Click here to ask about the production status of specific part numbers.

MAX16160

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

General Description

The MAX16160 precision, four-channel supervisory circuit is designed to maintain system integrity in multi-supply systems. The device monitors its own power supply voltage in addition to three other system supply voltages and asserts the reset output whenever any supply voltage falls below its reset threshold. After all of the supply voltages rise above their reset thresholds, the reset output remains asserted for the reset timeout period, and then deasserts.

During power-up, and before all of the input voltages exceed their trip thresholds, the reset output asserts low if any of the monitored inputs is greater than 1V. The opendrain output has a weak $18\mu A$ (typ) pullup to IN2/V_{CC}, eliminating the need for external pullup resistors.

The MAX16160 offers a wide range of threshold options. Input thresholds may be fixed or adjustable. Fixed reset voltage thresholds for IN1, IN3, IN4 are available from 0.5V to 5V in approximately 20mV increments. Reset voltage thresholds for IN2/V_{CC} are available from 1.76V to 5V in approximately 20mV increments.

The MAX16160 operates over the -40°C to +125°C temperature and is available in a small, 6-bump WLP and 6-pin SOT23 package.

Applications

- Telecommunications
- High-End Printers
- Desktop and Notebook Computers
- Data Storage Equipment
- Networking Equipment
- Industrial Equipment
- Set-Top Boxes
- Servers/Workstations

Benefits and Features

- Valid RESET Logic State for Any Input Above 1V
- ±1% Accuracy for All Inputs
- Low 17µA Supply Current
- Open-Drain RESET Output with 18µA Internal Pullup
- Immune to Short Monitored Supply Transients
- Internally Fixed/Adjustable Threshold Options
- -40°C to +125°C Operating Temperature Range
- Small, 6-Pin SOT23 Package and 6-Bump WLP

Ordering Information appears at end of data sheet.

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Typical Operating Circuit

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Absolute Maximum Ratings

IN1, IN2/V _{CC} , IN3, IN4 RESET, to GND	0.3V to +6V
Continuous RESET Current	20mA
Continuous Power Dissipation (T _A = +70°C)	
SOT23, derate 8.7mW/°C above +70°C)	696mW
WLP, derate 10.51mW/°C above +70°C)	840mW

Operating Temperature Range	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10 seconds)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

6 SOT23

Package Code	U6+1C		
Outline Number	<u>21-0058</u>		
Land Pattern Number	<u>90-0175</u>		
Thermal Resistance, Four-Layer Board:			
Junction to Ambient (θ_{JA})	115°C/W		
Junction to Case (θ_{JC})	80°C/W		

6 WLP

Package Code	N60L1+1		
Outline Number	<u>21-100366</u>		
Land Pattern Number			
Thermal Resistance, Four-Layer Board:			
Junction to Ambient (θ_{JA})	95.15°C/W		

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Electrical Characteristics

(IN2/V_{CC} = 1.7V to 5.5V, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Operating Voltage Range	IN2/V _{CC}		1.7		5.5	
	IN_	Reset output is guaranteed to be at known state	1			V
Supply Current	ICC	RESET not asserted	5	17	37	μA
IN Input Current	la c	IN1, IN3, IN4, fixed threshold inputs			2.3	
	N	IN1, IN3, IN4, adjustable threshold inputs			0.3	μΑ
Fixed Threshold Voltage Accuracy	V _{TH_ACC}	$V_{IN1}, V_{IN2}\!/\!V_{CC}, V_{IN3}, V_{IN4}$ falling	-1		+1	%
Adjustable Input Threshold	V _{TH} _	Adjustable thresholds options only. $V_{IN2}/V_{CC} > V_{TH2}$	0.6138	0.620	0.6262	V
IN1, IN3, IN4 Threshold Range		$V_{IN2}/V_{CC} \ge 1.7V$, fixed threshold options only (<u>Note 1</u>)	0.52		5	V
Threshold Voltage Hysteresis	V _{HYS}	MAX16160A		0.25		%
IN2/V _{CC} Threshold Range			1.76		5	V
		V _{IN2} /V _{CC} = 2.5V, I _{SINK} = 1.2mA,			0.4	v
Reset Output Voltage	V _{OL}	$V_{IN2}/V_{CC} = 5V, I_{SINK} = 2mA$			0.3	
		V _{IN} _ = 1V, I _{SINK} = 50µA			0.3	
Reset Output Voltage High	V _{OH}	V _{IN2} /V _{CC} ≥ 2V, I _{SOURCE} = 6µA, RESET deasserted	0.8 x V _{IN2} /V _{CC}			V
Reset Threshold Temperature Coefficient	TCV _{TH}			60		ppm/°C
Reset Timeout Period Accuracy	tRP_ACC	V _{IN2} /V _{CC} > V _{TH2}	-40		+30	%
Input to Reset Delay	t _{RD}	$V_{IN2}/V_{CC}, V_{IN1}, V_{IN3}, V_{IN4}$ falling at 10mV/µs from (V_{TH} + 1%) to (V_{TH} - 1%)		20		μs
RESET Output Source Current	ЮН	$V_{IN2}/V_{CC} \ge 2V$, RESET deasserted		18		μA

Note 1: 100% production tested at T_A = +25°C. Limits over temperature guaranteed by design.

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Typical Operating Characteristics

 $(V_{IN2}/V_{CC} = 3.3V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C.)$

NORMALIZED RESET TIMEOUT PERIOD VS. TEMPERTURE

MAXIMUM TRANSIENT DURATION VS. RESET THRESHLD OVERDRIVE toc09

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Typical Operating Characteristics (continued)

 $(V_{IN2}/V_{CC} = 3.3V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C.)$

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Pin Configurations

6 SOT23

6 WLP

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Pin Description

PIN			FUNCTION		
6 SOT23	6 WLP		FUNCTION		
1	B1	IN1	Monitoring Input 1. When Input 1 has an internally fixed trip threshold, connect directly to the supply voltage to be monitored. When Input 1 is an adjustable input, connect to the supply voltage to be monitored through a resistive divider network. For better immunity to external noise, place a 0.1μ F capacitor between IN1 and GND as close as possible to the MAX16160.		
2	B2	IN2/V _{CC}	Supply Voltage. IN2/V _{CC} is the power supply input and the monitoring input. Bypass with a 0.1μ F capacitor between IN2 and GND.		
3	В3	IN3	Monitoring Input 3. When Input 3 has an internally fixed trip threshold, connect directly to the supply voltage to be monitored. When Input 3 is an adjustable input, connect to the supply voltage to be monitored through a resistive divider network. For better immunity to external noise, place a 0.1μ F capacitor between IN3 and GND as close as possible to the MAX16160.		
4	A3	IN4	Monitoring Input 4. When Input 4 has an internally fixed trip threshold, connect directly to the supply voltage to be monitored. When Input 4 is an adjustable input, connect to the supply voltage to be monitored through a resistive divider network. For better immunity to external noise, place a 0.1μ F capacitor between IN4 and GND as close as possible to the MAX16160.		
5	A2	GND	Ground		
6	A1	RESET	Active-Low, Open-Drain Reset Output. RESET asserts low when any input falls below its set threshold. RESET deasserts after the reset timeout period when all inputs rise above their set thresholds. RESET has a weak (18 μ A) internal pullup to IN2/V _{CC} .		

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Block Diagrams

Internally Fixed Threshold

Block Diagrams (continued)

Adjustable Threshold

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Detailed Description

The MAX16160 is high-accuracy, 4-channel supervisory circuit that monitors its own power input supply and three additional system supply voltages and asserts an active-low reset signal when any input voltage drops below its reset threshold. After all of the input voltages rise above their threshold voltages, the reset output remains asserted during the reset timeout period, and finally asserts after the timeout period ends. During power-up, before the inputs have reached their threshold voltages, the reset output (RESET) asserts low when any of the monitoring inputs exceeds 1V (Figure 1).

Figure 1. Power-Up Timing Characteristics

Reset Output

The MAX16160 features an active-low open-drain reset output (\overline{RESET}) that asserts low when any monitored input drops below its threshold voltage, V_{TH}. The reset output remains asserted as long as any of the monitoring inputs remains below its threshold voltage. When all inputs rise above their threshold voltages (plus the required hysteresis), the reset output remains asserted during the reset timeout period, and then deasserts. See <u>Figure 2</u> for more details. Only one input voltage is shown; all others are assumed to be greater than their threshold voltages. Contact Maxim for reset timeout period options not listed in the <u>Ordering Information</u> table.

Figure 2. Reset Output Timing

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

An 18µA (typ) pullup current to $IN2/V_{CC}$ eliminates the need for an external pullup resistor in many cases. If a logichigh level different from $IN2/V_{CC}$ is needed, an external pullup resistor can be connected to a pullup voltage up to 5.5V. Internal circuitry prevents reverse current flow from the external pullup voltage to $IN2/V_{CC}$ (Figure 3).

Figure 3. Interfacing to a Logic Supply Voltage Other Than $IN2/V_{CC}$

Input Hysteresis

The MAX16160 is immune to short IN_ transients. Each of the internal comparators are available with either 0.5% or 0.25% hysteresis with respect to the input threshold. Hysteresis provides immunity to input noise without significantly reducing the input threshold accuracy. See the *Maximum IN_ Transient Duration vs. Reset Threshold Overdrive* graph in the <u>Typical Operating Characteristics</u> section.

Input Thresholds

The MAX16160 monitors all inputs with $\pm 1\%$ accuracy across the full temperature and supply voltage ranges. The input thresholds (IN1/IN3/IN4) are available with values ranging from 0.5V to 5V in approximately 20mV increments. IN2/V_{CC} input thresholds are available from 1.76V to 5V in approximately 20mV increments. All inputs except IN2/V_{CC} are available as adjustable-threshold inputs (0.62V internal threshold) using an external resistor-divider. Contact Maxim for thresholds not listed in the <u>Ordering Information</u> table.

Applications Information

Adjustable Threshold Inputs (IN1, IN3, IN4)

The threshold voltage at each adjustable input is 0.62V (typ). To monitor a voltage > 0.62V, connect a resistor-divider network to the circuit, as shown in Figure 4. Use the following equations to calculate the resistor values.

$$V_{\text{IN}_{\text{TH}}} = 0.62V \times \left(\frac{R1 + R2}{R2}\right)$$

or

 $R1 = R2\left(\left(\frac{V_{\text{IN}}\text{TH}}{0.62V}\right) - 1\right)$

Figure 4. Adjustable Input Circuit

Adding Manual Reset Capability

<u>Figure 5</u> shows an application circuit adding manual reset to the MAX16160. Depressing the pushbutton switch shorts the analog input to ground and initiates a reset output pulse. The switch must be open for at least reset timeout period (t_{RP}) in order to deassert the reset output. Use a small capacitor to improve noise immunity when using long leads from the pushbutton switch to the adjustable input.

Figure 5. Adding Manual Reset Capability

Unused Inputs

Connect unused monitor inputs to a supply voltage greater in magnitude than their specified threshold voltages. For unused IN_ adjustable inputs, connect a 1M Ω series resistor between the unused input and IN2/V_{CC} to limit the bias current. Do not connect unused monitor inputs to ground or allow them to float.

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Power-Supply Bypassing

The MAX16160 operates from a 1.70V to 5.5V supply. Bypass IN2/V_{CC} to ground with a 0.1μ F capacitor as close to the device as possible to improve transient immunity. For fast-rising V_{CC} transients, additional capacitance may be required.

Selector Guide

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Typical Application Circuit

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PIN-PACKAGE
MAX16160UCAB+T	-40°C to +125°C	6 SOT23
MAX16160NCAB+T	-40°C to +125°C	6 WLP

Note: See the <u>Selector Guide</u> for reset timeout period, threshold voltage, and input hysteresis options. For additional options and future products, visit <u>www.maximintegrated.com</u>.

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape-and-reel.

High-Accuracy 4-Channel, Any-Input Supervisory Circuits

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/19	Initial release	—
1	8/19	Updated title of data sheet and Ordering Information table	1–17
2	12/20	Updated the Pin Description and Ordering Information tables	8, 17

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.