September 2013

J105 / J106 / J107 N-Channel Switch

Description

This device is designed for analog or digital switching applications where very low on resistance is mandatory. Sourced from Process 59.

Ordering Informations

Part Number	Marking	Package	Packing Method
J105	J105		
J106	J106	TO-92 3L	Bulk
J107	J107		

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	-25	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Notes:

- 1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
- 2. These ratings are based on a maximum junction temperature of 150°C.
- 3. These are steady-state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics⁽⁴⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Maximum	Units
р	Power Dissipation	625	mW
PD	Derate above 25°C	5.0	mW/°C
R _{θJC}	Thermal Resistance, Junction to Case	125	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient	357	°C/W

Note:

4. PCB board size FR-4 76 x 114 x 0.6T mm³ (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

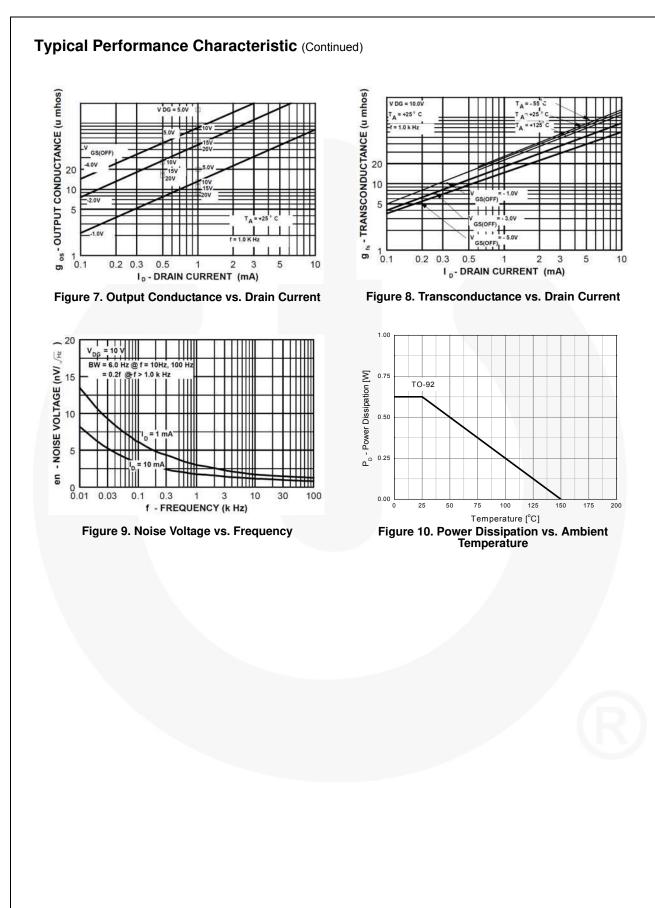
Electrical Characteristics

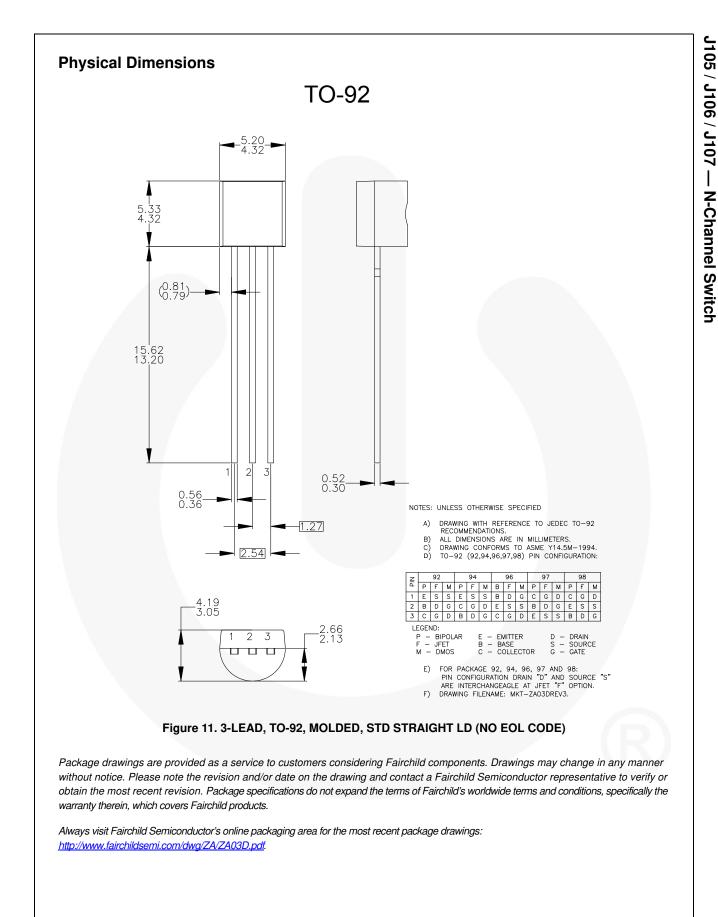
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	;	Min	Max	Units
OFF CHA	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	I _G = -10 μA, V _{DS} = 0		-25		V
1	Gate Reverse Current	V _{GS} = -15 V, V _{DS} = 0 V _{GS} = -15 V, V _{DS} = 0, T _A = 100°C			-3.0	nA
I _{GSS}	Gale Reverse Current				-200	
I _{D(off)}	Gate-Source Cut-Off Voltage	V_{DS} = -5.0 V, V_{GS} = -10 V			3.0	nA
	Gate-Source Cut-Off Voltage	V _{DS} = 5.0 V, I _D = 1.0 mA	J105	-4.5	-10.0	v
			J106	-2.0	-6.0	
			J107	-0.5	-4.5	
ON CHAR	ACTERISTICS					
		V _{DS} = 15 V, I _{GS} = 0	J105	500		
I _{DSS}	Zero-Gate Voltage Drain Current ⁽⁵⁾		J106	200		mA
	Guneni		J107	100		
			J105		3.0	
R _{DS(on)} Drain-S	Drain-Source On Resistance	$V_{DS} \le 0.1 \text{ V}, \text{ V}_{GS} = 0$	J106		6.0	Ω
			J107		8.0	
SMALL SI	GNAL CHARACTERISTICS	•				
C _{dg(on)}	Drain-Gate On Capacitance	tance $V_{DS} = 0, V_{GS} = 10 V, f = 1.0 MHz$		160 p	pF	
C _{sg(on)}	Source-Gate On Capacitance				100	pi
C _{dg(off)}	Drain-Gate Off Capacitance				35	pF
C _{sg(off)}	Source-Gate Off Capacitance				- 55	pF

Note:

5. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2.0%.


J105 / J106 / J107 — N-Channel Switch


500 T, = 25 °C T. = 25 °C = -0.2 V -0 1 300 V____ = 0 Drain Current, I_b [mA] 400 Drain Current, I_b [mA] 250 300 200 V_{GS} = -1 V 150 200 V_____= -0.3 \ V_{GS} = -0.4 V V_{gs} = -0.5 V 100 100 V_{GS} = -2 V 50 0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2 3 л Drain-Source Voltage, V_{DS} [V] Drain-Source Volatage, V_{DS}[V] Figure 1. Common Drain-Source Characteristics Figure 2. Common Drain-Source Characteristics 200 2,000 Ш $r_{\text{DS}}\text{-}$ DRAIN "ON" RESISTANCE (α) f=0.1-1.0MHz 100 1.000 Cis (Crs) - CAPACITANCE (pf) DRAIN CURRENT (mA) v Dr 2V = 5 V 50 500 20 200 20 (V_{DS} =0V) 10 100 10 5 50 5 '0 2 20 10 10 0.1 0.2 0.3 0.5 1 2 3 5 10 -5 -10 -15 -20 V_{GS} GATE CUT OFF VOLTAGE (V) V_{GS} - GATE-SOURCE VOLTAGE (V) **Figure 3. Parameter Interactions** Figure 4. Capacitance vs. Voltage r ps - DRAIN "ON" RESISTANCE (12) NORMALIZED RESISTANCE 20 @5V. 10uA GS(OFF) rDS 20 10 V_{GS} 10 5 GS(QFF 5 1 GS(OFF) g 0.5 1 2 3 5 20 30 50 100 10 0 0.2 0.4 0.6 0.8 Ip - DRAIN CURRENT (mA) V GS / V GS(OFF) - NORMALIZED GATE TO SOURCE VOLTAGE (V) Figure 5. Normalized Drain Resistance vs. Bias Voltage Figure 6. On Resistance vs. Drain Current

© 1997 Fairchild Semiconductor Corporation J105 / J106 / J107 Rev. 1.1.1

Typical Performance Characteristic

J105 / J106 / J107 — N-Channel Switch

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AX-CAP [®] x BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CorePOWER TM COREPOWER TM CTL TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficientMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore TM FastvCore TM FETBench TM	F-PFS™ FRFT® Global Power Resource SM Green Bridge™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Louder and Better™ MicroPat™ MicroPat™ MicroPak™ MicroPak™ MicroPak™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MotionMax™ mWSaver® OptOLOGIC® OPTOPLANAR®	PowerTrench [®] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] \widetilde{O}^{TM} Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperFET [®] SuperSOT [™] -3 SuperSOT [™] -8 SuperSOT [™] -8 SuperSOT [™] -8 SuperSOS [®]	Sync-Lock™ EGENERAL® TinyBoost® TinyBuck® TinyCalc™ TinyCopt® TINYOPTO™ TinyPower™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ UHC®
--	--	--	---

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our get parceled above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchilk Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.