N-channel TrenchMOS standard level FET

Rev. 02 — 1 December 2009

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Suitable for high frequency applications due to fast switching characteristics

Switched-mode power supplies

1.3 Applications

- DC-to-DC convertors
- General purpose switching

1.4 Quick reference data

Table 1. Quick reference

Symbol Parameter Conditions Min Typ Max Unit 25 °C ≤ T_i ≤ 175 °C VDS drain-source voltage _ 55 ٧ _ I_D drain current $T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ 18 А _ see Figure 1 and 3 51 W P_{tot} total power T_{mb} = 25 °C; _ _ dissipation see Figure 2 **Dynamic characteristics** V_{GS} = 10 V; I_D = 25 A; Q_{GD} gate-drain charge 6 _ nC V_{DS} = 44 V; T_i = 25 °C; see Figure 13 Static characteristics $V_{GS} = 10 \text{ V}; I_D = 10 \text{ A};$ 154 mΩ drain-source R_{DSon} T_i = 175 °C; on-state resistance see Figure 11 and 12 $V_{GS} = 10 \text{ V}; I_D = 10 \text{ A};$ 65 77 mΩ -T_i = 25 °C; see Figure 11 and 12

2. Pinning information

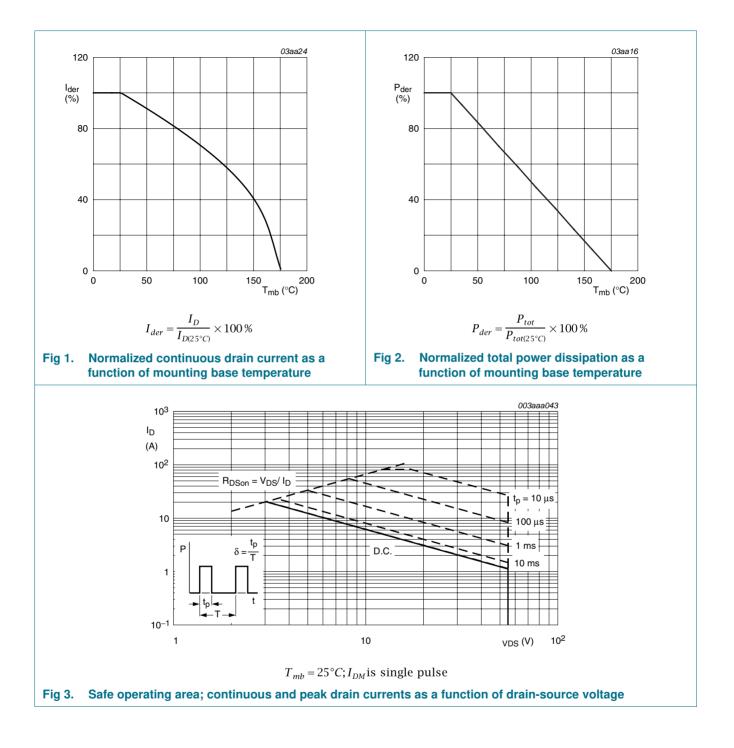
Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT428 (DPAK)	

3. Ordering information

Table 3.Ordering information

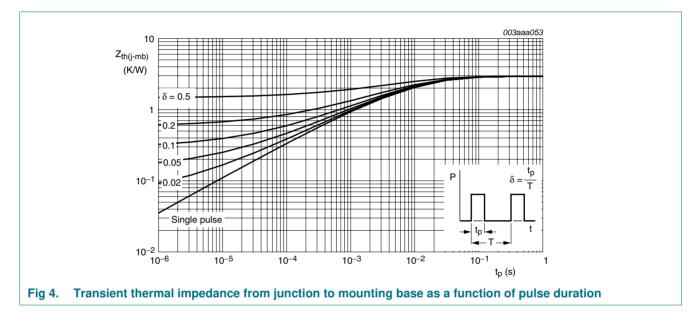
Type number	Package		
	Name	Description	Version
PHD20N06T	DPAK	plastic single-ended surface-mounted package (DPAK); 3 leads (one lead cropped)	SOT428

4. Limiting values


Table 4. Limiting values

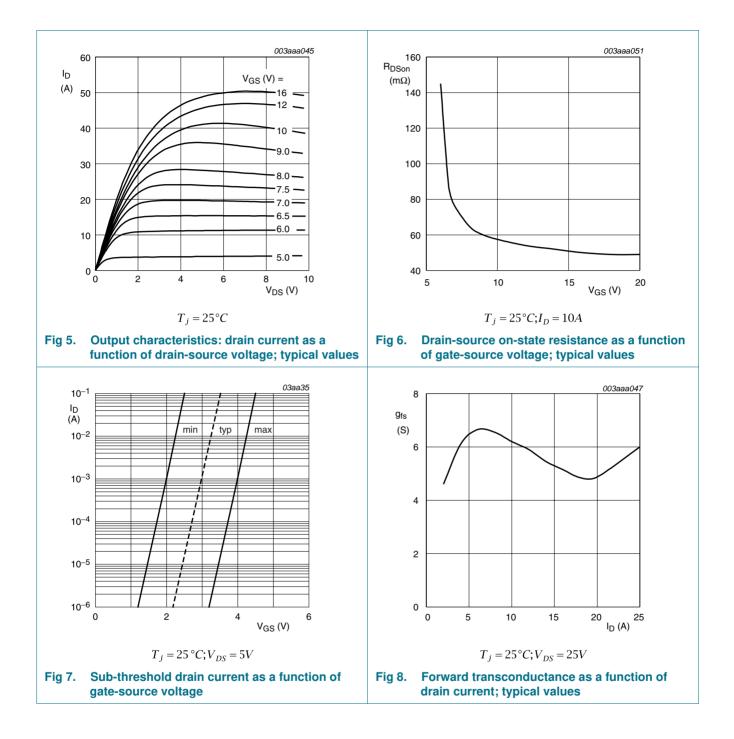
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C		-	55	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	55	V
V _{GS}	gate-source voltage			-20	20	V
I _D	drain current	V_{GS} = 10 V; T_{mb} = 100 °C; see <u>Figure 1</u>		-	13	А
		V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u> and <u>3</u>		-	18	А
I _{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see Figure 3	[1]	-	73	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	51	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-dr	ain diode					
ls	source current	T _{mb} = 25 °C		-	18	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	73	А
Avalanche	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; T _j = 25 °C; I _D = 6 A; R _{GS} = 50 Ω; $V_{sup} \le 55$ V; unclamped inductive load		-	36	mJ


[1] Peak drain current is limited by chip, not package.

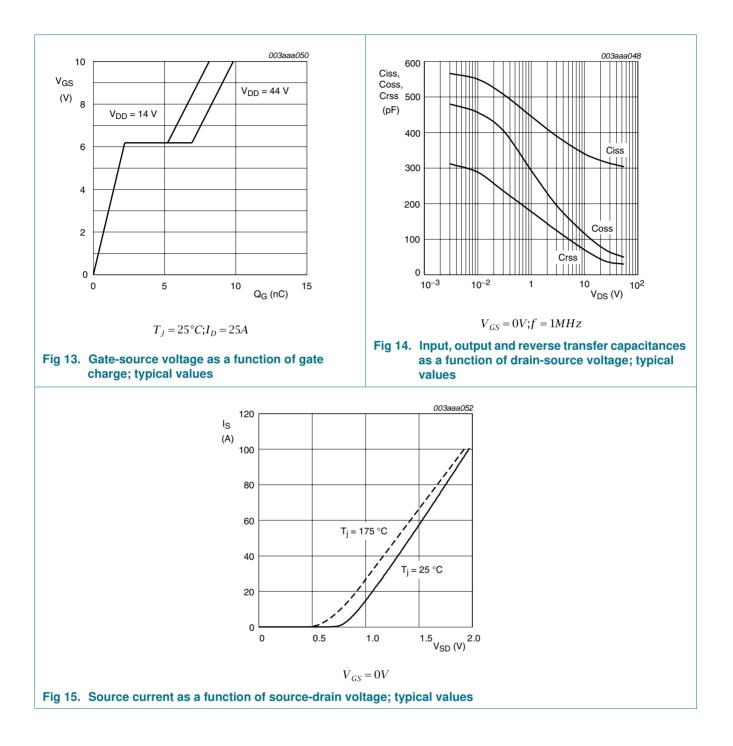
N-channel TrenchMOS standard level FET

5. Thermal characteristics

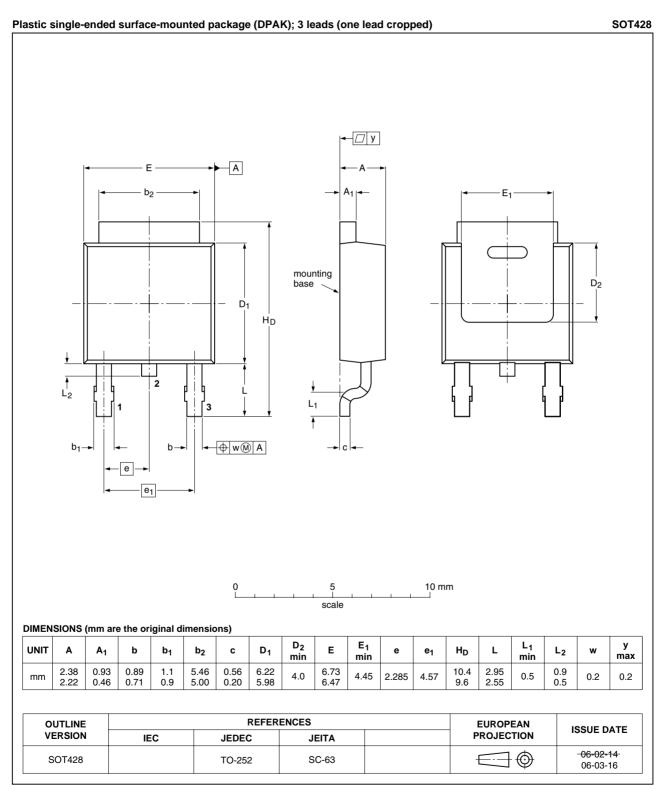

Table 5.	5. Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{\text{th(j-mb)}}$	thermal resistance from junction to mounting base	see <u>Figure 4</u>	-	-	2.9	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	minimum footprint; FR4 board	-	71.4	-	K/W

6. Characteristics

						Characteristics	Table 6.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Unit	Мах	Тур	Min	Conditions	Parameter	Symbol
$\begin{tabular}{ c $						racteristics	Static cha
$\begin{split} V_{GS(th)} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	V	-	-	50	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$		V _{(BR)DSS}
$ voltage \qquad voltage \qquad \qquad see Figure 10 \\ \hline h_{D} = 1 mA; V_{DS} = V_{GS}; T_{J} = 175 °C; \\ see Figure 10 \\ \hline h_{D} = 1 mA; V_{DS} = V_{GS}; T_{J} = 25 °C; \\ see Figure 10 \\ \hline h_{D} = 1 mA; V_{DS} = V_{GS}; T_{J} = 25 °C; \\ see Figure 10 \\ \hline h_{D} = 1 mA; V_{DS} = V_{GS}; T_{J} = 25 °C; \\ see Figure 10 \\ \hline h_{DS} = 55 V; V_{GS} = 0 V; T_{J} = 25 °C \\ - 0.05 \\ \hline h_{DS} = 55 V; V_{GS} = 0 V; T_{J} = 25 °C \\ - 2 \\ 000 \\ \hline h_{CS} = 20 V; V_{DS} = 0 V; T_{J} = 25 °C \\ - 2 \\ 000 \\ \hline h_{CS} = 20 V; V_{DS} = 0 V; T_{J} = 25 °C \\ - 2 \\ 000 \\ \hline h_{CS} = 10 V; h_{D} = 10 A; T_{J} = 175 °C; \\ - 2 \\ 000 \\ \hline h_{CS} = 10 V; h_{D} = 10 A; T_{J} = 175 °C; \\ - 154 \\ \hline h_{CS} = 10 V; h_{D} = 10 A; T_{J} = 25 °C; \\ - 65 \\ 77 \\ \hline h_{CS} = 10 V; h_{D} = 10 A; T_{J} = 25 °C; \\ - 65 \\ 77 \\ \hline h_{CS} = 10 V; h_{D} = 10 A; T_{J} = 25 °C; \\ - 66 \\ - \\ \hline h_{CS} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	V	-	-	55	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{V}; T_j = 25 ^\circ\text{C}$	breakdown voltage	
$\begin{array}{ c c c c c } & see \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	V	4.4	-	-	,	-	V _{GS(th)}
$\begin{tabular}{ c c c c c } \hline See \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	V	-	-	1	,		
$ \frac{1}{100} 1$	V	4	3	2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	μA	10	0.05	-	$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	drain leakage current	I _{DSS}
$ \frac{V_{GS} = -20 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & 2 & 100 \\ \hline V_{GS} = 10 \ V; \ V_{DS} = 10 \ A; \ T_j = 175 \ ^{\circ}C; & - & - & 154 \\ \hline V_{GS} = 10 \ V; \ V_D = 10 \ A; \ T_j = 175 \ ^{\circ}C; & - & 65 & 77 \\ \hline v_{GS} = 10 \ V; \ V_D = 10 \ A; \ T_j = 25 \ ^{\circ}C; & - & 65 & 77 \\ \hline v_{GS} = 10 \ V; \ V_D = 10 \ A; \ T_j = 25 \ ^{\circ}C; & - & 65 & 77 \\ \hline v_{GS} = 10 \ V; \ V_D = 10 \ A; \ T_j = 25 \ ^{\circ}C; & - & 65 & 77 \\ \hline v_{GS} = gate \ characteristics & & & & & & & & & & & & & & & & & & &$	μA	500	-	-	$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nA	100	2	-	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; \text{T}_{j} = 25 ^{\circ}\text{C}$	gate leakage current	I _{GSS}
$ \begin{array}{ c c c c c } \hline \mbox{resistance} & \ \begin{tabular}{ c c c c } \hline \mbox{see Figure 11 and 12} \\ \hline \mbox{V}_{QS} = 10 \ V; \ \mbox{l}_{p} = 10 \ \mbox{A}; \ \mbox{T}_{j} = 25 \ \mbox{C}; \ \mbox{see Figure 11 and 12} \\ \hline \mbox{Dynamic characteristics} \\ \hline \mbox{Dynamic characteristics} \\ \hline \mbox{Dynamic characteristics} & \ \mbox{I}_{D} = 25 \ \mbox{A}; \ \mbox{V}_{DS} = 10 \ \mbox{V}; \ \mbox{I}_{SS} = 10 \ \mbox{V}; \ \mbox{D}_{SS} = 10 \ \mbox{V}; \ \mbox{D}_{S} = 25 \ \mbox{C}; \ \mbox{see Figure 13} & \ \mbox{D}_{SS} = 0 \ \mbox{V}; \ \mbox{f}_{I} = 1 \ \mbox{MHz}; \ \mbox{D}_{SS} = 0 \ \mbox{V}; \ \mbox{f}_{I} = 1 \ \mbox{MHz}; \ \mbox{D}_{SS} = 25 \ \mbox{V}; \ \mbox{D}_{SS} = 0 \ \mbox{V}; \ \mbox{f}_{I} = 1 \ \mbox{MHz}; \ \mbox{D}_{S} = 25 \ \mbox{V}; \ \mbox{S}_{SS} = 0 \ \mbox{V}; \ \mbox{f}_{I} = 1 \ \mbox{MHz}; \ \mbox{D}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 12 \ \mbox{D}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 12 \ \mbox{D}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 12 \ \mbox{D}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 10 \ \mbox{C}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 10 \ \mbox{D}_{S} = 25 \ \mbox{C} \ \mbox{G}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 12 \ \mbox{D}_{SS} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 10 \ \mbox{C}_{S} = 10 \ \mbox{D}; \ \mbox{f}_{I} = 25 \ \mbox{C} \ \mbox{C} \ \mbox{D}_{S} = 10 \ \mbox{V}; \ \mbox{f}_{I} = 10 \ \mbox{C}_{S} = 25 \ \mbox{C} \ \mbox{C} \ \mbox{C} \ \mbox{D}_{S} = 10 \ \mbox{C}; \ \mbox{f}_{I} = 25 \ \mbox{C} \ \mbox{C} \ \mbox{C} \ \mbox{f}_{I} = 12 \ \mbox{D}_{S} \ \mbox{C} \ C$	nA	100	2	-	V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C		
See Figure 11 and 12 Dynamic characteristics 11 1 QG(tot) total gate charge ID = 25 A; VDS = 44 V; VGS = 10 V; Tj = 25 °C; see Figure 13 - 3 - QGD gate-source charge Tj = 25 °C; see Figure 13 - 6 - Ciss input capacitance VDS = 25 V; VGS = 0 V; f = 1 MHz; Tj = 25 °C; see Figure 14 - 92 110 Crss output capacitance Tj = 25 °C; see Figure 14 - 92 110 Crss reverse transfer capacitance VDS = 30 V; RL = 1.2 Ω; VGS = 10 V; Fige(ext) = 10 Ω; Tj = 25 °C - 10 - td(off) turn-off delay time VDS = 30 V; RL = 1.2 Ω; VGS = 10 V; Fige(ext) = 10 Ω; Tj = 25 °C - 10 - td(off) turn-off delay time MDS = 30 V; Tj = 25 °C - 50 - tf fall time - 0.0; Tj = 25 °C - 50 - Lo internal drain inductance measured from drain lead from package to centre of die; Tj = 25 °C - 2.5 - Source-dru inductance	mΩ	154	-	-			Doon
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mΩ	77	65	-			
$\begin{array}{c c c c c c c c } \hline \label{eq:gate-source charge} & T_j = 25 \ ^{\circ}\text{C}; \text{ see Figure 13} & - & 3 & - & & & & & & & & & & & & & &$						characteristics	Dynamic
$\begin{array}{c c c c c c } \hline Q_{GD} & gate-drain charge & & & & & & & & & & & & & & & & & & &$	nC	-	11	-		total gate charge	Q _{G(tot)}
$ \begin{array}{c c c c c c } \hline C_{iss} & input capacitance \\ \hline C_{iss} & output capacitance \\ \hline C_{rss} & output capacitance \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C; see \underline{Figure 14} \\ \hline T_{j} = 25 ^{\circ}C \\ \hline T_{j} = 25 ^{\circ}$	nC	-	3	-	T _j = 25 °C; see <u>Figure 13</u>	gate-source charge	Q_{GS}
$ \begin{array}{c c c c c c c } \hline C_{oss} & \mbox{output capacitance} & T_j = 25 \ ^\circ C; \mbox{see Figure 14} & - & 92 & 110 \\ \hline C_{rss} & reverse transfer \\ capacitance & & & & & & & & & & & & & & & & & & &$	nC	-	6	-		gate-drain charge	Q _{GD}
C_{rss} reverse transfer capacitance-6487 $t_{d(on)}$ turn-on delay time $V_{DS} = 30 \text{ V}; \text{ R}_L = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$ t_r -10- $t_{q(off)}$ turn-off delay time $V_{DS} = 30 \text{ V}; \text{ R}_L = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$ $F_{G(ext)} = 10 \Omega; \text{ T}_j = 25 ^{\circ}\text{C}$ -10- $t_{d(off)}$ turn-off delay time-50 t_f fall time-40- L_D internal drain inductancemeasured from drain lead from package to centre of die; T_j = 25 ^{\circ}\text{ C}-2.5- L_S internal source inductancemeasured from source lead from package to source bond pad; T_j = 25 ^{\circ}\text{ C}-7.5-Source-drain diode	pF	422	316	-		input capacitance	C _{iss}
capacitance $t_{d(on)}$ turn-on delay time $V_{DS} = 30 \text{ V}; \text{ R}_L = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$ -10- t_r rise time $P_{G(ext)} = 10 \Omega; T_j = 25 \text{ °C}$ -50- $t_{d(off)}$ turn-off delay time-70- t_f fall time-40- L_D internal drain inductancemeasured from drain lead from package to centre of die; $T_j = 25 \text{ °C}$ -2.5- L_S internal source inductancemeasured from source lead from package to source bond pad; $T_j = 25 \text{ °C}$ -7.5-Source-drain diode	рF	110	92	-	T _j = 25 °C; see <u>Figure 14</u>	output capacitance	Coss
trrise time $R_{G(ext)} = 10 \Omega; T_j = 25 °C$ -50-t_d(off)turn-off delay time-70t_ffall time-40-L_Dinternal drain inductancemeasured from drain lead from package to centre of die; T_j = 25 °C-2.5-L_Sinternal source inductancemeasured from source lead from package to source bond pad; T_j = 25 °C-7.5-Source-drain diode	pF	87	64	-			C _{rss}
trinsertingisserting 30° $t_{d(off)}$ turn-off delay time-70- t_{f} fall time-40- L_{D} internal drain inductancemeasured from drain lead from package to centre of die; $T_{j} = 25 \text{ °C}$ -2.5- L_{S} internal source inductancemeasured from source lead from package to source bond pad; $T_{j} = 25 \text{ °C}$ -7.5-Source-drain diode	ns	-	10	-		turn-on delay time	t _{d(on)}
trfall time-40-LDinternal drain inductancemeasured from drain lead from package to centre of die; T_j = 25 °C-2.5-LSinternal source inductancemeasured from source lead from package to source bond pad; T_j = 25 °C-7.5-Source-drain diode	ns	-	50	-	R _{G(ext)} = 10 Ω; T _j = 25 °C	rise time	t _r
LDinternal drain inductancemeasured from drain lead from package to centre of die; $T_j = 25 \text{ °C}$ -2.5-LSinternal source inductancemeasured from source lead from package to source bond pad; $T_j = 25 \text{ °C}$ -7.5-Source-drain diodeSource-drain diode	ns	-	70	-		turn-off delay time	t _{d(off)}
inductance centre of die; T _j = 25 °C L _S internal source inductance measured from source lead from package to source bond pad; T _j = 25 °C Source-drain diode Vertical diagonal diagon	ns	-	40	-		fall time	t _f
inductance to source bond pad; T _j = 25 °C Source-drain diode	nH	-	2.5	-			L _D
	nH	-	7.5	-			L _S
						rain diode	Source-d
V_{SD} source-drain voltage $I_S = 10 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ - 0.85 1.2 see Figure 15	V	1.2	0.85	-		source-drain voltage	V_{SD}
t_{rr} reverse recovery time $I_S = 20 \text{ A}$; $dI_S/dt = -100 \text{ A}/\mu s$; $V_{GS} = -10 \text{ V}$; - 32 -	ns	-	32	-		reverse recovery time	t _{rr}
Q_r recovered charge $V_{DS} = 30 \text{ V}; T_j = 25 \text{ °C}$ - 120 -	nC	-	120	-	V _{DS} = 30 V; T _j = 25 °C	recovered charge	Qr


N-channel TrenchMOS standard level FET

PHD20N06T N-channel TrenchMOS standard level FET


03aa32 003aaa049 25 5 V_{GS(th)} (V) I_D (A) ₂₀ 4 max 15 3 typ 10 2 min 5 1 T_i = 175 °C T_i = 25 °C 0 0 0 60 0 2 4 6 8 V_{GS} (V) 10 -60 120 180 T_i (°C) $V_{DS} = 25V$ $I_D = 1 mA; V_{DS} = V_{GS}$ Transfer characteristics: drain current as a Fig 10. Gate-source threshold voltage as a function of Fig 9. function of gate-source voltage; typical values junction temperature *003aaa046* 03aa28 180 R_{DSon} 2.4 $V_{GS}(V) =$ (mΩ) 5.5 6 6.5 7 8 10 а . 160 1.8 140 120 1.2 100 80 0.6 60 40 0 0 10 20 30 40 50 -60 0 60 120 180 T_i (°C) I_D (A) $a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$ $T_j = 25^{\circ}C$ Fig 11. Drain-source on-state resistance as a function Fig 12. Normalized drain-source on-state resistance of drain current; typical values factor as a function of junction temperature

PHD20N06T

N-channel TrenchMOS standard level FET

7. Package outline

Fig 16. Package outline SOT428 (DPAK)

8. Revision history

Table 7. Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PHD20N06T_2	20091201	Product data sheet	-	PHD20N06T-01
Modifications:		t of this data sheet has be of NXP Semiconductors.	en redesigned to comp	ly with the new identity
	 Legal texts 	s have been adapted to th	e new company name v	vhere appropriate.
PHD20N06T-01 (9397 750 07895)	20010222	Product specification	-	-

9. Legal information

9.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URLhttp://www.nxp.com.

9.2 **Definitions**

Draft— The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet— A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General— Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes— NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use— NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications— Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data— The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values— Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale— NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at<u>http://www.nxp.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license— Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control— This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS— is a trademark of NXP B.V.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to:salesaddresses@nxp.com

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline9
8	Revision history10
9	Legal information11
9.1	Data sheet status11
9.2	Definitions11
9.3	Disclaimers
9.4	Trademarks11
10	Contact information11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

founded by
PHILIPS

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 December 2009 Document identifier: PHD20N06T_2

All rights reserved.