Dual N-Channel PowerTrench[®] MOSFET

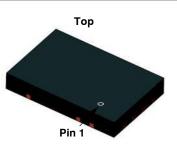
30 V, 28 A, 2.12 m Ω

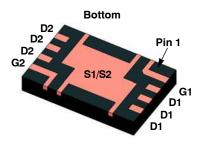
General Description

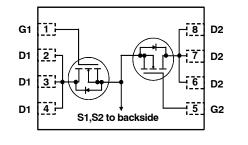
This package integrates two N–Channel devices connected internally in common–source configuration. This enables very low package parasitics and optimized thermal path to the common source pad on the bottom. Provides a very small footprint $(3.3 \times 5 \text{ mm})$ for higher power density.

Features

- Max $r_{DS(on)} = 2.12 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 28 \text{ A}$
- Max $r_{DS(on)} = 2.95 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 24 \text{ A}$
- Ideal for Flexible Layout in Secondary Side Synchronous Rectification
- 100% UIL Tested
- Termination is Lead-free and RoHS Compliant


Applications


- Isolated DC-DC Synchronous Rectifiers
- Common Ground Load Switches

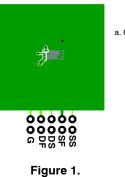

ON Semiconductor®

www.onsemi.com

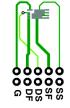
PQFN8 PowerTrench CASE 483AU

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.


Table 1. MOSFET MAXIMUM RATINGS	$T_A = 25^{\circ}C$ unless otherwise noted.
---------------------------------	---

Symbol	Parameter		Rating	Units
V _{DS}	Drain to Source Voltage		30	V
V _{GS}	Gate to Source Voltage		±20	V
Ι _D	Drain Current -Continuous	T _C = 25°C (Note 1)	95	А
	– Continuous	T _C = 100°C (Note 1)	60	
	– Continuous	$T_A = 25^{\circ}C$ (Figure 1)	28	
	- Pulsed	(Note 2)	562	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	96	mJ
PD	Power Dissipation	$T_{C} = 25^{\circ}C$	29	W
	Power Dissipation	$T_A = 25^{\circ}C$ (Figure 1)	2.1	1
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electromechanical application board design.

2. Pulse Id refers to Figure 13 Forward Bias Safe Operating Area. 3. E_{AS} of 96 mJ is based on starting $T_J = 25^{\circ}C$; L = 0.3 mH, $I_{AS} = 31.7$ A, $V_{DD} = 27$ V.

a. 60 °C/W when mounted on a 12in pad of 2 oz copper

b.160 °C/W when mounted on a minimum pad of 2 oz copper

Figure 2.

Table 2. THERMAL CHARACTERISTICS

	$R_{\theta JC}$	Thermal Resistance, Junction to Case		4.7	°C/W
ſ	$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Figu	re 1)	60	

R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material, R_{θCA} is determined by the user's board design.

Table 3. PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMD8430	FDMD8430	Power 3.3 x 5	13″	12 mm	3000 units

Table 4. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted.

Symbol	Parameter Test Conditions		Min	Тур	Max	Units			
OFF CHARA	OFF CHARACTERISTICS								
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	30			V			
$\Delta BV_{DSS/} \Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25°C		17		mV/°C			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ			
I _{GSS}	Gate to Source Leakage Current	$V_{GS}=\pm 20~V,~V_{DS}=0~V$			±100	nA			

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.0	1.6	3.0	V
${\Delta V_{GS(th)}}_{J}$ / ${\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25°C		-5		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 10 V, I _D = 28 A		1.5	2.12	mΩ
		V _{GS} = 4.5 V, I _D = 24 A		2.0	2.95	1
		V_{GS} = 10 V, I _D = 28 A, T _J = 125°C		1.7	2.4	1
9 FS	Forward Transconductance	$V_{DD} = 5 \text{ V}, \text{ I}_{D} = 28 \text{ A}$			250	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHZ	3595	5035	pF
C _{oss}	Output Capacitance		1150	1610	pF
C _{rss}	Reverse Transfer Capacitance		112	160	pF
Rg	Gate Resistance		2.3	4.5	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 V, I_D = 28$	V_{DD} = 15 V, I_D = 28 A, V_{GS} = 10 V, R_{GEN} = 6 Ω		11	20	ns
t _r	Rise Time	V _{GS} = 10 V, R _{GEN} =			8	16	ns
t _{d(off)}	Turn-Off Delay Time				71	114	ns
t _f	Fall Time				20	36	ns
Q _{g(tot)}	Total Gate Charge	V_{GS} = 0 V to 10 V	$V_{DD} = 15 V,$		52	90	nC
	Total Gate Charge	V_{GS} = 0 V to 4.5 V	V to 4.5 V		25	45	nC
Q _{gs}	Gate to Source Charge		-		10		nC
Q _{gd}	Gate to Drain "Miller" Charge]		7		nC

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward Voltage	V_{GS} = 0 V, I _S = 28 A (Note 5)	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 28 A, di/dt = 100 A/µs	40	64	ns
Q _{rr}	Reverse Recovery Charge		22	36	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.

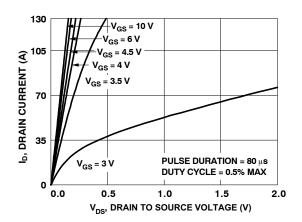


Figure 3. On Region Characteristics

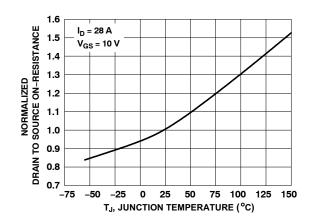


Figure 5. Normalized On–Resistance vs. Junction Temperature

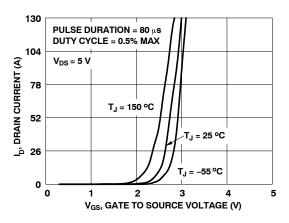
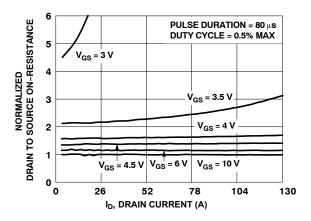
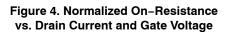




Figure 7. Transfer Characteristics

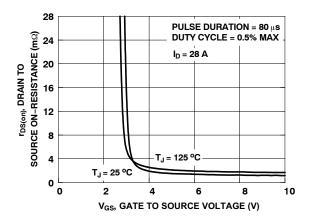


Figure 6. On–Resistance vs. Gate to Source Voltage

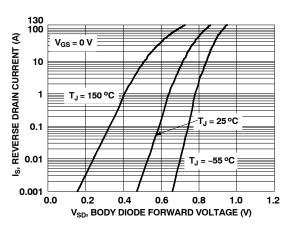


Figure 8. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted.

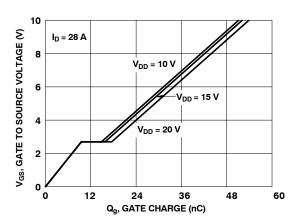
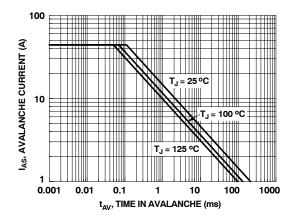
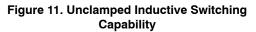




Figure 9. Gate Charge Characteristics

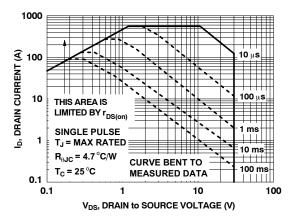


Figure 13. Forward Bias Safe Operating Area

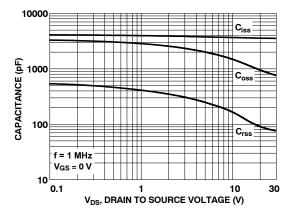


Figure 10. Capacitance vs. Drain to Source Voltage

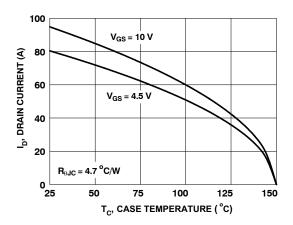


Figure 12. Maximum Continuous Drain Current vs. Case Temperature

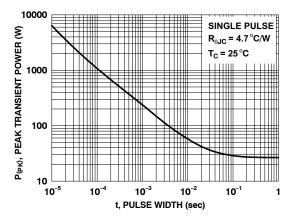


Figure 14. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted.

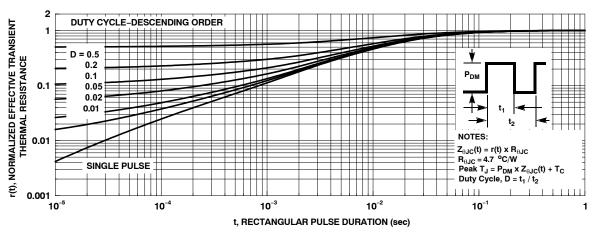
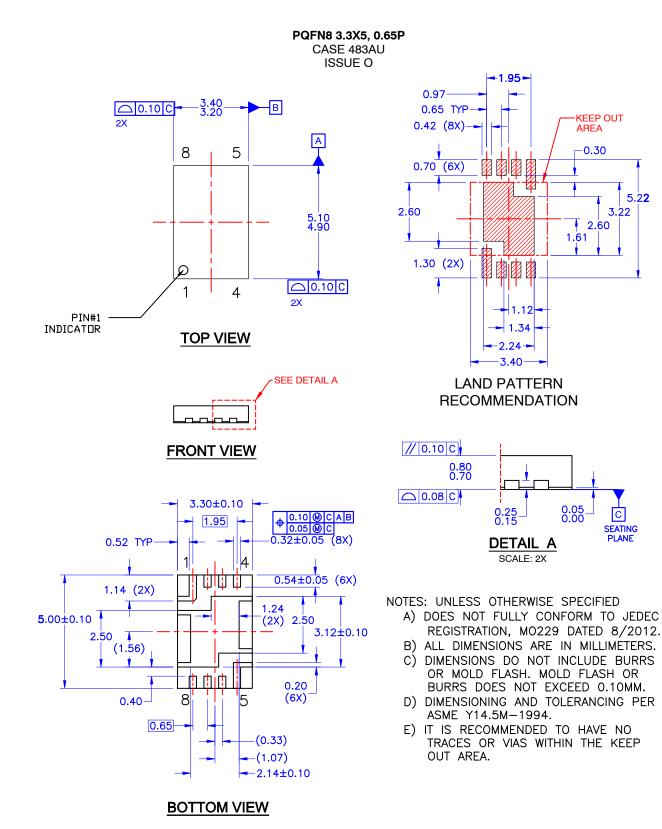



Figure 15. Junction-to-Case Transient Thermal Response Curve

PACKAGE DIMENSIONS

PowerTrench is a registered trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all aws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries,

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative