

2N4401

MMBT4401

NPN General Pupose Amplifier

This device is designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	600	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

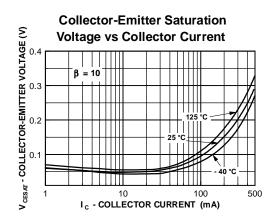
Symbol	Characteristic	Max Units		Max		Units
		2N4401	*MMBT4401			
P_{D}	Total Device Dissipation	625	350	mW		
	Derate above 25°C	5.0	2.8	mW/°C		
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W		

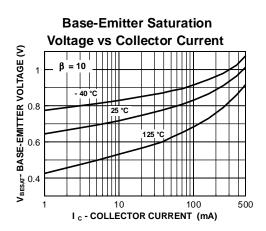
^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

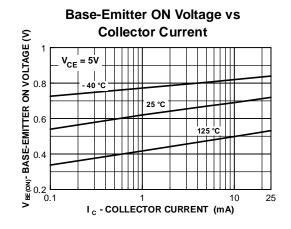
These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

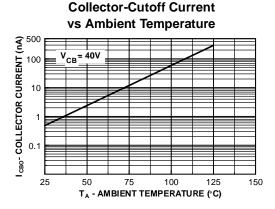
NPN General Purpose Amplifier (continued)

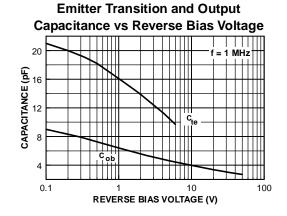
Electrical Characteristics TA = 25°C unless otl

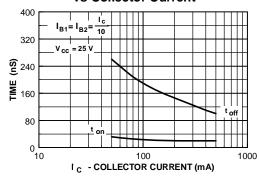

Symbol	Parameter	Test Conditions	Min	Max	Units
055 0114	DAOTEDIOTIOS				
	RACTERISTICS	T	1	1	
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.1 \text{mA}, I_{\rm E} = 0$	60		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_{E} = 0.1 \text{ mA}, I_{C} = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μΑ
I _{CEX}	Collector Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μΑ
ON CHAF	RACTERISTICS*				
h _{FE}	DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$	20		
		$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	40		
		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80		
		$I_C = 150 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100	300	
\ /	Collector Emitter Caturation Valtage	$I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}$	40	0.4	V
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		0.4	V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 150$ mA, $I_{\rm B} = 30$ mA	0.75	0.75	V
V BE(sat)	Base Emitter Saturation Voltage		0.70		
SMALLS	IGNAL CHARACTERISTICS	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		1.2	V
	IGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$	250	1.2	MHz
f _T		$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz $V_{CB} = 5.0 \text{ V}, I_{E} = 0,$	250	6.5	<u>, -</u>
f _T	Current Gain - Bandwidth Product	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	250		MHz
f _T C _{cb} C _{eb}	Current Gain - Bandwidth Product Collector-Base Capacitance	$\begin{split} I_C &= 20 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V, } I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V, } I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 1.0 \text{ kHz} \end{split}$	250	6.5	MHz pF
f _T C _{cb} C _{eb}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ \end{split}$ $V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ \end{split}$		6.5	MHz pF pF
SMALL S f _T C _{cb} C _{eb} h _{ie} h _{re}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ \end{split}$	1.0	6.5 30 15	MHz pF pF kΩ
f _T C _{cb} C _{eb} h _{ie} h _{re}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \end{split}$	1.0	6.5 30 15 8.0	MHz pF pF kΩ x 10 ⁻⁴
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} h _{oe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ $	1.0	6.5 30 15 8.0 500	MHz pF pF kΩ
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} h _{oe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ $	1.0	6.5 30 15 8.0 500	MHz pF pF kΩ x 10 ⁻⁴
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} SWITCHI	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ I_C &= $	1.0	6.5 30 15 8.0 500 30	MHz pF pF kΩ x 10 ⁻⁴ μmhos
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} h _{oe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance NG CHARACTERISTICS Delay Time	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ \end{split}$	1.0	6.5 30 15 8.0 500 30	MHz pF pF kΩ x 10 ⁻⁴ μmhos

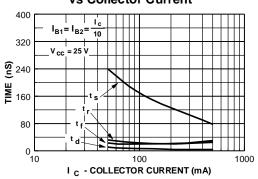

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%


(continued)

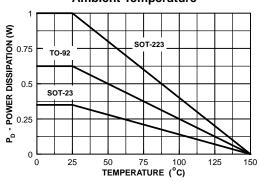

Typical Characteristics



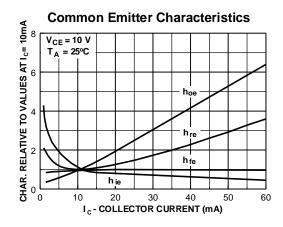


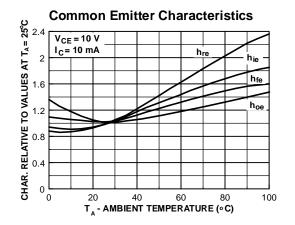

(continued)

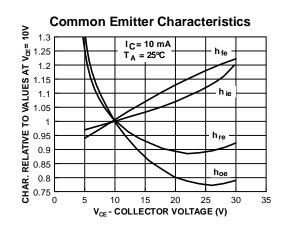
Typical Characteristics (continued)


Turn On and Turn Off Times vs Collector Current

Switching Times vs Collector Current




Power Dissipation vs Ambient Temperature



(continued)

Typical Common Emitter Characteristics (f = 1.0kHz)

(continued)

Test Circuits

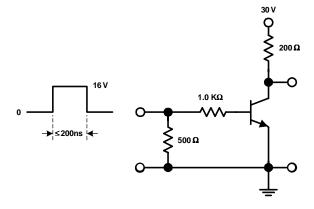


FIGURE 1: Saturated Turn-On Switching Timer

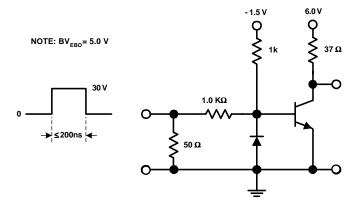


FIGURE 2: Saturated Turn-Off Switching Time

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ $FASTr^{TM}$ PowerTrench® SyncFETTM QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ QT Optoelectronics™ **VCXTM** CROSSVOLT™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™
E²CMOS™ MICROWIRF™ SILENT SWITC

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.