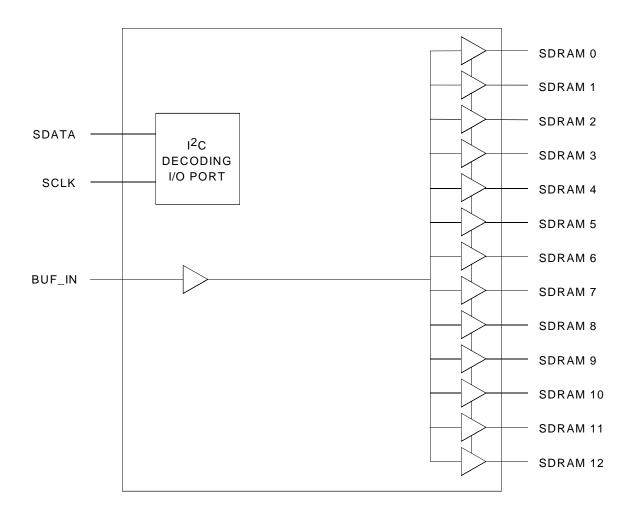


LOW SKEW CLOCK DRIVER/ BUFFER FOR MOBILE PC WITH THREE DIMMS

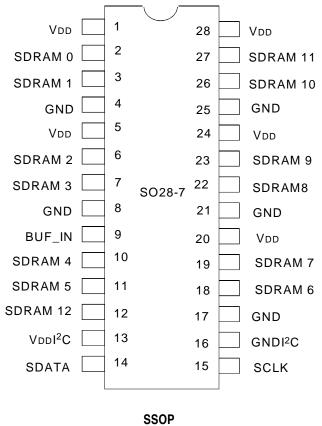
FEATURES:


- 1 to 13 output buffer/driver
- I²C programming capability
- Power Supply Voltage 3.3V ±5%
- Low Skew Outputs (<200ps)
- Multiple VDD and GND for noise reduction
- 28 Pin SSOP package

DESCRIPTION

The QS5813 is a high speed, low noise 1-13 non-inverting buffer designed for SDRAM clock buffer applications. Out of the 13 outputs, 12 could be used to drive up to three SDRAM DIMMS, and the remaining output is used for external feedback to a PLL stage for synchronization to master clock.

The QS5813 also includes an l^2C interface, which can enable or disable each output clock when the lines are not used. By turning the outputs on and off, l^2C will aid in reducing the Electro Magnetic Interference (EMI).


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

APRIL 2000

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit	
	Supply Voltage to Ground	– 0.5 to + 4.6	V	
	DC Output Voltage Vout	– 0.5 to + 4.6	V	
	DC Output Voltage VIN	– 0.5 to + 4.6	V	
	DC Input Diode Current with VI < 0	- 20	mA	
	Maximum Power Dissipation at TA = 85°C 600			
	TSTG Storage Temperature -65 to 150			

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Name	Description			
SDRAM (0:5)	SDRAM Byte 0 Clock Outputs.			
SDRAM (6:11)	SDRAM Byte 1 Clock Outputs.			
SDRAM (12)	SDRAM Byte 2 Clock Outputs.			
BUF_IN	nput for Buffers.			
SDATA	I ² C Data Input. It has 100kΩ internal pull up to VDD.			
SCLK	I²C Data Input. It has 100kΩ internal pull up to VDD.			
Vdd	3.3V power supply for output buffers.			
GND	Ground for output buffers.			
GNDI ² C	Ground for I ² C circuitry.			
Vddl ² C	3.3V Power Supply for I ² C circuitry.			

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	For all Inputs	2	_	-	V
VIL	Input LOW Voltage Level	For all inputs except I ² C inputs	—	_	0.8	V
Ін	Input High Current	VIN = VDD	- 5	—	5	μA
lıL.	Input Low Current	VIN = 0V	- 5	—	5	μA
		VIN = 0V; Inputs with 100k pull up	- 100	—	_	
		CL = 0pF; fin@66.66MHz ⁽¹⁾	_	50	70	
		CL = 30pF; fin @66.66MHz ⁽¹⁾	_	130	150	mA
Idd	Supply Current	CL = 0pF; fin@100MHz ⁽¹⁾	_	75	105	
		CL = 30pF; fin@100MHz ⁽¹⁾	_	195	225	
		BUF_IN = GND or VDD, all other inputs to VDD	_	_	500	μA
Vон	Output High Voltage	Іон = –36mA	2.4	_		V
Vol	Output Low Voltage	IoL = 25mA	-	—	0.4	V
Voll ² C	Output Low Voltage	SDATA IOLI ² C = 3mA	_	—	0.4	V

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
tR	Rise Time	0.4V to 2.4V; CL = 30pF	—	—	2.2	ns
tF	Fall Time	2.4V to 0.4V; CL = 30pF	-	_	2.2	ns
DT	Duty Cycle	VT = 1.5V; CL = 30pF	45	50	55	%
tsк	Skew (output-output)	$V_T = 1.5V$; $C_L = 30pF$ for all outputs	—	_	200	ps
tPHL	Propagation Delay	VT = 1.5V	-	—	6	ns
tPLH						

OPERATING CHARACTERISTICS , $T_A = 25^{\circ}C$

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Power Supply Voltage	3.135	3.3	3.465	V
TA	Operating Temperature	-40	25	85	°C
CL	Load Capacitance	—	—	30	pF
CIN	Input Capacitance	—	—	15	pF

I²C SERIAL INTERFACE CONTROL

The I²C interface permits individual enable/disable of each clock output: any unused outputs may be disabled to reduce the EMI. The QS5813 is a slave receiver device. It can read back the data stored in the latches for verification.

The data transfer rate supported by the I²C interface is 100k bits/sec. Data is transferred in bytes (with the addition of start, stop, acknowledge bits) in sequential order from the lowest to highest byte with the ability to stop after any complete byte has been transferred. The first two bytes transferred must be a Command Code followed by a Byte Count. Both of these bytes are ignored by the device.

The I²C address of the QS5813 is:

A7	A6	A5	A 4	A3	A2	A1
1	1	0	1	0	0	1

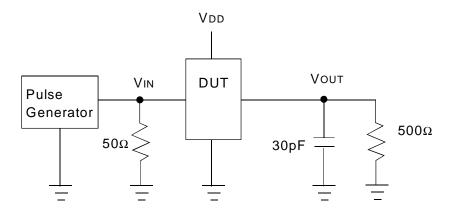
Address A0 is the read/write bit and is set to 0 for writes and 1 for reads. During read back, the first byte read is a Byte Count representing the number of bytes following (fixed at 3).

SERIAL CONFIGURATION COMMAND BITMAPS

Byte 0: SDRAM Active/Inactive Register (1 = Enable, 0 = Disable, outputs held LOW), Default = Enable

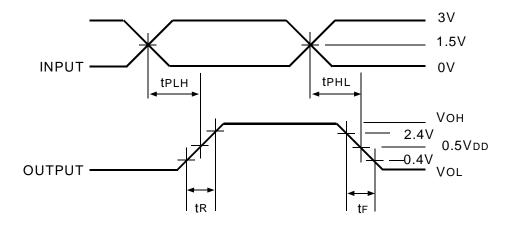
Bit	Pin #	Description	
Bit 7	11	SDRAM 5 (Active/Inactive)	
Bit 6	10	SDRAM 4 (Active/Inactive)	
Bit 5	_	Initialize to 0	
Bit 4	_	Initialize to 0	
Bit 3	7	SDRAM 3 (Active/Inactive)	
Bit 2	6	SDRAM 2 (Active/Inactive)	
Bit 1	3	SDRAM 1 (Active/Inactive)	
Bit 0	2	SDRAM 0 (Active/Inactive)	

Byte 1: SDRAM Active/Inactive Register (1 = Enable, 0 = Disable, outputs held LOW), Default = Enable

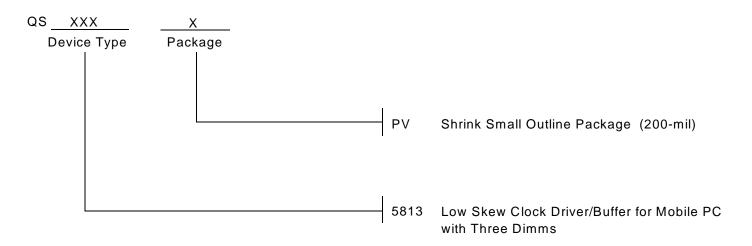

Bit	Pin #	Description	
Bit 7	27	SDRAM 11 (Active/Inactive)	
Bit 6	26	SDRAM 10 (Active/Inactive)	
Bit 5	23	SDRAM 9 (Active/Inactive)	
Bit 4	22	SDRAM 8 (Active/Inactive)	
Bit 3		Initialize to 0	
Bit 2	_	Initialize to 0	
Bit 1	19	SDRAM 7 (Active/Inactive)	
Bit 0	18	SDRAM 6 (Active/Inactive)	

Byte 2: SDRAM Active/Inactive Register

(1 = Enable, 0 = Disable, outputs held LOW), Default = Enable


Bit	Pin #	Description	
Bit 7	_	Initialize to 0	
Bit 6	12	SDRAM 12 (Active/Inactive)	
Bit 5	_	Reserved, 1 at power up, set to 0	
Bit 4		Reserved, 1 at power up, set to 0	
Bit 3	_	Reserved, 1 at power up, set to 0	
Bit 2	_	Reserved, 1 at power up, set to 0	
Bit 1	_	Reserved, 1 at power up, set to 0	
Bit 0		Reserved, 1 at power up, set to 0	

TEST CIRCUIT



AC TIMING DIAGRAM

PROPAGATION DELAY

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.