

HF/VHF/UHF RF power N-channel MOSFET

Datasheet - production data

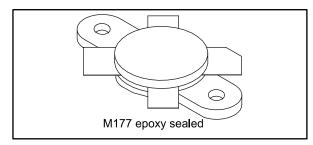
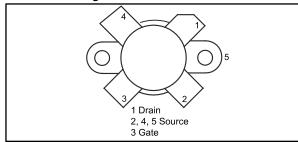



Figure 1: Pin connection

Features

- High power capability
- Pout = 350 W min. with 22 dB gain@30 MHz
- Psat = 450 W
- Low R_{DS(on)}
- Thermally enhanced packing for lower junction temperatures
- Gold metallization
- Excellent thermal stability
- Common source configuration

Description

The SD2943 is a gold metallized N-channel MOS field-effect RF power transistor. It is used for 50 V DC large signal applications up to 150 MHz. The SD2943 offers a 20% higher power saturation than the SD2933, and is ideal for ISM applications where reliability and ruggedness are critical factors.

Table 1: Device summary

Order code	Marking	Package	Packing
SD2943W	SD2943 ⁽¹⁾	M177	Plastic tray

Notes:

(1) For more details please refer to Section 6: "Marking, packing and shipping specifications".

Contents SD2943

Contents

1	Electric	al data	3
	1.1	Maximum ratings	3
	1.2	Thermal data	3
2	Electric	al characteristics	4
3	Impeda	nce data	5
4	_	performance	
5		cuit (175 MHz)	
6		g, packing and shipping specifications	
7	Packag	e information	11
	•	M177 (.550 DIA 4L NHERM WFLG) package information	
8	Revisio	n history	12

SD2943 Electrical data

1 Electrical data

1.1 Maximum ratings

T_{CASE} = 25 °C

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{(BR)DSS} ⁽¹⁾	Drain source voltage	130	V
V _{DGR}	Drain-gate voltage (R _{GS} = 1 MΩ)	130	V
V_{GS}	Gate-source voltage	±40	V
ID	Drain current	40	Α
P _{DISS}	Power dissipation	648	W
TJ	Max. operating junction temperature	+200	°C
Eas	Avalanche energy, single pulse (ID = 53 A, 800 μ H coil)	1100	mJ
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

⁽¹⁾T_J = 150 °C

1.2 Thermal data

Table 3: Thermal data

Symbol	Parameter	Value	Unit	l
R _{thJC}	Junction-to-case thermal resistance	0.27	°C/W	l

Electrical characteristics SD2943

2 Electrical characteristics

T_{CASE} = 25 °C

Table 4: Static

Symbol		Test conditions				Max.	Unit
V _{(BR)DSS} ⁽¹⁾	V _{GS} = 0 V	$I_{DS} = 200 \text{ mA}$		130			V
IDSS	$V_{GS} = 0 V$	$V_{DS} = 50 \text{ V}$				200	μΑ
I _{GSS}	V _{GS} = 20 V	$V_{DS} = 0 V$				500	nA
V _{GS(Q)}	V _{DS} = 10 V	$I_D = 250 \text{ mA}$		2		4	V
$V_{DS(ON)}$	V _{GS} = 10 V	I _D = 20 A				2	V
GFS	$V_{DS} = 10 \text{ V}$	$I_D = 10 A$		10			mho
C _{ISS}	$V_{GS} = 0 V$	$V_{DS} = 50 \text{ V}$	f = 1 MHz		830		pF
Coss	V _{GS} = 0 V	$V_{DS} = 50 \text{ V}$	f = 1 MHz		470		pF
C _{RSS}	V _{GS} = 0 V	$V_{DS} = 50 \text{ V}$	f = 1 MHz		35		pF

Notes:

 $^{(1)}T_J = 150 \, {}^{\circ}C$

Table 5: Dynamic

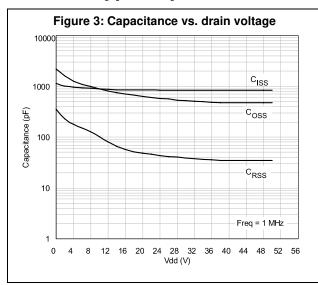
Symbol	Test conditions	Min.	Тур.	Max.	Unit
Pout	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $f = 30 \text{ MHz}$	350	450		W
G _{PS}	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{OUT} = 350 \text{ W}$ $f = 30 \text{ MHz}$	22	25		dB
η _D	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{OUT} = 350 \text{ W}$ $f = 30 \text{ MHz}$	60	65		%
Load mismatch	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $P_{OUT} = 350 \text{ W}$ $f = 30 \text{ MHz}$ All phase angles	3:1			VSWR

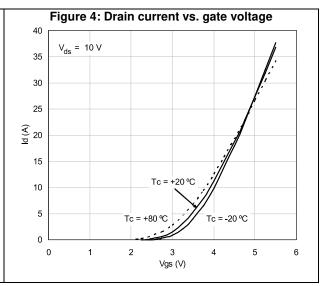
Table 6: GFS sorts

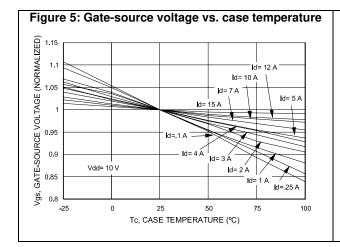
Symbol	Value
А	10 to 10.99
В	11 to 11.99
С	12 to 12.99
D	13 to 13.99
E	14 to 14.99
F	15 to 15.99
G	16 to 16.99
Н	17 to 18

SD2943 Impedance data

3 Impedance data

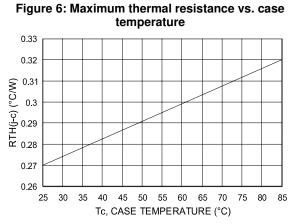
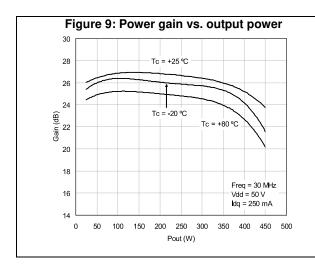
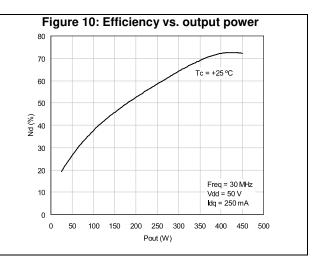
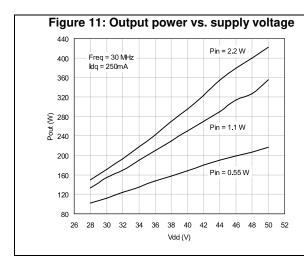

Figure 2: Impedance data




Table 7: Impedance data

f	Z _{IN} (Ω)	$Z_DL(\Omega)$
30 MHz	1.3 - j 2.9	3.1 + j 2.3
108 MHz	1.4 - j 2.4	1.9 + j 1.4
175 MHz	1.4 - j 2.2	1.7 + j 1.6

4 Typical performance

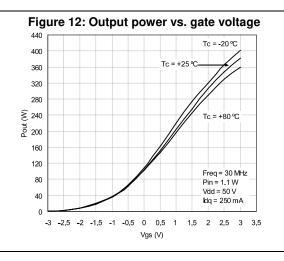
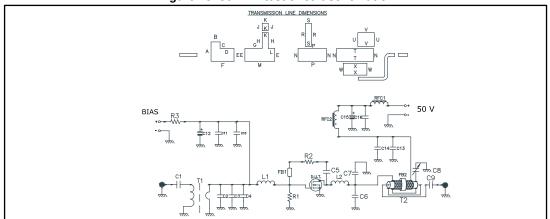

Figure 7: Output power vs. input power 500 450 400 Vdd = 50 V 350 300 Vdd = 40 V 250 200 150 100 Frea = 30 MHz 50 0.0 0.5 1.0 1.5 2.0 3.0 3.5 Pin (W)

Figure 8: Output power vs. input power (at different temperature) 500 Tc = +25 ℃ Tc = -20 °C 450 Tc = +80 °C 400 350 300 250 200 150 100 Freq = 30 MHz Vdd = 50 V Idq = 250 mA 50 0 0.0 0.5 1.0 1.5 2.0 2.5 3.5 4.0 Pin (W)



5 Test circuit (175 MHz)

Figure 13: 30 MHz test circuit schematic

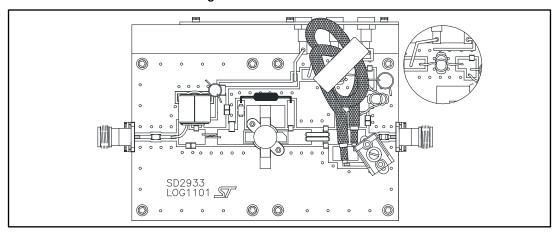

Dimensions at component symbols are references for component placement. Gap between ground and transmission files are 0.056[1.42] (typ.). Transmission line is not 1:1 scale. Input and output transmission line are 50 Ω .

Table 8: 30 MHz test circuit part list

Component	Description
C1, C9	0.01 µF / 500 V surface mount ceramic chip capacitor
C2, C3	750 pF ATC 700B surface mount ceramic chip capacitor
C4	300 pF ATC 700B surface mount ceramic chip capacitor
C5, C10, C11, C14, C16	10000 pF ATC 200B surface mount ceramic chip capacitor
C6	510 pF ATC 700B surface mount ceramic chip capacitor
C7	300 pF ATC 700B surface mount ceramic chip capacitor
C8	175-680 pF type 46 standard trimmer capacitor
C12	47 μF / 63 V aluminum electrolytic radial lead capacitor
C13	1200 pF ATC 700B surface mount ceramic chip capacitor
C15	100 μF / 63 V aluminum electrolytic radial lead capacitor
R1, R3	1 kΩ 1 W surface mount chip resistor
R2	560 Ω 2 W wire-wound axil lead resistor
T1	HF 2-30 MHz surface mount 9:1 transformer
T2	RG - 142B/U 50 Ω coaxial cable OD = 0.165[4.18] L 15"[381.00] covered with 15"[381.00] tinned copper tubular brand 13/65" [5.1] width
L1	1 3/4 turn air-wound 16 AWG ID = 0.219 [5.56] poly-coated magnet wire
L2	1 3/4 turn air-wound 12 AWG ID = 0.250 [6.34] bus bar wire
RFC1, RFC2	3 turns 14 AWG wire through fair rite toroid
FB1	Surface mount shield bead

Component	Description	
FB2	Toroid	
PCB	ULTRALAM 2000. 0.030" THK, εr = 2.55, 2 Oz ED CU both sides	

Figure 14: 30 MHz test circuit

Both the SD2933 and the SD2943 device use the same PCB.

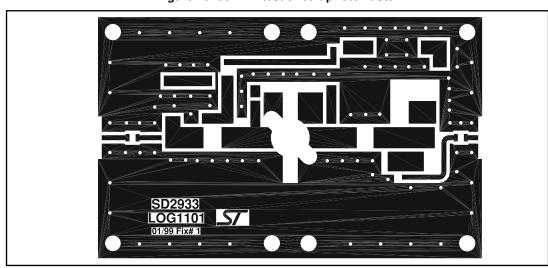


Figure 15: 30 MHz test circuit photomaster

6 Marking, packing and shipping specifications

Table 9: Packing and shipping specifications

Order code	Packing	Pieces per tray	Dry pack humidity	G _{FS} code	Lot code
SD2943W	Plastic tray	25	< 10%	Not mixed	Not mixed

Figure 16: SD2943 marking layout

Table 10: Marking specifications

Symbol	Description
W	Wafer process code
X	G _{FS} sort
CZ	Assembly plant
XXX	Last 3 digits of diffusion lot
VY	Diffusion plant
MAR	Country of origin
CZ	Test and finishing plant
у	Assembly year
уу	Assembly week

SD2943 Package information

7 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

7.1 M177 (.550 DIA 4L NHERM WFLG) package information

.10/2.54×45° Ø.125/3.18 NDM. FULL R .135/3.43 .135/3.43 SEATING PLANE

Figure 17: M177 (.550 DIA 4L N/HERM W/FLG) package outline

Table 11: M177 (.550 DIA 4L N/HERM W/FLG) package mechanical data

Dim.	mm		
	Min.	Тур.	Max.
Α	5.72		5.97
В	6.73		6.96
С	21.84		22.10
D	28.70		28.96
E	13.84		14.10
F	0.08		0.18
G	2.49		2.74
Н	3.81		4.32
I			7.11
J	27.43		28.45
K	15.88		16.13

Revision history SD2943

8 Revision history

Table 12: Document revision history

Date	Revision	Changes
18-Oct-2005	1	First issue.
04-Jan-2006	2	Complete version.
24-Aug-2011	3	Inserted Chapter 7: Marking, packing and shipping specifications. Minor text changes.
10-Aug-2015	4	Updated <i>Table 2.: Absolute maximum rating</i> . Minor text changes.
02-Dec-2016 5 Updated <i>Table 2: "Absolute maximum ratin</i> Minor text changes.		Updated <i>Table 2: "Absolute maximum ratings"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

