin Connector
	C.2.2 10-Pin Connector

	C.3 Power

	Appendix D. PSoC Creator DWR

/***
* File Name: main.c
*
* Version: 1.2
*
* Description:
* This file provides source code for LED with PWM example project. The firmware
* blinks one LED at about 3.6Hz with a PWM and another LED with a software
* timing loop.
*
* Code Tested With:
* 1. PSoC Designer 5.1 Service Pack 1 Build 2101
* 2. PSoC Programmer 3.12.4 Build 866
* 3. ImageCraft C Compiler: V7.04
*
**
* Copyright (2011), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* User Module Settings
**
* PWM Settings:
*
* Input Clock = VC3 (24MHz/16/16/256 = 366.2Hz)
* Enable = High
* CompareOut = ROW_0_Output_3
* TerminalCountOut = None
* Period = 100 Output period = (Period+1)*(1/Input Clock) =
* 101/366.2 = .275sec or 3.6Hz
* PulseWidth = 50
* CompareType = Less Than Or Equal
* InterruptType = Terminal Count
* ClockSync = Sync to SysClk
* InvertEnable = Normal
*
***/

#include <m8c.h> /* Part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the PWM and starts the PWM clock which will
* blink LED1. Then the main loop is entered which delays enough for LED2 to
* blink at a quicker rate than LED1.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 WORD i; /* Variable used for delay */

 PWM8_1_Start(); /* Turn on the PWM to blink LED on P1.6 */
 LED_1_Start(); /* Enable Software controlled LED */

 /* The following loop controls the software LED connected to P1.7 */
 while(1)
 {
 /* Delay time depends on compiler optimization levels and CPU clock */
 for (i = 0; i < 60000; i++);	// Gives approx 450 msec delay with ImageCraft
										// and 170 msec with HiTech
 #ifdef HI_TECH_C
		for (i = 0; i < 60000; i++);	// Give some more delay if HiTech compiler is used.
		for (i = 0; i < 40000; i++);
 #else
		#endif
 /* Switch the state of Software LED (on or off) */
 LED_1_Invert();
 } /* End of while(1) */
} /* End of main */

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.2
*
* Description:
* This file provides source code for the ADC to LCD example project. The
* firmware takes a voltage output from a potentiometer and displays the raw
* counts on an LCD.
*
* Code Tested With:
* 1. PSoC Designer 5.1 Service Pack 1 Build 2101
* 2. PSoC Programmer 3.12.4 Build 866
* 3. ImageCraft C Compiler: V7.04
*
**
* Copyright (2011), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* User Module Settings
**
* PGA Settings: (The PGA buffers the potentiometer voltage on P0.7 into
* the ADC)
*
* Gain = 1
* Input = AnalogColumn_InputMUX_0 (P0.7)
* Reference = AGND
* AnalogBus = Disable
**
* LCD Settings:
*
* LCDPort = Port_2
* BarGraph = Disable
**
* DelSig Settings:
* The ADC can read full range values from 0-5V, if the Ref Mux setting is
* selected as (2 BandGap)+/-BandGap and Vdd = 5V. The ADC is configured for a
* resolution of 9 bits, this is achieved by selecting the appropriate
* configuration when placing the UM.
*
* DataFormat = Unsigned
* ClockPhase = Normal
* PosInput = ACC00 (PGA_1)
* NegInput = ACC00 (Unused parameter)
* NegInputGain = Disconnected
*
***/

#include <m8c.h> /* part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */

/***
* Function Name: main
**
*
* Summary:
* The main function initializes both the ADC and LCD, starts and waits for an
* ADC conversion, then it displays the raw counts to the LCD.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 WORD adcResult; /* Holds the integer ADC result */

 /* Initialize the PGA used to buffer input from the potentiometer (VR) on
 P0.1 to the ADC */
 PGA_1_Start(PGA_1_HIGHPOWER);
 DelSigPlus_1_Start(DelSigPlus_1_HIGHPOWER); /* Initialize the ADC */
 LCD_1_Start(); /* Initialize the LCD */

 LCD_1_Position(ROW_0, COLUMN_0); /* Set the LCD to (Row=0,Column=0) */
 LCD_1_PrCString("V Count: ");

 DelSigPlus_1_StartAD(); /* Start gathering conversions from the ADC */

 M8C_EnableGInt; /* Enable Global interrupts */

 /* This loop waits for a valid ADC result, and displays it on the LCD */
 while (1)
 {
 /* Is there ADC data? */
 if(DelSigPlus_1_fIsDataAvailable())
 {
 /* Store result from ADC */
 adcResult = DelSigPlus_1_wGetDataClearFlag();
 LCD_1_Position(ROW_0, COLUMN_9); /* Set LCD to (Row=0,Column=9) */
 LCD_1_PrHexInt(adcResult); /* Print ADC result on LCD */
 }
 } /* End of while(1) */
} /* End of main */

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.2
*
* Description:
* This file provides source code for the ADC to UART with DAC example project.
* The firmware takes a voltage output from a potentiometer and displays the ADC
* raw count on an LCD. The raw count is also transmitted serially. The raw
* count also determines the clock divider value of the clock driving the DAC
* update rate.
*
* Code Tested With:
* 1. PSoC Designer 5.1 Service Pack 1 Build 2101
* 2. PSoC Programmer 3.12.4 Build 866
* 3. ImageCraft C Compiler: V7.04
*
**
* Copyright (2011), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* User Module Settings
**
* PGA_1 Settings: (The PGA buffers the potentiometer voltage on P0.7 into
* the ADC)
*
* Gain = 1
* Input = AnalogColumn_InputMUX_0 (P0.7)
* Reference = AGND
* AnalogBus = Disable
*
**
* LCD_1 Settings:
*
* LCDPort = Port_2
* BarGraph = Disable
*
**
* DelSigPlus_1 Settings:
* The ADC can read full range values from 0-5V, if the Ref Mux setting is
* selected as (2 BandGap)+/-BandGap and Vdd = 5V. The ADC is configured for
* a resolution of 9 bits, this is achieved by selecting the appropriate
* configuration when placing the UM.
*
* DataFormat = Unsigned
* ClockPhase = Normal
* PosInput = ACB00 (PGA_1)
* NegInput = ACB00 (Unused parameter)
* NegInputGain = Disconnected
*
**
* Counter16_1 Settings:
* The Counter16_1 controls the update rate of the DAC. The DAC is updated
* during every TerminalCount ISR. The frequency of the TerminalCount ISR is
* determined by the Counter Input Clock divided by the (Period value +1). The
* Period Value of the counter is changed by the ADC reading. Thus the
* frequency of the TerminalCount ISR can range from 125kHz (Period Value=1)
* to 488Hz (Period Value = 511)
*
* Clock = VC2 (24MHz/16/16 = 250kHz)
* Enable = High
* CompareOut = None
* TerminalCountOut = None
* Period = 0 (Updated in main loop)
* CompareValue = 0 (Unused parameter)
* CompareType = Less Than or Equal
* InterruptType = Terminal Count
* InvertEnable = Normal
* ClockSync = Sync to SysClk
*
**
* TX8_1 Settings:
* The TX8 UM provides serial communication of the ADC data to another device
* or PC. The TX8 UM send data out at a baud rate of 38400. This baud rate is
* derived by dividing the UM's input clock by 8.
*
* Clock = Row_2_Output_1 (From Counter16_1)
* Output = Row_2_Output_0
* Tx Interrupt Mode = TXComplete
* ClockSync = Sync to SysClk
* Data Clock Out = None
*
**
* DAC6_1 Settings:
* The DAC6 outputs a sine wave on P0.5. The shape of the sine wave is
* determined by the 64 element global sinTable[]. The update rate of the
* DAC6 is determined by the Counter16 terminal count ISR. The frequency of
* the DAC output equals the Counter16 Terminal Count frequency divided by 64
* (the number of elements in the table).
*
* AnalogBus = AnalogOutBus_1
* ClockPhase = Normal
* DataFormat = OffsetBinary
*
***/

#include <m8c.h> /* part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/* Counter16 Interrupt Handler */
#pragma interrupt_handler Counter16_C_ISR

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */

const BYTE sinTable[]=
{
 0, 0, 1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23, 26, 29,
 31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55, 56, 58, 59, 59, 60,
 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44, 42, 39, 36, 33,
 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3, 2, 1, 0, 0
};

BYTE tablePos = 0;

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the ADC, PGA, LCD, Counter, DAC and UART.
* In the main loop, it continuously checks for an ADC conversion. If there is
* one then it displays the ADC raw count to the LCD, transmits the raw count
* serially, and updates the Counter16 period (based on the raw count) for the
* DAC output.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 /* Variable for holding ADC result, and updating counter period */
 WORD adcResult;

 Counter16_1_Start(); /* Enable the counter used for DAC update rate */
 Counter16_1_EnableInt(); /* Enable DAC update interrupt */

 /* Start the TX8 UM with no parity (baud rate = 38400) */
 TX8_1_Start(TX8_1_PARITY_NONE);

 /* Enable to PGA to buffer signal from VR to ADC */
 PGA_1_Start(PGA_1_HIGHPOWER);

 DAC6_1_Start(DAC6_1_HIGHPOWER); /* Start the DAC */
 DelSigPlus_1_Start(DelSigPlus_1_HIGHPOWER); /* Start the ADC */
 DelSigPlus_1_StartAD(); /* Start reading values on the ADC */
 LCD_1_Start(); /* Start the character LCD */

 LCD_1_Position(ROW_0, COLUMN_0); /* Set the LCD to (Row=0,Column=0) */
 LCD_1_PrCString("V Count: ");

 M8C_EnableGInt; /* Enable Global Interrupts */

 while(1)
 {
 /* Step 1: Get BYTE data from the ADC
 Step 2: Write BYTE data from ADC to the counter in order to
 change the DAC update rate
 Step 3: Move the LCD cursor back to the beginning and display new
 ADC data
 Step 4: Write ADC data out the TX port, and then send a return
 */

 /* Is new data available from the ADC? */
 if (DelSigPlus_1_fIsDataAvailable())
 {
 adcResult = DelSigPlus_1_wGetDataClearFlag(); /* Get new ADC data */

 /* Change DAC update rate counter */
 Counter16_1_WritePeriod((adcResult << 4) + 200);

 LCD_1_Position(ROW_0, COLUMN_9); /* Move LCD (row=0,column=0) */
 LCD_1_PrHexInt(adcResult); /* Print ADC result to LCD */
 TX8_1_PutSHexInt(adcResult); /* Write LCD result to TX8 -> PC */
 TX8_1_PutCRLF(); /* Write return character to TX8 */
 }
 } /* End of while(1) */
} /* End of Main */

/***
* Function Name: Counter16_C_ISR
**
*
* Summary:
* This is the interrupt service routine for the Counter16 usermodule written
* in C. The boot.tpl has been modified to jump to this ISR every terminal
* count. The related #pragma above is necessary for the boot.asm file to jump
* to it. Every time a terminal count is reached the DAC will get the next
* value from the sinTable.
*
* Parameters:
* void
*
* Return:
* void
*
***/
#ifdef HI_TECH_C
void Counter16_C_ISR(void) @ 0x24
#else
void Counter16_C_ISR(void)
#endif
{
 // Check to see if we have reached the //
 if (tablePos >= sizeof(sinTable))
 {
 tablePos = 0;
 }
 DAC6_1_WriteBlind(sinTable[tablePos++]);
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.2
*
* Description:
* This file provides source code for the CapSense example project. The firmware
* displays the CapSense button presses on the LCD (row 1) and associated LEDs.
* It also displays the CapSense slider position on the LCD (row 2).
*
* Code Tested With:
* 1. PSoC Designer 5.1 Service Pack 1 Build 2101
* 2. PSoC Programmer 3.12.4 Build 866
* 3. ImageCraft C Compiler: V7.04
*
**
* Copyright (2011), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* User Module Settings
**
* CapSense:
*
* Finger Threshold = 100
* Noise Threshold = 80
* BaselineUpdate Threshold = 100
* Sensors Autoreset = Disabled
* Hysteresis = 10
* Debounce = 3
* NegativeNoiseThreshold = 20
* LowBaselineReset = 50
* ScanningSpeed = Normal
* Resolution = 12
* Compensation IDAC = 0
* IDAC = 225
* IDAC Range = x32
* Reference = ASE10
* Ref Value = 2
* PRS_Polynomial = Long
* ShieldElectrodeOut = None
* Auto Calibration = Disabled
*
* CSD Wizard:
*
* Modulator Capacitor Pin = P0[7]
* Buttons = 2
* Slider Segments = 5
* Resolution = 80
*
**
* LCD_1 Settings:
*
* LCDPort = Port_2
* BarGraph = Enable
*
***/

#include <m8c.h> /* part specific constants and macros */
#include "PSoCAPI.h" /* PSoC API definitions for all User Modules */

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define NUM_CHARACTERS 16 /* Number of characters on LCD */

/* For clearing a row of the LCD*/
#define CLEAR_ROW_STR " "
/* Button 1 only string for row 0 of the LCD */
#define BUTTON_1_STR "Button1 "
/* Button 2 only string for row 0 of the LCD */
#define BUTTON_2_STR " Button2"
/* Button 1 and 2 string for row 0 of the LCD */
#define BUTTON_1_2_STR "Button1 Button2"
/* Default string for button row of the LCD */
#define DEFAULT_ROW_0_STR "Touch Buttons "
/* Default string for slider row of the LCD */
#define DEFAULT_ROW_1_STR "Touch The Slider"

/* CapSense specific */
#define SLIDER_RESOLUTION 80
#define SCANSENSOR_BTN_B1 0
#define SCANSENSOR_BTN_B2 1

void UpdateButtonState(BYTE sensor_1, BYTE sensor_2);
void UpdateSliderPosition(BYTE value);

/***
* Function Name: main
**
*
* Summary:
* The main function initializes CapSense and the LCD. Then it continuously
* scans all CapSense sensors (slider sensors and buttons), gets the state of
* the buttons and slider and updates the LCD with the current state.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 BYTE pos; /* Slider Position */
 BYTE stateB_1; /* Button1 State */
 BYTE stateB_2; /* Button2 State */

 M8C_EnableGInt; /* Enable Global Interrupts */

 /* LCD Initialization */
 LCD_1_Start();
 /* For Bargraph display on LCD */
 LCD_1_InitBG(LCD_1_SOLID_BG);

 /* LED1 Initialization */
 LED_1_Start();
 /* LED2 Initialization */
 LED_2_Start();

 /* CapSense Initialization */
 CSD_1_Start();
 /* Initialize the baselines by scanning all sensors and getting the initial
 raw data values */
 CSD_1_InitializeBaselines();
 /* Load finger thresholds set in user module parameters */
 CSD_1_SetDefaultFingerThresholds();

 while(1)
 {
 /* Scan each CapSense sensor and update their raw data value */
 CSD_1_ScanAllSensors();
 /* Update baselines for each sensor */
 CSD_1_UpdateAllBaselines();

 /* Update state to active/inactive for each button sensor */
 stateB_1 = CSD_1_bIsSensorActive(SCANSENSOR_BTN_B1);
 stateB_2 = CSD_1_bIsSensorActive(SCANSENSOR_BTN_B2);

 /* Get Linear Slider Position */
 pos = CSD_1_wGetCentroidPos(1);

 /* Update LCD and LED's with current Button and Linear Slider states */
 UpdateButtonState(stateB_1, stateB_2);
 UpdateSliderPosition(pos);
 }
}

/***
* Function Name: UpdateButtonState
**
*
* Summary:
* Updates the LCD screen with the current button state by displaying which
* button is being touched on row 0. LED's are also updated according to button
* state.
*
* Parameters:
* sensor_1: Button state for B1
* sensor_2: Button state for B2
*
* Return:
* void
*
***/
void UpdateButtonState(BYTE sensor_1, BYTE sensor_2)
{
 LCD_1_Position(ROW_0,COLUMN_0);

 /* Check the state of the buttons and update the LCD and LEDs */
 if (sensor_1 && sensor_2)
 {
 /* Display both Button strings on LCD if both button sensors are active */
 LCD_1_PrCString(BUTTON_1_2_STR);
 /* Both LED's are on in this state */
 LED_1_On();
 LED_2_On();
 }
 else if (sensor_1 || sensor_2)
 {
 if (sensor_1)
 {
 /* Display Button 1 state on LCD and LED1 */
 LCD_1_PrCString(BUTTON_1_STR);
 LED_1_On();
 /* Button 2 is not active */
 LED_2_Off();
 }
 else // sensor_2
 {
 /* Display Button 2 state on LCD and LED2 */
 LCD_1_PrCString(BUTTON_2_STR);
 LED_2_On(); /* Turn on LED2 */
 LED_1_Off(); /* Turn off the LED1 */
 }
 }
 else
 {
 /* Display default string on LCD and set LED's to off */
 LCD_1_PrCString(DEFAULT_ROW_0_STR);
 /* Set both LED's off in this state */
 LED_1_Off();
 LED_2_Off();
 }
}

/***
* Function Name: UpdateSliderPosition
**
*
* Summary:
* Updates the LCD screen with the current slider position by displaying the
* horizontal bar graph.
*
* Parameters:
* value: Centroid position from CapSense slider.
*
* Return:
* void
*
***/
void UpdateSliderPosition(BYTE value)
{
 /* The slider position is 0xFF if there is no finger present on the slider */
 if (value > SLIDER_RESOLUTION)
 {
 /* Clear old slider position (2nd row of LCD) */
 LCD_1_Position(ROW_1, COLUMN_0);
 LCD_1_PrCString(DEFAULT_ROW_1_STR);
 }
 else
 {
 /* Update the bar graph with the current finger position */
 LCD_1_DrawBG(ROW_1, COLUMN_0, NUM_CHARACTERS, value + 1);
 }
}

/* [] END OF FILE */

/**
* Copyright (2009), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* File Name: main.c
*
* Description:
* This file provides source code for My First PSoC Project example. The
* firmware blinks one LED at about 3.6Hz with a PWM, and blinks another LED
* with a software timing loop.
*
**/

/**
* PWM Settings:
*
*		Input Clock = VC3		 //VC3 = 24MHz/16/16/256 =366.2Hz
*		Enable = High
*		CompareOut = ROW_0_Output_3
*		TerminalCountOut = None
*		Period = 100 Output period = (Period+1)*(1/Input Clock) = 101/366.2 = .275sec
													or 3.6Hz
* 		PulseWidth = 50
*		CompareType = Less Than Or Equal
*		InterruptType = Terminal Count
*		ClockSync = Sync to SysClk
*		InvertEnable = Normal
*
***/	

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

unsigned int i; // Varible used for delay

void main(void)
{
 PWM8_1_Start();	// Turn on the PWM to blink LED on P0.7
	LED_1_Start();	// Enable Software controlled LED
	
	
	// The following loop controls the software LED conneted to P1.7
	while(1)
	{
		for (i=0;i<60000;i++){} //Length of delay depends on compiler and CPU clock
		LED_1_Invert();			 //Switch the state of Software LED, if on turn it off,
								 //if off turn it on
	} //End of while(1)

}//End of main

/* Copyright (2009), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* File Name: main.c
*
* Description:
* This file provides source code for the ADC to LCD example project. The
* firmware takes a voltage output from a potentiometer and displays the raw
* counts on an LCD.
*
**

/**
*	PGA Settings:	(The PGA buffers the potentiometer voltage on P0.1 into the ADC)
*		
*		Gain = 1
*		Input = AnalogColumn_InputMUX_0 (P0.1)
*		Reference = AGND
*		AnalogBus = Disable
***/
/**
*	LCD Settings:			
*		LCDPort = Port_2
*		BarGraph = Disable
***/
/**
*	DelSig Settings:	
*	The ADC can read full range values from 0-5V, if the Ref Mux setting is selected
*	as (Vdd/2)+/- (Vdd/2) and Vdd = 5V. The ADC is configured for a resolution of 9 bits,
*	this is achieved by selecting the appropriate configuration when placing the UM.
*
*		DataFormat = Unsigned
*		DataClock = VC1 // VC1 = 24MHz/12 = 2MHz
*		ClockPhase = Normal
*		PosInput = ACB00 (PGA_1)
*		NegInput = ACB00 *Note, this parameter is unused
*		NegInputGain = Disconnected
*		PWM Output = None
*		PulseWidth = 1 *Note, this parameter is unused
***/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

unsigned int wADCResult; // Holds the integer ADC result

void main(void)
{
 PGA_1_Start(PGA_1_HIGHPOWER);		//Initalize the PGA, PGA used to buffer input from the VR on P0.1 to the ADC
	DelSig_1_Start(DelSig_1_HIGHPOWER); //Initalize the ADC
	LCD_1_Start();						//Initalize the LCD
	
	LCD_1_Position(0,0);				//Set the LCD to (Row=0,Column=0)
	
	LCD_1_PrCString("V Count: ");		
	
	DelSig_1_StartAD();					//Start gathering conversions from the ADC
	
	M8C_EnableGInt;						//Enable Global interrupts
	
	//This loop waits for a valid ADC result, and then displays it on the LCD
	while (1)
	{
		while (!(DelSig_1_fIsDataAvailable()));		//Wait for ADC data to be ready
		wADCResult=DelSig_1_wGetDataClearFlag();	//Store result from ADC
		LCD_1_Position(0,9); 					//Set LCD to (Row=0,Column=9)
		LCD_1_PrHexInt(wADCResult);					//Print ADC result on LCD
	}
	
	
		
}

/**
* Copyright (2009), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

/***
* File Name: main.c
*
* Description:
* This file provides source code for the ADC to LCD with DAC and UART example
* project. The firmware takes a voltage output from a potentiometer and
* displays the ADC raw count on an LCD. The raw count is also transmitted
* serially. The raw count also determines the clock divider value of the clock
* driving the DAC update rate.

/**
*	PGA_1 Settings:	(The PGA buffers the potentiometer voltage on P0.1 into the ADC)
*		
*		Gain = 1
*		Input = AnalogColumn_InputMUX_0 (P0.1)
*		Reference = AGND
*		AnalogBus = Disable
*
***/
/**
*	LCD_1 Settings:			
*		LCDPort = Port_2
*		BarGraph = Disable
*
***/
/**
*	DelSig_1 Settings:	
*	The ADC can read full range values from 0-5V, if the Ref Mux setting is selected
*	as (Vdd/2)+/- (Vdd/2) and Vdd = 5V. The ADC is configured for a resolution of 8 bits,
*	this is achieved by selecting the appropriate configuration when placing the UM.
*
*		DataFormat = Unsigned
*		DataClock = VC2 		//VC2 = 24MHz/16/16 = 250kHz
*		ClockPhase = Normal
*		PosInput = ACB00 (PGA_1)
*		NegInput = ACB00 *Note this parameter is not used
*		NegInputGain = Disconnected
*		PWM Output = None
*		PulseWidth = N/A	 *Note this parameter is not used
*
***/
/**
*	Counter8_1 Settings:	
*	The Counter8_1 controls the update rate of the DAC. The DAC is updated during ever
*	TerminalCount ISR. The frequency of the TerminalCount ISR is determined by the
*	Counter Input Clock divided by the (Period value +1). The Period Value of the counter
*	is changed by the ADC reading. Thus the frequency of the TerminalCount ISR can range
*	from 125kHz (Period Value=1) to 977Hz (Period Value = 255)
*
*		Clock = VC2		 // VC2 = 24MHz/16/16 = 250kHz
*		ClockSync = Sync to SysClk
*		Enable = High
*		CompareOut = None
*		TerminalCountOut = None
*		Period = 255 *Note this parameter is updated in the main loop
*		CompareValue = 0	 *Note this parameter is not used
*		CompareType = Less Than or Equal
*		InterruptType = Terminal Count
*		InvertEnable = Normal
*
***/
/**
*	Counter8_2 Settings:	
*	The Counter8_1 provides a clock to the TX8 UM to achieved a desired baud rate.
*	For this project the desired baud rate is 38400. The TX8 UM derives the baud rate
*	by dividing its input clock by 8. Thus the input clock to the TX8 needs to be around
*	307.2kHz to achieve a baud rate of 38400. The Counter8_1 UM provides this clock by dividing
*	VC3 (12MHz) by 39 to get 307.7kHz.
*
*		Clock = VC3 			//VC3 = 24MHz/2 = 12MHz
*		ClockSync = Sync to SysClk
*		Enable = High
*		CompareOut = None
*		TerminalCountOut = Row_2_Output_1
*		Period = 38
*		CompareValue = 0	*Note this parameter is not used
*		CompareType = Less Than or Equal
*		InterruptType = Terminal Count
*		InvertEnable = Normal
*
***/
/**
*	TX8_1 Settings:	
*	The TX8 UM provides serial communication of the ADC data to another device or PC.
*	The TX8 UM send data out at a baud rate of 38400. This baud rate is derived
*	by dividing the UM's input clock by 8.
*
*		Clock = Row_2_Output_1 (From Counter8_1)
*		Output = Row_2_Output_0
*		Tx Interrupt Mode = TXComplete
*		ClockSync = Sync to SysClk
*		Data Clock Out = None

***/
/**
*	DAC6 Settings:	
*	The DAC6 outputs a sine wave on P0.5. The shape of the sine wave is determined
*	by a 64 element lookup table found in SINtable.asm. The update rate of the DAC6
*	is determined by the Counter8 terminal count ISR. The frequency of the DAC output
*	equals the Counter8 Terminal Count frequency divided by 64 (the number of elements in the table).
*
*		AnalogBus = AnalogOutBus_1
*		ClockPhase = Normal
*		DataFormat = OffsetBinary
*
***/

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

const BYTE SINtable[]=
{
 31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55, 56, 58, 59, 59,
 60, 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44, 42, 39,
 36, 33, 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3, 2, 1, 0,
 0, 0, 0, 1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23, 26, 29
};

BYTE bADCvalue;			//Variable for holding ADC result, and updating counter period

void main(void)
{
 Counter8_1_Start();					//Enable the counter used for DAC update rate
	Counter8_1_EnableInt();				//Enable DAC update interrupt
	Counter8_2_Start();					//Enable counter for TX8 clock rate divider
	TX8_1_Start(TX8_1_PARITY_NONE);		//Start the TX8 UM with no parity (baud rate = 38400)
	PGA_1_Start(PGA_1_HIGHPOWER);		//Enable to PGA to buffer signal from VR to ADC
	DAC6_1_Start(DAC6_1_HIGHPOWER);		//Start the DAC
	DelSig_1_Start(DelSig_1_HIGHPOWER);	//Start the ADC
	DelSig_1_StartAD();					//Start reading values on the ADC
	LCD_1_Start();						//Start the character LCD
	
	M8C_EnableGInt;						// Enable Global Interrupts
	
	while(1)
	{
			/* Step 1: Get BYTE data from the ADC
			 Setp 2: Write BYTE data from ADC to the counter in order to change the DAC update rate
			 Step 3: Move the LCD cursor back to the beginning and dispaly new ADC data
			 Setp 4: Write ADC data out the TX port, and then send a return
	 */
		if (DelSig_1_fIsDataAvailable())		//Is new data avaliable from the ADC?
		{
			
	
			bADCvalue = DelSig_1_bGetDataClearFlag(); // Get new data from ADC
			Counter8_1_WritePeriod(bADCvalue);		 // Update DAC update rate counter
			LCD_1_Position(0,0);						 // Move LCD (row=0,column=0)
			LCD_1_PrHexByte(bADCvalue);				 // Print ADC result to LCD
			TX8_1_PutSHexByte(bADCvalue); // Write LCD result out TX8 to PC
			TX8_1_PutCRLF();						 // Send a return character
			
		}
	} //end of while(1)
			
		
			
} //End of Main

/***
* File Name: main.c
*
* Version: 1.3
*
* Description:
* This file provides source code for My First PSoC Project example. The
* firmware blinks one LED at about every second with a PWM and another LED at
* a quicker rate with a software timing loop.
*
* Code Tested With:
* 1. PSoC Creator 2.1
* 2. DP8051 Keil Generic Compiler
*
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

#define MS_DELAY 167u /* For delay, about 167ms */

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the PWM and starts the PWM clock which will
* blink LED1 at about once a second. Then the main loop is entered which
* delays enough for LED2 to blink at a quicker rate than LED1.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 uint8 ledState = 0x00; /* Initially set LED2 to off */

 Clock_1_Enable(); /* Start the clock */
 PWM_1_Start(); /* Enable PWM */

 /* Following loop does software blinking of LED2 connected to P1.7 */
 while (1)
 {

 CyDelay(MS_DELAY); /* Have software loop blink control */
 ledState ^= 0x01u; /* Toggle LED2 setting between low and high */
 LED2_Write(ledState); /* Set LED2 */
 }
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.3
*
* Description:
* This file provides source code for the ADC to LCD example project. The
* firmware takes a voltage output from a potentiometer and displays the raw
* counts on an LCD.
*
* Code Tested With:
* 1. PSoC Creator 2.1
* 2. DP8051 Keil Generic Compiler
*
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */
#define COLUMN_10 10 /* LCD column 10 */
#define COLUMN_11 11 /* LCD column 11 */
/* For clearing Tens and Hundreds place */
#define CLEAR_TENS_HUNDREDS " "
/* For clearing Hundreds place */
#define CLEAR_HUNDREDS " "

void UpdateDisplay(uint16 voltageRawCount);

/***
* Function Name: main
**
*
* Summary:
* The main function initializes both the ADC and LCD, starts and waits for an
* ADC conversion, then it displays the raw counts to the LCD.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint16 voltageRawCount;

 ADC_DelSig_1_Start(); /* Configure and power up ADC */
 LCD_Char_1_Start(); /* Initialize and clear the LCD */

 LCD_Char_1_Position(ROW_0,COLUMN_0); /* Move the cursor to Row 0 Column 0 */

 /* Print Label for the pot voltage raw count */
 LCD_Char_1_PrintString("V Count: ");

 ADC_DelSig_1_StartConvert(); /* Force ADC to initiate a conversion */

 while(1)
 {
 /* Wait for end of conversion */
 ADC_DelSig_1_IsEndConversion(ADC_DelSig_1_WAIT_FOR_RESULT);
 voltageRawCount = ADC_DelSig_1_GetResult16(); /* Get converted result */

 /* Set range limit */
 if (voltageRawCount > 0x7FFF)
 {
 voltageRawCount = 0;
 }
 else
 {
 /* Continue on */
 }

 UpdateDisplay(voltageRawCount); /* Print result on LCD */
 }
}

/***
* Function Name: UpdateDisplay
**
*
* Summary:
* Print voltage raw count result to the LCD. Clears some characters if
* necessary.
*
* Parameters:
* voltageRawCount: The voltage raw counts being received from the ADC
*
* Return:
* void
*
***/
void UpdateDisplay (uint16 voltageRawCount)
{
 /* Move the cursor to Row 0, Column 9 */
 LCD_Char_1_Position(ROW_0,COLUMN_9);
 LCD_Char_1_PrintNumber(voltageRawCount); /* Print the result */

 if (voltageRawCount < 10)
 {
 /* Move the cursor to Row 0, Column 10 */
 LCD_Char_1_Position(ROW_0,COLUMN_10);
 LCD_Char_1_PrintString(CLEAR_TENS_HUNDREDS); /* Clear last characters */
 }
 else if (voltageRawCount < 100)
 {
 /* Move the cursor to Row 0, Column 11 */
 LCD_Char_1_Position(ROW_0,COLUMN_11);
 LCD_Char_1_PrintString(CLEAR_HUNDREDS); /* Clear last characters */
 }
 else
 {
 /* Continue on */
 }
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.3
*
* Description:
* This file provides source code for the ADC to LCD with DAC and UART example
* project. The firmware takes a voltage output from a potentiometer and
* displays the ADC raw count on an LCD. The raw count is also transmitted
* serially. The raw count also determines the clock divider value of the clock
* driving the DMA controller. A table of voltage values are sent to the DAC
* via DMA. Then the output of the DAC goes through an analog buffer and to an
* LED. This will give a dimming/brightening affect on the LED at a really slow
* rate or a really fast rate depending on the raw count coming from the ADC.
*
* Code Tested With:
* 1. PSoC Creator 2.1
* 2. DP8051 Keil Generic Compiler
*
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */
#define COLUMN_10 10 /* LCD column 10 */
#define COLUMN_11 11 /* LCD column 11 */
/* For clearing Tens and Hundreds place */
#define CLEAR_TENS_HUNDREDS " "
/* For clearing Hundreds place */
#define CLEAR_HUNDREDS " "

/* DMA specific */
#define REQUEST_PER_BURST 1 /* One request per burst */
#define BURST_BYTE_COUNT 1 /* Bursts are one byte each */
/* Upper 16-bits of the source address are zero */
#define SOURCE_ADDRESS 0
/* Upper 16-bits of the destination address are zero */
#define DESTINATION_ADDRESS 0

void UpdateDisplay(uint16 * voltageRawCount);
void TxHex (uint16 voltageRawCount);

/* Table of voltage values for DMA to send to the DAC. These values range
 * between 0x3D and 0x9F because these are the two points where the LED
 * is not visible and where the LED is saturated */
const uint8 voltageWave[] =
{
 	0x6D, 0x6F, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7B, 0x7D, 0x7F, 0x81, 0x83, 0x85,
	0x87, 0x89, 0x8B, 0x8D, 0x8F, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9B, 0x9C, 0x9D, 0x9D, 0x9E,
	0x9E, 0x9F, 0x9F, 0x9F, 0x9E, 0x9E, 0x9E, 0x9C, 0x9C, 0x9B, 0x99, 0x97, 0x95, 0x93, 0x91,
	0x8F, 0x8D, 0x8B, 0x89, 0x87, 0x85, 0x83, 0x81, 0x7F, 0x7D, 0x7B, 0x79, 0x77,
	0x75, 0x73, 0x71, 0x6F, 0x6D, 0x6B, 0x69, 0x67, 0x65, 0x63, 0x61, 0x5F, 0x5D,
	0x5B, 0x59, 0x57, 0x55, 0x53, 0x51, 0x4F, 0x4D, 0x4B, 0x49, 0x47, 0x45, 0x43,
	0x41, 0x40, 0x40, 0x3F, 0x3F, 0x3D, 0x3D, 0x3D, 0x3D, 0x3D, 0x3D, 0x3F, 0x41,
	0x43, 0x45, 0x47, 0x49, 0x4B, 0x4D, 0x4F, 0x51,
	0x53, 0x55, 0x57, 0x59, 0x5B, 0x5D, 0x5F, 0x61, 0x63, 0x65, 0x67, 0x69, 0x6B
};

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the ADC, LCD, VDAC, Analog Buffer, and UART.
* It also initializes DMA by allocating/configuring a DMA channel and
* Transaction Descriptor and also copies the voltage table address to the DAC
* address. In the main loop, it starts and waits for an ADC conversion, then
* it displays the ADC raw count to the LCD, transmits the raw count serially,
* and sets the DMA clock divider proportional to the raw count.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint16 voltageRawCount;
 uint8 myChannel;
 uint8 myTd;

 ADC_DelSig_1_Start(); /* Configure and power up ADC */
 LCD_Char_1_Start(); /* Initialize and clear the LCD */
 VDAC8_1_Start(); /* Initializes VDAC8 with default values */
 Opamp_1_Start(); /* Enables Opamp and sets power level */
 UART_1_Start(); /* Enable UART */
 CyDmacConfigure(); /* Set DMA configuration register */

 /* Allocate and initialize a DMA channel to be used by the caller
 * PSoC 3 */
 #if(CYDEV_CHIP_DIE_EXPECT == CYDEV_CHIP_DIE_LEOPARD)
 myChannel = DMA_1_DmaInitialize(BURST_BYTE_COUNT,
 REQUEST_PER_BURST,
 SOURCE_ADDRESS,
 DESTINATION_ADDRESS);
 #endif

 /* PSoC 5 */
 #if(CYDEV_CHIP_DIE_EXPECT == CYDEV_CHIP_DIE_PANTHER)
 myChannel = DMA_1_DmaInitialize(BURST_BYTE_COUNT,
 REQUEST_PER_BURST,
 (uint16)((uint32)voltageWave >> 16),
 (uint16)(VDAC8_1_viDAC8__D >> 16));
 #endif

 /* Allocate a Transaction Descriptor (TD) from the free list */
 myTd = CyDmaTdAllocate();

 /* Move the LCD cursor to Row 0, Column 0 */
 LCD_Char_1_Position(ROW_0, COLUMN_0);

 /* Print Label for the pot voltage raw count */
 LCD_Char_1_PrintString("V Count: ");

 CyDmaTdSetConfiguration(myTd, sizeof(voltageWave),
 myTd, TD_INC_SRC_ADR); /* Configure the TD */

 /* Copy address of voltageWave to address of DAC. Set the lower 16-bits of
 * the source and destination addresses for this TD
 * PSoC 3 */
 #if(CYDEV_CHIP_DIE_EXPECT == CYDEV_CHIP_DIE_LEOPARD)
 CyDmaTdSetAddress(myTd,
 (uint16)(voltageWave),
 (uint16)VDAC8_1_viDAC8__D);
 #endif

 /* PSoC 5 */
 #if(CYDEV_CHIP_DIE_EXPECT == CYDEV_CHIP_DIE_PANTHER)
 CyDmaTdSetAddress(myTd,
 (uint16)((uint32)voltageWave),
 (uint16)VDAC8_1_viDAC8__D);
 #endif

 /* Associate TD with channel */
 CyDmaChSetInitialTd(myChannel, myTd);

 /* Enable DMA channel */
 CyDmaChEnable(myChannel, 1);

 /* Clock will make burst requests to the DMAC */
 Clock_1_Start();

 ADC_DelSig_1_StartConvert(); /* Force ADC to initiate a conversion */

 while(1)
 {
 /* Wait for end of conversion */
 ADC_DelSig_1_IsEndConversion(ADC_DelSig_1_WAIT_FOR_RESULT);
 voltageRawCount = ADC_DelSig_1_GetResult16(); /* Get converted result */

 /* Set range limit */
 if (voltageRawCount > 0x7FFF)
 {
 voltageRawCount = 0;
 }
 else
 {
 /* Continue on */
 }

 UpdateDisplay(&voltageRawCount); /* Print the result to LCD */

 TxHex(voltageRawCount); /* Transmit result to UART */

 /*
 * The LED blinking frequency is dependent on the Voltage raw count.
 * With a 3MHz clock, the lowest divider (for raw count of 0) should be
 * 1000 to blink at a significantly fast pace. The highest value is
 * about 52,200 (for a raw count of 256) to blink at a significantly
 * slow pace. The following equation is necessary to make the adjusted
 * clock frequency (with the updated divider) linear with the ADC
 * output.
 */
 Clock_1_Stop();
		
 Clock_1_SetDivider((((uint32)voltageRawCount * 1000) / \
 (261 - (uint32)voltageRawCount)) + 1000);
 Clock_1_Start();
		CyDelay(250);
 }
}

/***
* Function Name: UpdateDisplay
**
*
* Summary:
* Print voltage raw count result to the LCD. Clears some characters if
* necessary. The voltageRawCount parameter is also updated for use in other
* functions.
*
* Parameters:
* voltageRawCount: Voltage raw count from ADC
*
* Return:
* void
*
***/
void UpdateDisplay (uint16 * voltageRawCount)
{
 /* Move the cursor to Row 0, Column 9 */
 LCD_Char_1_Position(ROW_0, COLUMN_9);
 LCD_Char_1_PrintNumber(voltageRawCount[0]); /* Print the result */

 if (voltageRawCount[0] < 10)
 {
 /* Move the cursor to Row 0, Column 10 */
 LCD_Char_1_Position(ROW_0,COLUMN_10);
 LCD_Char_1_PrintString(CLEAR_TENS_HUNDREDS); /* Clear last characters */
 }
 else if (voltageRawCount[0] < 100)
 {
 /* Move the cursor to Row 0, Column 11 */
 LCD_Char_1_Position(ROW_0,COLUMN_11);
 LCD_Char_1_PrintString(CLEAR_HUNDREDS); /* Clear last characters */
 }
 else
 {
 /* Continue on */
 }
}

/***
* Function Name: TxHex
**
*
* Summary:
* Convert voltage raw count to hex value and TX via UART.
*
* Parameters:
* voltageRawCount: The voltage raw counts being received from the ADC
*
* Return:
* void
*
***/
void TxHex (uint16 voltageRawCount)
{
 static char8 const hex[16] = "0123456789ABCDEF";

 /* TX converted MSnibble */
 UART_1_PutChar(hex[(voltageRawCount>>12)&0xF]);
 /* TX converted second nibble */
 UART_1_PutChar(hex[(voltageRawCount>>8)&0xF]);
 /* TX converted third nibble */
 UART_1_PutChar(hex[(voltageRawCount>>4)&0xF]);
 /* TX converted LSnibble */
 UART_1_PutChar(hex[voltageRawCount&0xF]);
 UART_1_PutString("h\r"); /* h for hexadecimal and carriage return */
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.3
*
* Description:
* This file provides source code for the USB HID example project. When the
* button (SW) is pressed, the firmware sends the keyboard scan codes necessary
* to load the Cypress Website.
*
* Code Tested With:
* 1. PSoC Creator 2.1
* 2. DP8051 Keil Generic Compiler
*
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include "device.h"

/* Keyboard scan codes */
#define WINDOWS_LEFT_MODIFIER 0x80u /* This is the left windows key */
#define LETTER_R 0x15u
#define CARRIAGE_RETURN 0x28u
#define KEY_RELEASE 0x00u

/* For button setup */
#define SET_BUTTON 0x01u

/* USB related */
#define KEYBOARD_ENDPOINT 0x01u
#define KEYBOARD_DEVICE 0x00u
#define KEYBOARD_DATA_SIZE 0x08u
#define KEY_DATA_INDEX 0x02u
#define MODIFIER_KEY_DATA_INDEX 0x00u

/* MACRO for button detection */
#define IS_BUTTON_PRESSED (!Button_Read())

#define BUTTON_PRESSED 1
#define BUTTON_RELEASED 0

static uint8 ButtonEventDetected(void);
static void SendKey(uint8 key);
static void StartWindowsRun(void); /* Open Windows Run App */
static void GetAckLoadEp(uint8 * keyboardData);

/***
* Function Name: main
**
*
* Summary:
* The main function starts out enabling global interrupts, setting up the
* button (SW1), then initializing USB for 5V operation. Then allows the HID
* device to enumerate, and loads the keyboard enpoint to allow an ack to be
* sent before sending the first keyboard data. Then it continuously checks for
* USB plug-and-play and a button press to see if the keyboard data needs sent.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint8 ledState = 0; /* Set initial LED state to off */
 uint8 i;

 /* Data array for the keyboard device endpoint */
 uint8 keyboardData[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

 /* Keyboard scan codes for the cypress website ("www.cypress.com<cr>") */
 uint8 cypressWebsiteCharSequence[] = { 0x1A, 0x1A, 0x1A, 0x37, 0x06, 0x1C,
 0x13, 0x15, 0x08, 0x16, 0x16, 0x37,
 0x06, 0x12, 0x10, 0x28 };

 CYGlobalIntEnable; /* Enable global interrupts */

 Button_Write(SET_BUTTON); /* Set port pin for button (SW1) */

 /* Start USBFS operation using keyboard device (0) and with 5V operation */
 USBFS_1_Start(KEYBOARD_DEVICE, USBFS_1_5V_OPERATION);

 while(!USBFS_1_bGetConfiguration()); /* Wait for Device to enumerate */

 /* Enumeration is completed load keyboard endpoint to set up ACK for first
 key */
 USBFS_1_LoadInEP(KEYBOARD_ENDPOINT, keyboardData, KEYBOARD_DATA_SIZE);

 while (1)
 {
 if (ButtonEventDetected())
 {
 ledState ^= 0x01u; /* Set/clear (toggle) the LED port pin */
 LED_Write(ledState); /* Toggle LED */

 StartWindowsRun(); /* Open Windows Run App */

 /* Send the cypress website key sequence */
 for (i = 0; i < sizeof(cypressWebsiteCharSequence); i++)
 {
 SendKey(cypressWebsiteCharSequence[i]);
 }
 }
 else
 {
 /* Continue on */
 }
 }
}

/***
* Function Name: ButtonEventDetected
**
*
* Summary:
* Check to see if the button is pressed.
*
* Parameters:
* void
*
* Return:
* TRUE: button pressed
* FALSE: button not pressed
*
***/
static uint8 ButtonEventDetected(void)
{
 if(!IS_BUTTON_PRESSED)
 {
 return BUTTON_RELEASED;
 }
 else
 {
 /* Continue on */
 }

 CyDelay(50); /* Debounce mechanical switch for ~50msec */

 if(IS_BUTTON_PRESSED)
 {
 /* Wait for the button to be released */
 while(IS_BUTTON_PRESSED);
 return BUTTON_PRESSED;
 }
 else
 {
 /* Continue on */
 }

 return BUTTON_RELEASED;
}

/***
* Function Name: SendKey
**
*
* Summary:
* Sends keyboard key.
*
* Parameters:
* key: Keyboard scan code.
*
* Return:
* void
*
***/
static void SendKey(uint8 key)
{
 /* Data array for the keyboard device endpoint */
 uint8 keyboardData[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

 keyboardData[KEY_DATA_INDEX] = key; /* Send key-down data, make */
 GetAckLoadEp(keyboardData); /* Send USB keyboard data */

 keyboardData[KEY_DATA_INDEX] = KEY_RELEASE; /* Send key-up data, break */
 GetAckLoadEp(keyboardData); /* Send USB keyboard data */
}

/***
* Function Name: StartWindowsRun
**
*
* Summary:
* Sends the Windows Run command by sending Windows Modifier and 'r' (while
* the Windows modifier key is in a down state) and then releasing both keys.
*
* Parameters:
* void
*
* Return:
* void
*
***/
static void StartWindowsRun(void)
{
 /* Data array for the keyboard device endpoint */
 uint8 keyboardData[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

 /* Send Windows modifier key-down data, modifier make */
 keyboardData[MODIFIER_KEY_DATA_INDEX] = WINDOWS_LEFT_MODIFIER;
 GetAckLoadEp(keyboardData); /* Send USB keyboard data */

 /* While Windows modifier key is down send r key, r make */
 keyboardData[KEY_DATA_INDEX] = LETTER_R;
 GetAckLoadEp(keyboardData); /* Send USB keyboard data */

 /* Send up keys for both Windows modifier key and r key */
 keyboardData[KEY_DATA_INDEX] = KEY_RELEASE; /* r break */
 keyboardData[MODIFIER_KEY_DATA_INDEX] = KEY_RELEASE; /* Windows modifier break */
 GetAckLoadEp(keyboardData); /* Send USB keyboard data */
 CyDelay(500); /* Delay about 0.5 seconds to allow Run window to pop-up */
}

/***
* Function Name: GetAckLoadEp
**
*
* Summary:
* It first confirms that an Acknowledge transaction occurred on the keyboard
* endpoint. Once the ACK is confirmed, the endpoint is enabled and loaded.
*
* Parameters:
* keyboardData: Data array for the keyboard device endpoint
*
* Return:
* void
*
***/
static void GetAckLoadEp(uint8 * keyboardData)
{
 /* Wait for ACK before loading data */
 while(!USBFS_1_bGetEPAckState(KEYBOARD_ENDPOINT));
 /* ACK has occurred, load the endpoint */
 USBFS_1_LoadInEP(KEYBOARD_ENDPOINT, keyboardData, KEYBOARD_DATA_SIZE);
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 1.2
*
* Description:
* This file provides source code for the CapSense example project. The firmware
* displays the CapSense button presses on the LCD (row 1) and associated LEDs.
* It also displays the CapSense slider position on the LCD (row 2).
*
* Code Tested with:
* PSoC Creator 2.1
* DP 8051 Keil 8.16
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define ROW_1 1 /* LCD row 1 */
#define COLUMN_0 0 /* LCD column 0 */
#define NUM_CHARACTERS 16 /* Number of characters on LCD */

/* For clearing a row of the LCD*/
#define CLEAR_ROW_STR " "
/* Button 1 only string for row 0 of the LCD */
#define BUTTON_1_STR "Button1 "
/* Button 2 only string for row 0 of the LCD */
#define BUTTON_2_STR " Button2"
/* Button 1 and 2 string for row 0 of the LCD */
#define BUTTON_1_2_STR "Button1 Button2"
/* Default string for button row of the LCD */
#define DEFAULT_ROW_0_STR "Touch Buttons "
/* Default string for slider row of the LCD */
#define DEFAULT_ROW_1_STR "Touch The Slider"

/* LED specific */
#define LED_ON 1 /* For setting LED pin high */
#define LED_OFF 0 /* For setting LED pin low */

/* CapSense specific */
#define SLIDER_RESOLUTION 80

//extern const uint8 LCD_Char_1_customFonts[];

void UpdateButtonState(uint8 slot_1, uint8 slot_2);
void UpdateSliderPosition(uint8 value);

/***
* Function Name: main
**
*
* Summary:
* The main function initializes CapSense and the LCD. Then it continuously
* scans all CapSense slots (slider slots and buttons), gets the state of the
* buttons and slider and updates the LCD with the current state.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint8 pos; /* Slider Position */
 uint8 stateB_1; /* Button1 State */
 uint8 stateB_2; /* Button2 State */

 CYGlobalIntEnable; /* Enable global interrupts */

 /* LCD Initialization */
 LCD_Char_1_Start();

 /* Start capsense and initialize baselines and enable scan */
 CapSense_Start();
 CapSense_InitializeAllBaselines();
 CapSense_ScanEnabledWidgets();

 while(1)
 {
 /* If scanning is completed update the baseline count and check if sensor is active */
 while(CapSense_IsBusy());

 /* Update baseline for all the sensors */
 CapSense_UpdateEnabledBaselines();

 CapSense_ScanEnabledWidgets();

 /* Test if button widget is active */
 stateB_1 = CapSense_CheckIsWidgetActive(CapSense_BUTTON0__BTN);
 stateB_2 = CapSense_CheckIsWidgetActive(CapSense_BUTTON1__BTN);
 pos =(uint8)CapSense_GetCentroidPos(CapSense_LINEARSLIDER0__LS);	

 /* Update LCD and LED's with current Button and Linear Slider states */
 UpdateButtonState(stateB_1, stateB_2);
 UpdateSliderPosition(pos);
 }
}

/***
* Function Name: UpdateButtonState
**
*
* Summary:
* Updates the LCD screen with the current button state by displaying which
* button is being touched on row 0. LED's are also updated according to button
* state.
*
* Parameters:
* slot_1: Button state for B1
* slot_2: Button state for B2
*
* Return:
* void
*
***/
void UpdateButtonState(uint8 slot_1, uint8 slot_2)
{
 LCD_Char_1_Position(ROW_0,COLUMN_0);

 /* Check the state of the buttons and update the LCD and LEDs */
 if (slot_1 && slot_2)
 {
 /* Display both Button strings on LCD if both button slots are active */
 LCD_Char_1_PrintString(BUTTON_1_2_STR);
 /* Both LED's are on in this state */
 LED1_Write(LED_ON);
 LED2_Write(LED_ON);
 }
 else if (slot_1 || slot_2)
 {	
 if (slot_1)
 {
 /* Display Button 1 state on LCD and LED1 */
 LCD_Char_1_PrintString(BUTTON_1_STR);
 LED1_Write(LED_ON);
 /* Button 2 is not active */
 LED2_Write(LED_OFF);
 }
 if (slot_2)
 {
 /* Display Button 2 state on LCD and LED2 */
 LCD_Char_1_PrintString(BUTTON_2_STR);
 LED2_Write(LED_ON);

 /* Button 1 is not active */
 LED1_Write(LED_OFF);
 }
 }
 else
 {
 /* Display default string on LCD and set LED's to off */
 LCD_Char_1_PrintString(DEFAULT_ROW_0_STR);

 /* Set both LED's off in this state */
 LED1_Write(LED_OFF);
 LED2_Write(LED_OFF);
 }
}

/***
* Function Name: UpdateSliderPosition
**
*
* Summary:
* Updates the LCD screen with the current slider position by displaying the
* horizontal bar graph.
*
* Parameters:
* value: Centroid position from CapSense slider.
*
* Return:
* void
*
***/
void UpdateSliderPosition(uint8 value)
{
 /* The slider position is 0xFF if there is no finger present on the slider */
 if (value > SLIDER_RESOLUTION)
 {
 /* Clear old slider position (2nd row of LCD) */
 LCD_Char_1_Position(ROW_1, COLUMN_0);
 LCD_Char_1_PrintString(DEFAULT_ROW_1_STR);
 }
 else
 {
 /* Update the bar graph with the current finger position */
 LCD_Char_1_DrawHorizontalBG(ROW_1, COLUMN_0, NUM_CHARACTERS, value +1);
 }
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 0.2
*
* Description:
* This file provides source code for My First PSoC Project example. The
* firmware blinks one LED at about every second with a PWM and another LED at
* a quicker rate with a software timing loop.
*
* Code tested with:
* PSoC Creator: 2.1 Service Pack 1
* Device Tested With: CY8C5868AXI-LP035
* Compiler : ARMGCC 4.4.1, ARM RVDS Generic, ARM MDK Generic
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

#define MS_DELAY 167u /* For delay, about 167ms */

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the PWM and starts the PWM clock which will
* blink LED1 at about once a second. Then the main loop is entered which
* delays enough for LED2 to blink at a quicker rate than LED1.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main(void)
{
 /* Initially set LED2 to off */
	uint8 ledState = 0x00;
 CY_SET_REG8(CYREG_MLOGIC_DEBUG, CY_GET_REG8(CYREG_MLOGIC_DEBUG) | 0x40);
	/* Start the clock */
 Clock_1_Enable();
	/* Enable PWM */
 PWM_1_Start();

 /* Following loop does software blinking of LED2 connected to P1.7 */
 while (1)
 {

 /* Have software loop blink control */
		CyDelay(MS_DELAY);
		/* Toggle LED2 setting between low and high */
 ledState ^= 0x01u;
		/* Set LED2 */
 LED2_Write(ledState);
 }
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 0.2
*
* Description:
* This file provides source code for the ADC to LCD example project. The
* firmware takes a voltage output from a potentiometer and displays the raw
* counts on an LCD.
*
* Code tested with:
* PSoC Creator: 2.1 Service Pack 1
* Device Tested With: CY8C5868AXI-LP035
* Compiler : ARMGCC 4.4.1, ARM RVDS Generic, ARM MDK Generic
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
#define ROW_0 0 /* LCD row 0 */
#define COLUMN_0 0 /* LCD column 0 */
#define COLUMN_9 9 /* LCD column 9 */
#define COLUMN_10 10 /* LCD column 10 */
#define COLUMN_11 11 /* LCD column 11 */
/* For clearing Tens and Hundreds place */
#define CLEAR_TENS_HUNDREDS " "
/* For clearing Hundreds place */
#define CLEAR_HUNDREDS " "

void UpdateDisplay(uint16 voltageRawCount);

/***
* Function Name: main
**
*
* Summary:
* The main function initializes both the ADC and LCD, starts and waits for an
* ADC conversion, then it displays the raw counts to the LCD.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint16 voltageRawCount;
 CY_SET_REG8(CYREG_MLOGIC_DEBUG, CY_GET_REG8(CYREG_MLOGIC_DEBUG) | 0x40);
	/* Configure and power up ADC */
 ADC_DelSig_1_Start();
	
	/* Initialize and clear the LCD */
 LCD_Char_1_Start();

	/* Move the cursor to Row 0 Column 0 */
 LCD_Char_1_Position(ROW_0,COLUMN_0);

 /* Print Label for the pot voltage raw count */
 LCD_Char_1_PrintString("V Count: ");

 /* Force ADC to initiate a conversion */
	ADC_DelSig_1_StartConvert();

 while(1)
 {
 /* Wait for end of conversion */
 ADC_DelSig_1_IsEndConversion(ADC_DelSig_1_WAIT_FOR_RESULT);
		
		/* Get converted result */
 voltageRawCount = ADC_DelSig_1_GetResult16();

 /* Set range limit */
 if (voltageRawCount > 0x7FFF)
 {
 voltageRawCount = 0;
 }
 else
 {
 /* Continue on */
 }
 /* Print result on LCD */
 UpdateDisplay(voltageRawCount);
 }
}

/***
* Function Name: UpdateDisplay
**
*
* Summary:
* Print voltage raw count result to the LCD. Clears some characters if
* necessary.
*
* Parameters:
* voltageRawCount: The voltage raw counts being received from the ADC
*
* Return:
* void
*
***/
void UpdateDisplay (uint16 voltageRawCount)
{
 /* Move the cursor to Row 0, Column 9 */
 LCD_Char_1_Position(ROW_0,COLUMN_9);
	
	/* Print the result */
 LCD_Char_1_PrintNumber(voltageRawCount);

 if (voltageRawCount < 10)
 {
 /* Move the cursor to Row 0, Column 10 */
 LCD_Char_1_Position(ROW_0,COLUMN_10);
		
		/* Clear last characters */
 LCD_Char_1_PrintString(CLEAR_TENS_HUNDREDS);
 }
 else if (voltageRawCount < 100)
 {
 /* Move the cursor to Row 0, Column 11 */
 LCD_Char_1_Position(ROW_0,COLUMN_11);
		
		/* Clear last characters */
 LCD_Char_1_PrintString(CLEAR_HUNDREDS);
 }
 else
 {
 /* Continue on */
 }
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 0.2
*
* Description:
* This file provides source code for the ADC to LCD with DAC and UART example
* project. The firmware takes a voltage output from a potentiometer and
* displays the ADC raw count on an LCD. The raw count is also transmitted
* serially. The raw count also determines the clock divider value of the clock
* driving the DMA controller. A table of voltage values are sent to the DAC
* via DMA. Then the output of the DAC goes through an analog buffer and to an
* LED. This will give a dimming/brightening affect on the LED at a really slow
* rate or a really fast rate depending on the raw count coming from the ADC.
*
* Code tested with:
* PSoC Creator: 2.1 Service Pack 1
* Device Tested With: CY8C5868AXI-LP035
* Compiler : ARMGCC 4.4.1, ARM RVDS Generic, ARM MDK Generic
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
/* LCD row 0 */
#define ROW_0 0
/* LCD column 0 */
#define COLUMN_0 0
/* LCD column 9 */
#define COLUMN_9 9
/* LCD column 10 */
#define COLUMN_10 10
/* LCD column 11 */
#define COLUMN_11 11
/* For clearing Tens and Hundreds place */
#define CLEAR_TENS_HUNDREDS " "
/* For clearing Hundreds place */
#define CLEAR_HUNDREDS " "

/* DMA specific */
/* One request per burst */
#define REQUEST_PER_BURST 1
/* Bursts are one byte each */
#define BURST_BYTE_COUNT 1
/* Upper 16-bits of the source address are zero */
#define SOURCE_ADDRESS 0
/* Upper 16-bits of the destination address are zero */
#define DESTINATION_ADDRESS 0

void UpdateDisplay(uint16 * voltageRawCount);
void TxHex (uint16 voltageRawCount);

uint8 myChannel;
/* Table of voltage values for DMA to send to the DAC. These values range
 * between 0x3D and 0x9F because these are the two points where the LED
 * is not visible and where the LED is saturated */
const uint8 voltageWave[] =
{
 	0x6D, 0x6F, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7B, 0x7D, 0x7F, 0x81, 0x83, 0x85,
	0x87, 0x89, 0x8B, 0x8D, 0x8F, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9B, 0x9C, 0x9D, 0x9D, 0x9E,
	0x9E, 0x9F, 0x9F, 0x9F, 0x9E, 0x9E, 0x9E, 0x9C, 0x9C, 0x9B, 0x99, 0x97, 0x95, 0x93, 0x91,
	0x8F, 0x8D, 0x8B, 0x89, 0x87, 0x85, 0x83, 0x81, 0x7F, 0x7D, 0x7B, 0x79, 0x77,
	0x75, 0x73, 0x71, 0x6F, 0x6D, 0x6B, 0x69, 0x67, 0x65, 0x63, 0x61, 0x5F, 0x5D,
	0x5B, 0x59, 0x57, 0x55, 0x53, 0x51, 0x4F, 0x4D, 0x4B, 0x49, 0x47, 0x45, 0x43,
	0x41, 0x40, 0x40, 0x3F, 0x3F, 0x3D, 0x3D, 0x3D, 0x3D, 0x3D, 0x3D, 0x3F, 0x41,
	0x43, 0x45, 0x47, 0x49, 0x4B, 0x4D, 0x4F, 0x51,
	0x53, 0x55, 0x57, 0x59, 0x5B, 0x5D, 0x5F, 0x61, 0x63, 0x65, 0x67, 0x69, 0x6B
};

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the ADC, LCD, VDAC, Analog Buffer, and UART.
* It also initializes DMA by allocating/configuring a DMA channel and
* Transaction Descriptor and also copies the voltage table address to the DAC
* address. In the main loop, it starts and waits for an ADC conversion, then
* it displays the ADC raw count to the LCD, transmits the raw count serially,
* and sets the DMA clock divider proportional to the raw count.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint16 voltageRawCount;
 uint8 myTd;
 CY_SET_REG8(CYREG_MLOGIC_DEBUG, CY_GET_REG8(CYREG_MLOGIC_DEBUG) | 0x40);
	
	/* Configure and power up ADC */
 ADC_DelSig_1_Start();
	
	/* Initialize and clear the LCD */
 LCD_Char_1_Start();
	
	/* Initializes VDAC8 with default values */
 VDAC8_1_Start();
	
	/* Enables Opamp and sets power level */
 Opamp_1_Start();
	
	/* Enable UART */
 UART_1_Start();
	
	/* Set DMA configuration register */
 CyDmacConfigure();

 /* Allocate and initialize a DMA channel to be used by the caller */
	myChannel = DMA_1_DmaInitialize(BURST_BYTE_COUNT,
 REQUEST_PER_BURST,
 (uint16)((uint32)voltageWave >> 16),
 (uint16)(VDAC8_1_viDAC8__D >> 16));
	

 /* Allocate a Transaction Descriptor (TD) from the free list */
 myTd = CyDmaTdAllocate();

 /* Move the LCD cursor to Row 0, Column 0 */
 LCD_Char_1_Position(ROW_0, COLUMN_0);

 /* Print Label for the pot voltage raw count */
 LCD_Char_1_PrintString("V Count: ");

	/* Configure the TD */
 CyDmaTdSetConfiguration(myTd, sizeof(voltageWave),
 myTd, TD_INC_SRC_ADR);
	
	CyDmaTdSetAddress(myTd,
 (uint16)((uint32)voltageWave),
 (uint16)VDAC8_1_viDAC8__D);

 /* Associate TD with channel */
 CyDmaChSetInitialTd(myChannel, myTd);

 /* Enable DMA channel */
 CyDmaChEnable(myChannel, 1);

 /* Clock will make burst requests to the DMAC */
 Clock_1_Start();

 ADC_DelSig_1_StartConvert(); /* Force ADC to initiate a conversion */

 while(1)
 {
 /* Wait for end of conversion */
 ADC_DelSig_1_IsEndConversion(ADC_DelSig_1_WAIT_FOR_RESULT);
		/* Get converted result */
 voltageRawCount = ADC_DelSig_1_GetResult16();

 /* Set range limit */
 if (voltageRawCount > 0x7FFF)
 {
 voltageRawCount = 0;
 }
 else
 {
 /* Continue on */
 }
 /* Print the result to LCD */
 UpdateDisplay(&voltageRawCount);

 /* Transmit result to UART */
		TxHex(voltageRawCount);

 /*
 * The LED blinking frequency is dependent on the Voltage raw count.
 * With a 3MHz clock, the lowest divider (for raw count of 0) should be
 * 1000 to blink at a significantly fast pace. The highest value is
 * about 52,200 (for a raw count of 256) to blink at a significantly
 * slow pace. The following equation is necessary to make the adjusted
 * clock frequency (with the updated divider) linear with the ADC
 * output.
 */
 Clock_1_Stop();
 Clock_1_SetDivider((((uint32)voltageRawCount * 1000) /
 (261 - (uint32)voltageRawCount)) + 1000);
 Clock_1_Start();
		CyDelay(250);
 }
}

/***
* Function Name: UpdateDisplay
**
*
* Summary:
* Print voltage raw count result to the LCD. Clears some characters if
* necessary. The voltageRawCount parameter is also updated for use in other
* functions.
*
* Parameters:
* voltageRawCount: Voltage raw count from ADC
*
* Return:
* void
*
***/
void UpdateDisplay (uint16 * voltageRawCount)
{
 /* Move the cursor to Row 0, Column 9 */
 LCD_Char_1_Position(ROW_0, COLUMN_9);

	/* Print the result */
	LCD_Char_1_PrintNumber(voltageRawCount[0]);

 if (voltageRawCount[0] < 10)
 {
 /* Move the cursor to Row 0, Column 10 */
 LCD_Char_1_Position(ROW_0,COLUMN_10);
 /* Clear last characters */
		LCD_Char_1_PrintString(CLEAR_TENS_HUNDREDS);
 }
 else if (voltageRawCount[0] < 100)
 {
 /* Move the cursor to Row 0, Column 11 */
 LCD_Char_1_Position(ROW_0,COLUMN_11);
 /* Clear last characters */
		LCD_Char_1_PrintString(CLEAR_HUNDREDS);
 }
 else
 {
 /* Continue on */
 }
}

/***
* Function Name: TxHex
**
*
* Summary:
* Convert voltage raw count to hex value and TX via UART.
*
* Parameters:
* voltageRawCount: The voltage raw counts being received from the ADC
*
* Return:
* void
*
***/
void TxHex (uint16 voltageRawCount)
{
 static char8 const hex[16] = "0123456789ABCDEF";

 /* TX converted MSnibble */
 UART_1_PutChar(hex[(voltageRawCount>>12)&0xF]);
 /* TX converted second nibble */
 UART_1_PutChar(hex[(voltageRawCount>>8)&0xF]);
 /* TX converted third nibble */
 UART_1_PutChar(hex[(voltageRawCount>>4)&0xF]);
 /* TX converted LSnibble */
 UART_1_PutChar(hex[voltageRawCount&0xF]);
 /* h for hexadecimal and carriage return */
	UART_1_PutString((uint8*)"h\r");
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 0.2
*
* Description:
* This file provides source code for the USB HID example project. When the
* button (SW) is pressed, the firmware sends the keyboard scan codes necessary
* to load the Cypress Website.
*
* Code tested with:
* PSoC Creator: 2.1 Service Pack 1
* Device Tested With: CY8C5868AXI-LP035
* Compiler : ARMGCC 4.4.1, ARM RVDS Generic, ARM MDK Generic
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include "device.h"

/* Keyboard scan codes */
/* This is the left windows key */
#define WINDOWS_LEFT_MODIFIER 0x80u
#define LETTER_R 0x15u
#define CARRIAGE_RETURN 0x28u
#define KEY_RELEASE 0x00u

/* For button setup */
#define SET_BUTTON 0x01u

/* USB related */
#define KEYBOARD_ENDPOINT 0x01u
#define KEYBOARD_DEVICE 0x00u
#define KEYBOARD_DATA_SIZE 0x08u
#define KEY_DATA_INDEX 0x02u
#define MODIFIER_KEY_DATA_INDEX 0x00u

/* MACRO for button detection */
#define IS_BUTTON_PRESSED (!Button_Read())

#define BUTTON_PRESSED 1
#define BUTTON_RELEASED 0

static uint8 ButtonEventDetected(void);
static void SendKey(uint8 key);
/* Open Windows Run App */
static void StartWindowsRun(void);
static void GetAckLoadEp(uint8 * keyboardData);

/***
* Function Name: main
**
*
* Summary:
* The main function starts out enabling global interrupts, setting up the
* button (SW1), then initializing USB for 5V operation. Then allows the HID
* device to enumerate, and loads the keyboard enpoint to allow an ack to be
* sent before sending the first keyboard data. Then it continuously checks for
* USB plug-and-play and a button press to see if the keyboard data needs sent.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 /* Set initial LED state to off */
	uint8 ledState = 0;
	uint8 i;

 /* Data array for the keyboard device endpoint */
 uint8 keyboardData[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

	/* Keyboard scan codes for the cypress website ("www.cypress.com<cr>") */
 uint8 cypressWebsiteCharSequence[] = { 0x1A, 0x1A, 0x1A, 0x37, 0x06, 0x1C,
 0x13, 0x15, 0x08, 0x16, 0x16, 0x37,
										 0x06, 0x12, 0x10, 0x28 };
 CY_SET_REG8(CYREG_MLOGIC_DEBUG, CY_GET_REG8(CYREG_MLOGIC_DEBUG) | 0x40);
 /* Enable global interrupts */
	CYGlobalIntEnable;

 /* Set port pin for button (SW1) */
	Button_Write(SET_BUTTON);
	
	/* Start USBFS operation using keyboard device (0) and with 5V operation */
 USBFS_1_Start(KEYBOARD_DEVICE, USBFS_1_5V_OPERATION);

 /* Wait for Device to enumerate */
	while(!USBFS_1_bGetConfiguration());

 /* Enumeration is completed load keyboard endpoint to set up ACK for first
 key */
 USBFS_1_LoadInEP(KEYBOARD_ENDPOINT, keyboardData, KEYBOARD_DATA_SIZE);

 while (1)
 {
 if (ButtonEventDetected())
 {
 /* Set/clear (toggle) the LED port pin */
			ledState ^= 0x01u;
			
			/* Toggle LED */
 LED_Write(ledState);

			/* Open Windows Run App */
			StartWindowsRun();

			/* Send the cypress website key sequence */
			for (i = 0; i < sizeof(cypressWebsiteCharSequence); i++)
			{
	 SendKey(cypressWebsiteCharSequence[i]);
			}
 }
 else
 {
 /* Continue on */
 }
 }
}

/***
* Function Name: ButtonEventDetected
**
*
* Summary:
* Check to see if the button is pressed.
*
* Parameters:
* void
*
* Return:
* TRUE: button pressed
* FALSE: button not pressed
*
***/
static uint8 ButtonEventDetected(void)
{
 if(!IS_BUTTON_PRESSED)
 {
 return BUTTON_RELEASED;
 }
 else
 {
 /* Continue on */
 }
 /* Debounce mechanical switch for ~50msec */
 CyDelay(50);

 if(IS_BUTTON_PRESSED)
 {
 /* Wait for the button to be released */
 while(IS_BUTTON_PRESSED);
 return BUTTON_PRESSED;
 }
 else
 {
 /* Continue on */
 }

 return BUTTON_RELEASED;
}

/***
* Function Name: SendKey
**
*
* Summary:
* Sends keyboard key.
*
* Parameters:
* key: Keyboard scan code.
*
* Return:
* void
*
***/
static void SendKey(uint8 key)
{
 /* Data array for the keyboard device endpoint */
 uint8 keyboardData[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
	
	/* Send key-down data, make */
 keyboardData[KEY_DATA_INDEX] = key;
	/* Send USB keyboard data */
	GetAckLoadEp(keyboardData);

	/* Send key-up data, break */
	keyboardData[KEY_DATA_INDEX] = KEY_RELEASE;

	/* Send USB keyboard data */
	GetAckLoadEp(keyboardData);
}

/***
* Function Name: StartWindowsRun
**
*
* Summary:
* Sends the Windows Run command by sending Windows Modifier and 'r' (while
* the Windows modifier key is in a down state) and then releasing both keys.
*
* Parameters:
* void
*
* Return:
* void
*
***/
static void StartWindowsRun(void)
{
 /* Data array for the keyboard device endpoint */
 uint8 keyboardData[] = { 0, 0, 0, 0, 0, 0, 0, 0 };

 /* Send Windows modifier key-down data, modifier make */
 keyboardData[MODIFIER_KEY_DATA_INDEX] = WINDOWS_LEFT_MODIFIER;
	/* Send USB keyboard data */
	GetAckLoadEp(keyboardData);
	
	/* While Windows modifier key is down send r key, r make */
 keyboardData[KEY_DATA_INDEX] = LETTER_R;
	/* Send USB keyboard data */
	GetAckLoadEp(keyboardData);
	
	/* Send up keys for both Windows modifier key and r key */
	/* r break */
 keyboardData[KEY_DATA_INDEX] = KEY_RELEASE;
	/* Windows modifier break */
 keyboardData[MODIFIER_KEY_DATA_INDEX] = KEY_RELEASE;
	/* Send USB keyboard data */
 GetAckLoadEp(keyboardData);
	/* Delay about 0.5 seconds to allow Run window to pop-up */
	CyDelay(500);
}

/***
* Function Name: GetAckLoadEp
**
*
* Summary:
* It first confirms that an Acknowledge transaction occurred on the keyboard
* endpoint. Once the ACK is confirmed, the endpoint is enabled and loaded.
*
* Parameters:
* keyboardData: Data array for the keyboard device endpoint
*
* Return:
* void
*
***/
static void GetAckLoadEp(uint8 * keyboardData)
{
	/* Wait for ACK before loading data */
 while(!USBFS_1_bGetEPAckState(KEYBOARD_ENDPOINT));
 /* ACK has occurred, load the endpoint */
 USBFS_1_LoadInEP(KEYBOARD_ENDPOINT, keyboardData, KEYBOARD_DATA_SIZE);
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 0.2
*
* Description:
* This file provides source code for the CapSense example project. The firmware
* displays the CapSense button presses on the LCD (row 1) and associated LEDs.
* It also displays the CapSense slider position on the LCD (row 2).
*
* Code tested with:
* PSoC Creator: 2.1 Service Pack 1
* Device Tested With: CY8C5868AXI-LP035
* Compiler : ARMGCC 4.4.1, ARM RVDS Generic, ARM MDK Generic
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
/* LCD row 0 */
#define ROW_0 0
/* LCD row 1 */
#define ROW_1 1
/* LCD column 0 */
#define COLUMN_0 0
/* Number of characters on LCD */
#define NUM_CHARACTERS 16

/* For clearing a row of the LCD*/
#define CLEAR_ROW_STR " "
/* Button 1 only string for row 0 of the LCD */
#define BUTTON_1_STR "Button1 "
/* Button 2 only string for row 0 of the LCD */
#define BUTTON_2_STR " Button2"
/* Button 1 and 2 string for row 0 of the LCD */
#define BUTTON_1_2_STR "Button1 Button2"
/* Default string for button row of the LCD */
#define DEFAULT_ROW_0_STR "Touch Buttons "
/* Default string for slider row of the LCD */
#define DEFAULT_ROW_1_STR "Touch The Slider"

/* LED specific */
/* For setting LED pin high */
#define LED_ON 1
/* For setting LED pin low */
#define LED_OFF 0

/* CapSense specific */
#define SLIDER_RESOLUTION 80

void UpdateButtonState(uint8 slot_1, uint8 slot_2);
void UpdateSliderPosition(uint8 value);

/***
* Function Name: main
**
*
* Summary:
* The main function initializes CapSense and the LCD. Then it continuously
* scans all CapSense slots (slider slots and buttons), gets the state of the
* buttons and slider and updates the LCD with the current state.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
	/* Slider Position */
	uint8 pos;
	
	/* Button1 State */
	uint8 stateB_1;
	
	/* Button2 State */
	uint8 stateB_2;
	
	CY_SET_REG8(CYREG_MLOGIC_DEBUG, CY_GET_REG8(CYREG_MLOGIC_DEBUG) | 0x40);
 /* Enable global interrupts */
	CYGlobalIntEnable;
	
	/* LCD Initialization */
	LCD_Char_1_Start();
	
 /* Start capsense and initialize baselines and enable scan */
 CapSense_Start();
 CapSense_InitializeAllBaselines();
 CapSense_ScanEnabledWidgets();
	
	while(1)
	{
 /* If scanning is completed update the baseline count and check if sensor is active */
 while(CapSense_IsBusy());

 /* Update baseline for all the sensors */
 CapSense_UpdateEnabledBaselines();

 CapSense_ScanEnabledWidgets();

 /* Test if button widget is active */
 stateB_1 = CapSense_CheckIsWidgetActive(CapSense_BUTTON0__BTN);
 stateB_2 = CapSense_CheckIsWidgetActive(CapSense_BUTTON1__BTN);
 pos =(uint8)CapSense_GetCentroidPos(CapSense_LINEARSLIDER0__LS);	
		
		/* Update LCD and LED's with current Button and Linear Slider states */
 UpdateButtonState(stateB_1, stateB_2);
		UpdateSliderPosition(pos);
	}
}

/***
* Function Name: UpdateButtonState
**
*
* Summary:
* Updates the LCD screen with the current button state by displaying which
* button is being touched on row 0. LED's are also updated according to button
* state.
*
* Parameters:
* slot_1: Button state for B1
* slot_2: Button state for B2
*
* Return:
* void
*
***/
void UpdateButtonState(uint8 slot_1, uint8 slot_2)
{
	LCD_Char_1_Position(ROW_0,COLUMN_0);

	/* Check the state of the buttons and update the LCD and LEDs */
	if (slot_1 && slot_2)
	{
		/* Display both Button strings on LCD if both button slots are active */
		LCD_Char_1_PrintString(BUTTON_1_2_STR);
		/* Both LED's are on in this state */
		LED1_Write(LED_ON);
		LED2_Write(LED_ON);
	}
	else if (slot_1 || slot_2)
	{	
		if (slot_1)
		{
			/* Display Button 1 state on LCD and LED1 */
			LCD_Char_1_PrintString(BUTTON_1_STR);
			LED1_Write(LED_ON);
			/* Button 2 is not active */
			LED2_Write(LED_OFF);
		}
		if (slot_2)
		{
			/* Display Button 2 state on LCD and LED2 */
			LCD_Char_1_PrintString(BUTTON_2_STR);
			LED2_Write(LED_ON);
			
			/* Button 1 is not active */
			LED1_Write(LED_OFF);
		}
	}
	else
	{
		/* Display default string on LCD and set LED's to off */
		LCD_Char_1_PrintString(DEFAULT_ROW_0_STR);
		
		/* Set both LED's off in this state */
		LED1_Write(LED_OFF);
		LED2_Write(LED_OFF);
	}
}

/***
* Function Name: UpdateSliderPosition
**
*
* Summary:
* Updates the LCD screen with the current slider position by displaying the
* horizontal bar graph.
*
* Parameters:
* value: Centroid position from CapSense slider.
*
* Return:
* void
*
***/
void UpdateSliderPosition(uint8 value)
{
	/* The slider position is 0xFF if there is no finger present on the slider */
	if (value > SLIDER_RESOLUTION)
	{
		/* Clear old slider position (2nd row of LCD) */
		LCD_Char_1_Position(ROW_1, COLUMN_0);
 	LCD_Char_1_PrintString(DEFAULT_ROW_1_STR);
	}
	else
	{
		/* Update the bar graph with the current finger position */
		LCD_Char_1_DrawHorizontalBG(ROW_1, COLUMN_0, NUM_CHARACTERS, value +1);
	}
}

/* [] END OF FILE */

/***
* File Name: main.c
*
* Version: 0.2
*
* Description:
* This file provides source code for the SAR to LCD with DAC and UART example
* project. The firmware takes a voltage output from a potentiometer and
* displays the ADC raw count on an LCD. The raw count is also transmitted
* serially. The raw count also determines the clock divider value of the clock
* driving the DMA controller. A table of voltage values are sent to the DAC
* via DMA. Then the output of the DAC goes through an analog buffer and to an
* LED. This will give a dimming/brightening affect on the LED at a really slow
* rate or a really fast rate depending on the raw count coming from the ADC.
*
* Code tested with:
* PSoC Creator: 2.1 Service Pack 1
* Device Tested With: CY8C5868AXI-LP035
* Compiler : ARMGCC 4.4.1, ARM RVDS Generic, ARM MDK Generic
**
* Copyright (2012), Cypress Semiconductor Corporation.
**
* This software is owned by Cypress Semiconductor Corporation (Cypress)
* and is protected by and subject to worldwide patent protection (United
* States and foreign), United States copyright laws and international treaty
* provisions. Cypress hereby grants to licensee a personal, non-exclusive,
* non-transferable license to copy, use, modify, create derivative works of,
* and compile the Cypress Source Code and derivative works for the sole
* purpose of creating custom software in support of licensee product to be
* used only in conjunction with a Cypress integrated circuit as specified in
* the applicable agreement. Any reproduction, modification, translation,
* compilation, or representation of this software except as specified above
* is prohibited without the express written permission of Cypress.
*
* Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
* REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* Cypress reserves the right to make changes without further notice to the
* materials described herein. Cypress does not assume any liability arising out
* of the application or use of any product or circuit described herein. Cypress
* does not authorize its products for use as critical components in life-support
* systems where a malfunction or failure may reasonably be expected to result in
* significant injury to the user. The inclusion of Cypress' product in a life-
* support systems application implies that the manufacturer assumes all risk of
* such use and in doing so indemnifies Cypress against all charges. Use may be
* limited by and subject to the applicable Cypress software license agreement.
***/

#include <device.h>

/* LCD specific */
/* LCD row 0 */
#define ROW_0 0
/* LCD column 0 */
#define COLUMN_0 0
/* LCD column 9 */
#define COLUMN_9 9
/* LCD column 10 */
#define COLUMN_10 10
/* LCD column 11 */
#define COLUMN_11 11
/* For clearing Tens and Hundreds place */
#define CLEAR_TENS_HUNDREDS " "
/* For clearing Hundreds place */
#define CLEAR_HUNDREDS " "

/* DMA specific */
/* One request per burst */
#define REQUEST_PER_BURST 1
/* Bursts are one byte each */
#define BURST_BYTE_COUNT 1
/* Upper 16-bits of the source address are zero */
#define SOURCE_ADDRESS 0
/* Upper 16-bits of the destination address are zero */
#define DESTINATION_ADDRESS 0

void UpdateDisplay(uint16 * voltageRawCount);
void TxHex (uint16 voltageRawCount);

/* Table of voltage values for DMA to send to the DAC. These values range
 * between 0x3D and 0x9F because these are the two points where the LED
 * is not visible and where the LED is saturated */
const uint8 voltageWave[] =
{
 	0x6D, 0x6F, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7B, 0x7D, 0x7F, 0x81, 0x83, 0x85,
	0x87, 0x89, 0x8B, 0x8D, 0x8F, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9B, 0x9C, 0x9D, 0x9D, 0x9E,
	0x9E, 0x9F, 0x9F, 0x9F, 0x9E, 0x9E, 0x9E, 0x9C, 0x9C, 0x9B, 0x99, 0x97, 0x95, 0x93, 0x91,
	0x8F, 0x8D, 0x8B, 0x89, 0x87, 0x85, 0x83, 0x81, 0x7F, 0x7D, 0x7B, 0x79, 0x77,
	0x75, 0x73, 0x71, 0x6F, 0x6D, 0x6B, 0x69, 0x67, 0x65, 0x63, 0x61, 0x5F, 0x5D,
	0x5B, 0x59, 0x57, 0x55, 0x53, 0x51, 0x4F, 0x4D, 0x4B, 0x49, 0x47, 0x45, 0x43,
	0x41, 0x40, 0x40, 0x3F, 0x3F, 0x3D, 0x3D, 0x3D, 0x3D, 0x3D, 0x3D, 0x3F, 0x41,
	0x43, 0x45, 0x47, 0x49, 0x4B, 0x4D, 0x4F, 0x51,
	0x53, 0x55, 0x57, 0x59, 0x5B, 0x5D, 0x5F, 0x61, 0x63, 0x65, 0x67, 0x69, 0x6B
};

/***
* Function Name: main
**
*
* Summary:
* The main function initializes the ADC, LCD, VDAC, Analog Buffer, and UART.
* It also initializes DMA by allocating/configuring a DMA channel and
* Transaction Descriptor and also copies the voltage table address to the DAC
* address. In the main loop, it starts and waits for an ADC conversion, then
* it displays the ADC raw count to the LCD, transmits the raw count serially,
* and sets the DMA clock divider proportional to the raw count.
*
* Parameters:
* void
*
* Return:
* void
*
***/
void main()
{
 uint16 voltageRawCount;
 uint8 myChannel;
 uint8 myTd;

	/* Configure and power up ADC */
 ADC_SAR_1_Start();
	
	/* Initialize and clear the LCD */
 LCD_Char_1_Start();
	
	/* Initializes VDAC8 with default values */
 VDAC8_1_Start();
	
	/* Enables Opamp and sets power level */
 Opamp_1_Start();
	
	/* Enable UART */
 UART_1_Start();
	
	/* Set DMA configuration register */
 CyDmacConfigure();

 /* Allocate and initialize a DMA channel to be used by the caller */
 myChannel = DMA_1_DmaInitialize(BURST_BYTE_COUNT,
 REQUEST_PER_BURST,
 (uint16)((uint32)voltageWave >> 16),
 (uint16)(VDAC8_1_viDAC8__D >> 16));

 /* Allocate a Transaction Descriptor (TD) from the free list */
 myTd = CyDmaTdAllocate();

 /* Move the LCD cursor to Row 0, Column 0 */
 LCD_Char_1_Position(ROW_0, COLUMN_0);

 /* Print Label for the pot voltage raw count */
 LCD_Char_1_PrintString("V Count: ");

 CyDmaTdSetConfiguration(myTd, sizeof(voltageWave),
 myTd, TD_INC_SRC_ADR); /* Configure the TD */

 /* Copy address of voltageWave to address of DAC. Set the lower 16-bits of
 * the source and destination addresses for this TD */
 CyDmaTdSetAddress(myTd,
 (uint16)((uint32)voltageWave),
 (uint16)VDAC8_1_viDAC8__D);

 /* Associate TD with channel */
 CyDmaChSetInitialTd(myChannel, myTd);

 /* Enable DMA channel */
 CyDmaChEnable(myChannel, 1);

 /* Clock will make burst requests to the DMAC */
 Clock_1_Start();

 ADC_SAR_1_StartConvert(); /* Force ADC to initiate a conversion */

 while(1)
 {
 /* Wait for end of conversion */
 ADC_SAR_1_IsEndConversion(ADC_SAR_1_WAIT_FOR_RESULT);

 /* Get converted result */
 /* Shifting for silicon errata workaround to get 8-bit value */
 voltageRawCount = (ADC_SAR_1_GetResult16()>>4);
		
		/* Print the result to LCD */
 UpdateDisplay(&voltageRawCount);

 /* Transmit result to UART */
		TxHex(voltageRawCount);

 /*
 * The LED blinking frequency is dependent on the Voltage raw count.
 * With a 3MHz clock, the lowest divider (for raw count of 0) should be
 * 1000 to blink at a significantly fast pace. The highest value is
 * about 52,200 (for a raw count of 256) to blink at a significantly
 * slow pace. The following equation is necessary to make the adjusted
 * clock frequency (with the updated divider) linear with the ADC
 * output.
 */
 Clock_1_Stop();
 Clock_1_SetDivider((((uint32)voltageRawCount * 1000) /
 (261 - (uint32)voltageRawCount)) + 1000);
 Clock_1_Start();
		 CyDelay(250);
 }
}

/***
* Function Name: UpdateDisplay
**
*
* Summary:
* Print voltage raw count result to the LCD. Clears some characters if
* necessary. The voltageRawCount parameter is also updated for use in other
* functions.
*
* Parameters:
* voltageRawCount: Voltage raw count from ADC
*
* Return:
* void
*
***/
void UpdateDisplay (uint16 * voltageRawCount)
{
 /* Move the cursor to Row 0, Column 9 */
 LCD_Char_1_Position(ROW_0, COLUMN_9);
	/* Print the result */
 LCD_Char_1_PrintNumber(voltageRawCount[0]);

 if (voltageRawCount[0] < 10)
 {
 /* Move the cursor to Row 0, Column 10 */
 LCD_Char_1_Position(ROW_0,COLUMN_10);
		/* Clear last characters */
 LCD_Char_1_PrintString(CLEAR_TENS_HUNDREDS);
 }
 else if (voltageRawCount[0] < 100)
 {
 /* Move the cursor to Row 0, Column 11 */
 LCD_Char_1_Position(ROW_0,COLUMN_11);
		/* Clear last characters */
 LCD_Char_1_PrintString(CLEAR_HUNDREDS);
 }
 else
 {
 /* Continue on */
 }
}

/***
* Function Name: TxHex
**
*
* Summary:
* Convert voltage raw count to hex value and TX via UART.
*
* Parameters:
* voltageRawCount: The voltage raw counts being received from the ADC
*
* Return:
* void
*
***/
void TxHex (uint16 voltageRawCount)
{
 static char8 const hex[16] = "0123456789ABCDEF";

 /* TX converted MSnibble */
 UART_1_PutChar(hex[(voltageRawCount>>12)&0xF]);
 /* TX converted second nibble */
 UART_1_PutChar(hex[(voltageRawCount>>8)&0xF]);
 /* TX converted third nibble */
 UART_1_PutChar(hex[(voltageRawCount>>4)&0xF]);
 /* TX converted LSnibble */
 UART_1_PutChar(hex[voltageRawCount&0xF]);
	/* h for hexadecimal and carriage return */
 UART_1_PutString((uint8*)"h\r");
}

/* [] END OF FILE */

