
Wireless power

Alex Li Industrial Power & Energy Competence Center AP Region, STMicroelectronics

Our mission: safe and reliable products

Qi certification, Robust design, No overheat

WPC 2019 market survey: More than 80% of the TX cannot pass EPP Qi conformance tests More than 60% of the TX cannot pass BPP Qi conformance tests

> TX most frequent cause of fail: loose power control may cause RX overvoltage poor heating prevention

Our STWBC and STWBC2 products outmatch Qi spec:

Better heating prevention

Finer patented power control – no RX overvoltage

Wireless power TX family and roadmap

1 - 2.5 W Wearable Devices Optimized for ultra-compact battery-operated	5 -15 W Single coil Smartphones Qi 1.2.4 BPP/EPP certified	5 -15 W Multi-coil Smartphones Qi 1.2.4 EPP certified	15 - 50 W super fast charge Smartphones Qi 1.2.4 certified
IC: <u>STWBC-WA</u> EVB: <u>STEVAL-ISB045V1</u>	IC: <u>STWBC-EP</u> <u>EVALSTWBC-EP</u> STEVAL-ISB044V1	<u>STWBC-MC</u> <u>STEVAL-ISB047V1</u> STEVAL-QiNFCAU1*	STWBC2* STEVAL-STSC*

A complete development ecosystem is available including certified reference design boards, API libraries, documentation and graphical user interfaces to access to real-time data and configurable parameters. Optimized Time-To-Market Power & Energy Competence Center

STWBC2x family

Digital controller for wireless power TX integrated 32-bit MCU with Flash Memory

Qi and Ki

Limitless Wireless Power Architecture

Multi Market Flexibility OEMs and MM

Future Proof -Ready for Standard and Proprietary Protocol Evolution

Key Added Value Features : Fast Loop patent, High Voltage and Flash Memory, USB PD, robust triple demodulation

STWBC2

Qi Wireless power TX with embedded 32bit MCU, DCDC controller and gate drivers for consumer and industrial applications

Key features

Key benefits

ES available MP Jan 2021

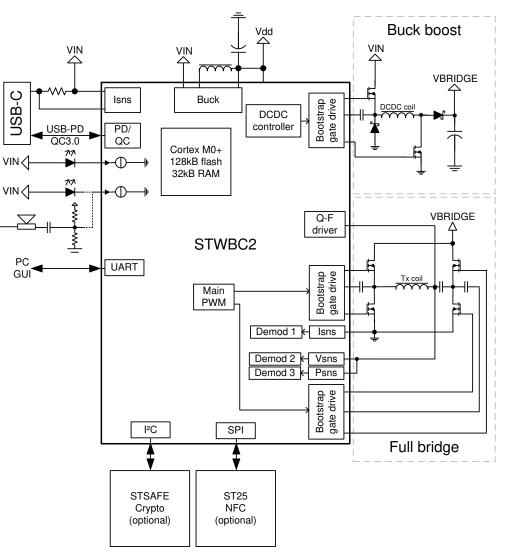
KEY APPLICATIONS

- Ultra fast charging pads for Smartphones, Laptops and tablets
- Wireless chargers for Drones, Lawn mowers, Robots, Tools, eBikes

- WPC Qi 1.2.4 and fast charge proprietary extensions
- ARM 32-bit Cortex[™]-M0+ CPU up to 64MHz
- Buck/Boost digital DCDC + full bridge inverter
- 3x Half bridge drivers
- 1ns resolution PWM generator (40MHz PLL, 17-step DLL)
- USB-QC and USB-PD interfaces
- Limitless fast charge operations (50W and more)
- Leading edge integration short BOM
- Best in class efficiency
- UART FW update with 128kB flash, 32kB SRAM

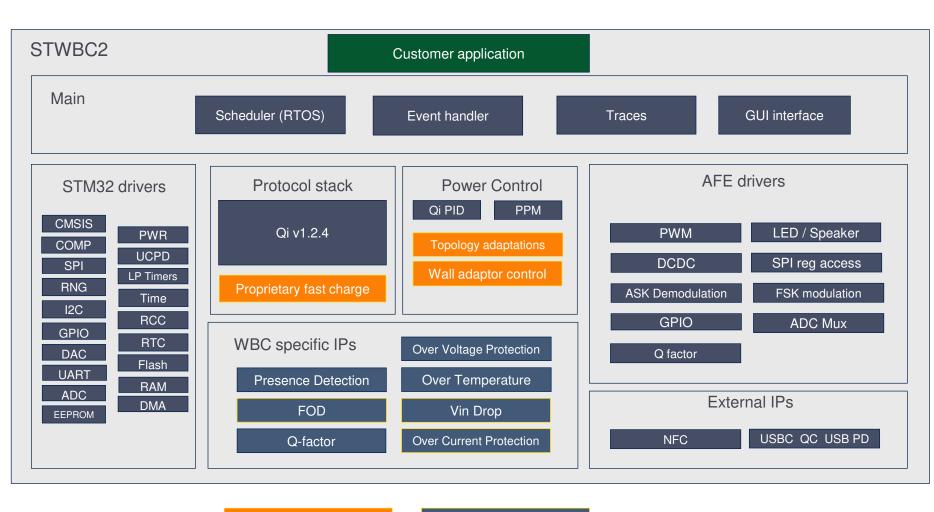
STWBC2 product description

VIN


Package: QFN 8x8 68L 0.4mm pitch

Main Features and key IPs

- 15W WPC Qi EPP 1.2.4 and Qi 1.3*
- 50W ST Super charge proprietary extension •
- ARM 32-bit Cortex[™]-M0+ CPU up to 64MHz
- **3x Half bridge drivers** for Full Bridge topologies + DC/DC •
- Flexible topology: half / full bridge, fixed / variable frequency
- Buck, Boost, Buck/Boost digital controller
- **1ns resolution PWM** generator (40MHz PLL, 17-step DLL)
- Qi FSK programmable modulator
- Integrated I, V, Φ sensors and demodulators.
- Qfactor driver for improved Foreign Object Detection
- VIN operating range: 4.1V to 24V •
- **USB Power Delivery**, QC 3.0
- UART, SPI, I2C interfaces for NFC and Authentication
- 12-bit ADC
- 128 Kbytes of Flash memory
- 32 Kbytes of SRAM with HW parity check

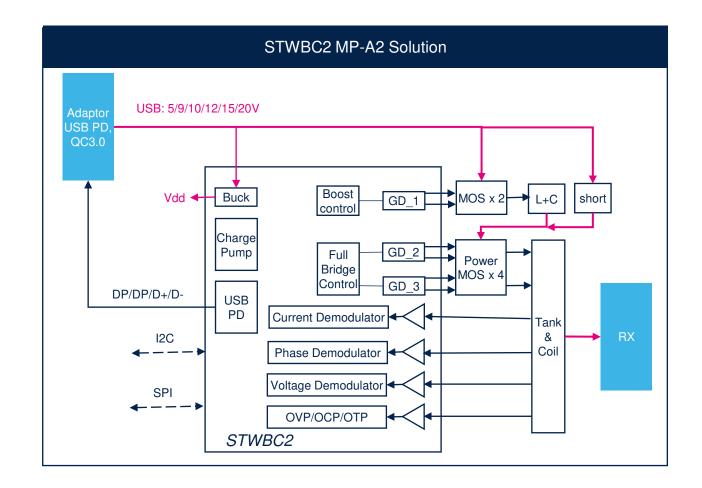


FW architecture of baseline

Target one flexible topology

- MP-A2 based but customizable to other single coil topology
- Qi EPP 1.2.4
- STSC (ST proprietary protocol for high power)
- 2 Power Extended modes implemented (F or V control)
- Multi Power mode with
 Generic PID implemented
- Generic FOD management
- Generic OVP management
- USB-PD, USB-QC, jack inputs

Qi Customization

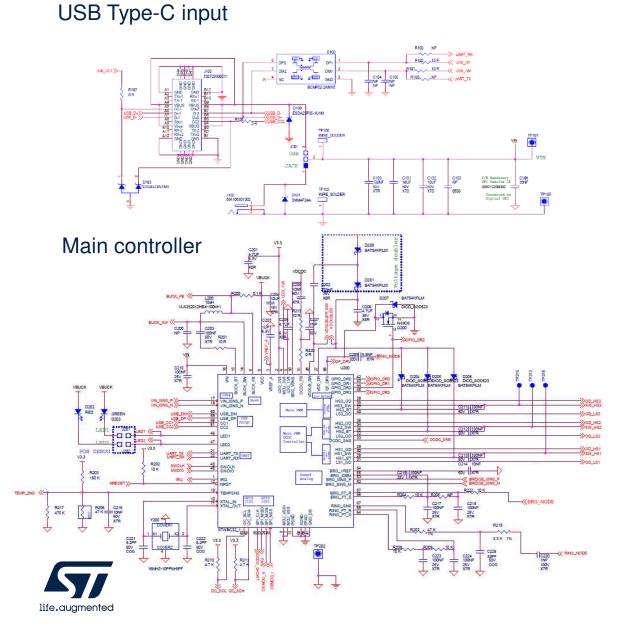

Tunable

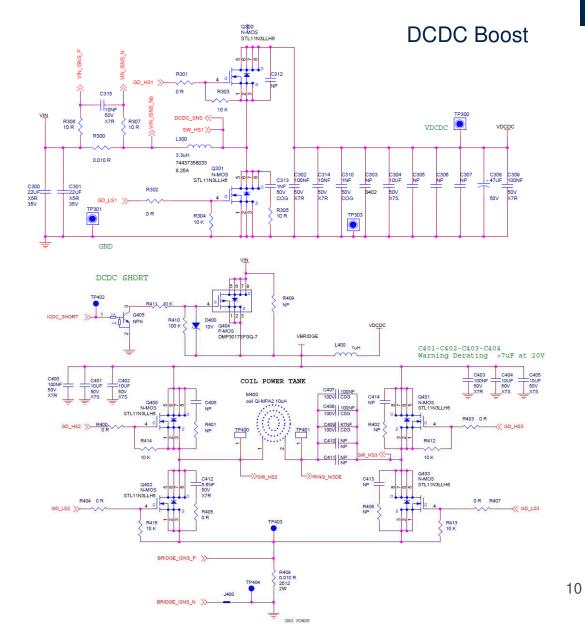
High Power TX architecture proposal full bridge, variable frequency

- Universal charger
 - 50W or more capable with 20V 3A input
 - 27W capable with 10V 4A input
 - 15W EPP / 5W BPP Qi 1.2.4 compliant
 - 10W Samsung proprietary fast charge
- High level of integration / Short BOM
 - Full bridge architecture
 - Digital boost DCDC with short for 50W mode
 - Q-factor driver, Sense and Demodulation
 - USB-PD and custom USB interfaces
- Enhanced safety
 - Q-Factor based FOD, possible proprietary calibration
 - OV, OC, OT protections
- Stable charge, large charging area
 - Triple path demodulation (V, I, Phase)

Qi Topologies efficiency comparison

Type of Tx	Power components	Losses on Tx	Losses on Tx at 40W
Variable frequency (MP-A2, MP-A22)	Bridge: 4xMOS	~10% (bridge + tank)	~5W
Fixed frequency Variable voltage (MP-A9, MP-A11,)	<u>Bridge:</u> 4xNMOS <u>DCDC:</u> 2xNMOS + 2xSchottky + 4.7μH	~10% (bridge + tank) 5~10% (DCDC)	8W~12W
Variable voltage Filtered tank (MPA13,)	<u>Bridge:</u> 4xNMOS <u>DCDC:</u> 2xNMOS + 2xSchottky + 4.7μH <u>Filter:</u> 2x1μH + 4x100nF COG	~20% (bridge + tank + filter) 5~10% (DCDC)	15W~20W

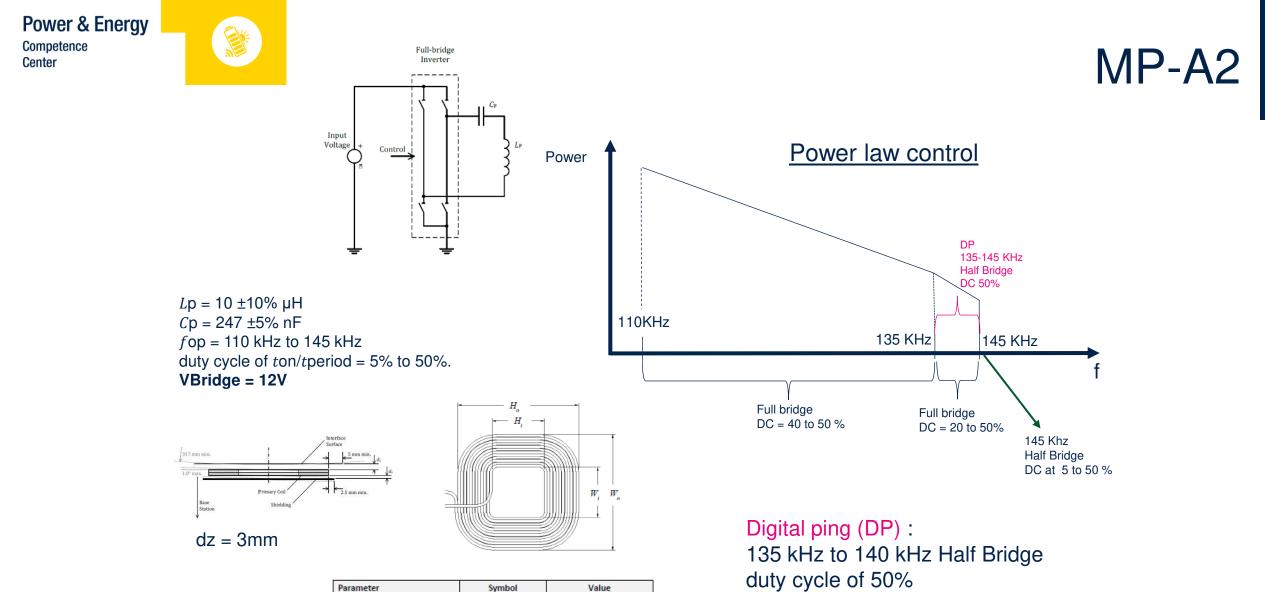

- Topologies with good EMI and RF coexistence have drawbacks:
 - On cost: buck-boost DCDC required, filter required
 - On efficiency: up to 20% degradation with DCDC + filtered tank
- At high power transfer, only variable frequency topologies appear realistic considering the Tx power to dissipate



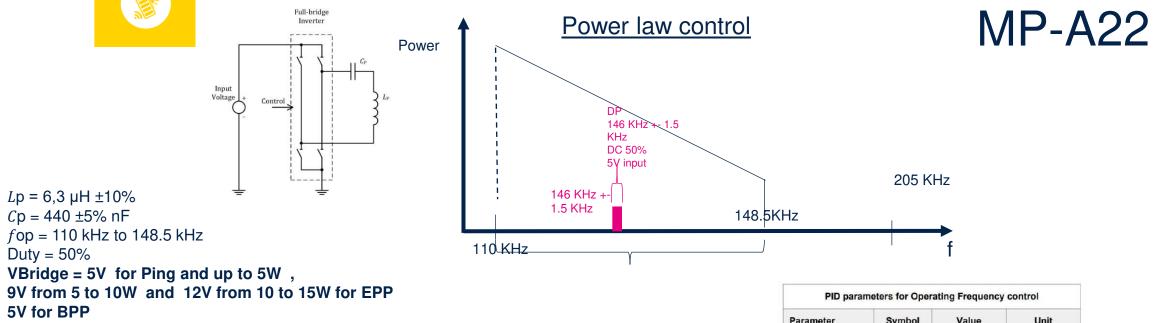
MP-A2 reference schematics

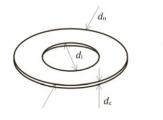
STWBC2 competition analysis

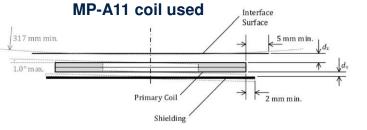
	STWBC2	R* P9247
Max power	50W	30W
Qi protocol	1.2.4 EPP (1.3 ready)	1.2.4 EPP
Input voltage range	4.5V – 24V	5V – 19V
Full bridge inverter max voltage	40V (65V AMR)	19V
Flash memory	128kB	No (OTP)
USB-PD interface (sink)	Yes	no
Communication interfaces	SPI, I2C, UART	I2C
Integrated DCDC controller	Yes	no
Integrated gate drivers	3 x Half Bridge	2 x Half Bridge
Vin current sensor	Yes	Yes
Phase demodulator	Yes	no
RX overvoltage protection	Yes	no
Improved FOD management	Yes	no


STWBC2 deliverables

- Software
 - FW libraries / source (IAR 8.3x)
 - GUI Windows application
- Documentation
 - EVB User Manual
 - Datasheet
 - Schematic, PCB layout + Design guidelines
 - Generic PID and converters guideline (for topology change)
 - Guideline for proprietary protocol porting
- Hardware
 - Evaluation boards: MP-A2 topology, MP-A22 topology (Available June 2021)




Backup



Parameter	Symbol	Value
Outer height	Ho	48 ^{±0.5} mm
Inner height	H	19 ^{±0.5} mm
Outer width	Wo	48 ^{±0.5} mm
Inner width	Wi	19 ^{±0.5} mm
Thickness	d _c	1.1 ^{±0.3} mm
Number of turns per layer	N	12
Number of layers	-	1

Power & Energy Competence Center

dz = 3 mm + -0.5mm

Number of layers: 1 or 2 Wire type: No.40 AWG x 105 strands Shielding thickness: Ths = 1.5 mm min. Shielding material: Ni-Zn ferrite

Parameter	Symbol	Value
Outer length	do	44.0 ^{±1.5} mm
Inner length	di	20.5 ^{±0.5} mm
Thickness	d _c	2.1 ^{+0.5} mm
Number of turns per layer	N	10 (5 bifilar turns)
Number of layers	-	1 or 2

PID parameters for Operating Frequency control			
Parameter	Symbol	Value	Unit
Proportional gain	κ _p	10	mA ⁻¹
Integral gain	ĸ	0.05	mA ⁻¹ * ms ⁻¹
Derivative gain	K _d	0	mA ⁻¹ * ms
Integral term limit	M_I	3,000	N.A.
PID output limit	M_PID	20,000	N.A

PID parameters for Duty Cycle control			
Parameter	Symbol	Value	Unit
Proportional gain	Kp	10	mA-1
Integral gain	ĸ	0.05	mA ⁻¹ * ms ⁻¹
Derivative gain	K _a	0	mA ⁻¹ * ms
Integral term limit	M_I	3,000	N.A.
PID output limit	M_PID	20,000	N.A
Scaling factor	Sv	-0.01	%

Thank you

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

