RGW40TS65D

650V 20A Field Stop Trench IGBT

Datasheet

$V_{\sf CES}$	650V
I _{C (100°C)}	20A
V _{CE(sat) (Typ.)}	1.5V
P_D	136W

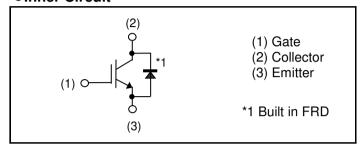
Outline TO-247N

Features

- 1) Low Collector Emitter Saturation Voltage
- 2) High Speed Switching
- 3) Low Switching Loss & Soft Switching
- 4) Built in Very Fast & Soft Recovery FRD
- 5) Pb free Lead Plating; RoHS Compliant

Application

PFC


UPS

Welding

Solar Inverter

ΙH

●Inner Circuit

Packaging Specifications

or delaging openications					
	Packaging	Tube			
	Reel Size (mm)	-			
Type	Tape Width (mm)	-			
Туре	Basic Ordering Unit (pcs)	450			
	Packing Code	C11			
	Marking	RGW40TS65D			

● **Absolute Maximum Ratings** (at T_C = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Collector - Emitter Voltage		V _{CES}	650	V
Gate - Emitter Voltage		V_{GES}	±30	V
Calleston Comment	T _C = 25°C	I _C	40	Α
Collector Current	T _C = 100°C	Ic	20	Α
Pulsed Collector Current		I _{CP} *1	80	Α
Diode Forward Current	T _C = 25°C	I _F	40	Α
	T _C = 100°C	I _F	20	Α
Diode Pulsed Forward Current		I _{FP} *1	80	Α
Dawar Dissipation	T _C = 25°C	P _D	136	W
Power Dissipation	T _C = 100°C	P _D	68	W
Operating Junction Temperature		T _j	-40 to +175	°C
Storage Temperature		T _{stg}	-55 to +175	°C

^{*1} Pulse width limited by T_{jmax.}

●Thermal Resistance

Parameter	Cumbal	Values			Unit
Farameter	Symbol	Min.	Тур.	Max.	Offic
Thermal Resistance IGBT Junction - Case	$R_{\theta(j-c)}$	-	-	1.10	°C/W
Thermal Resistance Diode Junction - Case	$R_{\theta(j-c)}$	-	-	1.62	°C/W

●IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Parameter	Symbol	Conditions		Unit		
r arameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Collector - Emitter Breakdown Voltage	BV _{CES}	$I_{C} = 10 \mu A, V_{GE} = 0 V$	650	ı	ı	V
Collector Cut - off Current	I _{CES}	$V_{CE} = 650V, V_{GE} = 0V$	ı	ı	10	μΑ
Gate - Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 30V, V_{CE} = 0V$	1	1	±200	nA
Gate - Emitter Threshold Voltage	$V_{\text{GE(th)}}$	$V_{CE} = 5V, I_{C} = 13.3mA$	5.0	6.0	7.0	V
Collector - Emitter Saturation Voltage	V _{CE(sat)}	$I_{C} = 20A, V_{GE} = 15V,$ $T_{j} = 25^{\circ}C$ $T_{j} = 175^{\circ}C$	-	1.5 1.85	1.9 -	V

●IGBT Electrical Characteristics (at T_j = 25°C unless otherwise specified)

Parameter	Parameter Symbol Conditions	0	Values			Unit
Parameter		Min.	Тур.	Max.	Offic	
Input Capacitance	C _{ies}	$V_{CE} = 30V$,	-	1680	-	
Output Capacitance	C _{oes}	$V_{GE} = 0V$,	-	47	-	рF
Reverse transfer Capacitance	C _{res}	f = 1MHz	-	31	-	
Total Gate Charge	Q_g	$V_{CE} = 400V$,	-	59	-	
Gate - Emitter Charge	Q_{ge}	$I_{\rm C} = 20A$,	-	13	-	nC
Gate - Collector Charge	Q_{gc}	$V_{GE} = 15V$	-	23	-	
Turn - on Delay Time	t _{d(on)}		-	33	-	
Rise Time	t _r	$I_C = 20A, V_{CC} = 400V,$ $V_{GF} = 15V, R_G = 10\Omega,$	-	10	-	ns - mJ
Turn - off Delay Time	t _{d(off)}	$T_i = 25^{\circ}C$	-	76	-	
Fall Time	t _f	Inductive Load *E _{on} include diode reverse recovery	-	63	-	
Turn - on Switching Loss	E _{on}		-	0.33	-	
Turn - off Switching Loss	E _{off}	,	-	0.30	-	
Turn - on Delay Time	t _{d(on)}		-	31	-	
Rise Time	t _r	$I_{C} = 20A, V_{CC} = 400V,$ $V_{GE} = 15V, R_{G} = 10\Omega,$	-	10	-	ns
Turn - off Delay Time	t _{d(off)}	$T_i = 175^{\circ}C$	-	102	-	
Fall Time	t _f	Inductive Load	-	76	-	
Turn - on Switching Loss	E _{on}	*E _{on} include diode reverse recovery	-	0.34	-	m l
Turn - off Switching Loss	E _{off}	1010100 10000019	-	0.43	-	mJ
Reverse Bias Safe Operating Area	RBSOA	$I_C = 80A$, $V_{CC} = 520V$, $V_P = 650V$, $V_{GE} = 15V$,	FU	LL SQUA	RE	-
		$R_G = 100\Omega, T_j = 175^{\circ}C$				

•FRD Electrical Characteristics (at $T_j = 25$ °C unless otherwise specified)

Parameter	Cymalaal	Conditions	Values			Lloit
	Symbol	Conditions	Min.	Тур.	Max.	Unit
		$I_F = 20A,$				
Diode Forward Voltage	V_{F}	$T_j = 25^{\circ}C$	-	1.45	1.9	V
		$T_j = 175^{\circ}C$	-	1.55	-	
Diode Reverse Recovery Time	t _{rr}		-	92	-	ns
Diode Peak Reverse Recovery Current	I _{rr}	$I_F = 20A$, $V_{CC} = 400V$, $di_F/dt = 200A/\mu s$, $T_j = 25^{\circ}C$	-	6.7	-	А
Diode Reverse Recovery Charge	Q _{rr}		-	0.34	-	μC
Diode Reverse Recovery Energy	E _{rr}		-	14.1	-	μJ
Diode Reverse Recovery Time	t _{rr}	$I_F = 20A$, $V_{CC} = 400V$, $di_F/dt = 200A/\mu s$, $T_j = 175$ °C	-	123	-	ns
Diode Peak Reverse Recovery Current	I _{rr}		-	7.8	-	А
Diode Reverse Recovery Charge	Q _{rr}		-	0.59	-	μC
Diode Reverse Recovery Energy	E _{rr}		-	30.7	-	μJ

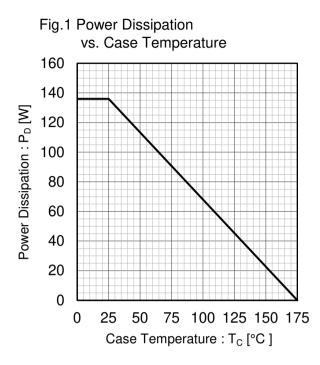


Fig.2 Collector Current vs. Case Temperature $\begin{array}{c} 50 \\ \hline 40 \\ \hline 20 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$ $\begin{array}{c} 40 \\ \hline 10 \\ \hline 0 \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c} 175^{\circ}\text{C} \\ \hline \end{array}$ $\begin{array}{c} 7 \\ \hline \end{array}$ $\begin{array}{c$

1000

The second of the secon

Collector To Emitter Voltage: V_{CE} [V]

Fig.3 Forward Bias Safe Operating Area

Fig.4 Reverse Bias Safe Operating Area

Fig.5 Typical Output Characteristics

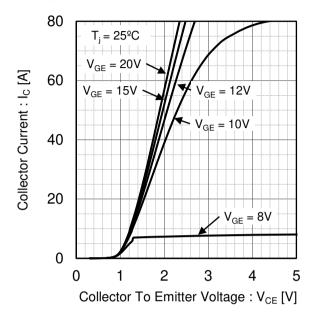


Fig.6 Typical Output Characteristics

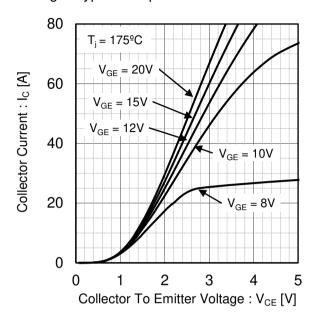


Fig.7 Typical Transfer Characteristics



Fig.8 Typical Collector to Emitter Saturation Voltage vs. Junction Temperature

Voltage: V_{CE(sat)} [V]

Fig.9 Typical Collector to Emitter Saturation Voltage vs. Gate to Emitter Voltage 20 T_i = 25^oC Collector To Emitter Saturation $I_C = 40A$ 15 $I_C = 20A$ Voltage: V_{CE(sat)} [V] $I_C = 10A$ 10 5 0 5 10 15 20

Gate To Emitter Voltage: VGE [V]

Fig.10 Typical Collector to Emitter Saturation Voltage vs. Gate to Emitter Voltage

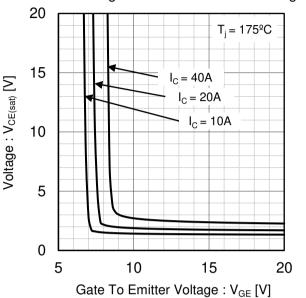


Fig.11 Typical Switching Time vs. Collector Current 1000 Switching Time [ns] $t_{d(off)}$ 100 $t_{d(on)}$ 10 $V_{CC} = 400V$, $V_{GE} = 15V$, $R_G = 10\Omega$, $T_j = 175^{\circ}C$ Inductive load 1 0 10 20 30 40 Collecter Current : I_C [A]

Fig.12 Typical Switching Time vs. Gate Resistance 1000 Switching Time [ns] $t_{d(off)}$ 100 $t_{d(on)}$ 10 V_{CC} = 400V, V_{GE} = 15V, I_C = 20A, T_j = 175 $^{\circ}$ C Inductive load 1 0 10 20 30 40 50 Gate Resistance : $R_G[\Omega]$

Collector To Emitter Saturation

 E_{on}

10

0

0.01

Fig.13 Typical Switching Energy Losses vs. Collector Current 10 Switching Energy Losses [mJ] 1 0.1

 $V_{CC} = 400V, V_{GE} = 15V,$ $R_G = 10\Omega, T_j = 175^{\circ}C$

Inductive load

30

40

20

Collecter Current : I_C [A]

Fig.14 Typocal Switching Energy Losses vs. Gate Resistance 10 Switching Energy Losses [mJ] 1 $\mathsf{E}_{\mathsf{off}}$ 0.1 $\begin{array}{l} V_{CC}=400V,\ I_{C}=20A,\\ V_{GE}=15V,\ T_{j}=175^{\circ}C\\ Inductive\ load \end{array}$ 0.01 0 10 20 30 50 Gate Resistance : $R_G[\Omega]$

Fig.15 Typical Capacitance vs. Collector to Emitter Voltage 10000 \mathbf{C}_{ies} 1000 Capacitance [pF] C_{oes} 100 10 $\mathsf{C}_{\mathsf{res}}$ f = 1MHz $V_{GE} = 0V$ $T_i = 25^{\circ}C$ 1 0.01 0.1 1 10 100 Collector To Emitter Voltage: V_{CE} [V]

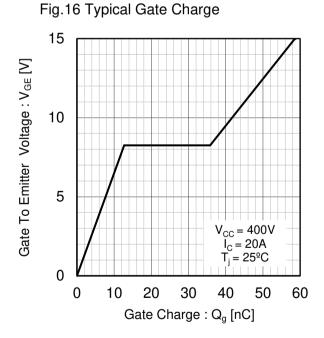


Fig.17 Typical Diode Forward Current vs. Forward Voltage

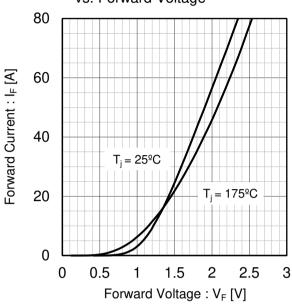


Fig.18 Typical Diode Revese Recovery Time vs. Forward Current

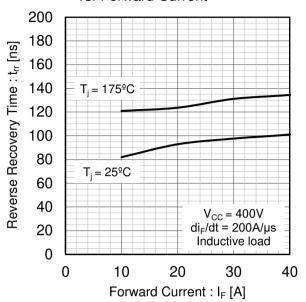


Fig.19 Typical Diode Reverse Recovery Current vs. Forward Current

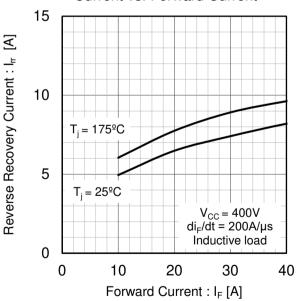


Fig.20 Typical Diode Rrverse Recovery Charge vs. Forward Current

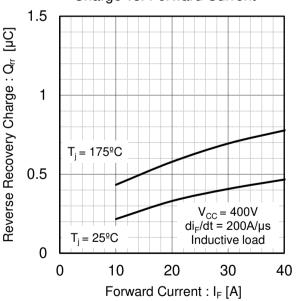


Fig.21 Typical IGBT Transient Thermal Impedance

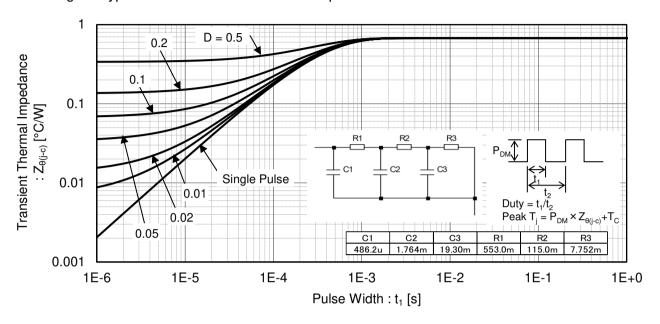


Fig.22 Typical Diode Transient Thermal Impedance

●Inductive Load Switching Circuit and Waveform

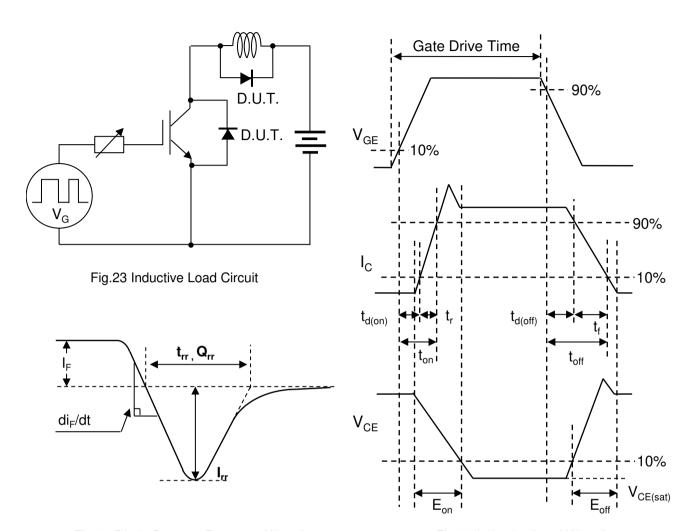


Fig.25 Diode Reverse Recovery Waveform

Fig.24 Inductive Load Waveform

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications.
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001