



# NPN MEDIUM POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/393

### DESCRIPTION

This family of high-frequency, epitaxial planar transistors feature low saturation voltage. These devices are also available in TO-39 and low profile U4 packaging. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

#### **FEATURES**

- JEDEC registered 2N3418 through 2N3421 series.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/393.
- RoHS compliant versions available (commercial grade only).
- $\bullet ~~V_{CE(sat)} = 0.25 \; V \; @ \; I_C = 1 \; A. \label{eq:VcE}$
- Rise time  $t_r$  = 0.22  $\mu s$  max @  $I_C$  = 1.0 A,  $I_{B1}$  = 100 mA.
- Fall time  $t_{f}$  = 0.20  $\mu s$  max @ I\_C = 1.0 A, I\_{B2} = -100 mA.

### **APPLICATIONS / BENEFITS**

- General purpose transistors for medium power applications requiring high frequency switching and low package profile.
- Military and other high-reliability applications.

# **MAXIMUM RATINGS**

| Parameters / Test Conditions                       | Symbol           | 2N3418<br>2N3420 | 2N3419<br>2N3421 | Unit |
|----------------------------------------------------|------------------|------------------|------------------|------|
| Collector-Emitter Voltage                          | $V_{CEO}$        | 60               | 80               | V    |
| Collector-Base Voltage                             | V <sub>CBO</sub> | 85               | 125              | V    |
| Emitter-Base Voltage                               | $V_{\text{EBO}}$ | 8                |                  | V    |
| Collector Current<br>tp <= 1 ms, duty cycle <= 50% | Ι <sub>C</sub>   |                  | 3<br>5           | A    |
| Total Power Dissipation                            | PD               | Į                | 1<br>5           | W    |
| Operating & Storage Junction Temperature Range     | $T_J,T_stg$      | -65 to           | +200             | °C   |

**Notes:** 1. Derate linearly 5.72 mW/°C for  $T_A > +25$  °C.

2. Derate linearly 150 mW/°C for  $T_C > +100$  °C.

<u>Qualified Levels</u>: JAN, JANTX and JANTXV



**TO-5** Package

Also available in:

TO-39 package (short leaded) 2N34185 - 2N34215

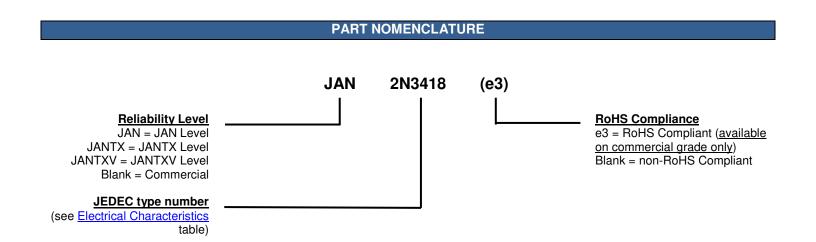
U4 package (surface mount) 2N3418U4 – 2N3421U4

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

#### MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298


#### Website:

www.microsemi.com



# MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap
- MARKING: Part number, date code, manufacturer's ID
- POLARITY: See <u>Package Dimensions</u> on last page.



|                  | SYMBOLS & DEFINITIONS                                       |  |  |  |  |
|------------------|-------------------------------------------------------------|--|--|--|--|
| Symbol           | Definition                                                  |  |  |  |  |
| C <sub>obo</sub> | Common-base open-circuit output capacitance.                |  |  |  |  |
| I <sub>CEO</sub> | Collector cutoff current, base open.                        |  |  |  |  |
| I <sub>CEX</sub> | Collector cutoff current, circuit between base and emitter. |  |  |  |  |
| I <sub>EBO</sub> | Emitter cutoff current, collector open.                     |  |  |  |  |
| h <sub>FE</sub>  | Common-emitter static forward current transfer ratio.       |  |  |  |  |
| V <sub>CEO</sub> | Collector-emitter voltage, base open.                       |  |  |  |  |
| V <sub>CBO</sub> | Collector-emitter voltage, emitter open.                    |  |  |  |  |
| V <sub>EBO</sub> | Emitter-base voltage, collector open.                       |  |  |  |  |



# **ELECTRICAL CHARACTERISTICS** ( $T_A = +25^{\circ}C$ , unless otherwise noted)

# **OFF CHARACTERISTICS**

| Parameters / Test Conditions                                                                          |                                  | Symbol               | Min.     | Max.       | Unit |
|-------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|----------|------------|------|
| Collector-Emitter Breakdown Current                                                                   |                                  |                      |          |            |      |
| $I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 0$                                                            | 2N3418, 2N3420<br>2N3419, 2N3421 | V <sub>(BR)CEO</sub> | 60<br>80 |            | V    |
| Collector-Emitter Cutoff Current                                                                      |                                  |                      |          |            |      |
|                                                                                                       | 2N3418, 2N3420<br>2N3419, 2N3421 | I <sub>CEX</sub>     |          | 0.3<br>0.3 | μΑ   |
| Collector-Base Cutoff Current                                                                         |                                  |                      |          |            |      |
| $V_{CE} = 45 \text{ V}, I_B = 0$<br>$V_{CE} = 60 \text{ V}, I_B = 0$                                  | 2N3418, 2N3420<br>2N3419, 2N3421 | I <sub>CEO</sub>     |          | 5.0<br>5.0 | μA   |
| Emitter-Base Cutoff Current<br>$V_{EB} = 6.0 \text{ V}, I_C = 0$<br>$V_{EB} = 8.0 \text{ V}, I_C = 0$ |                                  | I <sub>EBO</sub>     |          | 0.5<br>10  | μΑ   |

# ON CHARACTERISTICS (1)

| Parameters / Test Conditions                           | Symbol                           | Min.                 | Max.     | Unit      |   |
|--------------------------------------------------------|----------------------------------|----------------------|----------|-----------|---|
| Forward-Current Transfer Ratio                         |                                  |                      |          |           |   |
| $I_{C} = 100 \text{ mA}, V_{CE} = 2.0 \text{ V}$       | 2N3418, 2N3419<br>2N3420, 2N3421 |                      | 20<br>40 |           |   |
| $I_{C} = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V}$        | 2N3418, 2N3419<br>2N3420, 2N3421 | h <sub>FF</sub>      | 20<br>40 | 60<br>120 |   |
| $I_{\rm C}$ = 2.0 A, $V_{\rm CE}$ = 2.0 V              | 2N3418, 2N3419<br>2N3420, 2N3421 |                      | 15<br>30 |           |   |
| $I_{C} = 5.0 \text{ A}, V_{CE} = 5.0 \text{ V}$        | 2N3418, 2N3419<br>2N3420, 2N3421 |                      | 10<br>15 |           |   |
| Collector-Emitter Saturation Voltage                   |                                  |                      |          |           |   |
| $I_{\rm C} = 1.0 \text{ A}, I_{\rm B} = 0.1 \text{ A}$ |                                  | V <sub>CE(sat)</sub> |          | 0.25      | V |
| $I_{\rm C} = 2.0 \text{ A}, I_{\rm B} = 0.2 \text{ A}$ |                                  |                      |          | 0.5       |   |
| Base-Emitter Saturation Voltage                        |                                  |                      |          |           |   |
| $I_{\rm C} = 1.0 \text{ A}, I_{\rm B} = 0.1 \text{ A}$ |                                  | V <sub>BE(sat)</sub> | 0.6      | 1.2       | V |
| $I_{\rm C} = 2.0 \text{ A}, I_{\rm B} = 0.2 \text{ A}$ |                                  |                      | 0.7      | 1.4       |   |

## **DYNAMIC CHARACTERISTICS**

| Parameters / Test Conditions                                                                                                                                   | Symbol          | Min. | Max. | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|------|
| Magnitude of Common Emitter Small-Signal Short Circuit<br>Forward Current Transfer Ratio<br>$I_{C} = 0.1 \text{ A}, V_{CE} = 10 \text{ V}, f = 20 \text{ MHz}$ | h <sub>fe</sub> | 1.3  | 0.8  |      |
| Output Capacitance $V_{CB}$ = 10 V, $I_{E}$ = 0, 100 kHz $\leq$ f $\leq$ 1.0 MHz                                                                               | $C_{obo}$       |      | 150  | pF   |

**NOTES:** (1) Pulse Test: Pulse Width = 300  $\mu s,$  Duty Cycle  $\leq$  2.0%.



# **ELECTRICAL CHARACTERISTICS** ( $T_A = +25^{\circ}C$ , unless otherwise noted) continued

## SWITCHING CHARACTERISTICS

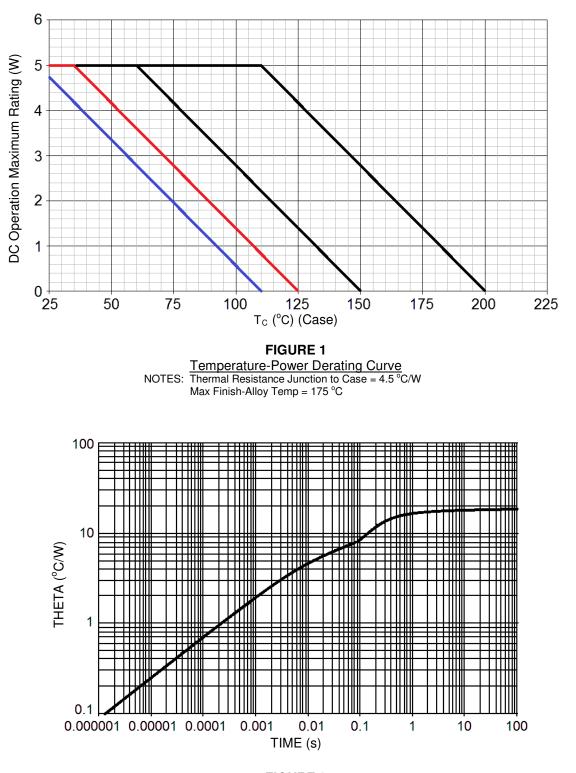
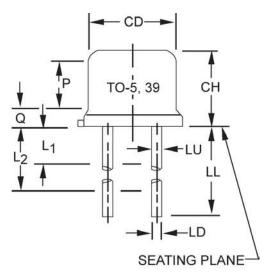
| Parameters / Test Conditions (for all symbols) |                                                                                                         | Symbol                           | Min.             | Max.         | Unit |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|------------------|--------------|------|
| Delay Time<br>Rise Time                        | $V_{BE(off)} = -3.7 \text{ V},$<br>I <sub>C</sub> = 1.0 A, I <sub>B1</sub> = 100 mA                     | t <sub>d</sub><br>t <sub>r</sub> |                  | 0.08<br>0.22 | μs   |
| Storage Time<br>Fall Time                      | $V_{BE(off)} = -3.7 \text{ V},$<br>I <sub>C</sub> = 1.0 A, I <sub>B2</sub> = -100 mA                    | t <sub>s</sub><br>t <sub>f</sub> |                  | 1.10<br>0.20 | μs   |
| Turn-Off Time                                  | $V_{BE(off)} = -3.7 \text{ V}, I_{C} = 1.0 \text{ A},$<br>$I_{B2} = -100 \text{ mA}, R_{L} = 20 \Omega$ | t <sub>off</sub>                 | t <sub>off</sub> | 1.20         | μs   |

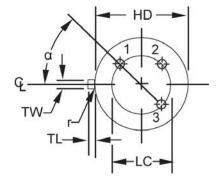
## SAFE OPERATING AREA

| DC Test                                          |                                                                  |
|--------------------------------------------------|------------------------------------------------------------------|
| T <sub>C</sub> = +100 °C, 1 cycle, t ≥ 1.0 s     |                                                                  |
| Test 1                                           |                                                                  |
| $V_{CE} = 5.0 \text{ V}, I_{C} = 3.0 \text{ A}$  |                                                                  |
| Test 2                                           |                                                                  |
| $V_{CE} = 37 \text{ V}, I_{C} = 0.4 \text{ A}$   |                                                                  |
| Test 3                                           |                                                                  |
| $V_{CE} = 60 \text{ V}, I_{C} = 0.185 \text{ A}$ | 2N3418, 2N3420                                                   |
| $V_{CE} = 80 \text{ V}, I_{C} = 0.12 \text{ A}$  | 2N3419, 2N3421                                                   |
| Clamped Switching                                | $T_A = +25 \text{ °C}, I_B = 0.5 \text{ A}, I_C = 3.0 \text{ A}$ |



GRAPHS



FIGURE 2 <u>Maximum Thermal Impedance</u> NOTE:  $T_c = +25 \text{ °C}$ , Thermal Resistance  $R_{euc} = 4.5 \text{ °C/W}$ 



# PACKAGE DIMENSIONS



|                | Dimensions |           |             |             |       |
|----------------|------------|-----------|-------------|-------------|-------|
| Symbol         | In         | Inch      |             | Millimeters |       |
| -              | Min        | Max       | Min         | Max         |       |
| CD             | .305       | .335      | 7.75        | 8.51        |       |
| СН             | .240       | .260      | 6.10        | 6.60        |       |
| HD             | .335       | .370      | 8.51        | 9.40        |       |
| LC             | .200       | ) TP      | 5.08        | 3 TP        | 6     |
| LD             | .016       | .021      | 0.41        | 0.53        |       |
| LL             | .500       | .750      | 12.7        | 19.05       | 7     |
| LU             |            | See notes | s 7, 13, 14 | 1           |       |
| L <sub>1</sub> |            | .050      |             | 1.27        | 7     |
| $L_2$          | .250       |           | 6.35        |             | 7     |
| Р              | .100       |           | 2.54        |             | 5     |
| Q              |            | .040      |             | 1.02        | 4     |
| TL             | .029       | .045      | 0.74        | 1.14        | 3, 10 |
| TW             | .028       | .034      | 0.71        | .86         | 9, 10 |
| r              |            | .010      |             | 0.25        | 11    |
| α              | 45°        | TP        | 45° TP      |             | 6     |



- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- 5. Symbol CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Léads at gauge plane .054 inch (1.37 mm) +.001 inch (0.03 mm) -.000 inch (0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of TP relative to tab. Device may be measured by direct methods or by gauge.
- 7. Symbol LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. Lead number 3 is electrically connected to case.
- 9. Beyond r maximum, TW shall be held for a minimum length of .021 inch (0.53 mm).
- 10. Lead number 4 omitted on this variation.
- 11. Symbol r applied to both inside corners of tab.
- 12. For transistor types 2N3418, 2N3419, 2N3420, 2N3421, LL is 1.500 (38.10 mm) minimum, and 1.750 (44.45 mm) maximum.
- 13. In accordance with ASME Y14.5M, diameters are equivalent to  $\Phi x$  symbology.
- 14. Lead 1 is emitter, lead 2 is base, and lead 3 is collector.